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Abstract

An efficient CMM inspection process implemented in industry gives significant productivity improvements. A key part of this improvement is

the optimization of the inspection sequences. To ensure quality of the inspection the sequences are often constrained with respect to the order

of the measurements. This gives rise to so called precedence constraints when modelling the inspection sequence as a variation of the travelling

salesperson problem (TSP). Two heuristic solution approaches and a generic optimizing algorithm are considered. A generation based stochastic

algorithm is found to reduce cycle time by as much as 12% in comparison to the currently used algorithm.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Many products such as car and truck bodies, engines, med-

ical prosthesis, mobile phones, and lumbering equipment de-

pend visually and functionally on its geometry. Since varia-

tion is inherent in all production processes, consistent efforts in

styling, design, verification and production aiming at less geo-

metrical variation in assembled products, is a key to shortening

development time of new products, as well as for choosing an

efficient and resource-economic production process. The activ-

ities aiming at controlling geometrical variation throughout the

whole product realization process are called the geometry as-

surance process. Figure 1 shows a general model for product

realization consisting of a concept phase, a verification phase

and a production phase.

The geometry assurance process, as defined in [1], relies on

inspection data in all phases. Product concepts are analyzed

and optimized to withstand the effect of manufacturing varia-

tion and tested virtually against available production data often

based on carry over type of inspection. In the verification and

pre-production phase the product and the production system is

physically tested and verified. Adjustments are made to both

product and production system based on inspection data. In full

production the focus is to control the process and to detect and

correct errors by analyzing inspection data. These inspection

data are often collected before, during and after important as-

Fig. 1. A general model for product realization and the main activities of the

geometry assurance process.

sembly steps. In this way, important assembly issues as part,

fixture and joining errors can be detected and corrected in an

efficient manner.

Therefore, the inspection preparation and measuring is an

important activity and this paper presents an industrial validated

closed loop from inspection preparation to automatic efficient

off-line programming of automated measurement equipment.

Then the focus is on improving the sequence optimization part

of it by solving precedence constrained generalized travelling

salesperson problem.
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2. An Efficient Process for Inspection Preparation and Pro-
gramming

The efficient inspection process implemented to support pro-

gramming of automated inspection devices is built up by five

main steps; (i) define the inspection task by breaking down

product and process requirements to geometrical inspection

features, e.g. a hole or a slot, on part and subassembly level

(Figure 2), (ii) create parameterized inspection rules that de-

fine how a feature should be measured, i.e. number of points,

distribution, coordinate system, and probe cones, (iii) perform

feature accessibility analysis to find a set of probe configura-

tions of minimum size that can reach all inspection points with

collision free CMM configurations (Figure 3), (iv) plan by math

based algorithms for motion planning and combinatorial opti-

mization the collision free motions and sequence of the mea-

surement equipment to visit each feature, and (v) generate the

control code, e.g. DMIS to instruct the equipment to perform

the actual measurement.

Fig. 2. An inspection task is defined by breaking down the product quality ap-

pearance requirement (right picture) on gap and flushes to boot and rear fender

part inspection points (right picture).

This process has been industrially evaluated and used by e.g.

Volvo Cars to program all automated inspection devices since

2011. The results show an improvement in inspection prepara-

tion time of 75% and productive increase in equipment utiliza-

tion of 25%. The experience is also that the inspection prepara-

tion process becomes more structured and thereby reusable to a

larger extent than previously.

2.1. Parameterized Inspection Rules

As mentioned, part of the process is to create parameterized

inspection rules for the most commonly used inspection fea-

tures in practice, i.e. surface point, edge point, circular hole,

oval hole, rectangular hole, sphere, and cylinder [2,3]. The pa-

rameterization describes the inspection rule in terms of number

of points, positions and probe configurations, and the allowed

deviation from the ideal/default rule [4]. Today, it is common

that the CMM embedded software contains the inspection rules

and decides the motion patterns and sequence during feature in-

spection. However, the proposed approach with parameterized

inspection features has four key advantages: (i) it makes the in-

spection preparation flexible, structured and repeatable, (ii) the

same control code can be used with CMMs of different brands

with more consistent results, (iii) the inspection sequence inside

and between features can be optimized together to minimize cy-

Fig. 3. Approachability illustrated; It should be possible to perform a linear

motion along the inspection direction from a specified approach point and that

the probe sphere/tip should make contact with the inspection point during that

motion without any further collisions. The red arrow represents the normal of

the inspection point.

cle time, (iv) if the default inspection rule is not feasible due to

collisions then the conflict can automatically be resolved by us-

ing the allowed deviation from the default rules. In Figure 4,

as an example, the parameterized inspection rule for a circle is

defined and illustrated.

Fig. 4. A parameterized inspection rule of circle feature.

2.2. Automatic Path Planning

The next technology used is path planning where the colli-

sion free CMM motions are generated by automatically find-

ing via points and probe reorientations between the inspection

features [5,6,15]. Complete path planning algorithms, which al-

ways find a solution or determine that none exist, are of little in-

dustrial relevance since they are too slow. In fact, the complex-

ity of the problem has proven to be PSPACE-hard for polyhe-

dral object with polyhedral obstacles [7]. Therefore, sampling

based techniques trading completeness for speed and simplic-

ity is the choice. Common for these methods are the needs for

efficient collision detection, nearest neighbor searching, graph

searching and graph representation. The two most popular
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methods are; Probabilistic Roadmap Methods (PRM) [8] and

Rapidly-Exploring Random Trees (RRT) [9]. These methods

have been extended and tailored in several ways, for example

in [10]. Inspired by these probabilistic methods FCC has devel-

oped a deterministic path planner that adaptively adjusts a grid

in the configuration space.

2.3. Inspection Sequence Optimization

Data generated by the inspection rule analysis and path plan-

ning can then be used to optimize task sequences for robot

stations, such as automated welding or measuring. Such opti-

mization can reduce cycle time by as much as 25% and thereby

greatly increase efficiency of production [11]. Task sequences

can be discretized and modelled as a travelling salesperson

problem (TSP) or some variation of it [12]. Introducing in-

creasingly complex attributes to the problem such as different

ways to complete each task, precedence constraints and/or sev-

eral robot arms working on the same object requires the TSP

model to be more advanced.

The precedence constraints are introduced by hierarchical

relations between features since some features are required to

be measured in relation to other features. Typically, to be able

to measure some features there is a need for a local alignment.

The alignment is a coordinate system calculated from group of

measured/actual features. This type of local measurement cre-

ates hierarchical relations between features and thus imposes

precedence constraints. However, this should not be confused

with evaluating features in relation to each other. Sequence con-

straints are only introduced when features are physically mea-

sured in relations to other features. Spitz and Requicha [14]

solved a constraint satisfaction problem to handle this. This

paper will instead incorporate this directly in the TSP solution.

Therefore, this paper consider the case of optimizing the

precedence constrained task sequence of a single arm CMM

robot station where each task can be performed in several dif-

ferent ways. Since a CMM has five degrees of freedom, each

point can be approached from many different angles and thus be

evaluated in a multitude of ways. To model these characteris-

tics, one can discretize a subset of the different ways in which a

point can be measured and constrain the order of the points be-

ing evaluated. Given such a discretization and set of precedence

constraints one can model the problem of minimizing the total

cycle time as a precedence constrained generalized travelling

salesperson problem (PCGTSP).

Since the PCGTSP is an extension of the GTSP it is also an

NP-hard problem [17]. So as with many other NP-hard prob-

lems, using exact optimizing algorithms for solving larger prob-

lem instances are often impractical and heuristic algorithms are

implemented instead [23]. The PCGTSP is similar to two other

well-studied variations of the TSP, the sequential ordering prob-

lem (SOP) [21–26] and the generalized TSP (GTSP) [16–20],

but the PCGTSP has not been extensively studied itself. There-

fore, there is a need to develop and evaluate heuristic algorithms

for the PCGTSP and their effectiveness on real industrial appli-

cations which is what this paper aims to do.

2.4. Results from Volvo Cars

At Volvo Cars a new vehicle program is inspected with typi-

cally 700 inspection programs containing up to 25 000 features.

By implementing this efficient process for inspection the prepa-

ration and programming time have been estimated to be reduced

by 75% and the equipment utilization has been improved by

25% more efficient programs. Some examples from the inspec-

tion process implementation at Volvo Cars can be seen in Fig-

ures 5-7.

Fig. 5. Feature accessibility analysis resulting in five different collision free

probe configuration inspection alternatives (courtesy of Volvo Cars).

Fig. 6. An automatic generated collision free path between two features con-

taining a non-trivial necessary probe change in the middle. Movement shown

by transparent probe states (courtesy of Volvo Cars).

Fig. 7. An optimized collision free inspection sequence (blue trajectory) for

20 features containing 115 points, calculated by the system (courtesy of Volvo

Cars).

The rest of the paper will proceed as follows. In Section
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3 the PCGTSP is described. Section 4 describes the different

solving methods which are evaluated in this paper and Section

5 presents the results when testing these methods on some real

industrial cases. Finally, Section 6 presents some final conclu-

sions and suggestions for future research.

3. Problem description

The PCGTSP is a variation of the TSP where the node set is

partitioned into groups and then precedence constraints are en-

forced on a group level, i.e. such that the groups are required to

precede each other (but not necessarily directly) in a solution.

Because the PCGTSP solution represents a sequence of tasks

(modelled as groups) where each task can be performed in dif-

ferent ways (modelled as nodes) it is natural to have the prece-

dence constraints enforced on a group level, since the tasks are

required to precede each other.

Let n be the number of nodes in a problem instance and

let V := {1, . . . , n} denote the set of all nodes. Let A :=

{(i, j) : i, j ∈ V, i � j} denote the set of all (directed) arcs be-

tween all nodes and let ci j, i, j ∈ V , denote the cost associated

with the arc from node i to node j. Let M := {1, . . . ,m} denote

the set of all group indices and let V1, . . . ,Vm be a partition of

V where Vp, p ∈ M, is called a group. The partition of V must

satisfy Vp � ∅, V = ∪p∈MVp and Vp ∩ Vq = ∅ when p � q. Let

the precedence constraints be defined by sets which are denoted

as PGq := {p ∈ M : group p must precede group q in the tour},
q ∈ M. For these applications a start group, pstart, which con-

sists of a single node is specified as the starting position of the

robot as well. The PCGTSP is then to find a tour starting from

pstart such that one node in every group is visited exactly once,

the precedence constraints are satisfied and the sum of the cost

associated with the traversed arcs is minimized.

When attempting to solve the PCGTSP one can view it as

two subproblems: group sequence and node choice, i.e. the or-

der in which the groups are visited and the choice of the node

that is to be visited in each group. The group sequence subprob-

lem requires a fixed selection of which node that is to be visited

within each group while the node selection subproblem requires

a fixed order of the groups to be solved. While there is a clear

dependency between these subproblems, heuristic solving al-

gorithms which separate or combine them to different degrees

have, however, been shown to be efficient for the GTSP without

precedence constraints [19,20].

4. Solution approaches

In this paper two different approaches for solving the

PCGTSP are presented. The first approach is a determinis-

tic algorithm which successively expands the set of groups

as their precedence constraints are satisfied and uses a high

performance heuristic algorithm designed for the GTSP as a

lower level solver. The second approach is a stochastic algo-

rithm based on an Ant Colony System (ACS) metaheuristic hy-

bridized with a special purpose local search. This algorithm has

been very successful for the SOP [23,24] and was shown to per-

form quite well for larger problem instances when generalized

to the PCGTSP [13]. The generic optimizing software CPLEX

is also considered as a solution approach and as a method for

obtaining lower bounds.

4.1. CPLEX software

The CPLEX solver uses an advanced but generic method of

branch-and-cut to optimize mixed integer linear programming

(MILP) formulations of optimization problems. The MILP for-

mulation of the PCGTSP first proposed by Salman in [13] is

used to study the effectiveness of such a generic optimizing

method in the industrial cases considered in this paper. CPLEX

is used for completely solving the PCGTSP to optimality as

well as solving the linear programming (LP) relaxed PCGTSP

where the integrality constraints are relaxed and a lower bound

on the minimal tour length is obtained.

4.2. Sequentially Expanding GTSP (SEG) solver

The general algorithm for the SEG solver is as follows:

Algorithm 1 Sequentially Expanding GTSP

1. Set k = 1 and initialize a path P1 = {pstart}.
2. Set U = {p ∈ M : group p is allowed to be visited

given the path Pk}.
3. Let the GTSP solver expand the path

Pk = {Pk
1
, Pk

2
, · · · , Pk

l }, l ≤ m using the groups in U.

4. If Pk visits all groups in M then add a final arc between

Pk
m and Pk

1
to the path Pk, reoptimize the node selection

and exit.

5. For each j = 1, · · · , l check if any groups in M are allowed

to be visited given the path Pk j = {Pk
1
, · · · , Pk

j}. As soon

as one or several groups in M are allowed to be visited for

some Pkj then set Pk+1 = Pkj , set k = k + 1 and go to step

2.

The SEG solver approach handles the precedence constraints

implicitly and is also constructive in its nature, meaning that it

is deterministic and does not iteratively improve the solution.

The benefit of the SEG algorithm is that any GTSP solver can

be used in conjunction with this general strategy and one can

therefore utilize the many effective solving algorithms which

have been developed for the GTSP. A potential drawback is the

short-sightedness of the algorithm since it only considers the

groups allowed to be visited in the graph given a current path

constructed by the GTSP solver.

4.3. Hybridized Ant Colony System (HACS)

The idea for the ACS algorithm is to model a fixed num-

ber of ants, N, that iteratively generate feasible solutions to the

PCGTSP by traversing arcs, (i, j) ∈ A, in a non-deterministic

manner. In each iteration the generation of paths is guided by

the depositing of ”pheromones”, which are denoted τi j ∈ [0, 1],

along the arcs that have been traversed by the ant which has

produced the shortest tour. The higher the value of τi j, the

higher the probability that arc (i, j) is chosen during the process

of generating paths. For each arc (i, j) ∈ A a fixed parameter

ηi j ∈ [0, 1] is initialized as ηi j = 1/ci j. This parameter is called

the visibility parameter and provides a fixed measurement of

how attractive the corresponding arc is for the ants.

However, to avoid getting stuck at locally optimal solutions

and to promote diverse solutions the ACS algorithm incorpo-
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rates a so-called evaporation rate parameter ρ ∈ [0, 1]. Let

T k = (T k
1
, . . . ,T k

m) be the shortest tour in iteration k. At the

end of each iteration k the pheromone levels are updated as

τi j = (1 − ρ)τi j + ρ/CT k where CT k is the total cost of tour

T k. Furthermore, during the path generation process, if an ant

chooses to traverse an arc (i, j), the pheromone level of that

arc is updated as τi j = (1 − ρ)τi j + ρτ0 where τ0 is the initial

pheromone level parameter. The ACS algorithm also introduces

a probability d0 ∈ [0, 1] that the arc chosen by an ant during the

path generation is the arc which is the most attractive. Other-

wise, i.e. with probability (1 − d0), an arc (i, j) is chosen with

probability

pa
i, j =

⎧
⎪⎪⎨
⎪⎪⎩

[τi j]
α[ηi j]

β

∑
l∈V(Ta )[τil]α[ηil]β

if j ∈ V(T a)

0 otherwise
(1)

where α and β be parameters that control the relative impor-

tance of the pheromone level and the visibility parameter and

V(T a) is the set of allowed nodes given a tour T a of ant a.

4.3.1. Local search
After each tour generated by the ACS metaheuristic a local

search procedure is executed. First, the node selection of the

tour is fully optimized given a fixed order of the groups through

a dynamic programming algorithm [13,16,19].

Fig. 8. (A) is an example of a path preserving 3-opt move. (B) is an example of

a path inverting 3-opt move.

Then a highly efficient 3-opt local search [23] is performed.

The k-opt local search heuristic removes k arcs from an existing

tour and adds k arcs such that the tour becomes improved. This

3-opt local search was specifically developed to handle prece-

dence constraints by excluding certain 3-opt moves from the

search and was found to perform better than many other k-opt

local search heuristics when generalized to the PCGTSP [13].

By excluding so-called path inverting 3-opt moves, i.e. moves

that inverts the orientation of one or several segments of the tour

(see Figure 8), the algorithm reduces the time spent on verify-

ing that the precedence constraints are satisfied and verifying

the improvement condition of a 3-exchange. Furthermore, the

3-opt local search employs a special labelling procedure which

makes the verification of the precedence constraints even more

efficient.

When a tour which can not be improved further by the 3-

opt local search is found, the node selection is fully optimized

again.

5. Computational experiments and results

Five problem instances derived from CMM inspection cases

of various sizes are studied. Each problem instance is evaluated

using the three solution approaches described in Section 4.

The CPLEX software was run with a 24 hour time limit and

was run for the LP relaxed problem as well as the original MILP

problem for each instance.

The HACS algorithm was run 10 times with 10 ants and 100

iterations per run. The parameters were set to ρ = 0.1, α = 1,

β = 2, d0 = 0.9 and τ0 = 1/(mCu) where Cu is an upper bound

on the minimal tour length. Also, the local search is only run

for a generated tour if the cost is within 20% of the best one

found so far. This heuristic rule as been found to be benificial

in [24].

Let z be the sum of costs ci j for the arcs (i, j) traversed in a

solution. An optimal solution is then the shortest possible tour

given the graph of a problem instance.

Table 1. Results from CPLEX. z∗
LP

is the minimal solution for the LP relaxed

problem and z∗
MILP

is the minimal tour length for the original MILP problem.

TLP is the time for the LP relaxed problem and TMILP is the time for the original

MILP problem.

Instance m n z∗
LP

TLP (s) z∗
MILP

TMILP (s)

cmm001 13 15 48.85 0.03 49.12 0.03

cmm002 16 25 7.60 0.03 20.26 1.86

cmm003 18 36 11.43 0.19 20.04 0.41

cmm004 91 216 23.00 3936.43 - >86400

cmm005 174 405 - >86400 - >86400

Table 1 shows the tour lengths when running the problem

instances in the generic optimizing software CPLEX. For the

two larger problems, cmm004 and cmm005, CPLEX was not

able to find an optimal solution within the time limit of 24 hours

and for cmm005 CPLEX was not able to solve the LP relaxation

to optimality within the time limit either.

Table 2. Tour lengths and average running times for the heuristic algorithms.

zbest
HACS

is the best (shortest) tour length out of 10 runs. THACS and TSEG is the

average time for completing a run.

Instance m n zSEG TSEG (s) zbest
HACS

THACS (s)

cmm001 13 15 49.12 0.01 49.12 6.93

cmm002 16 25 20.48 0.02 20.73 9.56

cmm003 18 36 20.46 0.02 20.04 6.69

cmm004 91 216 48.31 2.80 46.07 286.91

cmm005 174 405 212.23 22.03 185.83 698.52

Table 2 shows the results from the heuristic algorithms. For

the smaller instances, cmm001-003, the difference in solution

quality is marginal. For cmm004 the HACS algorithm performs

a bit better than the SEG solver and for cmm005 the solution

produced by the HACS algorithm is significantly better. While

the HACS algorithm is much slower than the SEG solver, Ta-

ble 3 suggests that the number of iterations can probably be
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Table 3. More detailed results for the HACS algorithm. zavg

HACS
is the average

solution found for an instance over 10 runs. Tbavg is the average running time

and Ibavg is the average number of iterations elapsed before the best solution is

found by the HACS algorithm in each run.

Instance m n zbest
HACS

zavg

HACS
Tbavg (s) Ibavg

cmm001 13 15 49.12 49.12 0.02 1

cmm002 16 25 20.73 20.73 0.20 2

cmm003 18 36 20.04 20.11 1.36 13

cmm004 91 216 46.07 46.98 176.56 54

cmm005 174 405 185.83 187.61 237.63 33

lowered by almost 50% without any significant loss of solution

quality for these problem instances.

6. Conclusions and future research

The productivity of the CMM inspection process and equip-

ment is significantly improved by a structured inspection prepa-

ration process combined with automatic path planning. Inspec-

tion sequence optimization is an important part of the improve-

ment. In this paper, the optimization part related to inspection

sequence precedence constraints is further improved.

The presented HACS algorithm is able to reduce cycle time

of the largest case by more than 10% on average in comparison

to the now used SEG solver and while it is much slower, the

number of iterations can probably be significantly tightened for

the studied cases without losing much in terms of solution qual-

ity. The results from the CPLEX software shows the need for

developing heuristic algorithms and special purpose optimizing

algorithms for the PCGTSP.

Further development of the MILP model in conjunction with

the optimizing algorithms might enable optimization of small

to medium sized problem instances within reasonable compu-

tation times. For some industrial cases there arises a need for

multiple CMMs evaluating features on the same object which

corresponds to expanding the PCGTSP to a precedence con-

strained generalized multiple travelling salesperson problem

(PCGmTSP).
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