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An Efficient Solution to the Factorized
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Abstract—This paper describes a new search strategy within the
scope of factorized geometrical autofocus (FGA) and synthetic-
aperture-radar processing. The FGA algorithm is a fast factorized
back-projection formulation with six adjustable geometry para-
meters. By tuning the flight track step by step and maximizing
focus quality by means of an object function, a sharp image is
formed. We propose an efficient two-stage approach for the geo-
metrical variation. The first stage is a low-order (few parameters)
parallel search procedure involving small image areas. The second
stage then combines the local hypotheses into one global autofocus
solution, without the use of images. This method has been applied
successfully on ultrawideband CARABAS II data. Errors due to
a constant acceleration are superposed on the measured track
prior to processing, giving a 6-D autofocus problem. Image results,
including resolution, peak-to-sidelobe ratio and magnitude values
for point-like targets, finally confirm the validity of the strategy.
The results also verify the prediction that there are several satisfy-
ing autofocus solutions for the same radar data.

Index Terms—Autofocus, back-projection, synthetic aperture
radar (SAR).

I. INTRODUCTION

FOR synthetic aperture radar (SAR), defocusing effects
(phase errors) in the final image are primarily caused by

geometrical errors or, essentially, GPS and inertial measure-
ment unit (IMU) errors [4], [17].

Slow deviations (i.e., on the scale of integration time) from a
linear flight track (antenna phase center) must be measured within
fractions (∼1/16) of the center wavelength λc to avoid image
artifacts [4], [17]. Fast fluctuations give other criteria [4]. For
high radar bands (e.g., X-band) and extended tracks (apertures),
λc/16 accuracy is typically too strict to form full-resolution
imagery. Even for a low band such as very high frequency
(VHF), issues such as IMU drift and/or a jammed/shadowed
GPS will degrade the image quality [26]–[28].
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Autofocus algorithms are usually utilized to compensate for
an erroneous geometry (or for inadequate motion compensa-
tion). In the traditional sense, information in a defocused image
is used to estimate and correct space invariant 1-D phase errors
(in azimuth) [4], [17].

Standard techniques include mapdrift (MD) [4], [17] and the
phase gradient algorithm (PGA) [4], [6], [7], [16], [17]. These
schemes are well known and often used in practice. After the
estimation procedure, phase errors are canceled via a complex
multiplication.

Metric-based techniques, e.g., [1], [11], [19], [22], [24], and
[32], have also received a fair deal of attention. These schemes
can potentially produce a better result than MD and the PGA,
i.e., at an acceptable run time. In principle, the complex mul-
tiplication is repeated with different compensation factors until
an object function is optimized.

However, techniques relying on the constrained phase er-
ror model (see above) are gradually becoming performance
limited. This is due to a trend leaning toward finer and finer
resolution, together with a desire to relax requirements on the
GPS/IMU (to reduce costs and relieve export restrictions). With
this in mind, a number of more advanced autofocus algorithms
have been developed.

The 2-D PGA [12] and different PGA [5]/PGA-MD [33]
extensions can correct 2-D phase errors or residual range cell
migration (RCM).

Block processing may in turn mitigate space-variant defocus-
ing effects [4], [17], [33]. Note that stripmap routines partially
alleviate these effect in azimuth as phase errors for adjacent
apertures are estimated [11], [33].

Another class of autofocus algorithms tries to extract geo-
metrical parameters in various ways. These are then employed
in the processing to form a focused image. Early ideas are dis-
cussed in [18] and [21]. Recent schemes based on MD and the
PGA are described in [20] and [31]. Multilateration methods
based on prominent point phase tracking [2] and local 2-D MD
[3] should also be mentioned in this context. This class in-
creases the capability but does not provide a full geometrical
solution.

Complete compensation of an erroneous geometry calls for a
time-domain algorithm [29]. Lately, a novel geometrical auto-
focus approach has been introduced, i.e., factorized geometrical
autofocus (FGA) [26], [27]. This approach provides a full
geometrical solution [26], [27].

The FGA algorithm is integrated in a fast factorized back-
projection (FFBP) [29] chain. A base-two factorization (i.e., this
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FGA formulation is restricted to base two as opposed to FFBP in
general) relying on geometry regulation is executed in a hori-
zontal plane [26], [27]. Six independent parameters are adopted
for each subaperture pair; these are adjusted until a sharp image
is obtained (for a given pair, at the factorization step in ques-
tion), and an object function grades the focus quality [26], [27].

The geometry is varied step by step via triangles in 3-D
space, a course of action that can correct residual space-variant
RCM. However, thus far, tests on real SAR data have only demon-
strated this for a constrained 1-D autofocus problem [26].

The FGA algorithm is a high-performance technique; search-
ing the parameter space is however a challenging task, restrict-
ing its practical use. This issue has only been covered partially
thus far. In [27], a sensitivity analysis is described, which is
developed to compare two different geometry hypotheses. This
tool can be employed to decide if all six quantities are indis-
pensable (again, for a given subaperture pair, at the factorization
step in question) or if a subset will suffice, i.e., from a focus
perspective. The same reference seeks to find an optimal geom-
etry hypothesis by performing a Broyden–Fletcher–Goldfarb–
Shanno (BFGS) [23] search in parameter space to minimize
the object function. However, the conclusion is that there is a
major risk of getting trapped in a shallow local minimum as the
function is not convex [27].

The objective of this paper is to formulate a robust search
strategy and test it on real data, i.e., within the scope of the
FGA algorithm and a 6-D autofocus problem.

A natural extension is to let the BFGS search follow a sparse
grid search, to coarse-tune the geometry first. However, in
higher dimensions, this method is time-consuming. In addition,
the full image will not necessarily give a satisfying solution.

We propose a two-stage approach, made up of a block search
and a local-to-global computation. The first stage tries to avoid
local minima by performing a low-order (one parameter if feasi-
ble) search on small image areas. The second stage continues by
using the sensitivity analysis to fit a geometry for the full image.
The aim is to find a global solution based on the block search.
In essence, the local-to-global computation is time efficient; as
there is no need for image formation, basic trigonometry does
the job.

The FGA algorithm with the new search strategy incorpo-
rated, has been applied in spotlight mode on ultrawideband
VHF data, i.e., on real Coherent All RAdio BAnd System II
(CARABAS II) [14] data. Errors due to a constant acceleration
are superposed on the measured flight track prior to processing,
to simulate a 3-D drifting IMU (without GPS support). This
defines a 6-D problem, implying that all six parameters are
erroneous, but not necessarily defocusing.

In this paper, resulting FGA images will be presented, an-
alyzed, and compared to focused reference images (no errors
superposed on the measured flight track prior to processing) and
to defocused images formed without autofocus, in consequence
suffering from residual space-variant RCM.

However, before actually satisfying the stated objective, a
review is required, dealing with time-domain SAR processing,
the FGA concept, BFGS, the sensitivity analysis, and of course,
with the new search strategy. The realization and evaluation
procedure will be recapped in detail as well.

II. PRELIMINARIES

A. Time-Domain SAR Processing

Global back-projection (GBP) [29] is a time-domain algo-
rithm, projecting pulse compressed radar echoes to a focus
target plane (FTP) and on to a generally defined image. Each
sample position along track contributes with a data value D
to each pixel. Complex values are added coherently, causing
interference, resolving reflective structures.

The polar GBP expression is as follows:

I(ρ, θ) =
N∑

n=1

D(n,Rn) · Rn · exp
(
j4πRn

λd

)
. (1)

In (1), I is an image formed from data acquired along an
arbitrary flight track, extending across N sample positions (for
simplicity, presume that N equals a power of two). The pixel
coordinate (ρ, θ) originates from the center of a user-defined
aperture vector and hits a point in the FTP. The slant range Rn

between the sample position (with index n) and the point in
question (corresponding to a coordinate) determines which data
value D(n,Rn) to accumulate; the range interpolation retrieves
the proper value from available samples. For demodulated data,
the value must also be multiplied by a phase factor, i.e., the ex-
ponential. λd is the demodulation wavelength. The range mul-
tiplication is included to establish 1/R dependence [29]. Note
also that this formulation omits a ramp filter, usually applied
to calibrate the spectral support [29]. This can be viewed as a
postprocessing step.

GBP is indeed a versatile algorithm; however, its use is nor-
mally restricted to moderately sized images due to the number
of operations involved (proportional to N3 for N sample posi-
tions and an N ×N image) [29].

FFBP [29] is a time-saving alternative, combining pulse
compressed radar echoes coherently step by step.

Consider (1) and the consequence of dividing the sum in (1)
into two terms, i.e.,

I(ρ, θ) =

N/2∑
n=1

D(n,Rn) · Rn · exp
(
j4πRn

λd

)

+

N∑
n=N/2+1

D(n,Rn) ·Rn · exp
(
j4πRn

λd

)
. (2)

The terms in (2) may be viewed as two low-resolution real-
izations of I . In principle, the aperture (the track) is partitioned
into subapertures; hence, the azimuth bandwidth is halved (one
half for each subaperture). Therefore, subimages can be formed
with a reduced sampling rate (approximately half the original
rate), and the terms can in turn be attained by way of subimage
interpolation.

The polar base-two FFBP expression is as follows:

I(ρ, θ) = I1(ρ1, θ1) · exp
(
j4πΔρ1

λd

)

+ I2(ρ2, θ2) · exp
(
j4πΔρ2

λd

)
. (3)
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In (3), I is formed by adding a contribution from subimage I1
and I2 (corresponding to the terms). To elucidate, the pixel co-
ordinate (ρ, θ) originates from the center of a user-defined aper-
ture vector and hits a point in the FTP. Subimage coordinates
(ρ1, θ1) and (ρ2, θ2) emerge from the subapertures (in practice,
from user-defined subaperture vectors) and converge at this
point. Data values I1(ρ1, θ1) and I2(ρ2, θ2) are determined by
the coordinates; interpolation (in both range and angle [10],
[29]) retrieves proper values from available samples. As in (1),
exponentials (with Δρ1 = ρ− ρ1 and Δρ2 = ρ− ρ2) compen-
sate for demodulation (note that the phase factors in (3) are
only valid for slant-based images).

The sum in (1) can be divided into N/2 factorization terms,
a multistep (log2 N) approach may then be employed to obtain
I . The principle is the same as above: the aperture (the track) is
partitioned into subapertures, increasing in length (finer angular
resolution) and decreasing in number for each factorization step
[29]. Subapertures come with subimages, i.e., with coordinates
in range and sublobe angle. The antenna beam is split up into
sublobes.

Ideally, if the number of sample positions can be expressed as
a factorization of integers, the final step gives the polar aperture
image I .

The number of operations for a base-two implementation is
proportional to 2N2 log2 N (again for N sample positions and
an N ×N image), i.e., under the condition that N equals a
power of two [29]. Image quality requirements may however
motivate a less effective algorithm execution (e.g., by reducing
the number of steps and/or using a better interpolator), to make
up for the fact that interpolation errors are accumulated for each
factorization step [10], [29].

B. FGA

The FGA concept [26], [27] will now be described in detail;
the text concentrates on the autofocus function, but applies
to conventional FFBP processing (without autofocus) as well.
Customary SAR premises, e.g., the start–stop and the Born
approximation, and a constant wave velocity are assumed to be
valid [29].

To set the tone, presume that pulse compressed radar echoes
are demodulated and factorized with base two until two sub-
apertures remain (see Fig. 1). The image and the FTP coincide
with the horizontal plane, i.e., the xy plane.

Despite measurement errors, the subimages are focused. This
is due to limited angular resolution. The aperture (Q13) is syn-
thesized as a vector (aligned with the nominal flight direction),
extending from the start point (p1) of the first subaperture
(Q12) to the end point (p3) of the other (Q23). p1, p3, and
the cutoff point (p2) between Q12 and Q23 form a triangle
(see Fig. 2) or a line as a special case. If the geometry is too
erroneous (due to measurement errors), the aperture image will
be defocused.

By varying parameters defining the triangle, different geom-
etry hypotheses can be assessed [26], [27]. Confining the varia-
tion (the fewer parameters, the better) is of utmost importance.
The geometry may be described by means of an altitude, three

Fig. 1. (Top) Four sample positions (tied together). (Middle) After the first fac-
torization step, two subapertures (and two new positions) remain. (Bottom) The
second and final factorization step gives the aperture (and one new position).

Fig. 2. Triangle in the plane Π (gray) with a normal vector m. υ, φ, β13, H13,
ζ , and ξ are essential parameters in this autofocus formulation. Note that Q13
and a vector in the xy-plane (blue), orthogonal to Q13 (f13) define the plane
Γ (red) with a normal vector n. xyz is a local Cartesian coordinate system. In
practice, the xy plane is horizontal with a vertical z. The geometry given has
been tilted for clarity.

angles, and two length variables, all in all six independent
parameters [26], [27], chosen as follows (see Fig. 2):

• υ: angle between Q12 and Q23;
• L13: length of Q13;
• ΔL: length difference between Q12 and Q23;
• φ: angle between Γ and Π;
• β13: angle between the xy plane and Q13;
• H13: altitude at the center of Q13.
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Fig. 3. (Left) 2-D geometry for the M transform (i.e., the triangle in Fig. 2 projected to the xy plane). Point P is an arbitrary point in the image display plane
or FTP. In practice, P and the vertex of the cutoff point can be located on either side of the aperture, explaining the signs in (4)–(7). (Right) A case where the
geometry hypothesis has been altered prior to inverse transformation, giving different coordinate sets and hence a shift. In processing terms, this implies that
erroneous data values will be attained when interpolating, possibly producing a defocused image depending on the magnitude of the shift.

The variation is carried out consecutively by a merging (M)
and a range history preserving (RHP) transform.

In principle, an arbitrary geometry hypothesis is expressed
in the chosen parameters. Supporting quantities are computed,
and the pixel coordinates (ρ13, θ13) of the aperture image (I13)
are established.

The M transform then converts these to corresponding subim-
age coordinates, i.e., giving (ρM12, θM12) and (ρM23, θM23).

This is equivalent to translating and rotating subaperture
vectors horizontally (as opposed to translating and rotating an
intact triangle). Fig. 3 (Left) and the following equations clarify
the idea behind the M transform:

ρM12 =

(
ρ213+

(
L23xy

2

)2

−ρ13 ·L23xy ·cos(π−θ13 ± ξxy)

) 1
2

(4)

θM12 = cos−1

⎛
⎜⎝ρ213 − ρ2M12 −

(
L23xy

2

)2

−ρM12 · L23xy

⎞
⎟⎠± υxy (5)

ρM23 =

(
ρ213 +

(
L12xy

2

)2

− ρ13 · L12xy · cos(θ13 ± ζxy)

)1
2

(6)

θM23 =π − cos−1

⎛
⎜⎝ρ213 − ρ2M23 −

(
L12xy

2

)2

−ρM23 · L12xy

⎞
⎟⎠± υxy. (7)

where L12xy and L23xy are the horizontal length variables
(associated with the subapertures), whereas υxy, ζxy , and ξxy
are projected angles (υ, ζ, and ξ).

M-transformed coordinates are distorted by the RHP trans-
form, i.e., giving (ρ′M12, θ

′
M12) and (ρ′M23, θ

′
M23). This is

equivalent to prolonging/shortening, tilting, and translating
subaperture vectors vertically. Note that the first two items also
impact the M transform. The following equations clarify the
idea behind the RHP transform (with subscripts dropped, i.e.,
either 12 or 23):

ρ′M =
√
(ρ2M +H2 −H2

0 ) (8)

θ′M = cos−1

(
ρM · Lxy · cos θM −H · Lz+H0 · L0z

ρ′M · L0xy

)
. (9)

Note that ρM is the range, and θM is the sublobe angle (in the xy
plane).H0 is the altitude, defined at the center of the subaperture,
same as ρM and θM . L0xy is the horizontal length, whereas L0z

is the vertical length (signed). The subscript zero signifies that
H0, L0xy and L0z are specified by means of an initial geometry
hypothesis, derived from the measured flight track. H , Lxy, and
Lz in turn correspond to an arbitrary hypothesis.

Each subimage is interpolated to M- and RHP-transformed
coordinates (corresponding to the arbitrary geometry hypoth-
esis). A coherent addition then gives the aperture image as
follows (note that phase factors are omitted):

I13(ρ13, θ13)=I12 (ρ
′
M12, θ

′
M12)+I23 (ρ

′
M23, θ

′
M23). (10)

Fundamentally, the final factorization step is repeated time
after time. Each hypothesis yields an image. To decide if the
focus quality is satisfying, the similarity between the terms in
(10) is calculated by way of intensity correlation. If the normal-
ized correlation sum is adequately close to unity, the output of
the object function F in (11) goes low, and the aperture image
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is autofocused. If not, another geometry hypothesis must be
assessed.

Ordinary (FFBP) processing on the contrary adopts the initial
hypothesis. Note also that, in this case, the RHP transform is
redundant, as it basically becomes a unity transform.

In the following equation, g = |I(ρ′M , θ′M )|2, and m is the
corresponding average value (subscripts dropped):

F = 1−
∑∑

(g12 −m12) · (g23 −m23)√
(
∑∑

(g12−m12)2) · (
∑∑

(g23−m23)2)
. (11)

The summation is over all pixels.
Before proceeding, it should be emphasized that although

one FGA step (i.e., a factorization step with adjustable parame-
ters) is presumed here, the autofocus function can be activated
at any time during the factorization [26], [27]. However, as the
need for measurement accuracy increases in a quadratic fashion
with subaperture length, it is more likely that the algorithm is
required later on in the FFBP chain.

C. BFGS

The BFGS method [23] is an iterative algorithm, employed
to solve unconstrained, nonlinear optimization problems in
multiple variables (i.e., solving for extrema or zeroes).

The routine approximates Newton’s method by estimating
the Hessian via the gradient of the object function (deduced
during the search). This approach has the potential to converge
at a superlinear rate.

The expression for a BFGS iteration is as follows:

uk+1 = uk − μkB(uk)
−1∇F (uk). (12)

The six independent parameters (or a subset of these) are
retained in u. k + 1 is the current iteration, whereas k is the
previous. μ is the size of the search step, whereas B in turn is
the estimated Hessian (note that in Newton’s method, B is the
true Hessian, and in the gradient (steepest) descent method, B
is an identity matrix [23]). ∇F is ultimately the gradient of a
general object function.

III. METHOD

A. Sensitivity Analysis

As the sensitivity analysis [27] plays a key part in context of
the new search strategy, it will be introduced first.

1) Algorithm: It is evident, that if M- and RHP-transformed
coordinates are inserted into an Inverse RHP transform (IRHP),
as shown in the following equations, M-transformed coordi-
nates will be the result, i.e., (ρM12, θM12) and (ρM23, θM23):

ρM =
√
(ρ′2M −H2 +H2

0 ) (13)

θM =cos−1

(
ρ′M · L0xy · cos θ′M+H · Lz−H0 · L0z

ρM · Lxy

)
. (14)

It is also evident, that if M-transformed coordinates are in-
serted into an Inverse M transform (IM), as shown in the follow-
ing equations, original pixel coordinates (with subscripts, i.e.,

either 12 or 23) will be the result, i.e., (ρ13(12), θ13(12)) and
(ρ13(23), θ13(23)):

ρ13(12) =

(
cos(θM12 ± υxy) · (−ρM12 · L23xy)

+ ρ2M12 +

(
L23xy

2

)2
) 1

2

(15)

θ13(12)= π − cos−1

⎛
⎜⎝ρ2M12 − ρ213(12) −

(
L23xy

2

)2

−ρ13(12) · L23xy

⎞
⎟⎠± ξxy

(16)

ρ13(23)=

(
cos(π ± υxy − θM23) · (−ρM23 · L12xy)

+ ρ2M23 +

(
L12xy

2

)2
) 1

2

(17)

θ13(23)= cos−1

⎛
⎜⎝ρ2M23 − ρ213(23) −

(
L12xy

2

)2

−ρ13(23) · L12xy

⎞
⎟⎠± ζxy. (18)

These two sets will of course be identical, as long as the
geometry hypothesis is the same in the forward, and in the
inverse transforms.

Now, if the hypothesis is altered prior to inverse trans-
formation (IRHP and IM), the sets will not necessarily be
identical [see Fig. 3 (Right)]. The shift between corresponding
coordinates (in the two sets) can be computed in azimuth and
range. By utilizing the forward and inverse transforms like this,
relations between two arbitrary geometries may be studied, i.e.,
sensitivity analysis [27].

Logically, the measured track represents the first geometry,
and the second is the first with (expected) measurement errors
superposed. Fundamentally, the shift gives a direct indication of
the focus level in an aperture image or in a subimage, formed
with an erroneous geometry.

In the following equations, the normalized absolute shift is
calculated in azimuth and range, respectively, (normalized by
half a resolution cell (δα) and by λc/16):

εα =

∣∣ρ13(12) · cos θ13(12) − ρ13(23) · cos θ13(23)
∣∣(

δα
2

) (19)

ερ =

∣∣ρ13(12) − ρ13(23)
∣∣(

λc

16

) . (20)

If either εα or ερ exceeds unity (the focus criteria), the
aperture image (or the subimage) will be defocused. Note that,
in [27], ερ is normalized by half a resolution cell in range. This
definition is however not strict enough in general (as it yields
an incoherent criterion).

2) Applications: The sensitivity analysis can be used to
determine the number of autofocus or FGA steps required,
i.e., for a given (expected) error scenario. This is achieved by
producing εα- and ερ-plots for coordinates of interest, up to
the last factorization step where all values are below unity (for
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Fig. 4. Flowchart for the new search strategy. A13(1) to A13(i) are image areas (i.e., coordinates for each block in the image to be autofocused). u0 is in turn the
initial geometry hypothesis, ul(1) to ul(i) are the low-order solutions (hypotheses) for i areas, and uG is the global solution. Note that the low-order stage has
a completely parallel structure, i.e., a simultaneous search for i hypotheses. The comparison of ul(1) to ul(i) with uG is also parallel, implying implementation
efficiency.

all subimages at that step). At this step, the autofocus function
must be activated to eventually recover a focused image.

The sensitivity analysis can in addition be used to determine
the necessary quantities at each FGA step. This is achieved by
adjusting parameters (a subset) for the second geometry (the
hypothesis with measurement errors superposed) while com-
paring it to the first (the measured track). Various parameter
combinations (the number of parameters, which parameters and
finally their values should be considered) are tried out again un-
til all values in the εα- and ερ-plots are satisfying (below unity
for all subimages at the step in question). This is an optimiza-
tion problem that can be solved by means of a BFGS search
in the limited parameter space, i.e., minimization with respect
to maxima in the plots.

B. New Search Strategy

In previous FGA tests, quite basic search strategies have been
employed.

In [26], a 1-D grid search is adopted for a constrained
autofocus problem (synthetic and real data); this routine is
robust, but very slow, as each grid point (geometry hypothesis)
calls for image formation (interpolation). In consequence, an
exhaustive 6-D search is not a feasible approach in practice,
even a 3-D search is an overwhelming task.

In [27], a direct BFGS search is adopted for a 6-D autofocus
problem (synthetic data); this routine is rather fast but requires a
very smooth object function to perform well. Accurate interpo-
lation may in turn slow the search down substantially (naturally,
this is true for a grid search as well). This is unfortunate, as a
good interpolator in general gives a smoother function.

TABLE I
SYSTEM AND GEOMETRY QUANTITIES. THE IMAGES SHOWN ARE

MINOR CUTS OF IMAGES FORMED FOR THE SCENE SIZE

TABULATED BELOW. THE SAMPLE SPACING (GROUND
RANGE AND COSINE OF ANGLE) IS REPORTED FOR

IMAGE DATA AND THE SQUINT ANGLE (0◦)
IMPLIES BROADSIDE IMAGING. NOTE THAT

THE RANGE SPACING AND THE ALTITUDE
DIFFER BETWEEN THE FIRST DATA SET

(VIDSEL) AND THE SECOND (LINKÖPING)

The new search strategy is a two-stage approach, including
both methods mentioned earlier (i.e., to exploit the advantages).
This section and the flowchart in Fig. 4 provide a detailed
formulation.

1) Stage 1: The aperture image, or subimage to be autofo-
cused, is first divided into small areas (blocks). This is a tradeoff
situation. In support of the sensitivity analysis, the chosen size
should confine the number of parameters for the block search,
ideally to a single quantity. In addition, the areas must be
adequately large to give reliable results, but preferably also
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Fig. 5. Sensitivity plots for the first data set (Vidsel), corresponding to a scenario where an erroneous xyz-acceleration (ax = +0.0025 m/s2, ay =
−0.0025 m/s2, and az = +0.0025 m/s2) has been superposed on the measured flight track. (Top, left) εα-plot for the final factorization step. (Top, right)
ερ-plot for the final factorization step. (Bottom, left to right) Worst-case sensitivity plots, three factorization steps back. Note that the top plots have values well
above unity, whereas the bottom plots have values below.

numerous, to assure that the second stage is not affected by a
couple of poor solutions.

A low-order search is performed for each image area. This
procedure is parallel in structure (see Fig. 4). A sparse grid is
examined for a suitable point. The BFGS search is then initiated
(from that point) to fine-tune the geometry, i.e., to find a better
solution. By limiting the parameter space and coarse-tuning the
geometry to begin with, local minima are avoided.

The ambition is now to fit a geometry for the full image (com-
prising all areas). Contrary to the first stage, the second stage
does not utilize the FGA algorithm. A local-to-global computa-
tion is used instead.

2) Stage 2: The sensitivity analysis is used to determine the
necessary quantities to autofocus the full image.

Low-order solutions are then compared to a global geom-
etry hypothesis, once again by means of the analysis. The shift is
computed in two orthogonal dimensions [see Fig. 3 (Right)] and
the norm is taken, i.e., for the center coordinate of each image
area. This comparison is parallel in structure as well (see Fig. 4).

The sum in (21), shown at the bottom of the page, is a
direct measure of equality between individual solutions and the
proposed global hypothesis.

The BFGS method is employed to minimize the object func-
tion (Fl2g) in (21) (as opposed to the preceding minimization
of F ). The local-to-global computation is time efficient; as no
images are formed, trigonometry is all that matters. Essentially,
Fl2g is based on elementary mathematical functions; images are
laid aside after the first stage of the strategy.

Fl2g=
∑√(

ρ13(12) · cos θ13(12) − ρ13(23) · cos θ13(23)
)2

+
(
ρ13(12) · sin θ13(12)−ρ13(23) · sin θ13(23)

)2 (21)
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Fig. 6. Sensitivity plots for the second data set (Linköping), corresponding to a scenario where an erroneous xyz-acceleration (ax = +0.0025 m/s2, ay =
−0.0025 m/s2, and az = +0.0025 m/s2) has been superposed on the measured flight track. (Top, left) εα-plot for the final factorization step. (Top, right) ερ-plot
for the final factorization step. (Bottom, left to right) Worst-case sensitivity plots, three factorization steps back. Note that the top plots have values well above
unity, whereas the bottom plots have values below.

C. Data

The FGA algorithm with the new search strategy incorpo-
rated, has been applied on real CARABAS II [14] data (two
different scenes: Vidsel [30] and Linköping) acquired in
stripmap mode. However, as radar echoes from a limited num-
ber of sample positions are factorized, the integration angle
(and the angular resolution) varies as in spotlight mode.

The first data set (Vidsel) originates from a rural scene with
a forest region and a lake. A few buildings, a trihedral reflector,
and a power-line structure are prominent targets.

The second data set (Linköping) originates from an urban
scene full of buildings and other man-made objects.

Table I resumes data-related information (system and geom-
etry quantities).

D. Realization and Evaluation

To motivate the use of autofocus, errors due to a constant
acceleration (ax = +0.0025 m/s2, ay = −0.0025 m/s2, az =
+0.0025 m/s2) are superposed on the measured flight track

TABLE II
NUMBER OF PARAMETERS USED AT THE THREE FGA STEPS, I.E.,

BOTH FOR THE LOW-ORDER SEARCH (STAGE 1) AND FOR
THE LOCAL-TO-GLOBAL COMPUTATION (STAGE 2)

(verified to be measured accurately, i.e., from a focus perspec-
tive). To a first order, this simulates the drift of a stand-alone
IMU. To be more specific, the chosen acceleration corresponds
to the bias of a typical intermediate grade IMU [13], often used
in smaller aircrafts and helicopters.

The sensitivity analysis is used to compare the measured
track and the false track. εα- and ερ-plots are shown in
Figs. 5 and 6, i.e., for Vidsel and Linköping respectively.

The plots at the top correspond to the final factorization step.
As shown, the focus criterion is violated, i.e., εα and ερ exceed
unity. Hence, it should be obvious that, if autofocus is omitted
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Fig. 7. Correlation plots for a block (Vidsel). (Left) Typical correlation plot at the second FGA step; one parameter (L13) does the job. (Right) Correlation plot
at the third and final FGA step; note that two parameters (L13 and ΔL) are required at this stage, i.e., to perform a low-order search. A plot for the first step is
omitted as it would look like the one to the left.

Fig. 8. Correlation plots for a block (Linköping). (Left) Typical correlation plot at the second FGA step; one parameter (L13) does the job. (Right) Correlation
plot at the third and final FGA step; note that two parameters (L13 and ΔL) are required at this stage, i.e., to perform a low-order search. A plot for the first step
is omitted as it would look like the one to the left.

in the processing chain, the final image will be defocused. For
example, when εα-values differ by more than two normalized
units across the plot, defocusing effects will be space variant.
Very high εα-values (greater than ∼10 normalized units) in turn
indicate the presence of residual RCM. Similar conclusions can
be drawn based on ερ-values.

The plots at the bottom correspond to the factorization step
where 16 subapertures are merged into eight. Note that there
are eight pairs of plots available at this step. However, only the
worst-case pair is shown. As this is the last factorization step
satisfying the focus criteria, the sensitivity analysis states that
three FGA steps are required to compensate for the errors.

Now, before executing the FGA algorithm, eight subimages
are formed by way of GBP, i.e., by employing (1) with lim-
its: n = 1 → N/8; N/8 + 1 → N/4, etc. (i.e., the aperture
(the track) is partitioned into adjacent subapertures). Complex

D(n,Rn) values are found through nearest neighbor inter-
polation of discrete radar echoes, upsampled eight times in
slant range (giving a sample spacing about 36 times finer than
Nyquist, due to initial upsampling) via zero padding in the
(range) frequency domain. Note that defocusing effects are not
significant up until now.

The FGA algorithm is then executed in three steps, i.e., sub-
apertures are factorized in three steps until an aperture image is
obtained. For this purpose, 2-D cubic spline [15] interpolation
is adopted. Naturally, the geometry is regulated by means of
the new search strategy. One parameter (L13) should be set at
the first step, two parameters (L13 andΔL) suffice at the second
step, and three parameters (L13, ΔL, and υ) must be adjusted at
the third step (once again this information is deduced from the
sensitivity analysis). Note that these quantities are involved in
the local-to-global computation (stage 2). The low-order stage
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Fig. 9. (Left, top to bottom) Reference (focused) image, defocused image, and autofocused (FGA) image for the first data set (Vidsel). The defocused image
displays residual RCM and SNR degradation. The FGA image is in turn very similar (basically identical) to the reference image. (Right, top to bottom) Closeup
views in corresponding left-side images. Magnitude and color scale have been chosen over decibel and grayscale to accentuate details better when looking closer.

(stage 1) adopts the same or fewer parameters, i.e., one quantity
(L13) for the first two steps and two (L13 and ΔL) for the third
(see Table II for a complete summary). In this paper, images

are partitioned into 25 blocks. Correlation plots for one block,
illustrating the object function (F ), are shown in Figs. 7 and 8,
i.e., for Vidsel and Linköping, respectively.



4742 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 8, AUGUST 2016

Fig. 10. (Left, top to bottom) Reference (focused) image, defocused image, and autofocused (FGA) image. The FGA image and the reference image essentially look
the same. (Right, top to bottom) Closeup views in corresponding left-side images. Note that the FGA image has been translated horizontally (a nondefocusing effect).

After the (final) FGA image has been formed, a point-like target
is extracted. The image chip is then upsampled via zero padding
in the 2-D frequency domain, before taking resolution, peak-to-
sidelobe ratio (PSLR), and peak magnitude measurements.

Apart from an FGA image, a reference image (no autofocus,
no errors superposed) and a defocused image (no autofocus,
errors superposed) are also produced. The complete collection
enables a comprehensive comparison.
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Fig. 11. (Left, top to bottom) Image chips for a point-like target (trihedral); 3-dB areas are marked red. (Right, top to bottom) Corresponding 3-D mesh plots. See
also Fig. 9.

IV. RESULTS

Results are presented here (see also Figs. 9–14).
Aperture images for the first data set, i.e., Vidsel, can be

studied in Figs. 9 and 10. Note that these images are parts of one
large image, formed for the scene size stated in Table I. The
parts are offset in azimuth and range with respect to one an-

other; this fulfills the criterion for space variance (see previous
section and sensitivity plots in Fig. 5).

It is clear that defocusing effects are compensated by the
FGA algorithm. Apart from just observing the visual similarity
between FGA and reference images, this is confirmed through
measurements on a point-like target, i.e., a trihedral reflector
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Fig. 12. (Left, top to bottom) Reference (focused) image, defocused image, and autofocused (FGA) image for the second data set (Linköping). The defocused image
displays residual RCM and SNR degradation. The FGA image is in turn very similar (basically identical) to the reference image. (Right, top to bottom) Closeup
views in corresponding left-side images. Magnitude and color scale have been chosen over decibel and grayscale to accentuate details better when looking closer.

(see Fig. 11). Before measuring, the target is upsampled 50 times
by way of zero padding in the 2-D frequency domain.

With respect to the reference image, the width of the main
lobe in the FGA image is within ∼1% in both azimuth and

range. The PSLR loss is negligible (less than 0.1 dB), whereas
the peak magnitude loss is about 0.2 dB.

Aperture images for the second data set, i.e., Linköping, can
be studied in Figs. 12 and 13. These parts are also offset in
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Fig. 13. (Left, top to bottom) Reference (focused) image, defocused image, and autofocused (FGA) image. The FGA image and the reference image essentially
look the same. (Right, top to bottom) Closeup views in corresponding left-side images.

azimuth and range to fulfill the criterion for space variance (see
previous section and sensitivity plots in Fig. 6).

Once again, a clear visual similarity between FGA and ref-
erence images can be observed. Measurements on a point-like

target (see Fig. 14) confirm this further. The same upsampling
factor as before is adopted.

With respect to the reference image, the width of the main
lobe in the FGA image is within∼1% in both azimuth and range.



4746 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 8, AUGUST 2016

Fig. 14. (Left, top to bottom) Image chips for a point-like target; 3-dB areas are marked red. (Right, top to bottom) Corresponding 3-D mesh plots. See also Fig. 12.

The PSLR loss is approximately 0.4 dB, whereas the peak
magnitude loss is about 0.2 dB.

Applied and estimated error quantities are not close. At the
third FGA step, the estimated L13 error for Vidsel is for exam-
ple more than 10 m off. The estimated υ error for Linköping
is in turn negative instead of positive. As a reduced parameter
set has been adopted, this does not come as a surprise. Despite
large geometrical differences, FGA images are still focused.

This implies that there are multiple solutions to the autofocus
problem. The original flight track is one. The dominant effect of
the geometrical changes is a ∼5 m image translation in azimuth
(for Vidsel and Linköping). For Linköping, the image is also
translated ∼2 m in the range direction orthogonal to azimuth.
Deviations from pure translations are limited to ∼0.5 m and
∼1.5 m for Vidsel and Linköping, respectively, i.e., across the
scenes.
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In essence, image results are satisfying. The FGA algorithm
corrects residual space-variant RCM, indicating that the search
strategy performs well.

V. DISCUSSION

Results have now been presented (seeFigs. 9–14). It is evident
that focused (reference) and autofocused (FGA) images are
very similar. Target measurements also verify this.

Hence, the search strategy locates a suitable geometry, i.e.,
one out of several.

In principle, numerous different solutions will produce a
sharp image. Small variations of less sensitive parameters (φ,
β13, and H13) will for example not affect target measurements
appreciably. For the first two FGA steps, υ can be adjusted
instead of L13. The sensitivity analysis confirms this for the
first search stage and for the second stage. By adopting more
parameters than required for this autofocus problem, the good
geometry solutions increase in number. This has been verified
by evaluating other geometries as well. However, adding extra
parameters is a risky approach, as the number of poor solutions
also will increase. In our case, only the minima are of interest
[see (21)]. All suitable geometries do not satisfy this condition.
In addition, some of the geometries corresponding to minima
will produce a defocused image. Strictly speaking, whether
there is an absolute minimum for (21) that is satisfying from
a focus perspective is not known. Further studies are required.

Note also that only defocusing effects are compensated;
therefore, the image may be translated, rotated, and distorted. In
principle this implies that, if geometrical precision is crucial, a
postprocessing stage may be required to correct nondefocusing
effects. This would involve cross-referencing known targets in
the image to a map, solving an equation system, and ultimately
resampling.

The local-to-global computation is time efficient (executed
in a few seconds), regardless of how many parameters the
global solution calls for. A few trials actually achieve faster
convergence when more parameters are adopted. The low-order
stage should still be streamlined, to be able to utilize the FGA
algorithm for real-time applications. Subjects to consider in the
context of execution efficiency are: number of blocks, the size
of these, and of course interpolation accuracy.

The object function used by the FGA algorithm on each
image area is also a topic for the future. Although the corre-
lation based expression in (11) has served well thus far, there
are numerous other functions to survey, e.g., contrast [9], [19],
squared intensity [1], [8], [22], [25], entropy [8], [24], [32], etc.
(note that these functions are applied on the sum in (10) and not
on the terms. In [25], an optimal (sharpness) object function is
derived based on the maximum likelihood theory and maximum
posterior theory.

VI. CONCLUSION

The FGA algorithm is a base-two FFBP realization where
each subaperture pair, i.e., at each factorization step, comes
with six adjustable geometry parameters. An image defocused
due to (geometrical) measurement errors can be compensated
by tuning these.

In this paper, we describe and assess a new search strategy
within the scope of the FGA algorithm. The partially parallel
two-stage approach first seeks to find low-order solutions or
geometry hypotheses for a number of small image areas, i.e., by
utilizing the FGA algorithm with as few parameters as possible
(from a focus perspective). To autofocus the full image, a time-
efficient local-to-global computation adapts a final geometry by
making it similar to all individual hypotheses. Radar data can
be dropped at this stage as calculations only involve elementary
mathematical functions.

To demonstrate the performance, the FGA algorithm with the
new search strategy incorporated is applied on realCARABAS II
data. Acceleration errors are superposed on the measured flight
track prior to processing, i.e., to set up a 6-D autofocus problem.

FGA and reference images are visually very similar. In
addition, resolution, PSLR, and peak magnitude measurements
on targets in corresponding images, give the same values within
one percent and tenths of a decibel. These results also confirm
the prediction of several satisfying autofocus solutions.
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