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Abstract 

Current trends of mass customization, decreased product life-cycles and innovation increase the 

need for short factory lead time to respond swiftly to changing markets. The thesis constitutes a 

case study, where lead time was studied in an engine factory owned by a European car 

manufacturer. Executives have set a target to decrease the factory lead time by 70 %.  

The thesis aimed to measure and analyse current lead time, and to provide recommendations to 

increase efficiency for lead time data collection, processing, distribution and analysis in the future. 

A process mapping was performed to understand the manufacturing system and contextual issues. 

ID tags are scanned at each stage in production to recognize variants and instruct equipment and 

workers. Lead times were measured using time stamps from those ID scans, which were stored in 

manufacturing execution systems. Issues were encountered with old- and non-existing systems, 

where samples of lead time data had to be taken. 

JMP statistical software and control charts were used to analyse the lead time data, searching for 

root-causes to exceptional variation and long lead times. All lead times were modified by 

multiplying them with an un-disclosed scaling factor in order to accommodate confidentiality. 

Relations in the data remain intact, but the actual lead times are not revealed. From the distribution 

of total lead time in the results, it was shown that 91 % of the time was spent in buffers and storages.  

Lead time was highly affected by the weekday. Engines started close to the weekend got trapped, 

and were often finished after the weekend. The data was separated and two data modifications were 

constructed in order to give added insight to other relations, trends and parameters that would 

otherwise remain hidden under the weekday variation.  

Two ideas were presented to automate data collection and processing, which was extensively time 

consuming since it was done manually in the thesis. A software could be built in-house, or JMP 

could be used and connected to MES databases. 

The thesis clearly demonstrates how statistics and control charts can be used by organisations to 

systematically work with lead time data. The analytical approach was powerful, since it assured 

objectivity by focusing on evidence-based and data driven improvements.  

 

Keywords: Lead time reduction, Input data management, Production development, Statistical 

process control chart, Factory lead time 
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1 Introduction 

The chapter includes the background, the purpose, research questions, delimitations, and 

deliverables. 

1.1 Background 

The background includes descriptions of industrial context and trends, the organization of interest, 

engine working principles and main components, the problem area and the lead time definition. 

1.1.1 Industrial context 

The heritage of today’s production dates back to the first industrial revolution (1760–1830), which 

marks the transition from agriculture to an economy based on industrial activities (Bellgran & 

Säfsten, 2010). Initially, independent craftsmen sold their own labour, knowledge and parts. 

Tradesmen emerged as coordinators who handled procurement and transportation between 

craftsmen specialized in various process steps. Soon, production processes were centralized to 

designated factories. During the second industrial revolution (1870-1915), standardized and 

interchangeable parts revolutionized manufacturing.  

Henry Ford (1863-1947) is often associated with the moving assembly line, which he observed 

within the meatpacking industry and adapted to his car production plant to speed up production 

(Bellgran & Säfsten, 2010). Through the use of standardized interchangeable parts and the moving 

assembly line, Ford’s model T could be mass-produced to low prices, which enabled larger 

segments of the public to buy cars. Through high degree of vertical integration, low lead times, 

low inventories and cost reductions Ford achieved an extensive competitive advantage (Hopp & 

Spearman, 2008).  

Unlike Ford (whose business was governed by production technology) General Motors later 

reshaped sales, marketing and production to be focused on market demand (Hopp & Spearman, 

2008). Flexible mass production was emphasized, resulting in more affordable cars for different 

needs and purposes.  

Scientific management, often also called Taylorism after its inventor Frederic W. Taylor (1856-

1915), constitutes the next important milestone of industrial development (Hopp & Spearman, 

2008). The core of this management system consists of enhancing productivity through work 

analysis and the development of work standards, which expressed the rate at which a worker could 

perform certain tasks using the best-established procedure.  

Today, Lean production constitutes a widespread and important field of manufacturing practice 

(Bellgran & Säfsten, 2010). Lean revolves around the systematic elimination of waste to enhance 

customer orientation, with the ultimate goal of achieving broad excellence in terms of e.g. high 

quality, low cost and shortened lead times (Liker & Meier, 2006).  

In the automotive industry, the current average life cycle for a car is six years, but that figure is 

progressively declining (Waldchen, 2014). New car models are introduced and withdrawn at a 

faster pace than ever before, which increases research and development costs and drives the 
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evolution towards more cost efficient, responsive, and customer focused manufacturing systems. 

In highly competitive industries, only agile and fast suppliers will prosper (Ignizio, 2009). Mass 

customization, merges efficiency and low production costs with extensive possibilities for 

personalization and customization (Coletti & Aicher, 2011). The movement towards mass 

customization is also recognizable in the automotive industry.  

New technologies and demands for more sustainable solutions are shaping todays economies with 

no exception of the automotive industry where four disruptive technology trends have emerged: 

autonomous driving, diverse mobility, connectivity and electrification (McKinsey, 2016). 

Electrified vehicles (hybrid, fuel cell, plug-in and battery electric) are becoming more viable and 

competitive, as battery technology advances in terms of making them lighter, cheaper and longer 

lasting. The speed of transformation over to electrified vehicles depends on the interaction between 

customer pull and regulatory push. By the year 2030 electrified vehicles could make up 10 to 50% 

of all new vehicle sales. However, hybrid solutions make up a large portion of electrified vehicles, 

making the combustion engine very relevant beyond 2030. 

1.1.2 Organization of interest 

With the industrial context covered, it is necessary to give a brief introduction to the organization 

of interest in which the thesis is performed, before moving on to the problem area. The 

organization, which requested to remain anonymous throughout the thesis, is a European car 

manufacturer that produces its own engines. The thesis was carried out at their engine 

manufacturing facility, which is separate from their car production. All lead times were modified 

by multiplying them with an un-disclosed scaling factor in order to accommodate confidentiality. 

Relations in the data remained intact, but the actual lead times are not revealed. 

Figure 1-1 shows a simplified overview of the engine factory, covering its manufacturing flow and 

interactions with customers and suppliers. Raw material (which in some cases are semi-finished 

components already processed by the supplier) is delivered from suppliers and machined into 

finalized components; cylinder heads, cylinder blocks, crankshafts and camshafts. Additional 

suppliers provide input material, components and sub-assemblies at various stages in base and final 

assembly. Finalized engines are then tested and shipped to customers. Comprehensive descriptions 

of the manufacturing system are included in later chapters. 

 

Figure 1-1 Simplified overview of engine production 
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Based on the future estimated development of the automotive industry the organization expects 

future product development trends to revolve around the following aspects: 

 Increased environmental awareness 

 Technological innovations 

 Increased customer focus and responsiveness 

These product development trends in turn increase the pressure on the organization to strengthen 

their manufacturing system abilities included in Table 1-1. 

Table 1-1 The organizations thoughts on future development trends 

Productivity Ability to produce cost efficiently 

Robust production 

flows 

Ability to maintain production by effectively coping with system 

disturbances, such as quality problems, in-adequate line or sub-system 

balancing and breakdowns. 

Flexibility Ability to respond fast to short-term demand changes, but also to long-

term changes, such as phasing in and out engine products and variants 

without extensive re-configurations. 

Scalability Ability to mix low- and high volume engine products and variants with 

regards to capacity. 

 

1.1.3 Engine principles and components 

Since the thesis focuses on engine production the purpose here is to provide an introduction to the 

working principles of combustion engines and their main components. Nikolaus August Otto 

invented the first petrol combustion engine in 1861, and therefore the engine type is often called 

“Otto engine” (Konrad, 2014). A patent for the first diesel engine was issued in 1892, but the engine 

was first used in regular cars in 1936. Today, both petrol and diesel engines are common.  

Figure 1-2 shows the inner construction and main components of two four-cylinder engines, the 

main type of engines manufactured by the organization (a petrol version to the left and diesel 

version to the right). For both type of engines, the pistons in each cylinder is driven by the 

combustion of an air and fuel mixture (Konrad, 2014). For the diesel engine, the pressure and 

temperature in the combustion chamber (i.e. in the cylinder) are high enough for self-ignition of 

the air and fuel mixture. For the petrol engine, spark plugs are used to create a spark that drives the 

combustion of the air and fuel mixture. The pistons are linked to the crankshaft, which transform 

the linear movement of the pistons into rotary movement, which is then transferred to the wheels 

via the transmission. 
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Figure 1-2 Exploded view of the organizations petrol- (left) and diesel (right) engines 

Generally, car producers tend to concentrate on core competencies and key components, which has 

led to a drastic increase in outsourcing of component manufacturing to external suppliers over the 

last decades (Waldchen, 2014). However, engines and transmissions are strategically and 

technologically important, which means their development and production often is kept in-house. 

The organization follows this trend by having its own engine factory. 

1.1.4 Problem area 

When examining the historical development, one decisive factor for success becomes identifiable: 

a need for manufacturing speed that equals short factory and supply-chain lead times (Ignizio, 

2009). Short lead times allowed Henry Ford to pay high wages, while still being cost efficient 

enough to crush competition. Lead time reduction is also fundamental in Lean production, where 

it is used jointly with waste elimination to enhance customer focus.  

There are many potential benefits associated with lead time reduction, with the following being 

some important examples: 

 Increased flexibility and responsiveness 

 Decreased time to market 

 Improved financial performance through decreased inventories and work in process  

 Increased customer satisfaction, which supports growth in market shares.   
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Lead time reduction has been fundamental in manufacturing, and still requires much attention in 

the future development of factories. However, the incentives for achieving short lead times have 

changed over time. During Henry Ford’s era, short lead time mainly facilitated high volume and 

low cost production. Although capacity and cost are still of significance, short lead times are 

nowadays needed for flexibility reasons. Today’s trends of mass customization, decreasing product 

life-cycles and rapid technology development stress the need for short lead times to swiftly cope 

with frequent market and customer changes. 

With respect to future growth and development trends, the organization foresees a need for 

increased customer focus and responsiveness through improved flexibility. In order to improve 

flexibility, top management has set a target to reduce the overall factory lead time with 70 %. This 

target shapes the focus on production development, and clearly indicates the necessity for new 

development projects focused on lead time reduction. 

Lead time can be studied from different perspectives, with focus on specific lead time for machines 

and processes, production lines, the manufacturing system or the complete supply chain. For the 

thesis, it was decided to focus on the manufacturing system. The choice of perspective was 

governed by the managerial lead time target, as well as previous lead time studies in the 

organization. Lead time reduction projects have been conducted before, but they all focused mainly 

on lead time optimization for machines, processes and production lines. Consequently, there is a 

clear need for studies attaining a manufacturing system or complete supply chain perspective. 

Instead of investigating specific production lines, focus is on the connection of production lines, 

time spent in storages and buffers, and overall system performance. The benefits associated with 

such a perspective lies in the holistic picture it provides, which helps to avoid sub-optimizations. 

The drawbacks are the lack of detailed knowledge and the complexity of studying with the 

complete system.  

1.1.5 Lead time definition 

Lead time sounds quite intuitive, and most readers can probably agree that lead time is the time 

between start and finish of production. However, when does production start and stop in todays 

extended enterprises? Is it when pieces are loaded into the first machine, or is it when raw material 

is received from suppliers? From a broad perspective the time for product realization may be 

defined differently depending on the literature source and its focus. The organization also provides 

different records for the overall lead time in their factory, depending on the originating function or 

department providing the numbers. For the machining processes for instance that can depend on 

whether time spent in raw material storage is incorporated in the lead time or not. 

The inconsistency with respect to lead time definition offers great confusion. Therefore, it is 

relevant to present a clear definition of the term, which is used throughout the thesis: 

“Lead time is the total time from the arrival of raw material, through manufacturing, to the 

dispatch of finished products.” 

The particular definition of lead time chosen for the thesis allows for a holistic perspective that 

guides the research towards a focus on the complete internal manufacturing system. 
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1.2 Purpose 

The purpose of the thesis is to determine whether lead times for the factories entire manufacturing 

system can be generated. Such unprecedented aggregated analysis would provide new and valuable 

insight into lead time reduction, to the means of increasing flexibility and lowering cost. By 

acquiring lead times for every stage of the manufacturing process cross-comparison of distribution 

and variation can be made between stages, revealing possible dependencies and constraining 

factors towards lowering lead times. Emphasis is put on how data extraction, processing and 

relaying data can be done in the most efficient way.  

The purpose of the literature review is to provide theories and methods that are comparable to the 

way production is run in practice within the organization. The literature review also covers 

manufacturing paradigms and trends from a strategic perspective to enable analyses of possible 

impacts on lead time solutions. 

1.3 Research questions 

In order to guide the research, the following research questions were developed: 

Question 1: 

1. What is the current total lead time in the manufacturing system? 

 How is the lead time distributed within the system? 

 How does the lead time vary within the system? 

Motivation: 

In order to make strategic decisions that are governed or influenced by lead time, the current lead 

time must be known. It is important to be able to break current lead time down to specific parts of 

the system to analyse lead time distribution with regards to identifying improvement areas. Equally 

important is measuring lead time variation at different stages in the process to analyse how lead 

time fluctuates over time.  

Question 2: 

2. How can lead time data be continuously extracted, processed and distributed efficiently 

within the organization? 

Motivation: 

For the purpose of collecting lead time data at any given point, it is necessary to develop the means 

of continuously and effectively extracting and processing lead time data. It is vital to present lead 

time data in a clear and effective way that can be utilized for various departments from simulation 

to production planning. The process of data extraction also reveals which processes or buffers 

present a problem due to insufficient data.  
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Question 3: 

3. What areas hold the biggest potential for lead time improvement and at what trade-off?  

Motivation: 

This question complements the findings from the first research question, imposing further studies 

for increased understanding. It triggers in-depth investigations of the true potential for 

improvement in areas with long and varying lead times. Due to the complexity of the complete 

manufacturing system, recommendations for lead time reduction are likely associated with certain 

trade-offs. The question therefore supports the development of such recommendations, but also 

incorporates the necessity for consciousness about the trade-offs. 

1.4 Delimitations 

To ensure adherence to the purpose, objectives and research questions, the following delimitations 

have been made: 

 The thesis focuses on one of the organisations factories, meaning that proposes 

recommendations may not be directly transferable and applicable to other factories within 

the organisation. 

 The thesis attains a system perspective, meaning that specific operations and production 

lines are not covered in detail. Instead, focus is on describing interactions and dependencies 

between operations and lines that jointly constitute the complete flow. 

 The analysis will only focus on petrol engine lines since the diesel engine lines had recently 

been changed and are still in the ramp up face, resulting in insufficient data from such lines. 

(This will be further elaborated on in the result chapter) 
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2 Methodology 

The chapter includes a description of the research method used, potential alternative analytical 

tools and methods, research triangulation and trustworthiness and credibility. The methodology 

chapter is intentionally brief and focused on the overall research method. For increased 

understanding and context further descriptions about detailed data collection, processing and 

analysis are to be found in the result chapter. 

2.1 Research method 

The thesis constituted a case study, since it focused on a specific manufacturing site within one 

organization (Bryman and Bell, 2011). The research consisted of a mix of quantitative methods 

utilizing numerical data extracted from production systems and qualitative approaches through 

process mappings, observations and interviews. Research questions were formulated in order to 

guide the research, especially with respect to the focus of the literature review, data collection and 

analysis.  

Figure 2-1 illustrates the overall research approach used in the thesis. The theoretical foundation 

was based on a literature review, which mainly utilized scientific databases such as Summon, 

Proquest and Google Scholar. The literature review laid the theoretical foundation for data 

collection and analysis, enabling comparison between observed practices and scientific theories.  

 

Figure 2-1 Research approach 

A process mapping of the current state in the organization was conducted in accordance with the 

first stage of the value stream mapping (VSM) methodology. VSM is a Lean production tool for 

visualizing and analysing the current state and designing a future state for a product creation 

process (covering the whole flow from raw material to the products reaching the customers) (King 

and King, 2015). The process mapping was used to gain understanding and contextual awareness, 

which was proven valuable in later stages to put ideas in the right perspective.  

For the complex manufacturing system investigated in the thesis, it was considered impossible to 

develop a realistic future state map solely based on the guidance from the VSM methodology. 

Although there are predefined questions available to govern the development of the future state 

map (Liker and Meier, 2006), they did not provide enough support. The predefined questions 

offered no guarantee for not overlooking crucial aspects, and it was therefore hard to assess the 
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impact of certain improvement ideas. Therefore, the process mapping was used as a complement 

to the other research methods used.  

For the purpose of measuring and analysing factory lead time, quantitative manufacturing data was 

extracted from the organizations internal manufacturing execution system (MES). For one area in 

the factory, where it was proven impossible to extract data in this way, a manual approach was 

developed for measuring lead times.  

Several issues were encountered along the way, especially with respect to collection and processing 

of the quantitative data. To better understand, overcome and solve those issues, observations, 

discussions and semi-structured interviews with specialists from within the organization were used. 

Since the authors of the thesis lacked detailed knowledge and experience from specific areas in the 

organization, it was considered appropriate to utilize staff’s experience.  

Semi-structured interviews were chosen for their flexibility, allowing for deviations from 

predetermined questions to inquire to previously unidentified important aspects (Bryman and Bell, 

2011). Three interviews were conducted with personnel within the organization to gain 

understanding and utilize competence needed to overcome problems within the specific field of 

each interviewee. Interviews were held with one person working at the IT department and two 

people working with logistics and material handling. Observations and discussions took place when 

visiting and examining various parts of the manufacturing system together with one of the 

supervisors.  

The collected manufacturing data from the MES was processed in Excel and JMP statistical 

software, resulting in aggregated lead time measures for each stage of the manufacturing flow. JMP 

is a statistical software used for industrial statistics and exploratory data analysis, with focus on 

visualization through graphical representations (JMPa, 2016).  

The analysis to identify areas of improvement and means of lowering the lead time was done using 

JMP. The lead time data was scrutinized through the use of various graphical representations. 

Initially, simple graphical representations were used to explore the data. In the next step, control 

charts were used to search for pattern, trends and root-causes for deviating and long lead times. 

The control chart is a specific type of graphical representation used in Six Sigma to systematically 

analyse complex manufacturing data, striving for consistent output to enhance process performance 

(Pyzdek, 2014; Wheeler, 2003). Additional manufacturing data was used to cross-compare with 

the lead time data. By exploring the data searching for patterns and deviations it was possible to 

identify potential improvement areas. 

2.2 Alternative methods for the analysis 

The lead time analysis was conducted in JMP, using various graphical representations and 

statistical tools. Control charts were used to a large extent, mainly because of its powerful 

systematic and powerful approach for data analysis. Simpler graphical representations were used 

as complements to better understand the data. Potentially, there are other methods available that 

could have been used for conducting similar analyses.  
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The complete VSM methodology could have been used, but as implied earlier it was regarded in-

appropriate due to the lack of guidelines. The processed data could also have been used as input to 

lead time optimization using simulation models. With respect to the limited timeframe and the 

authors personal interest and competence, this was not a viable option. JMP and control charts also 

have the advantage of focusing more on understanding and improving the quality of the lead time 

data, which was important for the organization since similar work has never been done before.  

Beside control charts there were various other statistical tools for analysis available. In the thesis, 

control charts were used to examine exceptional variation, which could contain both outliers and 

relevant data. Outliers could also be detected using other graphical or numerical methods, such as 

histograms, scatter plots, Z-score or the inter-quartile range (IQR) method (Larose and Larose, 

2015). An outlier is an abnormal data value, either an error or a planned or unplanned deviation 

from the norm. The decision on which method to use should mainly be governed by the distribution 

of the data set (Hammersberg, 2016).  

The decision to use control charts was governed by the fact that control charts impose no 

assumption about the data (mainly no assumption about normal distribution). The box plot is 

another method, which also could have been used to identify outliers. Control charts were still 

chosen over box plots, due to its systematic approach for analysis.  

Industrial statistics was discovered to be a vast field of research. Due to the authors of the thesis 

not being so experienced in statistics, it was difficult at first to research the whole field and assess 

the relevance of each area. Therefore, there was a risk of overlooking certain aspects that could be 

of interest for the thesis. In order to minimize that risk, three meetings were held with a senior 

lecturer at Chalmers currently doing research within industrial statistics and Six Sigma. 

2.3 Research triangulation 

Figure 2-2 shows the complementing mix of research methods used. The qualitative methods used 

where interviews and observations, while the data analysis was quantitative. Triangulation is 

believed to give greater adherence to the research questions compared to using a single method 

(Bryman and Bell, 2011).  

Figure 2-2 Research triangulation (Bryman and Bell, 2011) 

Quantitative and qualitative methods are both associated with certain advantages and weaknesses, 

however using a combination of the two minimizes the impact of individual weaknesses and 

increases reliability (Bryman and Bell, 2011). Reliability refers to the ability to repeat the results 

of a study, while replication refers to the ability to replicate the method. The cross-comparison 
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between quantitative and qualitative findings used in triangulation results in greater research 

validity. Validity refers to whether or not a measure really represents the concept that it is supposed 

to denote. 

2.4 Trustworthiness and credibility 

Respondent validations were utilized to ensure the trustworthiness of qualitative data. This meant 

sending summarized observation and interview data back to participants for validation in order to 

ensure credibility (Bryman and Bell, 2011). All qualitative data was compiled and analysed 

immediately after its extraction to ensure that data was correctly interpreted also adding to 

credibility. 

2.5 Ethics 

The ethical issues that can arise between researchers and research participants can be broken down 

into four areas, regarding: harm to participants; lack of informed consent; invasion of privacy; and 

whether deception is involved (Bryman and Bell, 2011). As previously stated three interviews were 

conducted with employees in the organization. The interviews all gave full consent and were fully 

disclosed of the intentions of the interviews and how the interview material would be utilized for 

the purpose of the thesis.  

Other ethical concerns can for instance regard data security, data sharing, intended use of data and 

conflicts of interest amongst stakeholders (Bryman and Bell, 2011).  Great care was taken with all 

data shared by the organization, which was only used for completion of the thesis and deleted 

afterwards.  No ethical issues arose regarding conflicts of interest among shareholders as all shared 

the same vision to a common goal.  



13 

 

3 Theoretical framework 

The theoretical framework provides insight to state-of-the-art research and manufacturing 

paradigms related to the focus area of the thesis. The chapter contains descriptions about Lean, 

factory design, factory physics, industrial statistics, six sigma, big data and manufacturing data 

management for improvement analysis. 

3.1 Lean Production 

The Lean philosophy became highly popular in manufacturing industry in 1990 through the 

publication of the book “The Machine that Changed the World” (Liker and Meier, 2006). Lean 

thinking revolves around the implementation of improvement processes, which identify and 

eliminate inherent waste by examining root causes and proposing countermeasures. A crucial goal 

of waste reduction is to minimize lead time between customer order and delivery to enhance 

customer focus and -value.  

Waste is categorized into eight major types, which all contribute to in-efficiency in the production 

system and thus decreases the customer value. The eight waste activities are; excess production, 

waiting time, transportation, overwork, inventory, movement, manufacturing of defect products 

and un-exploited competence. Excess inventory can be found in the form of raw material, work in 

progress (WIP) or finished goods all causing longer lead times.  

The Lean philosophy revolves around long-term thinking and commitment to continuously 

improving and learning by analysing and understanding all processes in great detail (Liker and 

Meier, 2006). In order for a Lean organization to lower their lead times and enhance customer 

value, certain prerequisites must be fulfilled. These prerequisites and the mutual relation between 

them are often explained with the Lean house, which is shown in Figure 3-1. 

Figure 3-1 Lean house (Liker and Meier, 2006) 
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The reference to a house is a pertinent one, since every part of the house builds on an equally 

important prerequisite (Liker and Meier, 2006). The foundation is comprised of levelling 

production (Heijunka) and standardizing work, which serves as the foundation for continuous 

improvement (Kaizen). The pillars consist of Just-in-time and Jidoka. Just-in-time is a term 

encompassing the reduction of lead times by pulling items through production based on customer 

demand instead of pushing items through production based on projected demand. Jidoka is a term 

for equipping every machine and empowering every worker to stop production at the first sign of 

an abnormal condition in order to resolve the issue so production does not have to be affected or 

stopped due to the same problem again. The objective of implementing the above-mentioned 

methodology is to increase quality while lowering cost and shortening lead times. 

3.1.1 Value Stream Mapping 

The primary goal of Lean is to reduce waste and improve material flow (King and King, 2015). In 

order to attain the holistic overview needed to understand where in the process waste exists, the 

VSM tool was invented. A value stream contains all the actions, both value and non-value adding, 

currently required to bring the product through main flow essential for its creation (Rother and 

Shook, 1999).  

VSM visually represents the flow of material and information throughout the product realization 

process, providing a common ground for understanding (Liker and Meier, 2006). In addition, VSM 

identifies and visualizes the information trigger points for material flow. The tool holds several 

benefits for its user (King and King, 2015). It provides a detailed understanding of the current state, 

illustrating enablers and inhibitors of smooth flow, e.g. things that cause longer lead times and 

higher inventories. It provides an understanding of both separated operations and integrated 

processes, and aids in envisioning future Lean value streams.  

VSM identifies the main forms of waste found in a process operation and accurately portrays the 

major effects such waste, providing insight into root cause analysis. The philosophy of VSM is to 

straighten out the overall flow of the value stream before diving deep into fixing individual 

processes (Liker and Meier, 2006). VSM should preferably be conducted with representatives from 

all process and functions building a strong cross-functional understanding of the entire overall 

process (King and King, 2015). 

VSM revolves around the creation of a current- and a future state map (Liker and Meier, 2006). 

The purpose of the current state map is to understand the production flow and to provide a template 

for the development of an improved future state map. Future state questions have been developed 

to support the improvement thinking process when constructing the future state map. The current 

state also provides design information for application of Lean improvements like production 

levelling and pull replenishment systems (King and King, 2015). 
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3.1.2 Inventory 

Inventory is considered to be an indicator of weakness in a process, commonly used to compensate 

for inflexibility, and a constant reminder that the process needs strengthening (Liker and Meier, 

2006). Inventory can be split into different categories, e.g. raw material, procured components, 

finished goods and work in process, with each type of inventory typically being used to compensate 

for a specific weakness. 

Inventory management is often faced with a paradox. The Lean philosophy clearly promotes 

elimination of all forms of waste, including excess inventory. However, prior to initial Lean 

improvements immature processes might be un-stable and reduction of inventory could jeopardize 

production performance. Therefore, it is highly important to find a suitable balance where 

sustainable inventory reductions (not too rabid) are made in harmony with process development. 

On the other hand, excess inventory hides problems, such as production imbalances, equipment 

downtime, long setup times and late deliveries from suppliers. Therefore, it is equally bad to reduce 

inventory too slowly. 

3.1.3 Buffers 

Buffers are important for the performance of production flows delivering products when the 

process cannot (Petersson et.al, 2010). Buffers can be categorized according to their function and 

one buffer may serve one or several functions. Firstly, disturbance buffers cover for unplanned 

disturbances such as breakdowns. Buffers for planned stops compensate for e.g. maintenance, 

vacations and installation of machines. Consumption buffers serve as necessary decoupling points 

between unsynchronized processes such as processes with different shift patterns. Lastly, sequence 

buffers may be needed to build or fix a sequence for the subsequent process where the sequence is 

of importance for the flow, e.g. to substitute for a product removed from the flow (e.g. due to 

quality problems).  

The size of the disturbance- and sequence buffer should remain the same over time, while the size 

of the planned stop and consumption buffers should vary naturally over time. The disturbance 

buffer, together with the sequence buffer, provides the safety level or absolute minimum buffer 

level. The actual safety provided by the disturbance buffers size at any given time is dependent on 

the production takt time. The disturbance buffer needs to be increased following increased takt 

time to maintain a constant level of safety against stoppages in the flow. Characteristics of stops in 

terms of length, number and duration must be known in order to be able to dimension disturbance 

buffers. Dimensioning a buffer to cover any problem however is irrational. Instead judgment of 

expected stops and acceptable risk and cost should govern the bases of dimensioning. 
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3.2 Factory design 

There are many interesting areas within the research field of manufacturing system design. In this 

chapter emphasis is on appropriate degrees of flexibility and adaptability. Flexibility may facilitate 

the ability to re-configure manufacturing systems to stay competitive in continuously evolving 

markets (Koren, 2006). The chapter starts by introducing Flexible- and Reconfigurable 

manufacturing systems, with focus on production lines, machines and tool flexibility. The concepts 

of agile- and transformable factories are then described from a more aggregated factory 

perspective. 

3.2.1 Flexible- and Reconfigurable Manufacturing Systems 

Historically, dedicated manufacturing lines enabled cost-efficient high volume production of 

products with relatively long life-cycles (Koren & Shpitalni, 2011). With increasing needs for 

customization and shortened product life-cycles, the need for flexibility and re-configurability have 

risen drastically since the 1980s. Flexible Manufacturing Systems (FMSs) was introduced in the 

1980s to meet the increased need for flexibility. The intention was to enable production of many 

different variants in low volumes (Tolio, 2009). Flexibility was added to the manufacturing systems 

from the start to avoid extensive reconfigurations when introducing new products (Koren, 2006). 

However, it was proven difficult to achieve the right level of flexibility, which caused flexibility 

to remain un-used leading to high investment and running costs for FMSs (Tolio, 2009). 

As a response to the drawbacks of excess flexibility in FMSs, the idea of reconfigurable 

manufacturing systems (RMSs) was introduced in the mid-90s (Koren, 2006). Instead of adding 

high degrees of flexibility when designing the manufacturing systems, RMSs are designed to be 

easily re-configurable when needed. RMSs are intended to provide cost-efficient and rapid re-

configurations to cope with changes in customer demands. For instance new products or variants 

may be launched into existing manufacturing systems with minor system modifications. Typically, 

RMSs consist of sets of flexible machines and equipment, such as computer numerical control 

(CNC) machines, robot cells, measuring and inspection machines, tools etc. Re-configurability 

may be assessed from two perspectives; for individual machines or re-configuration with respect 

to the connection of machines forming the production line. In addition, re-configurability may also 

be discussed on a factory level, but is then often referred to as transformability (which is covered 

in the next section). 

There are six parameters that quantify the re-configurability of RMSs: modularity, customization, 

ability to integrate new objects, scalability, ability for diagnosis and convertibility. Evaluation and 

validation of manufacturing system design and configurations (especially with regards to utilized 

flexibility) are often overlooked. In large companies, the evaluation might only be governed by 

following up on investment payback requirements (Tolio, 2009). Deciding appropriate degrees of 

flexibility often resides on manufacturing engineers, and long-term flexibility as a competitive 

weapon is not considered.  
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3.2.2 Transformable and smart factories 

Companies must possess the ability to swiftly change the configuration of their factories to stay 

competitive on today’s continuously evolving markets. There seem to be many alternative labels 

or “buzzwords”, which tries to emphasise certain aspects of this ability. 

According to Berger (2006) “agile production” was introduced in 1995 and describes 

manufacturing systems with parallel resources, which enables parallel item processing. However, 

Scheuermann, Verclas and Bruegges (2015) interpretation of agile production is different. The 

“agile factory” is about applying agile software engineering techniques in manufacturing. Agile 

software engineering means that feedback loops are created to allow the customer to influence the 

product during the realization phase, thus increasing the customization. As a demonstrating 

example, simple tracking devices were used to create a prototype of an agile factory, in which 

information feedback loops allowed the customer to effect the ordered product’s configuration 

during production. 

Instead of “agile factory”, the term “Cyber-physical human system in manufacturing” is often used, 

since it also highlights three important design spaces: Cyber, physical and human space 

(Scheuermann, Verclas and Bruegge, 2015). Much research is currently being conducted on the 

subject of future smart factories. Besides “agile factories” there are many other similar terms used 

such as transformable factories, smart factories, ubiquitous factories, real-time factory, factory of 

things (Scheuermann, Verclas and Bruegge, 2015) and industrial Internet of Things, services and 

people (IoTSP) (ABB, 2016). One interesting aim of agile factories is to link virtual and physical 

development by making information accessible everywhere and anytime in the factories 

(Scheuermann, Verclas and Bruegge, 2015). 

Re-configuring whole factories to raise competitiveness is resource demanding, and usually has to 

be done in the mid- to long-term perspective (Westkämper, 2006). By concentrating efforts on joint 

re-configurations of both production and logistics, the German processing industry was able to 

improve competitiveness in terms of throughput times and WIP.  

3.3 Factory physics 

Analysing manufacturing systems should be done in faceted ways, where e.g. popular Lean 

thinking is combined with scientific approaches, intuition and reasoning (Hopp & Spearman, 

2008). The term “factory physics” may be used as a label for the scientific approach and 

understanding of manufacturing system behaviour. For instance, Lean clearly highlights the 

necessity of waste elimination to enhance factory performance, but fails to provide scientific 

guidelines to steer waste elimination activities.  

Ignizio (2009) promotes a more scientific approach to manufacturing system analysis and defines 

a factory as: “a nonlinear, dynamic, stochastic system with feedback”. The definition highlights 

the inherent variability and complexity of modern factories. By examining intrinsic relations 

between specific parameters it becomes possible to understand and predict manufacturing system 

behaviour. Human intuition is often useful here, since humans are good at understanding complex 

relations and for testing parameter changes to enhance performance (Hopp and Spearman, 2008). 
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However, Ignizio (2009) does not share this confidence in human intuition. With today’s complex 

manufacturing systems, human intuition is often not enough to predict system behaviours. 

Within the concept of “factory physics”, some basic equations have been developed that helps 

engineers to understand the most fundamental behaviours of modern manufacturing systems. The 

first and most famous one is “Little’s law” (see Equation 1), which quantifies the relation between 

lead time, WIP and throughput (Hopp and Spearman, 2008; Ignizio, 2009) 

 

Equation 1: Little’s law 

𝐿𝑖𝑡𝑡𝑙𝑒′𝑠 𝑙𝑎𝑤:     𝑊𝐼𝑃 = 𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 ∗ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 

 

Little’s law can be proven mathematically, given certain assumptions (Hopp and Spearman, 2008). 

In real factory practice, Little’s law has proven to provide adequate approximations of real 

behaviours (Ignizio, 2009). Assuming all parameters are measured in the same unit, Little’s law is 

applicable for analysing single operations, production lines, manufacturing systems and complete 

factories (Hopp and Spearman, 2008).  

In Equation 2, Little’s law has been modified to accommodate discussion on lead time reduction 

(Hopp and Spearman, 2008). It becomes evident that lead time reduction can be achieved by 

reducing WIP or increasing the throughput rate.  

 

Equation 2: Little’s law modified to enhance lead time reduction 

𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 =
𝑊𝐼𝑃

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑢𝑡
 

 

However, Equation 2 is deceptive, since the same absolute lead time (i.e. WIP/Throughput ratio) 

can be achieved by several combinations of absolute WIP and throughput values. 

Little’s law, as well as other “factory physics equations” (described further down) are based on 

several assumptions about manufacturing system conditions. The equations assume that every 

workstation connects only to one following process. All machines in a workstation are also 

assumed to have equal performance. By mathematically extending the equations, it becomes 

possible to describe complex manufacturing systems more accurately. Without any mathematical 

extensions, the equations are still able to approximate factory behaviours. 
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3.3.1 Variability 

Everything in life is exposed to variations, and to some extent there is always a need to effectively 

understand and cope with variability (Hopp & Spearman, 2008). However, there is a great risk of 

variability being falsely accepted as a naturally inherent feature. In many cases, the reduction of 

variability might lead to faster and more resource efficient improvements in performance, 

compared to elevating capacity (Ignizio, 2009). 

Variability is closely related to the areas of randomness and probability, and can be categorized 

either as random or controllable (Hopp & Spearman, 2008). Randomness is further classified as 

true or apparent, where apparent means that the viewer falsely interprets behaviour to be random 

while in reality it is not. The false interpretation is often caused by inadequate knowledge about 

how the manufacturing system actually works. 

There are many potential sources of variability in manufacturing systems and they can be grouped 

as process- and flow related. Process variability refers to process-specific parameters such as 

setups, breakdowns, scrap rate and lead time. Flow variation concerns the general connected flow, 

where sources of variation may be related to planning and execution, production order release or 

strategies for material movement. 

Analysing variability can be done using conventional statistical knowledge, such as calculating 

variance, median, and standard deviation. However, these measures are all expressed in absolute 

terms. The coefficient of variability (CoV) is a relative coefficient that enables comparison of 

variation across operations, production lines or manufacturing sub-systems (Hopp & Spearman, 

2008; Ignizio, 2009). Equation 3 defines the CoV.  

 

Equation 3: Coefficient of variability 

𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑜𝐶) =
𝜎

𝜇
=

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
 

 

As the mean value and standard deviation are expressed in the same unit, the CoV is a unit-less 

expression of variation (Ignizio, 2009). 

There are different ways to reduce variability. Variability pooling is applicable for variability 

reduction for batching, queuing and managing buffers (Hopp & Spearman, 2008). Variability 

pooling tries to combine several sources of variability to minimize their impact. One example is 

the use of generic buffers instead of dedicated ones. Scheduling preventive maintenance as short 

and frequent activities instead of rare and long disruptions also helps to reduce factory variability 

(Ignizio, 2009). 

Sometimes, production managers also tend to over-react by re-allocating resources to cope with 

un-balanced work loading. Such a managerial behaviour makes the manufacturing system un-

stable, which increase variability and reduce performance. 
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3.3.2 Lead time 

Manufacturing speed, expressed in terms of short lead times, has always been a profound measure 

of success (Ignizio, 2009). Short lead times was important for Henry Ford’s mass production, and 

is still a key feature promoted within Lean to facilitate customer focus. 

With Little’s law as a base, one can approximate worst-case scenarios of WIP, throughput and lead 

times, which enables internal benchmarking (i.e. comparison between present state and the 

theoretically worst-case scenario) (Hopp & Spearman, 2008). 

There is an explicit relation between factory loading and lead time, where lead time increases with 

increased workload (Ignizio, 2009). This relation is effectively illustrated using “factory 

performance curves”, which are plots displaying factory workload on the x-axis and total lead time 

on the y-axis. 

In order to create a factory performance curve, lead time data must be measured for different levels 

of system loading. In real production, such measurements are tedious and un-practical. A more 

suitable way to generate the curve is to run scenarios with different loading levels in a simulation 

model. The fact that lead time is dependent on factory loading is crucial to consider when 

evaluating factory performance. Comparing factory lead times between factories through 

benchmarking is only suitable if factory loading is considered. 

3.4 Industrial statistics 

Exploratory data analysis is the process of translating raw data into meaningful information, which 

captures, summarizes and conveys the most interesting characteristics of the data (Myatt, 2014). 

Myatt (2014) provides a framework for conducting exploratory data analysis and data mining 

projects. The framework comprises four main steps: 

1. Define the problem and plan the study 

2. Prepare the data (collect, characterize, clean and transform) 

3. Select suitable method for analysis 

4. Deploy, which involves summarizing and sharing study results with stakeholders.  

Descriptive statistics summarizes the characteristics of data into measures of central tendency (e.g. 

median and mean) or measures of dispersion (e.g. range, maximum, minimum and standard 

deviation) (Duignan, 2016). Inferences should normally not be based solely on descriptive statistics 

measures, but instead complemented by exploratory graphics to aid in decision-making.  

There is a wide range of powerful industrial statistical techniques and tools available, some of 

which have been recently adopted in the rapidly evolving field of big data mining and analytics 

(Myatt, 2014). Big data refers to datasets that are too vast to manage and analyse. Graphical 

representations are crucial to visualize statistical results in clear and interpretable ways, especially 

for decision-making purposes. The recommendation for the type of graphical representation tools 

to be used in specific situations depends primarily on the sample size and whether the data has been 

collected over time or not (Ryan, 2007). Assuming data was gathered over time, a rule of thumb is 

that the data should preferably also be plotted over time. 
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Steam-and-leaf displays, Digi-dot plots and Dot-plots are good for visualizing small datasets, but 

become blurry and hard to read for larger data sets. Histograms and boxplots are appropriate for 

initial analysis of large data sets. Histograms are bar charts that categorize data in classes and 

display the frequency of each class as the height of each bar. Working with large datasets 

sometimes requires sampling. 

Statistical process control using control charts serves two purposes; data is properly displayed over 

time and it is possible to assess whether the process is statistically stable or not. 

When working with industrial statistics, data distributions require much attention. There are many 

different statistical distributions, with some of the most fundamental ones being Normal, 

Binominal, Poisson, Geometric, Gamma, Exponential and Weibull. 

The phrasing of a distribution being “normal” is an unfortunate one, since in practice there is no 

such thing as normal distribution (Ryan, 2007). However, normal distribution is often used to 

approximate the actual distribution of many random variables. Whenever calculating standard 

deviation the assumption is made that the underlying data is normally distributed as can be best 

describe through Figure 3-2. There 𝜇 denotes the mean value of the distribution and 𝜎 represents 

the standard variation.  

 

Figure 3-2 Normal distribution, mean and standard deviation (Ryan, 2007). 

3.4.1 Detecting and eliminating outliers 

Raw data, extracted from databases, is usually unprocessed making it incomplete and noisy (Larose 

and Larose, 2015). The data may e.g. be missing values, covering fields that are obsolete or 

redundant, or contain outliers. 
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Outliers are extreme values that lie an abnormal distance from remaining values, and can either 

represent an error in data entry or any planned or unplanned deviation from the norm such as 

preventive maintenance or breakdowns (Larose and Larose, 2015). Outliers can be identified 

through both graphical and numerical methods. One-dimensional histograms are commonly used 

when dealing with one variable, however two-dimensional scatter plots can be more helpful in 

revealing outliers when dealing with more than one variable. 

The numerical Z-score method for outlier identification states that a data value is an outlier if it has 

a Z-score greater than 3. The Z-value test calculates the number of standard deviations by which 

the data varies from the mean by subtracting the mean from the data point and dividing that number 

with the standard deviation (see Equation 4): 

 

Equation 4: Z-value normalization 

𝑍 =
|𝑥 − 𝜇|

𝜎
      

 

, 𝑤ℎ𝑒𝑟𝑒 𝑥: 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝜇: 𝑚𝑒𝑎𝑛, 𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

The method’s shortcoming is that the incorporated mean and standard deviation are both sensitive 

to the presence of outliers, which creates a paradox. Presuming an outlier is added or removed from 

the dataset then both the standard deviation and mean will be affected by the presence of this new 

data value. Therefore using a method that is sensitive to the presence of outliers is not ideal. 

Therefore, a more robust statistical method for outlier detection has been developed, which is not 

as sensitive to the presence of the outliers themselves, namely the inter-quartile range (IQR) 

method. 

Figure 3-3 illustrates the IQR method and exemplifies what regards as an outlier. The method 

divides the dataset into four quartiles, each containing 25% of the data. In other words, the first 

quarter contains 25 % of the data, the second quarter contains 50 % of the data, and etc. The IQR 

is a measure of variability and is calculated by subtracting Q1 from Q3. 

 

Figure 3-3 IQR outlier detection explained (Larose and Larose, 2015) 
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Assuming X is the data point value, an observation is detected as an outlier if one of the following 

two conditions holds: 

 

�̅� 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 (1.5 ∗ 𝐼𝑄𝑅) 𝑏𝑒𝑙𝑜𝑤 𝑄1 

�̅� 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 (1.5 ∗ 𝐼𝑄𝑅) 𝑎𝑏𝑜𝑣𝑒 𝑄3 

 

Although the IQR method is more robust with respect to the presence of outliers, it still assumes 

normal distribution. Therefore, the distribution of the dataset must always be assessed and both 

methods used with caution.  

3.4.2 JMP statistical software 

Sound analysis of business data is crucial for strategic information-based decisions within 

improvement projects (JMPa, 2016). There are several software’s available for industrial statistics 

with the most widespread tools being JMP Statistical Discovery, Minitab17, Microsoft Excel and 

R statistics (JMPa, 2016; Minitab, 2016; R Foundation, 2016). The software’s all comprise similar 

versions of the most fundamental tools for statistical analysis such as basic statistics, regression 

analysis, statistical process control (SPC) charts and design of experiments (DoE). 

The JMP statistical software intends to provide quick ways to “see your data”, with the underlying 

philosophy of “one graph for every statistic and vice versa” (JMPa, 2016). JMP structures the 

information as data tables (similar to worksheets in Excel), where each column represents a 

variable and every row is an observation (JMPb, 2016). Thus, each data point consists of one row 

with information stored in one or multiple columns.  

A powerful feature in JMP is that all points in plots are linked to the corresponding values in the 

data table (JMPb, 2016). For instance, abnormal data points may be identified and selected from 

the plots. The user then switches to the data table window and generates a new data table, which 

only contains the selected values. In this way, the abnormal values may be further examined 

separately. 

Columns can be assigned properties, such as formulas or modelling types. The modelling types 

instruct JMP how to treat column values, and can be set either to continuous, ordinal or nominal. 

Continuous columns are continuous measurement values. Ordinal are values with mutual order, 

while nominal values are discrete without mutual ordering. Formulas can also be added to compute 

column values and the formulas can be based on calculations made on other column values.  

The distribution platform and graph builder functions are appropriate for initial data analysis 

(JMPc, 2016; JMPd, 2016). The distribution platform uses a histogram to illustrate the distribution 

of all observations in the data table. The graph builder enables quick changes to the plot (e.g. 

replacing one variable with another) allowing the user to explore the data and discover interesting 

patterns and trends. These two visualization tools for initial exploration of the data are excellent 

because they impose no assumptions about the data, such as homogenous datasets (Hammersberg, 

2016). Homogenous datasets are assumed to be normally distributed, without the presence of 
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outliers. Generally, statistical analysis tools must be used with caution, since many of the tools are 

built from underlying assumptions of homogenous data. 

Importing data to JMP can be done from Excel (copy/paste) (JMPb, 2016) There is also an add-in 

tool available to help advanced users to run Excel models in JMP. The Query builder connects JMP 

to SQL (Structured Query Language) databases, which enables importation of data directly from 

those databases to JMP. The user can specify SQL statements and add filters to customize data 

importing. Results can be shared as interactive HTML (standard for Internet communication) and 

Adobe Flash files to non-JMP users. Reports can also be formed into emails and sent to specified 

receivers. 

3.5 Six Sigma 

Six Sigma is a method that utilizes a set of techniques and tools for process improvement founded 

on variability reduction to ensure process enhancement and consistent output in manufacturing 

(Summers, 2010). The goal of Six Sigma is to achieve the highest quality of a manufacturing 

process by identifying causes of deviations or defects and removing them (Pyzdek, 2014). The use 

of the Greek letter sigma (σ) refers to statistics denoting variation from a standard.  

A manufacturing process can be described with a sigma rating indicating its yield of defect-free 

opportunities. A Six Sigma process needs to produce 99.99966% defect-free opportunities, 

meaning that if an organization wants to achieve Six Sigma, they cannot produce more than 3,4 

defects per million opportunities. Through constantly measuring and analysing defects, it is made 

possible to systematically eliminate them getting as close to perfection as possible.  

The Six Sigma methodology follows one of two processes, DMAIC or DMADV, respectively 

(Pyzdek, 2014). DMAIC defines, measures, analyses, improves, and controls existing processes, 

which have fallen below specification and are looking for incremental improvement. DMADV 

defines, measures, analyses, designs, and verifies new and developing processes, which are striving 

for Six Sigma quality.  

The benefits of Six Sigma include reduced- cost, waste and pollution (Summers, 2010). Additional 

benefits are better understanding of customer requirements and more customer satisfaction and last 

but not least shortened lead times. The Six Sigma toolbox comprises various statistical methods. 

For the purpose of the thesis, statistical process control and design of experiments, are described 

in following sub-chapters. 

For its key implementation roles, Six Sigma has adopted a ranking system inspired by martial arts 

where colored belts are used (Pyzdek, 2014). Executive leaders are responsible for creating the 

vision and framing the direction of the development work, while Champions are responsible for 

the implementation across the whole organization. Master black belts serve as mentors or coaches, 

assisting the champions and guiding black- and green belts working in the organization. Black belts 

apply the Six Sigma methodology as specific projects, whereas green belts carry on the Six Sigma 

implementation along with their regular job responsibilities. In other words, master black belts and 

regular black belts work solely with Six Sigma, while green belts also have other responsibilities 

beyond Six Sigma implementation. 
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3.5.1 Statistical Process Control 

Flowcharts, cause-and-effect diagrams (i.e. fishbone diagrams over cause-and effect relations), and 

bar charts are three examples of graphical representations, which in different ways help to visualize 

certain relations and aspects of datasets (Wheeler, 2003). For each kind of plot, data is displayed 

in a context where patterns and relations may be identified between different parts of the dataset. 

In some cases, these visual representations, combined with experience and knowledge of a process 

might constitute enough support process improvements. However, in many cases patterns, relations 

and cause-and-effect relationships are too complex for such ad-hoc analysis to be effective. For 

instance, cause-and-effect parameters might influence or intervene with each other. In many 

processes, one could also possibly have tens or hundreds of cause-and-effect relations. In such 

cases, analysis based on control charts has emerged as a powerful tool for systematically working 

with process improvements. 

Six Sigma aims for highest quality through the identification and elimination of causes for process 

variations and defects (Pyzdek, 2014). Some people might relate the concept solely to reduction of 

scrap rates. However, processes and all kinds of data on key performance indicators (KPIs) have 

variation that limits process performance (Wheeler, 2003). Continuous monitoring and systematic 

reduction of variation helps to enhance process performance.  

Figure 3-4 is an example of a control chart for an industrial process. Depending on the type of 

control chart, each point may represent either an individual observation, or a descriptive average 

for a sub-group of several observations (JMPe, 2015; Wheeler, 2003). The green line is the average 

for all data points, and constitutes a reference when searching for trends. The two red lines 

correspond to the upper- and lower natural process limits, which are used for distinguishing 

between routine- and exceptional variation (Wheeler, 2003). Routine variation always occurs and 

can be regarded as inherent noise. Exceptional variation should be interpreted as signals caused by 

special changes to the process, which should be further investigated. 

 

Figure 3-4 SPC average (X) chart example of an industrial process 

A process that only contains routine variation is predictable, since it is possible to estimate future 

performance based on historical measures (Wheeler, 2003). Processes that contain both routine- 

and exceptional variation are unpredictable, since their future performance cannot be predicted. 
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The fundamental idea for enhancing process performance is to identify the parameters that cause 

exceptional variation to occur and then change parameter settings to decrease variation, striving 

for predictable process behaviour. 

The control charts can be constructed based on different statistical measures. Figure 3-4 showed a 

so called “X chart”, where each point in the plot represents a descriptive average for a sample 

group. The same kind of plot can be created based on individual observations, in which case each 

point represents the absolute value and the chart is called “individual chart”. 

In addition to the plots described above, the control chart view is often complemented by adding 

another plot that displays the process variation. The X chart is combined with a range (R) plot, 

while the individual chart is combined with a moving range (mR) plot (JMPe, 2015). The range is 

the difference between the maximum and minimum value in the sample group, while the moving 

range is the difference between two successive (individual) data points (JMPe, 2015; Wheeler, 

2003). By convention, the range and moving range are defined as positive values since they are 

expressions of process variability. 

Figure 3-5 is an example of a combined control chart, which comprises both an X- and an R- plot 

(JMPe, 2015). The top plot shows the average value over time, while the bottom plot shows the 

variation for each data point. 

 

Figure 3-5 Statistical Process Control chart displaying average (X) and range (R) plots 

All control charts have estimated natural process limits, which help distinguish between routine 

and exceptional variation (JMPe, 2015; Wheeler, 2003). Since the range and moving range are 

always positive, their lower natural limit cannot go below zero. The limits must be calculated with 

care. Too narrow limits make the control chart over-sensitive, while too wide limits increase the 

risk of missing out on exceptional variation.  

There are several mathematical equations for calculating the lower- and upper natural process 

limits. Some simpler equations assume normal distribution, while the more advanced ones do not 
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require assumptions about the distribution of data (Ryan, 2007). JMP uses advanced equations that 

allow control charts to be used without making assumptions about the distribution of the data 

(JMPe, 2015).  

There are several rules, which can be utilized to systematically detect exceptional variation and 

trends. The simplest rule is to search for points outside the limits from either of the two 

complementing plot views. Other rules search for trends, for instance successive combinations of 

data points either above or below the average line. 

3.5.2 Design of Experiments 

Designed experiments are an important quality improvement tool utilizing analysis of variance 

(ANOVA) techniques to partition the variation in a response amongst other potential sources of 

variation (Pyzdek, 2014). The objective of experimenting with the complex interactions among 

parameters within a process is to gain the necessary insight to optimize the process (Summers, 

2010). ANOVA is different from one factor at a time (OFAT) approaches traditionally used, 

holding all factors constant except for one (Pyzdek, 2014). One of the OFATs approach main 

drawback is that it is usually hard or impossible to hold all other variables constant, meaning there 

is no way to systematically account for experimental errors such as measurement variation. Another 

main drawback is that potential interaction causing synergy-effects between variables are not 

considered. 

The DoE method on the other hand usually involves varying two or more variables simultaneously 

and through those means obtaining multiple measurements under the same experimental condition. 

Benefits of this method include the detection and measurement of interactions. Each value does the 

work of several values as the same observation can be used to estimate several different effects, 

and lastly experimental error can be quantified and used to determine the confidence of 

conclusions. 

DoE experiments are usually done through either full factorial or fractional factorial design. 

(Summers, 2010) Full factorial design consists of all possible combinations of all possible discrete 

values of investigated factors. Fractional factorial designs only study a subset of possible 

combinations, which is less complicated and time consuming. Although not examining all possible 

combinations the fractional factorial way, when designed correctly, may still reveal the complex 

interactions between factors, including which factors hold more significance over others. 
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3.6 Big Data 

As information technology constantly evolves, big data and the internet of things (IoT) have 

emerged as two important fields of research. IoT refers to the use of sophisticated devices, which 

are all connected to the Internet to enable smart communication and exchange of data (Farooq, et. 

al., 2015). The number of connected devices is expected to increase from approximately 14 billion 

in year 2014 to 50 billion in 2020. As the number of connected devises increases, large amounts of 

data must be analysed requiring analytic methods that are capable of handling massive datasets 

(Chen, et. al., 2015). 

Big data can be defined as:  

“Datasets whose size is beyond the ability of typical database software tools to capture, 

store, manage and analyse” (Wang & Alexander, 2015). 

There are also other alternative definitions. Big data is sometimes described in terms of 3 Vs, 

encompassing big data characteristics; volume, velocity and variety (Berman, 2013). Volume 

refers to the size of the dataset. Velocity means the data is rapidly changed and re-generated and 

variety means that different forms of data are mixed and combined (e.g. text, values, and images 

in structured or un-structured from different sources). 

A common misinterpretation is classifying voluminous data, such as extensive spreadsheets from 

one data source, as big data. According to the definition all 3 Vs must be fulfilled for the data to 

be regarded as big. Sometimes, the 3 V definition is also extended into 6 Vs by adding value, 

variability and veracity (Wang & Alexander, 2015).  

Despite the development of IoT and big data being closely interlinked (as the amount of data 

increases with the development of more connected devices) IoT is not a prerequisite for big data 

(Krumeich et al., 2014). Big data already applies in existing factories, which often lack extensive 

connectivity.  

One example is medical centres, where data in the form of laboratory reports, drug orders and 

receipts, billing information, patient record history etc. is stored for various purposes such as 

supporting medical decisions and invoicing patients (Berman, 2013). The diverse data generated 

from different medical functions is voluminous, updated frequently and with additional data being 

continuously added. This vast pool of data qualifies as big data. Assuming the data would be 

compiled, it could potentially be utilized to enhance improvements in quality, time efficiency and 

cost.  

Another concrete example derives from manufacturing industry, where big data analytics based on 

logistical models were utilized to improve production planning and logistical performance (Nywlt 

& Grigutsch, 2015). In a highly digitalized factory, lead time and order release data were measured, 

visualized and examined. The results from the study show high variability in lead time and order 

releases, which created unstable conditions that limited planning and logistical performance. Based 

on the insight about inherent process variability, actions were taken to create a more robust 

production environment. The increased awareness about variability in lead time and order releases 

simplified production planning. 
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3.6.1 Analytics and data mining 

Big data analytics can be described as a process comprising four main steps: data mining, cleaning, 

conversion, and iterative data analysis (Berman, 2013). Data mining is usually combined with the 

creation of models to make estimated predictions about future scenarios. 

Data mining and predictive analytics are defined as:  

“The process of discovering useful patterns and trends in large data sets and extracting 

relevant information from large data sets in order to make predictions and estimates about 

future outcomes” (Larose and Larose, 2015).  

A cross-industry standard has been developed as systematic support for the data mining procedure. 

The standard is called Cross-industry standard process for data mining (CRISP-DM) and comprises 

six successive analytical steps:  

1. Business and research understanding  

2. Data understanding 

3. Data preparation 

4. Modelling 

5. Evaluation  

6. Deployment 

3.7 Manufacturing data management for improvement analyses 

There are several means available for analysing manufacturing systems to enhance performance 

with respect to KPIs. Factory physics points at the combination of Lean tools, insight and 

experience and scientific relations to analyse and improve production (Hopp and Spearman, 2008). 

The Lean theory promotes the use of VSM (Liker and Meier, 2006), while the use of discrete event 

simulation (DES) is powerful for complex systems (Ignizio, 2009). Although factory physics 

provides firm ground for analysis, it must often be complemented by simulation in today’s complex 

factories, where dynamic and stochastic aspects must be considered. 

However, irrespective of the type of analysis and optimization method used, the key to success and 

reliable results is access to correct basic input data (Jonsson and Mattsson, 2009). Item-, Bill-of-

material (BoM)-, routing-, and work-centre data are main categories of basic data. This data is often 

fully or partially embedded in the company’s enterprise resource planning (ERP) and MES. Item- 

and BoM data specifies product structure and components used. Routing data specifies how 

products and components are manufactured, the resources required and accumulated lead times. 

Work-centre data specifies available capacity for the various resources in the factory. 

Efficient material- and production flows are dependent on a comprehensive and well-maintained 

database including all categories of basic data. Product development, order design, purchasing, 

production engineering and simulation teams are examples of company functions, which utilize 

basic data for various analyses and improvement projects (Jonsson and Mattsson, 2009; Robertson 

and Perera, 2001). 

For example, production engineers can utilize lead times from the routing data to analyse set-up 

times, lead times and critical paths (Jonsson and Mattsson, 2009). The critical path is the longest 
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accumulated lead time for procurement and manufacturing of an end product. Lead time analyses 

helps to identify items with the longest lead times. That information can then be used to make 

strategic priorities in production planning to control and reduce the lead times. 

Input data management also plays a significant role in DES applications, where it is the single most 

time-consuming activity (Robertson and Perera, 2001). In some cases, as much as 40 % of the total 

time in simulation projects is spent on input data management (Skoogh, 2011). The main obstacles 

making input data management so time consuming is problem with finding the right data sources, 

scarce availability of data and limited possibilities to structure and process data in the simulation 

software. 

The time consumption can be extensively reduced by optimizing and automating the process for 

data extraction, processing and transfer (Robertson and Perera, 2001). Figure 3-6 illustrates four 

methods for input data management to simulation models with various degrees of automation.  For 

the first method, data collection, processing and distribution is done manually by the project team 

members. The data is incorporated into the simulation model. The second method separates the 

basic data from the model to increase flexibility. Basic data is still collected, processed and 

compiled manually to a structured spreadsheet, which is read automatically by the simulation 

model. The third method is automatic and the data is transferred from various ERP and MES 

databases via an intermediate database (acting as harmonizing interface) to the simulation model. 

The fourth method allows the simulation model to continuously communicate with the ERP and 

MES to assure access to the most recent data updates. 

 

Figure 3-6 Methods for managing input data in simulation (Robertson and Perera, 2001) 
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Several ideas and case studies about simplifying input data management and connecting simulation 

models to ERP/MES can be found in literature. Three examples can be found through Randell and 

Blomsjö (2001), Skoogh (2011) and Cwikla (2014).  
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4 Results 

This chapter includes results of the process mapping and lead time analysis.  

4.1 Process mapping 

The process mapping includes descriptions of the production system, development of critical path, 

approach for lead time measurements and description of production IT systems.  

4.1.1 Production system 

Figure 4-1 shows an overview of the factory’s complete manufacturing system, spanning from raw 

material to finalized engines. The dashed line indicates the critical path used for investigating lead 

time in the thesis. The development and use of the critical path will be descried in detail in the next 

sub-chapter.  

  

Figure 4-1 Production system overview 

Four core-engine components (cylinder heads, cylinder blocks, crankshaft and camshafts), which 

are usually pre-processed by the supplier, are produced in-house through step-wise machining. 

Additional components are bought from suppliers and fed to production at various stages in the 

assembly processes. Throughout the factory, production of petrol and diesel variants are normally 

separated into dedicated production lines.  
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After machining, components are stored in dedicated buffers. The components are supplied to base 

assembly, either by dedicated conveyors (cylinder heads and cylinder blocks) or by large automated 

guided vehicles (AGVs) (crankshafts and camshafts). In base assembly internal engine components 

are assembled into so called base engines.  

The intermediate buffer contains base engines in batches of six, which are stored according to the 

scheduled production sequence in the four final assembly modules. Engines are transferred from 

the intermediate buffer to each final assembly module by small AGVs, each holding one individual 

engine. In final assembly external components like turbos, plastic covers, tubes and wires are 

added.  

Both kinds of AGVs are shared resources, meaning that the fleet of AGVs may be utilized 

differently depending on the workload of different parts of the factory. The assortment buffer and 

the final storage intend to merge the outfeed from the separate final assembly modules into the 

right delivery sequence and temporarily hold engines to re-create batches of six engines. Engines 

are taken from the final storage and loaded in outbound trucks in the packaging and dispatch area. 

In Figure 4-1 batch sizes, work-shift patterns, number of variants and means of transportation has 

also been specified. Engines are delivered to the car plants on specialized transportation-racks, each 

capable of holding six engines of the same variant. The transportation racks were developed to 

optimize the usage of truck space and to ensure safe transportation.  

Engine variants are clustered into planning groups based on assembly work content, which depends 

on the end product being configured as a low- or high performance type. Low performance means 

that the power output is lower. A high-performance engine is equipped with stronger parts and 

double-turbos, thus requiring longer assembly time. The specialized racks and planning groups 

mainly govern the batch size of six engines used in base and final assembly.  

Regarding shifts, the 2 shifts refer to work being conducted on a day and an evening shift. For 3 

shifts, a night shift is added (on top of day and evening). Where 4 shifts are run a weekend shift is 

added. The number of operators on each shift varies depending on the planned production volumes, 

which is expressed through the scheduled tact time. For instance, cylinder head machining 

currently run 4 shifts, with maximum tact (i.e. highest possible production volume) on days, nights 

and evenings. On weekends, the tact time is lowered, with fewer operators manning the line and 

subsequently smaller volumes produced. The shifts can be changed swiftly with respect to the 

customer demand.  

The transportation means vary throughout the factory between regular forklifts, trolleys pulled by 

movers (i.e. Lean milk-round trains), dedicated conveyors, small-, and large AGVs.  

Each type of buffer, whether holding machined components, base engines or finalized engines, has 

a target level that specifies the number of items that the buffer should contain. Buffer targets are 

normally defined in terms of production run-out time. The target level for the cylinder head buffer 

(i.e. between cylinder head machining and base assembly) is 36 hours. The target for the 

intermediate buffer (i.e. between base- and final assembly) is 3 hours of production. Using base 

assembly as an example, if production were to halt there, the final assembly modules should be 

able to consume the buffer and run according to plan for 3 hours before being starved of base 
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engines. By expressing the buffer size in terms of run out time, the number of stored engines varies 

according to the tact time. With high tact time in final assembly, the number of base engines in the 

intermediate buffer is higher, compared to a situation with lower tact time. This way of managing 

buffers assures that the risk for material shortage remains constant over time. The same principles 

then apply for the cylinder head buffer. 

The case of the assortment buffer is more unique whereas the buffer is intended to gather engines 

of the same variant to batches of six and build up the right sequence for delivery. The assortment 

buffer has the maximum capacity of 400 engines.  

The maximum capacity of the raw material storage is difficult to define, since it depends on how 

material is stacked, how many variants are situated in the storage at each time and etc. However, 

the maximum capacity of the final storage is 4000 engines.  

4.1.2 Development of the critical path for lead time measurements  

From the production system overview (which was shown in Figure 4-1) and the complementing 

descriptions, it becomes evident that the production system is vast, advanced and complex. With 

respect to the limited timeframe for the, decisions were made to delimit the mapping and analysis 

of lead time. A “critical path”, which was highlighted in the production system overview (see 

Figure 4-1) by a dashed line, was defined and the measurement and analysis of lead time was 

focused along that path.  

It was decided to focus solely on the production of petrol components and engine variants. This 

decision was governed by current conditions in base assembly. Previously, all engines were 

produced in one line, but dedicated lines have recently been built to separate petrol and diesel 

production. The newly built line produces diesel, while the old line produces petrol variants. The 

new diesel line is in a ramp-up phase with an abnormal level of disturbances. For the lead time 

analysis, it was considered more representative to study base assembly for petrol variants, since it 

was run under more normal and steady conditions. In order to make lead times comparable between 

processes, it was also decided to focus on petrol variants throughout the system.  

For component production the lead time study was focused on cylinder heads due to lead time data 

being more easily accessible in that part of the system. As will be covered in detail in the later 

chapters (especially Production IT systems) different MES are used in various parts of the factory, 

which effect the possibilities of measuring lead time data. In some IT systems, basic production 

data can be connected to individual items while in other systems it is not possible. This is because 

some new versions of IT systems use ID tags on each item to control production. 

The delimitations made to generate the critical path were governed by insight that was revealed 

during discussions with supervisors and staff in the process-mapping phase. Therefore, the 

delimitations were considered part of the process mapping results (rather than project-related 

delimitations to be included in the delimitation chapter).  
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4.1.3 Approach for lead time measurements 

Figure 4-2 displays the critical path selected for the lead time study. The idea for measuring lead 

time is to collect “time stamps” from discrete points throughout the factory. A time stamp is the 

time registered and stored in various IT systems for certain activities in production. Since all 

cylinder heads and engines (in base- and final assembly) are equipped with ID tags, the idea was 

to compile time stamp data from a number of individual items for each part of the system. The 

compiled data would provide ground for statistical analysis.  

Each time an item is moved to the next station in production, the ID tag on the item is scanned. 

The dots in Figure 4-2 represent the selected time stamps, one at the start and one at the end of 

each stage along the critical path. The difference between end- and start time yields the lead time 

for each stage. The sum of all successive lead times yields the accumulated total factory lead time 

for finalized engines. 

 

Figure 4-2 Production time stamps for lead time measurements 

For cylinder head machining and base assembly, production is characterized by a high degree of 

automation. The first and last operations are robot cells, which load and unload material to and 

from the line. For these parts of the system, the time stamps were taken from the robot cells and 

correspond to the activity when the robot scans the ID tag.  

The cylinder head-, intermediate-, assortment buffer and final storage are automatic storages 

controlled by production IT systems. Each buffer or storage has an “infeed” and an “outfeed” 

station, where pallets of material are dropped off or picked up by the conveyor or AGVs. The time 

stamp for each “drop off” and “pick up” activity is saved in various databases.  

Final assembly and the packaging and dispatch area are both characterized by high degrees of 

manual work. In final assembly, AGVs flows through the assembly carrying individual engines, 

while humans are conducting the assembly work at various stations. The ID tag is scanned when 

the AGV carrier arrives and departures from the final assembly, which enables the time stamps to 

be taken. For the packaging and dispatch area, the starting time is taken from the outfeed from final 
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storage. Information is also typed in and stored, when racks of engines are loaded into supplying 

trucks, making it possible to measure the end time for that stage. 

For consistency reasons, time stamp data was selected from the same time period covering 

approximately four weeks of production. However, for some parts of the system only limited data 

outside of that period was available. Depending on the IT system, the time stamp data sometimes 

includes transportation time between process steps. In incidences where such times are 

incorporated they are difficult to separate from the lead times. Therefore, since those times are 

relatively short compared to overall lead times, they are not believed to have a significant effect on 

the results.  

Several issues were encountered with regards to the extraction of these selected time stamps data 

and for the estimation of lead time. Since different issues were encountered for different parts of 

the system, they are described under each process-specific section in the Lead time analysis 

chapter. As implied earlier, these issues were related to the structure of the IT systems. Before 

describing the lead time results and the issues of lead time data extraction, it is therefore necessary 

to describe the structure of the IT systems along the critical path (which is done next).  

4.1.4 Production IT systems 

Figure 4-3 provides an overview of the different production IT systems used in the processes, 

buffers and storages along the critical path. The IT systems are used for production planning and 

manufacturing execution and control. Starting with the raw material storage, there is no IT system 

available, which made it impossible to utilize the IT system to extract lead time data from time 

stamps. Each separate IT system is linked to a dedicated database, where both historical and 

running data are stored.  

 

Figure 4-3 Production IT system overview 
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The CAMP_MAC, CAMP_IM6 and CAMP_XM (Component Assembly Machining Production 

execution) are the new systems, where lead time data was accessible. Limitations in storing 

capacity and user functionalities for the old systems complicated the extraction of time stamp data.  

Although the three CAMP systems are similar, they are still organized as independent systems that 

need to be accessed separately. In the case of extracting time stamp data, one data inquiry (i.e. a 

request for data) was needed for each CAMP system. In total 7 data inquiries had to be created, 

each taking approximately 2 hours to construct and execute.  

Since all IT systems are used in the everyday work for execution and control of the manufacturing 

process, the data inquiries had to be scheduled on nights or weekends or otherwise they would slow 

down the systems with the ultimate risk of stopping production. 

Figure 4-4 illustrates the hierarchical structure of the IT systems and the links between different 

levels. All the systems described in the production IT system overview (Figure 4-3) are from the 

MES layer. The MES layer connects to the ERP and the shop floor execution systems, which jointly 

constitute the complete IT system. At the enterprise and resource planning level, a customer order 

list is generated based on actual demand. The customer order list is used to create the detailed 

production plan at MES level. The MESs communicate with the virtual device, which in turn 

specifies the activates to be performed by the production line equipment. MES data is temporarily 

stored internally and exported to an historical database. It would be possible to export data to a 

separate data warehouse that could be optimized for data mining and analytics, although this is not 

done today. For further details regarding the IT systems see Appendix B, which contains a 

summary of an interview held with one person working with MES at the IT department.  

 

Figure 4-4 Detailed structure of the production IT systems 
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4.2 Lead time analysis 

This chapter contains the results from gathering, analysing and visualizing lead time data. All 

stages from the selected critical path are covered in chronological order with process-specific 

results and issues being discussed under each section. For consistency reasons, data was selected 

from the same time period covering four weeks of production (from the 18th of January to the 22nd 

of February 2016).  

4.2.1 Raw material storage 

Figure 4-5 shows the process of raw material intake from external suppliers. Trucks with raw 

material park outside the factory gate. Goods documentation is submitted to the goods reception 

office at the gate, where data (advice note number, item number, and quantity) is entered manually 

into the logistics IT system. After the truck is released through the gate, a forklift driver assists 

with unloading of material to the outside storage. Material handlers working in the material storage 

collect material from the outside storage and place it in the inside storage area. Production material 

handlers collect material from the inside storage to feed the production lines.  

 

Figure 4-5 Raw material storage layout and manually collectable time stamps for lead time 

All raw materials to be machined must acclimatize before being released into machining, due to 

measurement requirements (extremely low tolerances) as metal expands when heated and detracts 

when cooled. A specific target temperature has not yet been established (currently under 

investigation within the organisation), however all material must acclimatize for 24-48 hours in 

order to reach room temperature. There is no specified maximum storage capacity for the physical 

storage area. Nonetheless the material planning system uses a parameter of 48-hour maximum 

storage time for each item. 
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For additional details on the structure of the raw material storage see Appendix C and Appendix 

D, which contain interview summaries with employees working with production planning and 

material handling.  

Since there was no MES in the raw material storage, it was impossible to use time stamp data as 

intended for measuring lead time. Instead, an alternative way of manually gathering data was 

needed. A process mapping was conducted to understand how the raw material storage worked, 

and to assess the possibilities for using documentation of activities to measure lead time. Figure 

4-5 illustrate two discrete points, which could be used.  

Throughout the process of raw material intake, cylinder heads are stored on the same pallet that 

they arrive on (in quantities of 30 pieces per pallet), which is labelled with advice note number, 

item number and quantity. When the pallets are fed to production, the labels are removed. By 

documenting the removal of the labels, the end time in raw material storage could be recognised. 

The information on the labels could then be used to trace the pallet back, through documentation 

in the IT logistic system, which gave the start time for when the particular pallet entered the factory 

gate. The procedure did not provide individual traceability, since serial numbers for each item are 

not available from the documentation at the goods reception office. However, it was possible to 

measure the lead time for each pallet in this way. 

Documenting the removal of pallet labels was done by the material handler responsible for feeding 

production with material. Before discarding the label, the material handler documented the 

information needed together with current date and time. Information regarding 83 pallets was 

accumulated over a period of three days (From the 30th of March to the 1st of April 2016).  

The lead time for each pallet was calculated by subtracting the arrival time at the goods reception 

gate from the time where the pallet was fed into the machining line. The average lead time for all 

pallets was then calculated, and the resulting lead time was 184.35 hours. It is of course relevant 

to relate the lead time value to other parts of the system, which is done in the later section of 4.2.10 

Accumulated factory lead time.  

Since lead time data for this stage was derived through manual collection of samples for a limited 

period of 3 days, the amount of data was considered to be too small for deeper statistical analysis. 

For next-coming parts where more data was available, the lead time analysis is more thorough, 

including graphs and detailed descriptions of data patterns and trends.  

4.2.2 Cylinder head machining 

Data was available through a new MES called CAMP_MAC and was received in the form of an 

Excel file. Data was available for the entire time period under investigation.  

Substantial data processing was necessary in order to transform the data into a usable format, but 

the data processing itself will not be covered here in detail. Two step-lists were created, which are 

found in Appendix E and Appendix F to standardize and assist the data processing. One crucial 

aspect of the data processing was the removal of diesel item data, since the critical path focuses on 

petrol variants. Incomplete data rows (i.e. missing values) could also be identified, which were 

caused by engines being taken off the line midway through the process (e.g. due to quality issues 
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detected during inspection). Those missing cell-values could easily be identified and the data rows 

removed.  

Figure 4-6 shows a histogram with lead time up to 75 hours. Data points located beyond 75 hours 

are compiled in the bar furthest to the right. The histogram shows a large portion of data between 

2-7 hours, but it also reveals that smaller portions of the data were scattered up to and over 75 

hours. Peaks can be seen around 50-60 hours. The graph displays large variation, the source of 

which will be further elaborated on later in this chapter.  

 

Figure 4-6 Cylinder head machining lead time up to 75 hours 

Figure 4-7 shows another histogram with lead time. Here, the X-axis has been truncated at 20 hours 

to offer a closer look at the bulk of the data. It can be seen that the majority of the data resides 

within 2-7 hours. However, the truncated plot better reveals a data tail, slowly diminishing from 6 

to 15 hours. Large variation exists around the bulk of the data, through what can be described as a 

tail. The source of which will be further elaborated on later in this chapter.  

 

Figure 4-7 Cylinder head machining lead time up to 20 hours 

Figure 4-8 illustrates a bar chart with the number of produced items per day corresponding to the 

height of each bar. Visualization of the data in this way helped to understand production scheduling 

and execution. No engines were completed on Saturdays, meaning that production was not run on 
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any Saturday. A small number of engines were completed each Sunday, showing that production 

was run but at reduced tact time.  

 

Figure 4-8 Number of produced cylinder head components each day 

Figure 4-9 shows a control chart where each point in the top view represents lead time for individual 

cylinder heads. The bottom view shows the moving range, which is the difference between two 

successive points. 

 

Figure 4-9 Control chart cylinder head machining based on individual lead time measures 

Although the control chart is blurry due to the large amount of samples, it still provides relevant 

insight. Lead times seem longer in the beginning of the time period, with a clear declining trend 

towards the end. The horizontal line in the upper view indicate the average lead time for the 

complete time period. The two horizontal lines surrounding the horizontal average line are the 
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natural process control limits. It can be seen that the process was unstable with respect to lead time, 

since numerous data points were outside the control limits.  

The two alternative views normally provided in the control charts complement each other by 

highlighting different aspects. The top view shows the absolute values, while the bottom chart 

shows the variation.  

Figure 4-10 illustrates another type of control chart with lead time, where data have been 

categorized into sub-groups. The points in the top view show the average lead time for a sub-group 

of cylinder heads that were all started to be produced on the same day. The bottom view shows the 

range, which is the difference between the longest and shortest lead time for the particular day. For 

instance, the difference between longest and shortest lead time of items started on the 18th of 

January was more than 700 hours. Some items were started and finished on the 18th of January, 

while others were not completed until the end of the period under investigation. There are various 

potential reasons that could have caused this extensive variation in lead time, for instance quality 

issues with raw material and breakdowns. However, without additional data the exact causes cannot 

be revealed.  

 

Figure 4-10 Control chart for cylinder head machining per start date 

The natural process control limits are computed based on the sample size. For control charts with 

grouped data (like Figure 4-10), the control limits often vary throughout the period due to the fact 

that the number of items started in production differ. For example, in Figure 4-10 the control limits 

from Saturday the 13th were widespread, since there were fewer cylinder heads initiated in 

production compared to other days.  

Sub-grouped control charts can occasionally show miss-leading patterns. Therefore, it is always 

crucial to assess the consequences of creating sub-groups. Figure 4-11 illustrates a control chart 

over lead time, but in this case the sub-grouping was based on end date (instead of start date). In 
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the range view, exceptional variation could be found at the end of the period. This should be 

compared with Figure 4-10, where the range view showed exceptional variation in the beginning. 

 

Figure 4-11 Miss-leading control chart for cylinder head machining per end date  

The control chart based on start date (i.e. Figure 4-10) was easier to use for the analysis. By 

grouping on end date, the cylinder heads were displayed on finishing production dates, but the 

disturbances that caused the long and extensively varying lead times likely occurred prior to the 

end date. Thus, it was believed easier to track disturbances based on start dates.  

The average lead time for this process stage was 11.48 hours. This may be related to the compiled 

lead time results along the whole critical path, which can be found in the later section of 4.2.10 

Accumulated factory lead time. 

Figure 4-12 illustrates the analytical procedure used to examine the control charts, which was done 

by using the JMP statistical software.  
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Figure 4-12 Analytical approach to assess data points of using JMP 

In step 1, the control charts were closely examined, searching for patterns, trends and abnormal 

data points. Special attention was paid to exceptional variation (i.e. points outside the control 

limits).  

In the JMP software, there are embedded links between the plot and the original data table, which 

were utilized to analyse abnormal data points. In step 2, one or several interesting data points were 

selected. Depending on the sample size, it was more or less appropriate to select several points 

simultaneously (if there was too much data, it was easier to examine point by point).  

In step 3, a new data table was generated based on the points of interest. The bottom left picture 

shows a screenshot from JMP with one point from step 2 marked (the selected point was 29th of 

January). Through “data view”, a new table was generated, which only contained the selected 305 

rows of data. 

In step 4, the new data table was examined in search for root-causes to the exceptional variation 

utilizing additional columns of data. The data table exemplified in Figure 4-12 provided some 

crucial insights. Since the control chart was sub-grouped on start date, all the data points represent 

cylinder heads initiated on the same day. From the “weekend end” column (which specified the 

week-day of the end date column), it was discovered that some cylinder heads were finished the 

same day, while others were completed on the next-coming Monday. It seemed like some cylinder 

heads were “trapped in the system” over the weekend, which caused the long lead times. The 

difference in lead time between cylinder heads completed either on Friday or Monday was large, 

which caused extensive variation in lead time. 
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The analytical approach described above was used to examine cylinder head machining, base- and 

final assembly. In all cases, the analysis pointed out the same issue of items being “trapped in the 

system” over weekends. In such cases production was not run at all or run with reduced tact time 

(due to fewer operators working the weekend shifts). 

The next step of the analysis was to separate the data based on the insight about “trapped items”, 

then plot the separated data as new control charts to enable iterative analysis. The iterative analysis 

approach was thought of as “peeling the layers off an onion” to understand underlying parameters. 

By removing “trapped data” and making new plots, it became possible to detect new patterns, 

trends and abnormalities, which were no longer hidden by the impacts of the first discovered 

weekend-parameter.  

Based on the idea of iterative analysis two scenarios called data modification were created. In data 

modification one, weekend data was removed and the separated data analysed. The second data 

modification was based on the findings from the first data modification, and will thus be described 

after the results from data modification one.  

Data modification 1 (DM1): 

Whenever production was stopped over weekends, some items that were started at the end of one 

week yet not finished until the beginning of the coming week. Assuming production would be run 

on full speed over weekends, this problem would not arise. However, when this occurs it skews 

(increases) the lead time average. Looking solely at the average lead time for the whole period of 

investigation would be decisive.  

To increase the understanding about the reasons for lead time variations (i.e. what causes long lead 

time for certain time periods), this issue was first thought to be solved by filtering out “trapped 

items”. However, it proved difficult to construct such a filter appropriately. Firstly, that required 

either manual identification and removal of each “trapped item, or to filter out a selected time 

period. The method of filtering out a certain time period could be viable, assuming the time periods 

could be based on a fixed difference between shifts. The difference could be identified from the 

production schedules over shift patterns and tact times. However, when comparing schedules of 

production with the bar charts showing the number of items started each day, it was found that 

production was not executed according to plan.  

Trials were made by filtering on start time, where data from a specific time on a Friday was 

removed. However, some items remained that were initiated on a Thursday and were not completed 

until after the following weekend. Instead, one could possibly remove all items completed in the 

beginning of Monday, but the problem was the same here. Some items that were started on Friday 

was not finished until Tuesday.  

Due to the problems of filtering an alternative method was used, where the data was modified by 

excluding all lead time data exceeding 12 hours. The major issue with such an approach is where 

to set the limit. This was done based on the distribution of the data. The goal was to discard of 

peaks around 50-60 hours (as was shown in Figure 4-6) representing items “trapped” over 

weekends, while not cutting into the tail of the data (better shown in Figure 4-7). The benefit of 

this method is that the majority of “trapped” lead time data is discarded of. The drawback of this 
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method, however, is that potential “true outliers” that could be of interest for the analysis, are 

discarded as well.  

The resulting average lead time for DM1 was 5.33 hours. For compiled lead time results along the 

entire critical path, see the later section of 4.2.10 Accumulated factory lead time.  

Figure 4-13 illustrates the control chart, based the separated data containing only lead times up to 

12 hours.  

 

Figure 4-13 Control chart cylinder head DM1 based on average lead time per start date 

Compared to the control chart of unmodified data (as seen in Figure 4-10) it can be observed that 

the creation of DM1 drastically lowered and narrowed the upper- and lower natural process limits 

for both the average and range views. Remnants of weekends might still be visible on the 31st of 

January when 43 engines were started between 22:00 and 00:00 on a Sunday and finished at approx. 

10:00 on a Monday. From the data it seemed like production was stopped overnight resulting in 

the abnormally long lead times. Without confirmation such conclusions cannot be drawn as work 

could also have been carried out overnight at a reduced tact. However, the length of the time period 

(resembling a regular shift) points to halted work. 

From the example above it can be seen that the 12-hour limit is no guarantee for removal of all 

“trapped items” as work can e.g. be halted over an 8-hour nightshift, not always an entire weekend. 

Potentially, another data modification could be done with a slightly lower limit to get rid of those 

long lead times. However, this was not considered to provide much new insight. Instead, it would 

be more interesting to reverse the situation and move swiftly over to assess the “ideal state”, with 

the shortest lead times. Focusing on the shortest lead times was an attempt to better understand the 

prerequisites for achieving short lead times. Based on this reasoning, data modification 2 (DM2) 

was created to represent the ideal state. Another control chart was created based on “ideal state 

data”, which was attained by separating data with a 4-hour cutting limit (instead of 12 hours as in 

DM1). The results of DM2 will now be described.  
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Data modification 2 (DM2): 

As could be seen by looking at the distribution of the cylinder head data (in Figure 4-7) lead times 

are somewhat spread, with what can be described as a bumpy tail fading to the right (resulting in 

longer lead times). Instead of peeling of portions of the tail by creating new data modifications, it 

was decided to modify the data by trying to get as close to the ideal state as possible.  

For consistency reasons the limit of 4 hours was used when developing DM2 for cylinder head, 

base- and final assembly. As with the 12-hour limit the, 4-hour limit was selected based on the 

distribution plot. The limit was also selected since it discarded all “trapped” items. As with DM1 

modifying the data this way has the drawback of eliminating outliers from the relevant kept data.  

Figure 4-14 illustrates the resulting control chart, which was created based on the separated data 

excluding all lead time data above 4 hours. Compared to the control chart in DM1 (Figure 4-13) 

the upper- and lower natural process limits for both the average and range have been further 

lowered and narrowed. 

 

Figure 4-14 Control chart cylinder head DM2 based on average lead time per start date 

Abnormally long lead times that can be contributed to “trapped” items and confirmed as such are 

not visible anymore. At this point, the next step was to examine the control chart in search for root-

causes to the exceptional variation, trends and patterns. However, analysing the ideal stage was 

hard, since the analysis was dependent on access to additional data, which could be used to explain 

root-causes. Due to collection of data being difficult and time consuming, this data could not be 

extracted within the time frame of the thesis. Therefore, deeper analysis and cross comparing with 

other kinds of data, such as maintenance schedules, disturbances etc., had to be left out.  

The resulting lead time for this process stage was 3.32 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time. 
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4.2.3 Cylinder head buffer 

Data for the cylinder head buffer originates from the same MES as cylinder head machining. 

Therefore, descriptions of data extraction and processing from the cylinder head machining apply 

here, with no further explanations needed. 

Since the cylinder head buffer is connected to cylinder head machining and base assembly, the lead 

time for the buffer is affected by the way production is managed in those stages. Therefore, it was 

regarded sufficient to analyse lead time in detail for cylinder head machining and base assembly. 

However, a histogram was still included since it provides a good overview of the lead time data. 

Figure 4-15 shows a histogram of lead times up to 150 hours. The data shows variation throughout 

the spread of the data with large peaks around 20 and 35 hours. Several lower peaks are also visible 

around 50, 65, 80 and 95 hours.  

 

Figure 4-15 Histogram for cylinder head buffer data, up to 150 hours 

The cylinder head buffer is target to hold 36 hours worth of material for the following process of 

base assembly. Thereby, the lead time target for the buffer is also 36 hours. Occasionally, the buffer 

might be strategically increased to cope with upcoming disturbances or imbalances between 

cylinder head machining and base assembly.  

The resulting lead time for this process stage was 43.12 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time.  

The histogram (see Figure 4-15) showed that the majority of the data was condensed within the 

target of 36 hours. However, a substantial amount of items stayed longer than the targeted 36 hours. 

The average lead time also exceeded the target by 7 hours. 

Thus, it could be determined that the target of 36 hours of lead time in this buffer was not achieved 

during the time period. 

4.2.4 Base assembly 

Data for base assembly originates form a new MES called CAMP_IM6. However, the description 

of data extraction and processing from the cylinder head machining applies here, with no further 

explanations needed (due to CAMP data being structured in the same way).  
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Figure 4-16 shows a histogram with lead times up to 75 hours (all lead times beyond 75 hours are 

compiled in the bar furthest to the right). The data shows a large portion of data concentrated around 

3 hours with a slight tail to the right fading out around 9 hours. The graph shows some data spread, 

with peaks around 18, 35, and 48 hours. 

 

Figure 4-16 Histogram for cylinder head machining data, up to 75 hours 

Figure 4-17 illustrates a control chart of lead times. Exceptional variation, with regards to both the 

average and range views, could be identified on several occasions (many of which occurs on 

Fridays or Saturdays). 

 

Figure 4-17 Control chart base assembly based on average lead time per end date 

By looking at a bar chart graph displaying the number of completed engines each day (the same 

chart as used in cylinder head machining, see Figure 4-8), it became evident that production was 

run on both Saturdays and Sundays (it was decided not to include the bar chart here). The number 

of completed engines was substantially lower on weekends, which indicated that production was 

run on reduced tact. As in cylinder head machining items were “trapped” due to halted work or 

reduced takt over weekends causing the lead time to peak during those days. 
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The resulting lead time for this process stage was 4.76 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time. 

DM1: 

As previously described in the cylinder head machining chapter, DM1 was introduced as a method 

for discarding of items “trapped” over weekends in the lead time data (for more detailed 

descriptions of this see previous chapter 4.2.2 Cylinder head machining) 

Figure 4-18 shows a control chart for DM1 based on average lead time per start date. Compared to 

the control chart of unmodified data (i.e. Figure 4-17), the upper and lower natural process limits 

have been substantially lowered and narrowed. 

 

Figure 4-18 Control chart base assembly DM1 based on average lead time per start date 

According to Figure 4-18, what can be construed as remnants of weekends is still visible on 

Sundays. By using the embedded links in JMP between the control chart and the underlying data 

table, abnormalities seen in the control chart could be examined. Some interesting aspects could be 

seen. For instance, on the 15th of February 75 engines were started between 22:00 and 00:00 on a 

Sunday and finished at between 02:00 and 07:00 on a Monday. It is difficult to distinguish between 

halted work and reduced tact as the cause for abnormally long lead times, needing conformation 

through additional data. However, due to the shortness between starting and finishing times the 

nightshift can be presumed to have been run on reduced tact. 

The resulting lead time for this process stage was 3.43 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time. 
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DM2: 

As previously described in the cylinder head machining chapter DM2 was introduced as a method 

for getting as close to the ideal state as possible. That was done by removing all lead time data 

above 4 hours thereby discarding of trapped items (for more info review the previous more detailed 

descriptions in 4.2.2 Cylinder head machining). 

Figure 4-19 shows the control chart for DM2 based on average lead time per start date. Compared 

to the control chart for DM1 (Figure 4-18) the upper and lower process limits for both the average 

and range views have been further lowered and narrowed. In the ideal state, it could be observed 

that the process seemed relatively stable in the range view, but not in the average view. In the 

average view, exceptional variation was detected on many occasions. For instance, Sunday the 7th 

had substantially longer lead times than on regular weekdays. However, the range was smaller than 

usual, which meant all engines started on Sunday the 7th had long lead times. On Sundays 

operations were run with fewer employees resulting in longer tact time and more variation in 

production.  

 

Figure 4-19 Control chart base assembly DM2 based on average lead time per start date 

The resulting lead time for this process stage was 2.83 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time.  
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4.2.5 Intermediate buffer 

Available data for the intermediate buffer originates from an old MES called KSMB (kransystem 

för motorbuffert), and was presented through Excel in a way making extraction of lead times very 

difficult. Figure 4-20 illustrates an example from the data received. Firstly, only 5000 lines of data 

can be saved and exported from the system at a time. Due to the limitation of 5000 exported lines 

the data has been cut off resulting in missing infeeds (inlag) at the beginning of the data table and 

missing outfeeds (dest) at the end of the data table. Secondly, data for in- and outfeed is displayed 

in separate lines. Lastly date and time is stored in a format unrecognized by Excel hindering the 

use of formulas to calculate lead time. 

 

Figure 4-20 Excel data example from KSMB Manufacturing Execution System 

Lead time extraction through the use of the KSMB MES data was therefore not feasible (without 

applying advanced programming to re-construct the data table). An alternative method was 

proposed where the outfeed from base assembly and the infeed from final assembly were used 

instead (with the intermediate buffer in-between). This made it possible to avoid working with the 

old data, since base- and final assembly use new MESs.  

The selected method utilizing new system data was not without complications. The issue of having 

date and time data in a format recognizable by Excel was solved, since that was not a problem with 

data from the new MESs. Through this method, data for all of the period under investigation was 

made available. Otherwise the data had been limited to week 11 and 12 of 2016, which was the 

time period available in the old MESs. 

However, a new problem was discovered since there was one input flow from base assembly to the 

intermediate buffer, but two output flows from the intermediate buffer to the petrol final assembly 

modules. Since there was only data for one of the two final assembly modules available, all in- and 

outfeed data rows could not be matched together (two-by-two). Also, in- and outfeed data was still 

stored on separate lines, which made it difficult to match the individual time stamps for in- and 

outfeed to derive the lead time.  

To overcome these issues, it was decided to randomly select two samples from each working day 

(Monday-Friday) during day and evening shifts throughout the entire period under investigation. 

In total, this resulted in a total of 50 samples, which were used to estimate the lead time. Selecting 

only 50 samples was a sufficient compromise, since the main purpose was to examine the 

possibilities for collecting data in this way. Therefore, the approach constitutes a proof-of-concept 

that lead times can be extracted using the new system data in this way. Instead of manually picking 

samples in this way, a software could be developed to do automatically what was now done by 

hand.  
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The average lead time for the sample group was calculated, and the resulting average lead time was 

3.37 hours. For compiled lead time results, see the later section 4.2.10 Accumulated factory lead 

time.  

4.2.6 Final assembly 

Data for final assembly originates from a new MES called CAMP_XM. The description of data 

extraction and processing from the cylinder head machining applies here, with no further 

explanations needed (due to CAMP data being structured in the same way). 

Figure 4-21 shows lead times up to 20 hours. The data seems to be concentrated approximately in 

the interval of 1-2 hours. The histogram also revealed a spread of data, with some peaks visible 

around 8 and 16 hours.  

 

Figure 4-21 Final assembly lead times 

Figure 4-22 shows a control chart where exceptional variation can be identified on four occasions. 

All occurred either on Fridays or Saturdays.  

 

Figure 4-22 Control chart final assembly based on average lead time per start date 
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By looking at a bar graph displaying the number of completed engines each day in final assembly 

(the same chart as the one used in cylinder head machining, see Figure 4-8), it became evident that 

no engines were produced on Sundays (thus production was not run). A small number of engines 

were produced each Saturday except of one. As for cylinder head and base assembly, items seemed 

to be “trapped” in the system over weekends causing exceptional variation and subsequently longer 

lead times during those days.  

The resulting lead time for this process stage was 3.01 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time.  

DM1: 

Figure 4-23 shows a control chart for DM1 based on average lead time per start date. Removing 

all lead times above 12 hours narrowed and lowered the natural process limits. No clear remnants 

of trapped data over weekends were visible when examining data points in DM1. From the range 

view, exceptional variation could only be identified on two occasions (Tuesday 19/1 and Friday 

12/2).  

 

Figure 4-23 Control chart final assembly DM1 based on average lead time per start date 

The resulting lead time for this process stage was 1.71 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time. 

DM2: 

Figure 4-24 shows the control chart for DM2 based on average lead time per start date. When 

compared to the control chart for DM1 (see Figure 4-23) it can be observed that lead times in DM2 

are statistically stable in the range view, which is not the case in DM1. As in the case of previous 

DM2s the process limits have been narrowed and lowered. 
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Figure 4-24 Control chart final assembly DM2 based on average lead time per start date 

The resulting lead time for this process stage was 1.28 hours. For compiled lead time results, see 

the later section of 4.2.10 Accumulated factory lead time. 

4.2.7 Assortment buffer 

As was the case with the intermediate buffer, available data for the assortment buffer comprised of 

data extracted from an old MES. The MES for the assortment buffer is called KS1S. 

The lead time extraction method previously used for the intermediate buffer was not feasible for 

the assortment buffer. The method used for the intermediate buffer utilized the outfeed from the 

stages before and after to derive the lead times. In this way, it was possible to avoid the old systems, 

but it required that preceding and following stages were both supported by new MESs. For the 

assortment buffer, this was not the case. The preceding process runs on a new MES, but the after 

following process was supported by an old MES.  

The benefits of using the same method as for the intermediate buffer would be to be able to cover 

the whole period under investigation, and to overcome formatting issues with time and date.  

Certain limitations come with the use of data from the old MES KS1S system in question. As for 

the intermediate buffer, a limited number of data lines could be saved and exported at one time. 

For the KS1S system used for the assortment buffer, the limit is 4000 lines (compared to the 

intermediate buffer that could store 5000 rows). Also in- and outfeed data was stored on separate 

rows, with date and time in unrecognizable form by Excel. 

The data made available was from the 11th of April of 2016. For conformity reasons the decision 

was made to use the same sample size of 50, selecting from day and evening shifts, as with the 

intermediate buffer data giving an indicator to the average lead time.  
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The average lead time for the sample group was calculated, and the resulting average lead time was 

0.42 hours. For compiled lead time results, see the later section of 4.2.10 Accumulated factory lead 

time.  

4.2.8 Final storage 

Data for final storage and the packaging and dispatch area was extracted and received together in 

one Excel file. The data originates form an old MES called MUS. Previous problems associated 

with old system data resurface once again here, meaning that the data for in- and outfeed was 

presented on separate rows and that date and time was stored in a format unrecognized by Excel.  

For final storage and the packaging and dispatch area, data was available for the entire time period. 

For the same reasons as with the intermediate and assortment buffers a sample size of 50 was 

chosen with random samples taken from each working day, during day and evening shifts.  

The average of the 50 samples was calculated and the resulting lead time for this process stage was 

0.48 hours. For compiled lead time results, see the later section 4.2.10 Accumulated factory lead 

time.  

4.2.9 Packaging and dispatch area 

Due to the fact that data for the packaging and dispatch area was extracted from the organizations 

MUS system and processed together with data for the final storage, description of data extraction 

and processing from the final storage apply here, with no further explanations needed.  

The average for the sample group was calculated, and the resulting lead time was 4.41 hours. For 

compiled lead time results, see the later section of 4.2.10 Accumulated factory lead time.  

4.2.10 Accumulated factory lead time 

Table 4-1 illustrates the total accumulated lead time along the critical path in the factory, as well 

as the relative distribution of lead time between processes, buffers and storages. All lead times 

were modified by multiplying them with an un-disclosed scaling factor in order to accommodate 

confidentiality. Relations in the data remained intact, but the actual lead times are not revealed. 

The methods for data collection various, depending on the MES available at the particular stages 

along the path. In the raw material storage, no MES was available and lead time data had to be 

collected by manual observations utilizing production personnel for documentation (in this case 83 

observations were collected over three days of production). Cylinder head machining, cylinder 

head buffer, base- and final assembly operate on new MES from which data was easily accessible. 

The intermediate buffer, assortment buffer, final storage and packaging and dispatch area operated 

on old MES, were it was proven much more difficult to collect the lead time data.  
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Table 4-1 Accumulated factory lead time 

LEAD TIME (HOURS) 
All data 

(unmodified) 

DM1:                     
Data < 12 

hours 

DM2:                 
Data < 4 hours 

Data through 
observations 

Raw material storage       184,35 

Cylinder head 
machining 

11,48 5,33 3,32   

Cylinder head buffer 43,12       

Base assembly 4,76 3,43 2,83   

Intermediate buffer 3,37       

Final assembly 3,01 1,71 1,28   

Assortment buffer 0,42       

Final storage 0,48       

Packaging & dispatch 4,41       

     

Total Lead time (hours) 255,40 246,62 243,58  

Total Lead time (days) 10,64 10,28 10,15  
 

For the intermediate buffer, assortment buffer and packaging & dispatch area, the data received 

was too complicated to process. Therefore, 50 observations were randomly selected to provide an 

indication of the lead time for those stages. No data modifications were used for storages, buffers 

and the packaging & dispatch area, since there are no shifts there that explicitly effect lead times. 

Data modifications could possibly be developed for those areas as well, but with the need for 

additional data to understand the causes for exceptional variation.  

When comparing the summarized lead time for all storages and buffers to the total lead time, it 

could be seen that 91 % of the time (231.7 hours out of 255.4 hours) was spent in storages and 

buffers. Focusing on the row of total lead times, the lead time decreased with 3.4 % between 

unmodified data and DM1. Between unmodified data and DM2 the decrease in lead time was 4.6 

%. However, when focusing on the decrease in lead time for processes with data modifications 

some interesting aspects can be seen. The lead time for cylinder head decreased by 71 % between 

unmodified data and DM2. For base assembly the lead time decreased by 40.5 % between 

unmodified data and DM2 and in final assembly the decrease was 57.5 % between unmodified data 

and DM2. 
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5 Discussion 

The chapter includes an elaborated discussion about data collection and process of lead time, lead 

time analysis, and future research recommendations.  

5.1 Data collection and processing 

The current structure of the organization and its MES made the extraction of lead time data difficult. 

Communication paths are long, requiring connections between multiple departments or employees 

in order to gain access to data sources. Furthermore, extraction of lead time data from the MES 

was carried out by external consultants, further extending communication paths. 

Generally, manufacturing stages are supported either by new or old MES. The raw material storage 

was an exception, since it was not supported by any system. Through manual collection, 83 samples 

were documented over a period of three days. In order to gain further insight into lead times in raw 

material storage a longer lead time sampling study has to be carried out. Accumulating more data 

over a longer time period would make the lead time data more representative, thus providing sound 

ground for in-depth statistical analysis. Such data could help the organization to better analyse 

conditions for varying and long lead times. The data could also be used to construct and run DES 

models on raw material storage for optimization purposes, which have not been done before.  

The new MES delivered data that was easily processed. However, data from the old systems came 

with certain limitations, which were not overcome since they required specialized IT competence. 

Two examples are that date and time formats were unrecognizable by Excel and in- and outfeed 

for each item was stored in separate lines. Since these issues could not be solved within the given 

timeframe, it was decided to be sufficient with respect to the purpose of the thesis to manually 

select 50 samples. The samples were manually processed to overcome the issues and estimate the 

lead time. For larger data sets, manual transformation becomes impractical. The fact that these 

problems could not be solved in time also demonstrates the extensive time consumption required 

for collection and data processing.  

When discussing the issue of old system data with IT-department personnel, they seemed to possess 

the competence to solve the issues associated with old systems. Therefore, one of the largest 

obstacles for extracting and processing lead times from the old MES would be overcome with 

reasonable efforts. The reason for not being able to solve the issues was due to time constraints, 

relating both to the limited time for the thesis and to the high workload at the IT-department. The 

IT department could not spare enough resources, since they had to prioritize on-going projects in 

the organization.  

For both new and old systems, lead time data is temporarily saved and exported to historical 

databases, activities which are done embedded in the MES (for more details on the IT systems 

structure, see Figure 4-4). This setup allows for rapid execution within the MESs. However, the 

structure is not suited for data collection and analytical purposes, and it also requires lead time data 

inquiries to be run overnight or weekends not to slow down the MES.  

There are different ways of coping with this issue and to improve the collection of data from the 

MESs. Functionalities could be added to both new and old systems, which would enable easier and 
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even automatic extraction of lead time data. Data inquiries could be auto-generated, scheduled to 

be executed overnight and sent to specific email addresses. Thereby, “Fresh lead time data” could 

be sent on daily basis to relevant departments, such as production- logistics-, and simulation 

engineering.  

This can be accomplished in two different ways. The JMP statistical software could be connected 

to SQL databases (JMPb, 2016) (such as the organisations MES), allowing for direct importation, 

processing and analysis of data. The second option is that the IT-department could create a 

customized software, add a new database separated and connect it to existing MESs. Since data is 

already exported to an historical (but embedded) database, data could be exported elsewhere at the 

same time. With this setup, lead time data could be continuously extracted to a new database 

optimized for data mining and analytics (rather than rapid execution), thus improving collection 

and processing of data. The issue of having to run specific inquires overnight could be overcome 

by locating the database outside existing MESs.  

From the process mapping and the overview picture of the various IT systems (Figure 4-3) it could 

be seen that several MESs are currently used in the organization, which make the IT environment 

highly complex. Historically, additional software or functionalities have often been added onto 

existing systems to solve specific IT-related issues, which over the years have increased the 

complexity further. From this viewpoint, it might not be ideal to keep adding additional software 

to current IT systems. However, the organization has decided to invest in new IT-systems, and are 

currently investigating the internal requirements for it. The two suggested methods for improving 

data collection and processing could be used as input when specifying requirements for those new 

systems.  

In DES projects, input data management can take up as much as 40 % of the total time (Skoogh, 

2011). As similar input data management, comprising data collection and processing, was required 

for the lead time analysis there seem to be huge potential savings by simplifying those activities.  

Robertson and Perera (2001) introduced four methods for managing input data in simulation (see 

Figure 3-6). The same logic applies in the case of lead time analysis, where the simulation tool 

could be replaced by the JMP statistical software. In the first method, data is manually collected, 

processed and transferred. The second method is semi-automated, with data being manually 

collected and compiled but read automatically by the analytical tool (i.e. simulation or JMP). In 

the third method, all steps are automated but there is still an intermediate database. The fourth 

method allows for automated communication between the analytical tool and the ERP/MES. The 

time required for data collection and processing progressively declines from method one to four, 

at the expense of a more complex system setup.   

The method used in the thesis corresponds to the second method for managing input data. Data was 

manually collected, processed and fed into an Excel spreadsheet. The spreadsheet was imported to 

the JMP statistical software, where the analysis was conducted. It is also relevant to mention here 

that lead times have never been collected, processed and analysed in this way and to this extent 

within the organization before. 

Earlier in the discussion, two methods were proposed to improve lead time input data management 

in the organization. The first proposal was to create a customized software, which could 
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automatically handle data inquiries and supply lead time data. The basic idea of the second method 

was the same, but instead of a customized software, the MES databases could be connected with 

JMP. When comparing these suggestions to Robertson and Pereras’ (2001) input data management 

methods, it could be seen that they could both help the organization reach an automated setup, 

which means moving from input data management method two to three. Lead time data could be 

automatically collected, processed and fed from MES via an intermediate data warehouse to JMP, 

thus increasing efficiency.  

Beside the potential time savings, another advantage could be the storing capacity and access to 

manufacturing data. Instead of having a limited spreadsheet, the intermediate database could be 

configured to store all sorts of manufacturing data. Beside lead time analysis, the database could 

be utilized by other organizational functions, such as simulation engineers, production engineers, 

lean coordinators and production managers for all sorts of analysis. 

Automated communication between the analytical tool and the ERP/MES (corresponding to the 

fourth method), constitute the most efficient way for input data management (Robertson and 

Perera, 2001). However, the current structure of the IT systems means the fourth method cannot be 

reached. The main reason for that is the previously discussed issues of jeopardizing manufacturing 

execution when making requests to existing databases embedded in the MES. The methods 

introduced by Robertson and Perera constitute a good base for discussion on requirements of future 

IT systems in the organization.  

5.2 Lead time analysis 

Data was collected from MES and processed in Excel. Statistical analysis was conducted with the 

aid of JMP statistical software, using graphical representations to explore and thereby understand 

the manufacturing data. There are various graphical representations available, which could be used 

to analyse manufacturing data. Flow charts, bar charts, pie charts, and cause-and-effect diagrams 

are examples of quite simple and intuitive plots, which can be used as a base for manual analysis 

(Wheeler, 2003). The plots are intuitive in the sense that the results can be interpreted without 

advanced and specialized competence.  

In many situations, the graphical representations might be in-sufficient due to the complexity 

embedded in the data. For instance, changing parameter settings based on what can be seen from a 

histogram might give un-expected results because of hidden relations and synergy effects between 

various parameters.  

From this perspective, control charts provide a more systematic way of iteratively analysing and 

separating data (Wheeler, 2003). Unlike the ad-hoc analysis based on simpler graphics or lean 

thinking, control charts outline a powerful systematic approach for data analysis. In the thesis, 

simpler graphical representations were initially used for superficial analysis to better understand 

the data. This provided a sound base, which could then be complemented by the analysis based on 

control charts.  

A drawback with control charts is that it requires specialized competence to interpret the results. 

The analyst must for instance understand upper- and lower process limits and routine- and 

exceptional variation. Thus, control charts might be more or less applicable depending on the 
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context. It is a question whether the organization has the right competence or a willingness to learn 

or not.   

Organizations tend to focus too much on improving the average performance to meet targets, 

instead of first addressing the variability to achieve output consistency (Hammersberg, 2016). 

There is a great risk of accepting variability as a naturally inherent process feature (Hopp & 

Spearman, 2008). In many cases, variability reduction might be a more efficient way to elevate 

performance compared to increasing the capacity (Ignizio, 2009). 

Once a process is statistically stable, it becomes easier to efficiently improve the average 

performance. There are various means to proactively work with process variation. The analytical 

approach provided through the use of control charts is powerful, since it forces the analysts to 

identify and eliminate exceptional variation.  

The coefficient of variability (CoV) or variability pooling can also facilitate the monitoring and 

reduction of process variation (Hopp & Spearman, 2008; Ignizio, 2009). The CoV is a unit-less 

measure, which makes the variation comparable between processes or manufacturing systems. The 

equation for CoV includes the standard deviation, which means an assumption about normal 

distribution is required. Since lead time data is not normally distributed, the CoV was not applicable 

to use in the thesis. Statistical transformation and variance stabilizing tools can be used to cope 

with this issue, but that was regarded to be outside the scope of the thesis.  

In variability pooling, several sources of variability are combined to minimize their impact. One 

example of variability pooling is the use of generic- rather than dedicated buffers. From the process 

mapping, it was discovered that variability pooling was already used in the existing manufacturing 

system. For example, the assortment buffer is generic since the output from all final assembly 

modules are sent to the same buffer space.   

The results from the control chart analysis in the thesis revealed that lead time was varying 

depending on the weekday. On regular weekdays (Monday-Friday) the lead time was substantially 

shorter and exposed to less relative variation compared to items partly or completely produced over 

weekends. This could be seen from the range views in the control charts. It was also discovered 

that this was caused by production being run slower, or sometimes not at all, over weekends.  

Compared to analysing data in the form of condensed statistical measures (e.g. mean and standard 

deviation) JMP and control charts provide a more versatile picture It is important to visualize the 

data, instead of focusing solely on selected KPI values. The average lead time might not be 

representative for the factory or process studied.   

The discovered relation between lead time and weekday might not be directly applicable for lead 

time optimization. Production will always be run slower over weekends, due to fewer operators 

being available. Still, discovering the connection was a prerequisite for the next iterative step of 

analysis. Since weekday had such a substantial impact on the lead time, other relations, trends and 

parameters of interest at first remained hidden underneath the variation caused by weekday. By 

identifying the weekday parameter, it became possible to separate the data and iterate the analysis 

in an attempt to discover additional root-causes for exceptional variation. In some processes, there 
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could be dozens or hundreds of independent and dependent parameters causing exceptional 

variation, making this iterative approach necessary (Wheeler, 2003).  

The revolutionary insight from the results residues in the proof-of-concept it provides for using 

statistics and control charts systematically to increase understanding of lead time data. Instead of 

stipulating that “the lead times are longer over weekends” based on gut feeling or personal 

experience, the relation can be confirmed with data. This is a crucial aspect, since the results 

become objective. No one can argue with proven facts. Thus, this way of analysing manufacturing 

data could potentially save time, since tedious discussions based on peoples’ opinions can be 

avoided.   

The analysis in the thesis could have been extended further presuming access to additional data. 

When developing the data modifications, the intention was to make new rounds of analyses to 

examine each control chart and identify root-causes for exceptional variation.  

For data modification one, it would have been interesting to examine root-causes further. For the 

ideal state in data modification two, it would also have been highly interesting to investigate the 

conditions required for high performance (with respect to lead time). Instead of focusing on reasons 

for long lead times, the idea with data modification two was to reverse the problem and instead 

investigate preconditions for short and stable lead times. However, to identify prerequisites for 

short lead time, additional data would have been needed.  

For instance, the control chart for unmodified cylinder head machining data showed 5 points of 

exceptional variation in a row. One hypothesis could be that this was caused by production 

disturbances. However, without historical data about actual disturbances it becomes impossible to 

find evidence in the data to confirm the hypothesis. Thus, further analysis requires collection of 

additional data, such as executed shift and tact patterns, executed maintenance orders (preventive 

and emergency) and the current mix of variants in production. Experienced staff in the organization 

could also be utilized to suggest additional parameters of interest.  

Lead time is explicitly linked to factory loading (Ignizio, 2009). Collecting historical data about 

the utilized capacity for the period of investigation could be of interest to aid the assessment of 

lead time and loading dependencies.  

There are several functions in the organization, which rely on high-quality data for conducting 

different kind of analyses (Jonsson and Mattsson, 2009, Robertsson and Perera, 2001). Appropriate 

methods for systematic collection and processing of data could thus be of great value. When it 

comes to the lead time data, new insight on collection and processing could improve simulation 

analysis and optimization. 

5.3 Future recommendations  

As implied in the discussion, further analytical investigations could be done presuming access to 

additional data revealing the causes for outliers. The link between lead time and factory loading 

could also be of interest to study, as well as the correlation between lead time and maintenance. In 

a complex manufacturing system, there are many potential parameters of interest.  
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The analytical results from the thesis constitute a firm ground for further data analysis in the 

organization. The use of control charts could be seen as a demonstrator for how to systematically 

work with lead time data or other KPIs in the future. With the thesis work as a reference, similar 

extended studies could be conducted by the organization. In order to meet the lead time target, 

control charts could be constructed on regular basis to monitor lead times more continuously as a 

base for improvement discussions. Assuming root-causes for exceptional variation are found and 

eliminated to achieve a statistically stable factory, the analytical approach could be used for 

operational and strategic decisions on lead time related issues.  

The organization could also complement the control charts through the use of design of 

experiments (DoE). Presuming access to relevant data, DoE could support the process of evaluating 

correlations between lead time and other parameters, as well as synergy effects among those 

parameters (Pyzdek, 2014). In this way, DoE could help the organization to identify conditions that 

cause varying or long lead times.  

The development of IoT is creating smarter future factories with greater abilities to monitor and 

keep track of items using connected smart sensors (Farooq, et. al., 2015). The downside is the 

accumulation of big data, which is often too vast for organisations to process. By identifying 

influential parameters and creating more stable and predictable processes big data analytics 

becomes easier to master and more accurate predictions about future behaviour can be made.  

The organization is currently assessing the possibilities for delivering engines in a sequenced one-

piece flow, which means supplying engines in accordance with the production sequence in the car 

plants. For such a scenario, each engine in production would be dedicated to an existing customer 

order, which requires flexibility and short lead times. In order to enable such production, lead time 

analysis plays an important role. Accompanied with the use of big data analytics, IoT and automatic 

data collection and processing, production planning and execution could be supported to facilitate 

the mission towards “perfect customer sequence”.   

5.4 Sustainability 

With regards to the three pillars of sustainability: environment; economy and society, lead time 

reduction has the biggest impact on economy. By lowering lead time, tied up capital can be reduced 

resulting in saved cost for the organization. By altering the way procurement of raw material is 

conducted with regards to ordered quantity and frequency of deliveries the environment can be 

effected. If smaller more frequent deliveries are needed in order to lower the lead time in the raw 

material storage, then the environment would be negatively affected due to increased emissions of 

delivery trucks. If the situation is reversed however then the environment will benefit. Influence of 

reduced lead time on society is negligible.   

5.5 Research generalisation 

The lead time study could be extended in several ways to provide additional insight. Several 

delimitations to the lead time study were necessary due to the limited time frame of the thesis. The 

lead time study could be generalised by omitting some of these delimitations.  
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The lead time analysis was focused along one specific critical path through the factory, which was 

selected mainly for practical reasons. As there are several parallel flows in the manufacturing 

system, it would be desirable to understand where the longest accumulated lead time is. Since lead 

time had not been studied in this way before, the longest path through the factory was unknown 

beforehand. This meant that there was no guarantee that the selected path would be the truly critical 

one, since others could possibly limit the overall factory lead time.  

In the future, the organisation could extend the lead time study by analysing additional parallel 

flows. Especially, lead time needs to be studied for the three other components (cylinder block, 

camshaft and crankshaft) to understand which of the four components that currently limits the lead 

time. The research could also be generalised by including both petrol and diesel variants (only 

petrol was considered in this case).  

The lead times in raw material storages are likely affected by external factors, such as strategic 

purchasing decisions (e.g. safety stock levels), order quantities and delivery frequency from the 

suppliers. Therefore, the research could be complemented by investigations on supply-chain lead 

times. It is important to understand in what way logistic- and purchasing decisions affect the raw 

material storage and thus the overall factory lead time.  

The thesis was conducted in one of the organisations engine factories, but it would also be highly 

interesting to investigate other engine factories within the organisation. Without detailed 

understanding of the specific manufacturing system configurations in the other factories, it is 

impossible to say whether lead time can be studied in the same way. Assessing the possibilities to 

make similar lead time analyses could possibly be done through process mappings or by consulting 

internal experts in the organisation.  

Beside studies within the organisation, it could also be of high interest to generalise the research to 

other companies, both within and outside the automotive industry. There are some possibilities and 

limitations associated with such studies, but it is hard to assess the applicability without more in-

depth investigations. Assuming lead time for different factories and companies could be measured, 

it would provide a sound base for benchmarking. As of now, it is hard to assess whether the factory 

lead time is competitive or not.  

As previously stated management have set a target to decrease the overall factory lead time with 

70 %. However, lead times had never been analysed in this depth and way before. The findings 

indicated that the total lead time is substantially longer than the target, and it might be relevant to 

evaluate whether the target is realistically achievable in the near future perspective.   

In the thesis, it could be observed that even within the organisation the factory lead time was 

inconsistently defined, which lead to confusion. The same issue would probably arise when trying 

to generalise lead time studies to other factories, companies and industries. For instance, the degree 

of vertical integration could be different. Some companies might produce components in-house 

(like the engine factory studied in the thesis), while others would get all components from suppliers. 

In such cases, it would be hard to agree on generic definitions of factory lead time, which is required 

to enable lead time benchmarking.    
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5.6 Quality of research 

The quality of research studies can be assessed from three aspects; reliability, replicability and 

validity (Bryman and Bell, 2011). First, reliability is the ability to repeat the results of the study, 

while replication concerns the ability to replicate the research method. Even though reliability and 

replicability are closely associated, they should not be confused to mean the same thing. Finally, 

validity assesses whether the measures represent the concept they are supposed to denote.  

The authors believe that the lead time measurements are reliable, since statistical errors and 

fluctuations are accounted for through the use of statistical process control charts. When making 

additional extended studies in the raw material storage, the data tables could be cross-compared 

and the reliability of the thesis findings confirmed or dismissed.  

The research is also considered repeatable, since efforts have been made to increase research 

transparency. In the thesis, lead time data was mainly processed in Excel, while JMP statistical 

software was used for the analysis part. Step-lists were created to assure that the processing and 

analysis was done in the exact same way for all stages along the critical path. These step-lists were 

also attached to the report as Appendix E and Appendix F.  

One potential issue is that the replicability likely diminishes over time, since the manufacturing 

system is continuously changed. The issues and possible ways of collecting lead time data was 

closely associated with the structure of the IT systems. If the structure of the IT system changes, 

there are no guarantees that lead time can be collected in the same way in the future.   

The authors believe that lead time measurements are representative for what they are intended to 

measure, namely the complete time from intake of raw material to outbound shipment of final 

engine products.  
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6 Conclusions 

This chapter comprises the output to the three research questions introduced in the first chapter of 

the thesis. 

Research question 1: 

1. What is the current total lead time in the manufacturing system? 

a. How is the lead time distributed within the system? 

b. How does the lead time vary within the system? 

The research has shown that it was possible to derive the lead time for each storage, buffer and 

process in the manufacturing process resulting in the total average lead time of 255.4 hours. By 

splitting the analysis up into several stages (covering each storage, buffer and process) it was 

possible to analyse the distribution of lead time within the manufacturing system. It could be seen 

that 91% of the lead time was spent in storages and buffers.  

The research has also shown the variation of lead times within each stage (for new system data), 

especially depending on the weekday. Incidences were found where skewed lead times were 

presented due to work having been halted or run at a reduced tact on weekends. To countermeasure 

the issue two separate modifications were made to the data. The first excluded lead times over 12 

hours in order to omit items where work was halted over weekends. The second excluded lead 

times over 4 hours in order to get as close to the ideal state as possible. As an example, the lead 

time in cylinder head machining was reduced by 71 % between unmodified data and the latter data 

modification.  

Potentially, there are other parameters (such as the utilized factory capacity) contributing to 

variation, but unfortunately these relations could not be explored due to lack of additional data. 

The findings of the research open up the possibility to strategically analyse the entire factory from 

a lead time perspective. Thereby aiding in the decision making process when making changes and 

alterations to the processes to the means of lowering variation and creating more flexible and stable 

processes. 

Research question 2: 

2. How can lead time data be continuously extracted, processed and distributed efficiently 

within the organization? 

Through analysing the MES the research has identified where sufficient data is available and where 

more representative data is needed. Lead times are extracted by different means depending on the 

MES at hand, which can vary between new, old and none-existing ones. Data from new systems is 

best representative allowing for in depth statistical analysis and visualization through control 

charts. For old system data, due to issues with data formatting, samples of 50 items were taken 

giving an indicator of lead times for those stages. For raw material storage where no MES data was 

available, 83 samples were taken through observations over the period of three days. 

 



68 

 

Further research is needed in raw material storage to adequately measure lead times for that stage, 

e.g. with a study extended over a longer time period than is done in the thesis. In order to 

continuously extract lead time data two means are proposed. The first involves adding functions to 

existing systems (through programming or additional software) specified to lead time extraction to 

a data warehouse optimized for data mining and analysis. The latter involves utilizing statistical 

analysis software, e.g. JMP that connects directly to the organizations MES system. In order for 

these solution to by viable the formatting issues with old system data has to be solved first, however 

the competence of which is believed to exist within the organizations IT department. Once data has 

successfully been extracted the use of statistical software like JMP can be used to automatically 

analyse, visualize and send out lead time information via email to relevant employees and 

departments. The organisation is currently investigating requirements for a potential new IT 

system. The suggested methods could also be used as input for when specifying requirements for 

such a system.  

Research question 3: 

3. What areas hold the biggest potential for lead time improvement and at what trade-off?  

According to collected lead time data the biggest improvement potential is believed to exist in raw 

material storage. There, items are required to acclimatize for 24-48 hours before machining. 

However, they are on average stored for 184 hours which constitutes to 72% of the total lead time 

through the factory. Items are delivered to the factory several times a day and through better 

organization in procurement it might be possible to lower the lead time. The trade-off for lowering 

stocked material is however the danger of running out of material for the following process in the 

case of deliveries of raw material being late or cancelled.  

Further research is needed with additional data (safety stock levels, maintenance and breakdown 

data, and etc.) for all the stages of the critical path before conclusions can be drawn and drastic 

changes made to the means of lowering lead time. The connection and interaction between stages 

of the critical path have to be taken into account as changes in one stage will effect both preceding 

and following stages. Simulation can e.g. be utilized to run different scenarios where the amount 

of items in storages and buffers are changes in order to acquire the optimal level for each stage.  
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Appendix B: Lead time data extraction from various IT systems (Interview Summary) 

The following is a summary of an interview with a person who works with the Manufacturing 

Execution System at the IT department at the organization. The main purpose of the interview was 

to accumulate knowledge regarding extraction of lead time data from the various production IT 

systems used at the organization. 

Both the IT system and the IT department are organized into three hierarchical sub-groups; ERP, 

MES and shop floor control. Extracting lead time data based on production time stamps stored in 

the IT systems at MES level, has never been done before. Generally, data extraction is done by 

accessing all CAMP systems separately (e.g. cylinder head, base assembly and final assembly 

module 3, respectively), which is heavily time consuming. Data is extracted through “data 

inquiries” to the system, which are commanding system orders to extract user specified data. For a 

specific time period, each data inquiry takes approximately two hours to execute in each system. 

Since the production lines run on separate CAMP systems, it means one data inquiry must be made 

for each line.  

The data servers used in production are shared resources, with the densest data traffic during 

daytime when production is run on full speed. Therefore, data inquiries must be scheduled on 

weekends or nights to avoid overloading of the data servers. Otherwise, system overloads could 

possibly lead to shutdowns, which would also stop production scheduling and execution.   

With regards to the raw material storage, there is no traceability in the IT systems. Lead time data 

must be manually measured, since time stamps cannot be extracted. The intermediate buffer, the 

assortment buffer, the engine dispatch and shipment area all operate on old IT systems (not CAMP 

like many production lines). The possibilities of extracting lead time data from those older systems 

are unknown, but are to be investigated by the IT department. For the intermediate buffer, lead 

time may be derived by cross-comparing data from base- and final assembly.  

With regards to the new managerial direction on production development, with specified targets 

on lead time reduction, future ideas for continuous monitoring of lead time are of interest. Instead 

of running manually initiated data inquiries, it is possible to build and implement new software 

functionalities for automatic extraction of lead time data in the CAMP systems. Adding such 

functionalities to the CAMP systems could possibly be done in 2 weeks by external consultants. 

The software could automatically run lead time data inquiries each night, structure the data as an 

excel file and send it out to selected email addresses. The possibilities for customized data inquiries 

would be limited and the software “hardcoded” (not user-friendly). It is likely that users would 

soon ask for additional add-on functions, e.g. possibilities to customize the parts of the 

manufacturing system to be included. 

The CAMP systems are constructed for effective and rapid communication (via virtual device) 

with the equipment PLCs. Therefore, CAMP is poorly constructed with regards to data reporting, 

visualization and analysis purposes. It is possible to incorporate such functionalities, but it has to 

be built by consultants.  

CAMP are not only accessible for the IT department. There are tools available, so that external 

users can access data in CAMPs databases, but there is no interface available for lead time data 



76 

 

questions. At the moment, it is only possible to access information on certain production activities, 

or from certain operations in production.  

A tricky part is also that the database is so big that even if external users could easier access e.g. 

lead time data, the system would be severely slowed down by several users making data inquiries. 

It has already happened that production was stopped due to people looking at and inquiring data, 

which slowed down the system too much, causing IT system overload that shut down the entire 

system. 

  



77 

 

Appendix C: Raw material storage 1 (Interview Summary) 

The following is a summary of an interview with a person who works with inbound goods. The 

main purpose of the interview was to accumulate knowledge regarding the handling and 

registration of inbound goods. 

The interviewee manages a team of approximately 10 people responsible for unloading of inbound 

goods and outbound shipment of some specialized goods (not outbound deliveries of finalized 

engines). Roughly 60 truckloads of inbound goods are received each day and night. The goods 

reception process starts at the factory gate, where the truck driver submits goods documentation to 

the gate staff, which are part of the interviewee’s team. Information is manually entered into the 

logistics IT system based on the documentation received. The gate staff calls for a forklift driver 

to assist with unloading of the truck. The truck is released through the gate, material is unloaded 

and placed in storage. For the 4 Cs, material is only signed for at the gate. The forklift driver counts 

the number of unloaded pallets to confirm the order quantity. No barcode scanners are used.  

A note called “flagga” is attached on each pallet and includes information about the material on 

the pallet. From the note, the following information is included: delivery note number, article 

number, supplier code and date. Total number of pallets of the same variant on the truck should be 

included, but is sometimes missing. The pallet note is removed by production staff as the material 

is fed to the production lines. In order to trace pallets back to the truck and get the time through the 

factory gate, the barcode on the top-left side of the pallet note is needed.  

The raw material storage area is organized according to variants and date, and the principle of first-

in-first-out (FIFO) is applied. FIFO means that the oldest material should be first fed to the lines. 

The machining operators need to identify the pile that contains the desired article number, then 

look at the date to pick the oldest material. The acclimatizing rule (24-48 hours) was confirmed 

and followed relatively well for cylinder heads due to high storage turnover.  

The unloading of inbound goods team is only responsible for unloading trucks and moving the 

material into the raw material storage. Operators from production are responsible to feed material 

from raw material storage into the production lines. The trucks only carry one component (one of 

the four Cs), since each component comes from different suppliers. One truck may still contain 

several different variants of the same component.  
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Appendix D: Raw material storage 2 (Interview summary) 

The following is a summary of an interview with a person who works with production planning. 

The main purpose of the interview was to accumulate knowledge regarding the organization and 

handling of the raw material storage. 

A specific target temperature, which raw material has to have acquired before being released into 

machining, has not been established yet. However, work is currently being initiated where such 

targets will be measured and set for all machining processes. According to today’s instructions, 

during the winter, raw material needs to be stored for 24-48 hours in order to acclimatize due to 

cold transport. 48 hours for cylinder head and camshaft, and 24 hours for cylinder block and 

crankshafts. During the summer or if using heated transport (which are currently not used today) 

the 24-48 hour acclimatized period can be waived. However, the minimum acclimatizing time is 

24 hours for all blanks. The importance of having items acclimatized to room temperature has to 

do with measurement requirements (extremely low tolerances) as metal expands when heated and 

detracts when cooled. The 24-48 hour limit is not derived from scientific calculations, merely a set 

limit derived from experience and knowledge about the process.  

On occasion some aluminium items are released directly into machining, without having been 

acclimatized to room temperature. The reason for that is twofold. Firstly, aluminium is less affected 

by temperature with regard to expanding and detracting. Secondly, the process starts off with rough 

machining giving the item time to acclimatize, through the use of cutting fluid, before low tolerance 

machining commences at later stages in the process. Hence, under normal production conditions 

every item is acclimatized before being sent to machining. If there is a lack of material in storage 

the situation can arise where items are sent prematurely into machining without having been 

acclimatized for the full 24 hours.  This has not resulted in a higher defect rate of finished items. 

The purpose of the raw material storage is not solely to serve as an acclimatizing holding cell, but 

equally important as a safety buffer. Hence heated transport or utilizing air-blowers of baths to 

warm the items up doesn’t necessarily result in items spending less time in storage. 

Raw material for petrol cylinder-head/block and cam/crank-shaft arrives several times each day. 

The material planning system uses a parameter of 48-hour maximum storage time of each item, 

respectively, however the theoretical maximum storage capacity has not been calculated. If the 

situations are to arise where more than 48 hours of runtime material must be stored in the storage 

area the FIFO method is jeopardized due to the “right” material not being accessible. Otherwise 

material can be stored, for a short period of time, under a roof outside which is not optimal. The 

storage area is organized according to the arrival date and time of raw material (delivery note on 

each pallet). There is currently no IT-system that organizes what material is destined next for 

machining, according to FIFO. That responsibility falls on the production operator (forklift driver) 

feeding the machining process.  
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Appendix E: Step-list for data processing in Excel 

 

All data (unmodified) 

1. “Freeze top row” with column names. 

 

2. Hide all unnecessary columns. 

 Needed columns are the following:  

 For “Cylinder head” data: 

o  P:FIRSTSTATION (for diesel/petrol filtering purposes) 

o  Q: STARTTIME 

o U: LAST_OP0250 

o  Z: PARTNUMBER 

o  AA: SERIALNUMBER 

 For “Cylinder head final storage” data: 

o  P:FIRSTSTATION (for diesel/petrol filtering purposes) 

o  S: FIRST_FL 

o  V: LAST_FL 

o  Z: PARTNUMBER 

o  AA: SERIALNUMBER 

 For “Base assembly” data: 

o  Q: STARTTIME 

o  U: ENDTIME490A1 

o  X: PARTNUMBER 

o  Y: SERIALNUMBER 

 For “Final assembly” data 

o  B: PARTNUMBER 

o  C: SERIALNUMBER 

o  C: FIRST_03S220 

o  F: LAST_03S920 

 

3. Rename columns for easy navigation between documents. 

Rename: 

 Columns: STARTTIME / FIRST_FL / FIRST_03S220  

 START DATE/TIME 

o Format cells: Change to  custom: yyyy-mm-dd h:mm:s 

 Columns: LAST_OP0250 / LAST_FL / ENDTIME490A1 / LAST_03S920  

 END DATE/TIME 

o Format cells: Change to  custom: yyyy-mm-dd h:mm:s 

 Column: FIRSTSTATION (Only for cylinder head) 

 Diesel/Petrol (OP2010=diesel / OP0010=petrol) 
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4. Move “part number” & “serial number” to first two columns. (if necessary) 

 Click on “serial number” column and move cursor to the left over “part number” 

column, now covering both columns.  

o  Hold down shift button 

o  Move cursor to edge of covered columns (cursor changes to a hand logo), 

click the edge and drag to the first column.  

 

5. Remove diesel data (if necessary). 

 For “Cylinder head” and “Cylinder head final storage”: 

o  Add filter to column (diesel/petrol) 

o  Filter for only OP2010 (diesel) 

o Select all filtered OP2010 data 

Be careful to select all filtered data 

(Select top row, shift, command, and arrow down) 

o  Delete rows 

o Remove filter 

o Hide column (diesel/petrol)  

 

 For “Base assembly”: 

o  Add filter to column(PARTNUMBER) 

o  Filter for 3139565, 3139578, 3139579, 3139581, 3139633 

o Select all filtered part number data 

Be careful to select all filtered data 

(Select top row, shift, command, and arrow down) 

o Delete rows 

o  Remove filter 

 

 For “Final assembly”:  

o  No filtering needed (line petrol dedicated) 

 

6. Remove NULL values (if necessary).  

 Add filter to column(END DATE/TIME) 

 Filter for only NULL 

o  Select all filtered NULL DATA 

 Be careful to select all filtered NULLS 

 (Select top row, shift, command, and arrow down) 

o  Delete rows 

 Remove filter 
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7. Split up date and time from one column to two columns (for filtering purposes). 

 Insert two columns after column(START DATE/TIME)  

o  Name the first column: START DATE 

 Format cells: Change to  Custom yyyy-mm-dd 

o  Name the second column: START TIME 

 Format cells: Change to Time 13:30:55 

 

o  In column (START DATE) insert formula =INT(Column(START  

DATE/TIME)).  

o Drag down for all rows (by double clicking) 

o  In column(START TIME) insert formula = START DATE/TIME -

START DATE.  

o Drag down for all rows (by double clicking) 

o  Repeat same actions for column(END DATE/TIME) 

 

8. Calculate lead time. 

 Add three columns after column(END TIME) 

o  Name first column: LEAD TIME 

 Format cells: Change to  Time 37:30:55 

o  Name second column: LEAD TIME (n) (n for number) 

 Format cells: Change to  Number with three decimal places 

o  Name Third column: LEAD TIME (d) (d for decimal) 

 Format cells: Change to  Number with three decimal places 

o  In column(LEAD TIME) insert formula = END DATE/TIME - START 

DATE/TIME. 

o Drag down for all rows (by double clicking) 

o  In column(LEAD TIME (n)) insert formula = END DATE/TIME - 

START DATE/TIME 

o Drag down for all rows (by double clicking) 

o In column(LEAD TIME (d)) insert formula = Column(LEAD TIME (n)) * 

24 

o Drag down for all rows (by double clicking) 

 Hide column LEAD TIME (n) 

This results in lead time calculated in both hh:mm:ss and in hours with minutes 

and seconds in terms on decimal hours.   
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Data modification 1  All data < 12 hours 

1. Removing data where work is halted (weekends) 

 Add filter to column(LEAD TIME (d))  

o  Click on filter and filter greater than 12 

 Be careful to select all filtered data 

 (Select top row, shift, command, and arrow down) 

o  Delete rows 

 Remove filter 

 

Data modification 2  All data < 4 hours 

2. Removing data where work is halted  

(weekends and nightshifts)  

(Getting as close to the ideal state as possible) 

 Add filter to column(LEAD TIME (d))  

o  Click on filter and filter greater than 4 

 Be careful to select all filtered data 

 (Select top row, shift, command, and arrow down) 

o  Delete rows 

 Remove filter 
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Appendix F Step-list for graph building in JMP 

1. From the processed data in the Excel file, copy the following columns and insert from left to right 

in the empty data table: 

 W: Start date (confirm date format yyyy-mm-dd) 

 X: Start time 

 AB: End date 

 AC: End time 

 Q: Part number 

 AF: Lead time (decimal) 

 

2. Double click the “column label”, rename each column and change data type, modeling type and 

format when necessary. For each column, specify formats accordingly: 

 Start date = Numeric, Nominal, yyyy-mm-dd 

 Weekday start = default settings 

 Start time [h:m:s] = Numeric, Nominal, h:m:s 

 End date = Numeric, Nominal, yyyy-mm-dd 

 Weekday end = default settings 

 End time [h:m:s] =Numeric, Nominal, h:m:s 

 Part number = Character, Nominal (default) 

 Lead time [h.h] = Numeric, Continuous, Best 

 

3. Add columns, which display the weekday of start and end date respectively (to enable later sub-

grouping based on the day of the week to search for weekday patterns)   

 Double click the column label of weekday 

 For weekday start:  

 Right click the column label  Formula 

 Left box select “Start date” 

 Right box select “Date time”  “Day of week”  OK 

 Change “Value ordering” to make the days appear in logic order  

(by default Sunday =1, Monday =2 etc.).  

 Move Sunday to the end: 

 Stand in the data table  Right click the column label  Column info 

 Column properties  Value ordering  Select “1”  Move down (to 

bottom)  OK 

 Rename “1-7” to the actual day of week to make it more understandable straight from 

the data table. 

 Stand in the data table  Right click column label  Column info 

 Column properties  Value labels 

 In “value” enter “1”, in label type “Sunday” (repeat for rest) 

 For weekday end: Follow the same procedure as above, with one crucial difference: 
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 In the left box select “End date” (instead of Start date). 

 

4. Build histogram chart to assess the distribution of the data set  

 Of course possible to do in JMP, but it was harder to customize the plot to make it visual 

for the report. The histogram was therefore built in Excel.  

 

5. Build “Number of engines completed on each day” for the time period.  

Not needed for data modification 1 and 2 

 Graph builder  Drag “end date” to X-axis 

 Save as JMP report (only way to re-open the plot for later use or customization in JMP). 

Select embedded option.  

 Add axis labels, customize to make the plots coherent for the report.  

 If production is not run on weekends, “fill out” the plot with the days that are not 

represented in the graph (to visualize this in the plot) 

 Add the days at the bottom of the end date column (weekday auto generates). Leave 

remaining columns empty. Empty days are now added in the plot.  

 Save as  Switch to JPEG  Select “300” to save the picture with higher resolution than 

default settings (clearer picture in the report).  

 

6. Create a box plot to examine the distribution of data 

 Graph builder  Lead time on Y-axis 

 Customize axis labels, font etc.  

 Save as JMP report and JPEG picture 

 

7. Create “control chart – average and range on start date” 

 If “empty days” were added (as specified in the last point in step 5), these days needs to be 

removed before building the control chart (otherwise there will be gaps in the control 

chart). Erase the rows and save the new data table.  

 Analyse  Quality and Process  Control Chart Builder 

 Lead time on Y-axis (Does it reveal anything of interest?) 

 Start date (or test end date) on X-axis 

 Grouping on date clarifies the plot. However, the grouping may in some cases 

be misleading, so assess the consequences of grouping every time.  

 Save as JMP report and JPEG 300 picture 
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8. Create “control chart – individual and moving range over time”  

 Analyse  Quality and Process  Control chart builder 

 Lead time on Y-axis 

 Save as JMP report and JPEG 300 picture 

 

9. Create “control chart – individual and moving range phased on weekday” 

 Analyse  Quality and Process  Control chart builder 

 Lead time on Y-axis 

 Weekday on phase (drag to the top, not the X-axis).  

General guidelines for saving in JMP 

 Save as JMP reports (each plot is saved as an individual file) 

 Enables later re-opening of the files to continue the work, change or customize 

further.  

 Save as (file format .jrp) 

 

 Save as high resolution JPEG file (each plot as a picture to be used for documentation) 

 Save as (switch to JPEG, select “300”) 

 Helps to save the pictures with higher resolution compared to default settings in JMP.  

 An alternative approach for creating pictures is to use the ESP file format, which is 

vector-based to enable picture scaling without pixels.  

 Tutorial available on: https://www.youtube.com/watch?v=jbfXDiYPuO  

https://www.youtube.com/watch?v=jbfXDiYPuO

