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ABSTRACT

As the share of variable renewables — wind and solar PV — is expected to grow significantly in
coming decades, it has become increasingly important to account for their intermittency in large
scale energy models that are used to explore long term energy futures. In this paper we propose
and evaluate one method for doing so, namely, resource based slicing. In addition we implement
storage based on possible transitions between slices which allows us to explore new dynamics
between intermittent generation and electricity storage in large scale models. Our preliminary
results show that this approach manages to capture many aspects introduced by variable
renewables such as need for flexible generation capacity and curtailment at high penetration
levels. We show that adding electricity storage to the system will favour solar power but has

only a minor effect on wind and nuclear power.
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1. INTRODUCTION

If global warming is to be kept under 2°C with reasonable certainty, greenhouse gas (GHG)
emissions must drop by roughly half by mid-century compared to current levels and continue
to decline afterwards [1]. The power system is one of the main sources of emitted anthropogenic
GHGs accounting for about 30% of the total emissions [2], and therefore one of the main targets
for emission reductions. Many possibilities exist for supplying energy with low life cycle
emissions such as the use of biomass, wind, solar, hydro or nuclear power. There are, however,
many challenges related to significant expansion of those sources. Hydro and biomass resources
are limited and do not suffice to fulfil the growing global energy demand [3]. Nuclear power
brings along radioactive waste production, accidental radiation release risk, nuclear weapons
proliferation risk and public opposition to expansion [4-6]. These caveats have led many to the
conclusion that nuclear power does not have a place in the future energy system as exemplified
by recent decisions in Germany, Belgium and Switzerland to phase out nuclear power [7], and
thus its future is uncertain. Solar-and wind power have a vast physical resource potential but
only supply a small share of current global energy production due to high costs [3]. However,
recent years have seen large cost reductions for both wind and solar photovoltaic (PV)
technologies and also increased investments [8]. Therefore it is likely that these technologies

will play a major role in the future electricity system if the 2-degree target is to be met.

Yet large scale expansion of wind and solar power brings along another set of challenges. The
supply from wind and solar PV technologies is variable in both short and long term and not
reliably predictable. Thus large amounts of wind and solar power complicate systems operation
by changing the residual load shape, increasing the uncertainty of supply and increasing the
need for ramping reserves. Therefore, if significant amounts of this type of capacity is installed
in the system, there may be an oversupply of electricity at windy and sunny times which is
likely to result in low or even negative electricity prices. This in turn will diminish revenues for
variable renewables as electricity prices tend to be low when they are able to produce electricity,
and also for baseload due to decreased and more unpredictable running times. Thus the amount
of solar and wind generation in the system will have a large influence on all investment
decisions in the system and on the total cost of the system. This effect will become more acute

with increasing penetration of wind and solar.



Long-term energy models representing multiple sectors and regions are often used to investigate
the questions related to long term developments such as decarbonisation of the energy system.
These models typically make a cost-effective choice among large number of technologies and
optimise investment decisions over many time periods and over vast geographic area. This
makes these models computationally demanding and simplifications in temporal, geographic
and technical detail are necessary to maintain reasonable running-times. Typically time steps
of 5-10 years are modelled in such models [9]. However, supply from wind and solar varies on
much shorter time scales and is thus difficult to capture in this type of models.

Traditionally, models such as GET [10] often circumvent this problem by simply limiting the
amount of variable renewables to 25-30% of electricity production; a level that is widely viewed
as possible to integrate into current systems without significant additional costs. This approach
limits the role that variable renewables can play in scenarios designed to investigate possible
pathways to global climate mitigation, and therefore model results can be misleading. Different
approaches have been tried by various modelling groups to avoid this artificial restriction and
incorporate intermittency related effects into long-term energy models. For example, Sullivan
et al. use additional constraints to capture the capacity credit provided by different penetration
levels of intermittent renewables as well as technology dependent flexibility coefficients to
account for the increased need for back-up capacity and flexible generation as the penetration
of variable renewables increases [11]. Another approach is to interlink long-term capacity
expansion models with short-term dispatch models [12]. However, this method requires
considerable effort to set up both models and ensure the convergence of their results, as well as

extensive additional computational resources.

The infeed from wind and solar is not the only source of variability in the power system — the
demand for electricity is also fluctuating over time. To capture the variability of demand in
large energy system models, a time slice approach is often used. This involves implementing a
coarse load duration curve for electricity demand, in which hours with similar levels of demand
are grouped together (typically day/night, week-day/week-end, and seasons). Recently,
attempts have been made to extend this approach also to variable renewable sources. For
example, Ludig et al. investigate the effect of increased time resolution of demand based slicing
on capturing the variability of renewables and find that it helps to better capture the variability
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of demand and solar infeed, but does not adequately represent the variability of wind infeed
[13]. Nahmmacher et al. propose an approach for selecting representative days and summarise
other attempts in that direction [9]. They find 6 representative days with 3 hour resolution to be
sufficient to reflect the characteristic fluctuations in input data. Yet this approach results in 48
time slices that may make it inapplicable for large scale energy models due to high

computational requirements.

In this paper we propose another solution for representing variability of wind and solar PV in
large scale energy models based on resource based slicing.

2. METHOD

2.1. GET MODEL

We perform this analysis using the Global Energy Transition (GET) model first developed by
Azar and Lindgren [14] and further developed in Hedenus et al. [10]. GET is a cost minimizing
“bottom-up” systems engineering model of the global energy system set up as a linear
programming problem. The model was constructed to study carbon mitigation strategies over a
100-year period with an objective of meeting both a specified energy demand and a carbon
constraint while minimising the discounted total energy system cost for the period under study
(in general 2000-2100). In our analysis we build on the version 8.0 of GET, featuring improved

representation of the nuclear cycles. For more detail please see Lehtveer and Hedenus [15].

The model focuses on the supply side and has five end use sectors: electricity, transport,
feedstock, residential-commercial heat and industrial process heat. In each sector various
technologies are available to meet the demand. Technologies are described by the energy
carriers they can potentially convert, and are parameterised using e.g. investment and variable
costs, efficiencies, load factors and carbon emissions. Demand projections are based on the
MESSAGE B2 scenarios based on increasing global population, intermediate levels of
economic development and a stabilisation level of 480 ppm CO2-eq by 2100
[16].Transportation demand scenarios are based on Azar et al. [14] and assume faster efficiency
improvements in the transport sector than in the B2 scenario. The model has perfect foresight
and thus finds the least cost solution for the entire study period with a discount rate of 5%.

Consequently, scarce resources such as oil and biomass are allocated endogenously to the
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sectors in which they are used most cost-effectively. The resource base for non-variable sources

was updated for this model version based on [3] and [17].

In the model version developed in this paper, GET 9.0, the world is divided into 10 regions
including North America (NAM), Europe (EUR), Pacific OECD (PAO), centrally planned Asia
(CPA), the former Soviet Union (FSU), Latin America (LAM), Africa (AFR), the Middle East
(MEA), South Asia (SAS) and non-OECD Pacific Asia (PAS) following IIASA region
definitions with the exception of Europe where we have joined Eastern and Western Europe
into one region. The countries and territories belonging to each region are listed in Appendix
B. We construct the mitigation pathways for all regions meeting the 450 ppm CO; target
globally based on the idea of contraction and convergence [18] using a climate sensitivity of
3°C per doubling of CO». The developed regions and emerging economies roughly halve their
emissions compared to the baseline by 2050, whereas developing regions (AFR, MEA, SAS,
PAS) reduce emissions by 35% compared to the baseline. From 2060 we assume a global cap,

and emissions are allocated among regions in the most cost-effective way.

The diffusion of technologies is limited so that no technology can increase or decrease its
market share by more than 20% in 10 years in any specific sector such as electricity or
centralised heat production; nor can the installed capacity for a technology increase by more
than 30% per year. For developing technologies, investment costs decline linearly over the
2010-2050 period and reach mature levels as indicated in Table 1. More information about the
model framework can be found in [15].

Table 1. Investment costs of technologies in GET model. Sources: [19-21]



Technology Sti\r;[\;rg ;%Slt O;;e r I\ﬂz:/ure( ; 02551%6; r Load factor Efficiency
Coal PP 1800 1800 0.8 45%
Coal with CCS 3000 2500 0.8 35%
Gas turbine 800 800 0.8 55%
Gas with CCS 2000 1500 0.8 45%
Concentrated solar power (CSP) 12750 7000 0.7 N/A
Light water reactor (LWR) 7000 5000 0.8 33%
Fast breeder reactor (FBR) 8500 6000 0.8 41%
Wind 2100 1500 N/A N/A
Solar PV 3000 1000 N/A N/A
Storage 12h 1800 1200 N/A 80%
Storage 48h 2900 1900 N/A 80%
Storage 2w 6200 3900 N/A 80%
Storage 2m 11600 7200 N/A 80%

2.2. SLICING WIND AND SOLAR PRODUCTION

To analyse the availability of wind and solar resources we retrieve global temporally resolved
raw data for wind speeds and solar irradiation from the ECMWF ERA Interim dataset with the
geographic resolution of 0.5°x0.5° [22]. For wind power, the data is then converted to absolute
wind speeds 125 meter above ground and for the solar PV technology the average irradiation is
projected globally onto solar panels with a tilt equal the latitude of the respective location. All
data sets are filtered by population density to avoid the allocation of wind. power in highly
populated areas and to allocate solar PV preferentially to urban areas. Furthermore, only
locations within 500km of populated areas are considered suitable for both wind and solar

power development.

For each region we construct a production profile of wind and solar. To do so we allocate an
amount of energy from either source to a region based on the region’s electricity demand in
2100. The actual investment made is, however, determined by the optimisation model in a later
stage. The production profile is an aggregate of local load factors of chosen pixels and depends
on where wind or solar capacity is allocated. The allocation is based on average potential output
of the location as well as proximity to populated areas. In addition we assume that some

geographical spread of capacity is required due to grid limitations and political considerations.
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To account for this we set a maximum capacity density of 250 kW per km? for wind power and
divide each region into 3 to 10 clusters based on size of the region, and then allocate wind and
solar PV capacity in proportion to a combination of the population of each cluster and its
resource quality. A more detailed description of the process is presented in the Appendix A.

The resulting data is used to create 10 time slices based on solar and wind load factors in each
region. Nine time slices are created by combining low, medium and high solar categories with
low, medium and high wind categories. The tenth slice is intended to capture extremely low
wind situations; it is created by further dividing the low wind and low solar slice into two, based
on load factors for wind. Resulting load factors for slices are displayed in Table 2, and slice
lengths (i.e. the share of hours that fall into each slice) in Table 3."Although demand is not used
as an input for slicing, the daytime demand (i.e. slices with medium and high solar) is assumed
to be 15% higher than night-time demand based on ENTSO-E 2014 data for Europe [23]. This
difference is assumed to be the same for all regions. In the current version of the model, time
slices have only been implemented for electricity generation. The use of electricity in other

sectors such as heat or transport is limited to be proportional to the demand and the slice length.

Furthermore, an additional constraint is introduced to take into account start-up and ramping
limitations of thermal technologies and restrictions on the use of hydro reservoirs. To prevent
these technologies from ramping down to zero, they must always run at a minimum share of

their actual output in any other time slice. These shares are displayed in Table 4.

Table 2. Load factors for different time slices and regions obtained from the global wind and

solar data analysis.



Low solar, Medium Medium Medium High solar, Low solar,

Low solar, medium Low solar, solar, low solar, solar, high | High solar, medium High solar, | extremely

low wind wind high wind wind medium wind low wind wind high wind low wind
Wind AFR 0.19 0.27 0.38 0.18 0.27 0.38 0.18 0.26 0.36 0.11
Wind CPA 0.12 0.23 0.39 0.10 0.23 0.39 0.11 0.23 0.38 0.07
Wind EUR 0.13 0.24 0.44 0.13 0.24 0.44 0.12 0.23 0.42 0.08
Wind FSU 0.21 0.32 0.48 0.20 0.32 0.48 0.18 0.31 0.47 0.11
Wind LAM 0.22 0.32 0.44 0.20 0.32 0.45 0.20 0.32 0.45 0.13
Wind MEA 0.21 0.30 0.41 0.17 0.29 0.40 0.19 0.29 0.38 0.13
Wind NAM 0.21 0.34 0.49 0.20 0.33 0.49 0.19 0.33 0.48 0.12
Wind PAO 0.21 0.31 0.42 0.20 0.30 0.41 0.20 0.30 0.41 0.12
Wind PAS 0.12 0.19 0.35 0.11 0.19 0.35 0.11 0.18 0.34 0.06
Wind SAS 0.08 0.17 0.47 0.07 0.18 0.46 0.07 0.18 0.45 0.04
Solar AFR 0.01 0.01 0.01 0.26 0.26 0.26 0.64 0.64 0.64 0.01
Solar CPA 0.01 0.01 0.01 0.26 0.26 0.26 0.57 0.57 0.57 0.01
Solar EUR 0.00 0.00 0.00 0.14 0.14 0.14 0.49 0.49 0.49 0.00
Solar FSU 0.01 0.01 0.01 0.16 0.16 0.16 0.41 0.41 0.41 0.01
Solar LAM 0.01 0.01 0.01 0.26 0.26 0.26 0.62 0.62 0.62 0.01
Solar MEA 0.02 0.02 0.02 0.27 0.27 0.27 0.62 0.62 0.62 0.02
Solar NAM 0.00 0.00 0.00 0.16 0.16 0.16 0.53 0.53 0.53 0.00
Solar PAO 0.00 0.00 0.00 0.11 0.11 0.11 0.56 0.56 0.56 0.00
Solar PAS 0.01 0.01 0.01 0.28 0.28 0.28 0.61 0.61 0.61 0.01
Solar SAS 0.00 0.00 0.00 0.25 0.25 0.25 0.63 0.63 0.63 0.00

Table 3. Length of time slices obtained from the global wind and solar data analysis.

Medium

Low solar, Medium solar, Medium High solar, Low solar,

Low solar, medium Low solar, solar, low medium solar, high High solar, medium High solar, extremely

low wind wind high wind wind wind wind low wind wind high wind low wind
AFR 0.131 0.233 0.174 0.109 0.105 0.054 0.107 0.063 0.023 0.001
CPA 0.138 0.289 0.170 0.081 0.101 0.058 0.047 0.067 0.037 0.011
EUR 0.110 0.266 0.183 0.064 0.131 0.098 0.051 0.077 0.017 0.003
FSU 0.128 0.239 0.145 0.068 0.130 0.080 0.104 0.071 0.032 0.002
LAM 0.143 0.231 0.170 0.117 0.093 0.050 0.096 0.065 0.033 0.002
MEA 0.088 0.297 0.196 0.106 0.073 0.015 0.109 0.097 0.016 0.002
NAM 0.162 0.212 0.130 0.130 0.106 0.059 0.112 0.051 0.017 0.021
PAO 0.120 0.205 0.174 0.117 0.090 0.044 0.117 0.089 0.041 0.002
PAS 0.154 0.298 0.140 0.082 0.108 0.054 0.053 0.076 0.030 0.005
SAS 0.158 0.312 0.135 0.093 0.063 0.040 0.106 0.054 0.030 0.009

Table 4. Share of maximum output that must be run during the whole time period if technology

is used.
Aggregate part-load

Biomass PP 0.35
QOil PP 0.1
Gas PP 0.1
Coal PP 0.35
LWR 0.7
FBF 0.7
MOX 0.7
Hydro PP 0.1




2.3. MODELLING ELECTRICITY STORAGE

As high penetration of variable renewables increases the variability of electricity prices due to
the oversupply at windy and sunny times and shortage of supply options at less windy and sunny
times, storing electricity and releasing it during the time of high demand or low variable infeed
is likely to become an attractive feature of the energy system. Unfortunately most of the time
information is lost in the slicing approach we explore, which complicates the modelling of
electricity storage. However, some information relevant for operation of storage can be regained
by analysing the original wind and solar data at high time resolution. Every storage technology
has a characteristic storage time, sometimes called the energy-to-power ratio. For every hour of
wind and solar resource data, we look ahead a number of hours corresponding to the
characteristic storage time and note the time slice each hour was allocated to. This results in the
number of hours per year that an electricity transfer between each time slice is possible. This
method is similar to the transition matrix approach proposed by Wogrin et al. [24]. Table 5
shows the number of hours that transfer between different slices in possible in North America
(NAM) region. For example, low solar and medium wind slice will follow high solar and
medium wind slice within a 12 hour time period 111 hours per year. Currently only one year of

data is used to estimate the possible transfer times.

In our model we study four different lengths of storage: 12 hours, 48 hours, 2 weeks and 2
months. The costs for 12 and 48 hour storage are based on the cost data for pumped hydro
storage obtained from Zakeri and Syri [20]. For longer storage times our costs are not based on

real data and serve here only to test the modelling approach.

Table 5. Transfer matrix for 12 hours storage in North America (NAM) in number of hours the

transfer between slices is possible per year.



. Medium . .
Low solar, Medium Medium ) High solar, . Low solar,
To Low solar, . Low solar, solar, . High solar, R High solar,
. medium N . solar, low ] solar, high R medium h . extremely
From low wind . high wind . medium ! low wind ] high wind .
wind wind ) wind wind low wind
wind
Low solar,
R 771 137 2 288 8 0 199 8 0 7
low wind
Low solar,
. ) 56 1012 114 125 293 15 143 96 2 0
medium wind
Low solar, 0 55 657 0 % 209 2 65 55 0
high wind
Medium
solar, low 275 143 2 436 29 0 203 12 0 39
wind
Medium
solar, 12 280 77 41 366 14 49 89 2 0
medium wind
Medium
solar, high 0 16 191 1 20 234 0 18 39 0
wind
High solar,
. 227 92 2 223 23 0 359 2 0 58
low wind
High solar, 14 111 45 5 95 1 12 152 0 0
medium wind
Hl.gh so'lar, 0 8 49 0 2 35 0 4 53 0
high wind
Low solar,
extremely 61 2 0 21 0 0 20 0 0 80
low wind

2.4. SENSITIVITY ANALYSIS

To analyse the robustness of obtained results we perform a sensitivity analysis of the costs of
some key technologies: solar PV, wind power, nuclear power and electricity storage. For wind,
solar PV and nuclear we specified four cost levels reflecting possible mature costs reached by
2050. The cost for wind power also includes investment in extra grid capacity, estimated based
on Holttinen et al [25]. For electricity storage technologies three cost levels were specified and
additionally a case with no storage available. The costs are summarised in Table 6. The costs
of both nuclear technologies and the four storage technologies are varied together since it is
assumed that the same cost reduction mechanisms will affect all variants of these technologies.
The model was then solved for all possible combinations of solar PV, wind, nuclear and

electricity storage costs, resulting in 256 model runs.

Table 6. Mature costs of technologies in sensitivity analysis.
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f}c;sst(;:)nl 0) Level | Level Il | Level lll
Wind 2100 1800 1500
Solar PV 1500 1200 850
LWR 6250 5000 3750
FBR 7500 6000 4500
Storage 12h No storage 1200 900
Storage 48h No storage 1900 1350
Storage 2w No storage 3900 2500
Storage 2m No storage 7200 4500
3. RESULTS

3.1. BASIC RESULTS

For comparison with the 10-slice model described above, we also run a version of the model
with only a single time slice, using average wind and solar PV capacity factors. Although the
standard version of the GET model limits electricity generation from intermittent sources to a
maximum of 25% of total electricity supply, this constraint was deactivated for the single-slice
runs performed here. For each- model version we run both a scenario without carbon constraints
(“baseline™) and also a scenario with 450ppm CO2 concentration target. For the basic runs in
this section, no other electricity storage than hydrogen is available. We present here only results
for the electricity system, but we reiterate that our model encompasses all sectors of the energy

system.

Figure 1 compares global electricity generation in the single slice model with the nine-slice
model. The difference between the two models is relatively small in the baseline scenario,
which is mostly based on thermal electricity production. The main difference can be seen in the
last two decades of the century in which solar is used instead of wind in the ten-slice version.
At the same time the use of gas is reduced in the single slice model whereas its share stays
significant in the 10 slice version. This reflects the correlation between higher daytime demand
and solar electricity production as well as the use of gas for peak power. Using wind or thermal
generation for the higher demand would result in idle capacity for a large part of the year and
thus expensive. However, this effect is saturated relatively quickly and thus wind power that
can also produce during the night becomes more cost-effective. In the single slice version of

the model this dynamic is lost and wind is chosen due to a lower production cost.
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NB! This is a working paper as published in Mariliis Lehtveer’s doctoral thesis “Modelling the
Role of Nuclear Power and Variable Renewables in Climate Change Mitigation”. For further
information on or citing of this work please contact the authors.

However differences become much more significant when carbon emissions are constrained,
thus increasing the competitiveness of low carbon electricity sources such as wind and solar
power (figure 2). In the single slice version, wind power dominates the system and reaches 86%
of the electricity supply by 2100, being outcompeted only by hydro power. There is a minor
contribution from sol/r PV of” bout 1% of electricity supply by 2100. Thus, the total share of
variable electricity productlonMY% by year 2100. In our sliced version, the electricity mix is
much more heterogeneous; 47% of produeeckelectrlcny in 2100 comes from wind power and
14% from solar PV, i.e. a total variable productlon share of about 61%. Additionally,

significantly more gas power is used in the sllced model/run
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Figure 1. Global electricity production - baseline scenario with one slice (left) and ten slices
(right).
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Figure 2. Global electricity production — 450 ppm CO> scenario one slice (left) and ten slices

(right).
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Figures 3 and 4 show the electricity production mix in Europe and Africa over different time
slices in 2050 and 2100. Note the interplay between the varying resource availability in different
slices and the constraints on thermal and hydro generation, and how the least-cost production
system involves some “over-investment” in capacity of variable renewables and occasionally
curtailing excess generation. If wind power is available at sufficiently low cost, it may be cost
effective to accept some curtailment during the windiest conditions in order to have more
capacity when wind is less abundant. In 2050 when wind penetration is relatively low, wind is
not curtailed and flexible capacity (gas and hydro) is used instead to meet the demand. In 2100,
emission budgets are more stringent and less fossil fuels can be used. Since Carbon Capture
and Storage (CCS) is not entirely carbon free in our model — only 95% of the emissions are
captured — its use is limited at the end of the century. The main competition therefore will be
between nuclear, wind and solar technologies as they do not emit any CO3 in our model. With
our default cost assumptions, the result is a large share of wind power along with some
curtailment, moderated by some use of electricity storage using hydrogen (no other storage is
available here). It is also interesting to note that in 2050, coal power with CCS is chosen by the
model in Europe, whereas in Africa coal power without CCS is used simultaneously. This is
caused by our climate scenario set up that allocates a larger emission budget to developing

countries. However, a global cap is assumed starting in 2060.

Curtailment Curtailment

solar

Figure 3. Electricity production mix in different slices for Europe in 2050 (left) and 2100 (right)
with the 450 ppm CO> scenario. The width of the slice represents the share of hours that fall

into this category. No storage technologies other than hydrogen are enabled in these runs.
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Figure 4. Electricity production mix in different slices for Africa in 2050 (left) and 2100 (right)
with the 450 ppm CO- scenario. The width of the slice represents the share of hours that fall
into this category. No storage technologies other than hydrogen are enabled in these runs.

Finally we note that the regions end up with very different shares of low emitting electricity
sources in their supply (see Figure 5). This is caused by the difference in resource quality among
the regions and is reflected in our regional load factors (c.f. table 2). Thus Southern Asia (SAS
and PAS) with low quality wind resources is dominated by nuclear supply whereas regions
well-endowed with wind such as EUR and NAM feature mainly renewables based systems.

100%
Solar
Wind
FBR
% — — — — — — — — — — — LIWR

0% |

g% — — — — — — — —

% — — — — — — —  ——  ——  ——  —  Hydrogen

50 - — - . . = m Hydro
Bioenergy CCS
0% —mm— — —— — —a— —E—. — &
H Bioenergy
Gas CCS
Gas

m Coal and Oil CCS

30%

20%

10%

0% M Coal and Qil
0
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Figure 5. Regional electricity production mixes in 2100 in 450 ppm CO: scenario.
3.2. THE EFFECT OF STORAGE

Enabling the storage option in the model allows for electricity transfers between slices but this
option is not always used due to high cost and also due to limited transfer possibilities between
14



slices (as described in section 2.3 above). For storage to be cost-effective it needs to be cycled
relatively often, resulting in relatively high capacity factor. In Europe, long windy periods are
often followed by rather long low wind periods. Therefore, the transfer possibilities from high
wind slices to low infeed slices are limited. They are also costly because they require longer

storage times, and therefore storage is not employed even at 2100 as shown on figure 6.

In Africa, solar is used to a higher extent because there is a large potential to regularly transfer
energy from day to night, which makes short-term storage economically attractive. Therefore
enabling electricity storage results in a significant reduction of curtailment measured as lost
potential electricity generation (from 3.1 EJ/yr to 0.4 EJ/yr or from 7% to 1% of regions
electricity production). The production from solar PV increases by 3.4 EJ or 60% and the

production from wind and nuclear power is reduced by 1.7EJ/yr and 1 EJ/yr accordingly.

Globally the effect of storage is small on the modelled cost level. The use of gas is decreased
by 3% and wind and nuclear technologies by 1.3% each by availability of storage. Solar power
sees the biggest change with 9.5% increase. Only 24 and 48 hour storage technologies are

employed at this cost level. For the long term electricity storage hydrogen is used.
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o High sofar,
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Figure 6. Electricity production mix in different slices for Europe (left) and Africa (right) in
2100 with electricity storage enabled and with the 450 ppm CO; scenario. The width of the slice
represents the share of hours that fall into this category.

3.3. SENSITIVITY ANALYSIS
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To investigate the robustness of our basic results we varied the cost of nuclear, wind and solar
PV technologies as well as storage as described in section 2.4 and solved our model for 256

different combinations of these costs. Results for 2070 are shown in Figure 7.

Without storage availability solar PV never exceeds 32% of the global electricity supply in our
model and averages 9% over all runs. The penetration of wind and nuclear power is more cost
sensitive and ranges from 0-51% for wind and 2-69% for nuclear power, with averages of 16%
and 38% respectively. Enabling storage options has a very limited effect on wind and nuclear
power but increases the potential penetration of solar PV significantly. With the least expensive
storage costs, solar PV can reach up to 52% of total electricity production. However, the average
penetration of solar PV remains at 13% regardless of the availability and costs of storage. In
contrast, the average penetration of nuclear power is reduced by inexpensive storage by 3
percentage units. Average wind penetration is not affected. Additionally, inexpensive storage
enables larger electrification of other sectors and increases the supply of electricity by 1% on
average but by 4% in most extreme cases. In most run-the result is a mix of solar, wind and
nuclear technologies in electricity supply, only in the case of high costs for others and low cost
for one the cheaper technology dominates. However, without the storage solar PV will never
dominate the global supply. The tendency to a portfolio of technologies rather than a dominance

of a single one is a result of varying regional resource quality.
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Figure 7. Share of different sources in electricity production in 2070. Black bars represent the

range, blue boxes middle 50% of the results and red lines the median results.
4. DISCUSSION

Our results show that resource based slicing can capture characteristic aspects of variability,
such as the trade-off between curtailment during high availability and supplying significant
amount of electricity during lower availability, the interplay with flexible and inflexible thermal
plants, and the benefits of different lengths of electricity storage.

Yet, many assumptions and simplifications have been made in the current application of the
method. First, the input data for slicing variable renewables is based on only one year of global
data. However, wind and solar patterns vary somewhat from year to year and are also expected
to change due to global warming. For this reason the load factors we derive from our solar and
wind data, and hence our results, would change somewhat if more data were available.
Similarly, for our analysis of storage technologies, the hours during which transfer between
different slices is possible is also likely to vary slightly from year to year. Further analysis of
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the robustness of data used in this study and its effect on results is needed. We emphasise that

the results presented in this paper serve only to illustrate the method.

In addition, our current approach does not divide wind and solar resources into different classes.
A single average load factor is given to all investments in any given region (although the load
factor varies between regions and time slices). Thus, for an investment at a very good site, there
is also implicitly an investment in a not so good site. In reality some locations in any region
have a better resource quality than others, with corresponding higher load factors. Investment
in only such locations can occur even if their potential is relatively small compared to the energy
demand of the region. This is not captured in our current modelling. However, it would be
relatively straightforward to combine our resource-based slices with varying classes of wind

and solar resources.

We do not explicitly model the grid extensions needed for large scale renewable penetration.
Yet when the production profiles are constructed we implicitly assume significant amounts of
new transmission capacity are needed-at a uniform grid cost per KW of wind power installed in
all regions. In reality this cost is likely to vary depending on the penetration of variable
renewables, pre-existing infrastructure and grid design.

Similarly to any other slicing method, modelling a limited number of slices results in a large
degree of averaging. Each slice shown in this analysis includes hours with quite different wind
and solar infeed. Also demand fluctuations are not accounted for in our analysis. However, if
data is available demand could be included in slice creation as done by Wogrin etal. [24]. This
however is likely to result in a larger number of slices and would increase the computational

requirements.

In our model we impose a ramping constraint that thermal technologies and hydro power if
employed must run at least a certain share of their maximum output in any other slice. This
constraint is also likely to affect the results from our model and thus further work testing

robustness of chosen values is required.

Although the method presented in this paper is relatively simple and can relatively easily be
implemented in large scale energy models, it fails to adequately represent all the aspects related

to large scale penetration of variable renewables. Wogrin et al. test the method of grouping
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similar systems states and using a transition matrix to describe interactions between states
similar to our approach, and find that although this method gives more accurate results than
time based slicing in technology deployment and electricity price, it still tends to underestimate
peak prices and overestimate off-peak prices of electricity [24]. This should be kept in mind

while using this method to answer electricity price related research questions.

Another question is how to model electricity trade in this set up. In our model version there is
no electricity trade between model regions and therefore each region can be sliced
independently. However, if our method is to be applied to more detailed models in which
interregional electricity trade plays a role, two different approaches can be applied. First, it is
possible to slice the whole modelled area at the same time. Due to regional differences in wind
and solar production at any given time this approach would result in larger averaging of wind
and solar load factors. Another possible approach is to use transition matrices similar to the
ones used here to model storage but to count for simultaneous high supply/low supply hours

where electricity trade is economically attractive.

In addition, losing time information makes it more difficult to take into account load changes
from heat and transport sectors. Again, some of that information could be regained by using the
transition matrix approach. Alternatively, these sectors could also be sliced based on availability

of variable renewables.

5. CONCLUSIONS

As the share of variable renewables — wind and solar PV — is expected to grow significantly in
coming decades, it has become increasingly important to account for their intermittency in large
scale energy models that are used to explore long term energy futures. In this paper we propose
and evaluate one method for doing so, namely, resource based slicing. By analysing global wind
speed and solar insolation data we derive load factors for different wind and solar situations in
10 world regions, and use this data as input to the Global Energy Transition (GET) model. Since
even a small number of resource based time slices are sufficient to capture the variability of

solar and wind power, this enables us to remove traditional constraints on intermittent electricity
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generation from the model. In addition we implement storage based on possible transitions
between slices which allows us to explore new dynamics between intermittent generation and

electricity storage in large scale models.

Our preliminary results show that this approach manages to capture many aspects introduced
by variable renewables such as need for flexible generation capacity and curtailment at high
penetration levels. We also find optimal electricity production mixes to vary significantly
between regions due to different endowments of solar and wind resources. We show that adding
electricity storage to the system will favour solar power but has only a minor effect on wind
and nuclear power. However, our approach is aimed at large integrated assessment type models,
and the simplistic implementation is unable to capture all intermittency related issues. As

always, the suitability of the method depends on the research guestion one wants to answer.
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APPENDIX A - ANALYSIS OF GLOBAL SOLAR AND WIND DATA

To construct a reasonable approximation of a potential future distribution of wind and solar
power a multi-step process is implemented. The overarching target is the allocation of wind and
solar plants at sites featuring good primary resources, while at the same time avoiding an overly
optimistic concentration at the regional hot spots. The rationale behind this approach consists
in the technical and political limitations to a globally optimal allocation, e.g. given by electric

grid constraints or the separate clean energy targets in independent countries.
Data origin and conversion

Solar and wind data for the year 2014 with-a resolution of 6 hours is retrieved from the ERA
Interim data set of the European Centre for Medium-Range Weather Forecasts with a
geographic resolution of 0.5°x0.5° covering the whole surface of the planet. This yields a grid
of 720 pixels in longitude and 361 pixels in latitude with varying surface area. The calculated
output from solar plants is based on the SSRD parameter with-3 hour resolution, which is
converted to direct normal irradiation and projected globally onto hypothetical photovoltaic
solar panels facing south/north on the northern/southern hemisphere at a tilt angle equal the
latitude of the respective geographic location. The calculation of the onshore wind power is
based upon the data with 6 hour resolution of the U and VV components of the wind speeds for
the ERA model level 57 out of 60, corresponding to an altitude of roughly 125 meters above
ground. The absolute wind speed values are converted to wind turbine power output using the

profile of a “future low-land wind farm” [2].
Data filtering

The calculation of the temporally and geographically resolved data in units of kWh/yr/m?
(photovoltaics) and m/s (wind power) is followed by two filtering steps to make the final

allocation more realistic:

1 The filtering of the pixels according to population density serves to exclude highly
populated locations (in the case of onshore wind power) and too remote locations, and
to give urban regions a preferential treatment in the allocation of photovoltaic capacity.
Based on the CIESIN “Population Density Grid Future Estimates, v3” dataset for the
year 2015 with a 0.5° resolution [3] the pixels with “low population density” (<10/km?)
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and “high population density” (>500/km?) where identified. Furthermore, all pixels
within 500 km of a pixel with population density of >10/km”2 are deemed suitable for

the construction of wind and solar farms.

2 All coordinates with yearly average wind speed <5m/s are excluded from the subsequent

processing.

The following table gives an overview of the filtering applied to each technology

Population density [1/km”2] [PV \Wind onshore

<10 \Within 500 km \Within 500 km, if speed >5m/s
10< and <500 Yes Yes, if speed >5m/s

>500 Preferred No

Clustering

In each region the pixels deemed suitable for the accommodation of wind/solar capacity are
grouped into individual sub-regions (clusters). The allocation of certain amounts of capacity to
each of the sub-regions serves as an approximate representation of the limited real-world grid-

connectivity within the region.

A standard k-means algorithm is employed to cluster the pixels in such a way to minimise the
sum of squares of the pixels' coordinates within each of these sub-regions. The choice for this
particular approach is motivated by the k-means algorithm's tendency to produce similarly sized
clusters. The number of clusters and the initial mean values of the corresponding pixels'

positions are defined manually to ensure the reproducibility of the result.
Allocation

The allocation to the individual clusters is based on the weighted fractions of the clusters' total
population (30%) and total solar and wind resource availability (70%). This emphasis on the
resource availability serves to avoid the unrealistic excessive allocation in highly populated

clusters with poor resource endowment.
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Finally, the cluster capacity is assigned to the comprising pixels: For each cluster the pixels are
ranked according to their yearly energy production, for wind and solar power separately. The
best sites are then chosen successively until the cumulative output equals the cluster's allocated
energy production. For wind power, a base capacity of 250 kW/km? is assumed. The ratio of
PV panel area to land area was chosen to be 2.5%, in order to obtain a reasonable spread. The
radiation-to-AC efficiency of PV is assumed to be 15%. In the case of photovoltaics, capacity
is preferentially allocated to (urban) pixels with high population density to take into account
the possibility of integrating this technology into the built environment.

Generation of representative hourly capacity factor curves for each region

Once the pixels for the allocations have been chosen, the technology-specific cumulative hourly
capacity factors can be calculated from the temporally resolved- input data. For each region this
is done by summing the hourly generated energy on all sites and normalising it accordingly to
obtain the hourly capacity factor.

[1]European Centre for Medium-Range Weather Forecasts, ERA Interim dataset,
http://apps.ecmwf.int/datasets/data/interim-full-daily/

[2]] R. McLean, “Equivalent Wind Power Curves”, D2.4 deliverable, www.trade-wind.eu, 2007.

[3] Center for International Earth Science Information Network - CIESIN - Columbia University,
and Centro Internacional de Agricultura Tropical - CIAT. 2005. Gridded Population of the World,
Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA
Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927 /H4ST7MRB.
Accessed 11 May 2015.

[4] "5-minute Gridded Global Relief Data (ETOPOS5)," U.S. Department of Commerce, National
Oceanic and Atmospheric Administration.
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NGDC/.ETOPO5/datasetdatafiles.html.
Accessed 11 May 2015
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NB! This is a working paper as published in Mariliis Lehtveer’s doctoral thesis “Modelling the
Role of Nuclear Power and Variable Renewables in Climate Change Mitigation”. For further
information on or citing of this work please contact the authors.

APPENDIX B — DEFINITION OF REGIONS

Sub-Saharan Africa (AFR): Angola, Benin, Botswana, British Indian Ocean Territory,
Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros,
Cote d'lvoire, Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana,
Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania,
Mauritius, Mozambiq/ue4 Namibia, Niger, Nigeria, Reunion, Rwanda, Sao Tome and Principe,
Senegal, Seychelles, Sierra Leone, S’émalia, South Africa, Saint Helena, Swaziland, Tanzania,

Togo, Uganda, Zaire, Zambia, Zimbabwe

Centrally planned Asia and China (CPA):'/Caimbodia, China (incl. Hong Kong), Korea
(DPR), Laos (PDR), Mongolia, Viet Nam 4

Europe (EUR): Albania, Andorra, Austria, Azores, BvélgiurT{,/Bosnia and Herzegovina,
Bulgaria, Canary Islands, Channel Islands, Croatia, Czech Republic;'C&/prus, Denmark, Faeroe
Islands, Estonia, Finland, France, The former Yugoslav Rep. of Ma{éedo’nia, Germany,
Gibraltar, Greece, Greenland, Hungary, Iceland, Ireland, Isle of Man, Italy, Latyia, ,,LiEhuania,
Liechtenstein, Luxembourg, Madeira, Malta, Monaco, Netherlands, Norway, Poland, Portugal,

Romania, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, United Kingdom, Turkey.

Former Soviet Union (FSU): Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan,
Kyrgyzstan, Republic of Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine,
Uzbekistan (the Baltic republics are in the Central and Eastern Europe region)

Latin America and the Caribbean (LAC): Antigua and Barbuda, Argentina, Bahamas,
Barbados, Belize, Bermuda, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica,
Dominican Republic, Ecuador, El Salvador, French Guyana, Grenada, Guadeloupe, Guatemala,
Guyana, Haiti, Honduras, Jamaica, Martinique, Mexico, Netherlands Antilles, Nicaragua,
Panama, Paraguay, Peru, Saint Kitts and Nevis, Santa Lucia, Saint Vincent and the Grenadines,

Suriname, Trinidad and Tobago, Uruguay, Venezuela)

Middle East and North Africa (MEA): Algeria, Bahrain, Egypt (Arab Republic), Irag, Iran
(Islamic Republic), Israel, Jordan, Kuwait, Lebanon, Libya/SPLAJ, Morocco, Oman, Qatar,
Saudi Arabia, Sudan, Syria (Arab Republic), Tunisia, United Arab Emirates, Yemen

North America (NAM): Canada, Guam, Puerto Rico, United States of America, Virgin Islands
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Pacific OECD (PAO): Australia, Japan, New Zealand

Other Pacific Asia (PAS): American Samoa, Brunei Darussalam, Fiji, French Polynesia,
Gilbert-Kiribati, Indonesia, Malaysia, Myanmar, New Caledonia, Papua, New Guinea,
Philippines, Republic/Of/I(o a, Singapore, Solomon Islands, Taiwan (China), Thailand, Tonga,

Vanuatu, Western Samoa ‘ f \
Wy
South Asia (SAS): Afghanistan éaﬁ/lagesh Bhutan, India, Maldives, Nepal, Pakistan, Sri
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