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On Control of Permanent-Magnet Synchronous Motors in Hybrid-Electric Vehicle

Applications

OSKAR WALLMARK

Department of Electric Power Engineering

Chalmers University of Technology

Abstract

This thesis deals with design and analysis of the control system structure for elec-

tric drives equipped with permanent-magnet synchronous motors with a salient ro-

tor. The intended application is propulsion in electric- and hybrid-electric vehicles.

Particulary, sensorless control, meaning vector control without a mechanical rotor

position sensor, is considered.

A speed and position estimator of phase-locked loop type, previously reported

in the literature, is analyzed with respect to the salient rotor and impact of parameter

errors. Modifications are proposed to allow for operation in the whole speed range

and the estimator’s capacity to handle large speed estimation errors is improved. As

a result of the analysis, simple parameter selection rules are derived, reducing the

amount of trial-and-error work required in the design and tuning of the drive.

A transient model taking harmonics into account is reviewed and its impact on

current harmonics, when utilizing synchronous-frame PI current controllers, is in-

vestigated, both through simulations and experiments. Field-weakening operation is

also considered. The closed-loop dynamics of a field-weakening controller, previ-

ously reported in the literature, is analyzed and verified experimentally, considering

salient permanent-magnet synchronous motors.

The theory considering loss minimization, by means of control, is reviewed and

some analytical results are presented which can function as a useful tool when de-

signing the control system of any electrical drive consisting of a permanent-magnet

synchronous motor and corresponding inverter.

Index Terms: Electric drive, electric vehicle, harmonics, hybrid-electric vehicle,

permanent-magnet synchronous motor, phase-locked loop, position estimation,

sensorless control, signal injection, speed estimation, vector control.
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Chapter 1

Introduction

In this chapter, the concept of electric propulsion is briefly reviewed. The focus is put

on the electrical drive system, consisting of an electric machine and corresponding

power electronics. The outline of the thesis, as well as scientific contributions, are

also presented.

1.1 Why Hybrid Electric Vehicles?

The electric vehicle (EV) concept was invented in 1834 and has thus been around

for almost 200 years. However, the EV had almost vanished from the market by

1930. This was mainly because of insufficient range, due to limited battery capac-

ity, as compared to vehicles equipped with internal combustion engines (ICEs); a

technology that was evolving rapidly at that time [11]. A more mature generation

of EVs was born in 1996 when General Motors Corporation leased their EV, named

EV-1, to customers in selected states of the U.S.A. Unfortunately, once again, the

attempt to introduce EVs to normal customers failed due to limited range [36].

As the demand for more environmental-friendly cars continues to grow, origi-

nating from both individual customers, as well as driven by governmental means,

the failure of EVs has set the stage for the hybrid electric vehicle (HEV). In an HEV,

the ICE is combined with electric propulsion. This provides several possible advan-

tages, at the cost of increased complexity. The main advantages are increased range

(as compared to EVs), the potential to operate the ICE at optimal (maximization

of fuel economy, minimized emissions or a compromise between both) operating

points and the use of regenerative braking. During regenerative braking, the energy

used to slow or halt the vehicle is converted into electricity, which can charge the

built-in battery, rather than wasting it as heat.
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Chapter 1. Introduction

1.2 HEV Configurations

Combining an ICE with electrical propulsion can be done in numerous ways. How-

ever, the different types of HEV configurations can be classified into two basic

kinds: series and parallel configurations, or a combination of both. The configura-

tion that is optimal is indeed a complicated matter and is currently an active field of

research [13, 35]. Below, only the basic fundamentals of each configuration will be

described. The mild hybrid concept consists of an ICE assisted by a starter/generator

fed by a 42-V electrical system [36]. The starter/generator cannot move the vehicle

by itself, but it can assist propulsion and recover energy through regenerative brak-

ing. Although basically the same technology is used in the electrical system (only

at lower power levels), the mild hybrid concept is not considered in this thesis.

1.2.1 Series Configuration

In the series configuration, as shown in Fig. 1.1, there is no mechanical connection

between the ICE and the transmission. The power delivered by the ICE is converted

to electrical power by the generator. This power can be used for propulsion or for

charging the battery. Advantages of this type of configuration include the potential

to choose the operating point of the ICE freely (even turn it off in zero-emission

zones), and the flexibility of locating the ICE and generator set. The main disadvan-

tages are the increased number of energy conversions (as compared to the parallel

configuration described below) and that all devices need to be sized for the max-

imum sustained power if the HEV is designed to climb a long grade, potentially

making the configuration more expensive than the parallel configuration.

Fig. 1.1 Series configuration. The arrows indicate possible directions of energy flow. For a
list of abbreviations, see Appendix E.
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1.3. Electric Machines in HEV Applications

1.2.2 Parallel Configuration

In the parallel configuration, the propulsion power may be supplied by the ICE

alone, by the electric machine alone or both. In comparison to the series configura-

tion, the electric machine and ICE can be of a smaller scale (provided that the bat-

tery is not depleted). Even for long-range operation, only the ICE needs to be rated

for peak power while the rating of the electric machine can be significantly lower.

Another advantage is the removal of the generator which simplifies the configura-

tion. Variants including an additional generator (also known as the series-parallel

configuration), indicated by the dashed box in Fig. 1.2, also exist.

Fig. 1.2 Parallel configuration. The arrows indicate possible directions of energy flow.

1.3 Electric Machines in HEV Applications

In order to achieve a high efficiency of the whole drive, each part has to be designed

with respect to all other components so that total losses really are minimized. A

key component in any HEV configuration is the electric machine(s). Naturally, an

additional limitation in this optimization procedure is cost, which makes the design

stage of the electric machine even more complicated. Today, induction machines

(IMs) and permanent-magnet machines are the most common types [11], although

switched reluctance (due to their low cost and potential to operate in wide constant-

power ranges [31, 72]) and reluctance synchronous machines have also been shown

to be suitable candidates for EV and HEV applications [52].

1.3.1 Permanent-Magnet Machines

Permanent-magnet machines are, due to their high efficiency, power density and

torque-to-inertia ratio, a common choice (perhaps the most common) in HEV con-

3



Chapter 1. Introduction

cepts. In an HEV application, the electric machine must operate at varying loads and

speeds. This requires a careful selection of motor parameters by the machine de-

signer, in order to minimize losses [23]. Permanent-magnet machines are, depend-

ing on the supply voltage waveform, divided into brushless dc machines with trape-

zoidal voltage waveforms and permanent-magnet synchronous machines (PMSMs)

with sinusoidal waveforms. Both types are found in HEVs, such as the Honda In-

sight, in which a brushless dc machine is used [21] or the Toyota Prius, which

utilizes a PMSM [82]. There are numerous references that present PMSM designs

developed for EV and HEV applications; some examples are [15, 30, 56]. In many

of these designs, and in agreement with the literature review in [28], the rotors pos-

sess saliency, i.e., the difference between the d- and q-axis inductances is significant,

which allows for the utilization of the reluctance torque [23, 30].

1.4 Control of PMSMs in HEV Applications

At the Department of Electric Power Engineering at Chalmers University of Tech-

nology, Sweden, a PMSM and a voltage source inverter (VSI) have previously been

developed for a series HEV [28, 45]. The PMSM is designed for a continuous out-

put power of 50 kW and the nominal speed is 6000 rpm. A digital signal processor

(DSP) is used for control of the VSI. See Appendix B for further details on the

experimental setup.

A modern DSP is inexpensive and its computational capacity allows for com-

plicated control algorithms to be executed at each sample step. Therefore, once the

PMSM and VSI are developed, there are few reasons not to control the setup in an

“optimal” manner. Through control, several factors can be affected. The PMSM and

VSI are typically developed for maximum efficiency, although a limit set by cost

may add additional constraints. However, an inaccurate control algorithm can re-

duce the efficiency significantly. The current controller plays a significant role since

it governs the electro-mechanical torque on the shaft of the PMSM. Expressing the

stator current in the rotor-fixed dq-coordinate system (see Chapter 2), the number

of possible combinations of the d- and q-direction current components that pro-

duce the same electro-mechanical torque is infinite. The current references should

preferably be chosen so that the combined losses of both the PMSM and the VSI are

minimized. The requirement on fast dynamic response is of minor significance since

the vehicle dynamics are much slower than the electrical dynamics. However, the

desired electro-mechanical torque should be reached as quickly as possible, at any

4



1.5. Outline of Thesis

speed, to guarantee that performance will not deteriorate. As will be seen in Chapter

4, achieving sensorless control (see below) with high accuracy also requires fast and

accurate current control at all possible operating points.

As the magnetization from the stator must be synchronized with the rotor mag-

net, knowledge of the rotor position is needed for correct operation. Therefore, a

rotor position sensor, typically a digital position encoder or a resolver,1 is often

mounted on the shaft of the PMSM. Naturally, the additional hardware this requires

adds complexity to the system. Although the cost of the sensor and the correspond-

ing hardware can be reduced, operation without a rotor position sensor, i.e., sensor-

less control, is attractive since there will be no additional cost for the sensor. Due

to the large quantities that a popular vehicle is produced in, removing even a low

cost can be attractive and allows the manufacturer to save a significant amount of

money.

1.5 Outline of Thesis

This thesis considers “optimal” operation of salient PMSMs by means of control.

The term “optimal” means both operation with minimized losses, of both the PMSM

and the VSI, and also operation without a rotor position sensor, since this reduces

the cost of the drive. As the goal is to develop control algorithms that can be used

on any setup of PMSM and VSI, the algorithms must be analyzed with respect

to different setups of motor parameters and parameter variations, rather than just

demonstrating the performance of the algorithm on a single, well tuned, experimen-

tal setup.

Chapter 2 therefore focuses on modeling (for control purposes) and design of

controllers of salient PMSMs. Focus is on the impact of harmonics that arise if the

magnet fields from the rotor and stator winding are not perfectly sinusoidal. Chapter

3 discusses operation with minimized losses, by means of control. The main part

of the thesis consists of Chapter 4, which considers sensorless control of salient

PMSMs with an emphasis on EV/HEV applications. It is the author’s desire that the

thesis also functions as a “cookbook,” to be utilized when implementing a vector

controlled PMSM (with or without rotor position sensor) in a vehicle application.

1The Toyota Prius Mark II uses the “Singlsyn” resolver manufactured by Tamagawa Seiki com-
pany [55].

5



Chapter 1. Introduction

1.5.1 Contributions

The main scientific contributions in this thesis, presented in Chapter 4, are in the

field of sensorless control of salient PMSMs, where the speed and position esti-

mator presented in [26] is analyzed further, considering the impact of saliency and

operation in the whole speed region. A technique is also proposed to improve the

estimator’s capability to handle large speed estimation errors. Following the anal-

ysis and modifications, simple parameter selection rules are derived, reducing the

amount of trial-and-error work required in the design and tuning of the drive.

The case study concerning loss minimization, by means of control, is mainly

based on previously presented theory, of which some are referenced in Chapter 3.

However, some observations and results are given, which are believed not to be well

known.

An analysis of the field-weakening controller presented in [27] (which originates

from [41]) is presented in Chapter 2. The analysis is similar to the results presented

in [27] (which deals with induction motors) but salient PMSMs are considered. The

impact of harmonics (due to harmonics in inductances and magnet flux linkage) on

the current controller presented in [25] is also highlighted.

1.5.2 Publications

In chronological order, with references where the papers appear in the thesis, the

publications originating from this project are:

1. O. Wallmark. “Modelling of permanent magnet synchronous machines with

non-sinusoidal flux linkage,” in Proc. IEEE Nordic Workshop Power and Ind.

Electron., 2002.

This paper, mainly of tutorial nature, discusses aspects of modeling, for con-

trol purposes, of PMSMs with a non-sinusoidal magnet flux linkage. The re-

sults are extended in Chapter 2 of this thesis.

2. O. Wallmark, L. Harnefors, and O. Carlson. “An improved speed and posi-

tion estimator for salient permanent-magnet synchronous motors,” submitted

to IEEE Trans. Ind. Electron.

The main results of this thesis are presented in this paper, which presents

a method to improve the capability to handle large estimation errors of the

speed and position estimator presented in [26]. A simple modification of the

original algorithm is made so that operation in the whole speed region is pos-

sible. The results are also presented in Chapter 4 of this thesis.

6



1.5. Outline of Thesis

3. O. Wallmark, L. Harnefors, and O. Carlson. “Sensorless control of PMSM

drives for hybrid electric vehicles,” accepted to IEEE PESC’04.

In this paper, the impact of saliency of the estimator presented in [26] is con-

sidered further. The results are also found in Chapter 4 of this thesis.

4. O. Wallmark, O. Carlson, and L. Harnefors. “Loss minimization of a PMSM

drive for a hybrid electric vehicle,” submitted to EPE PEMC’04.

This paper presents a case study of operation with minimized losses, by means

of control of a PMSM and corresponding power electronics, developed for an

HEV application. The results are also found in Chapter 3 of this thesis.
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Chapter 2

Modeling of Permanent-Magnet

Synchronous Motors

In this chapter, different aspects of modeling of PMSMs for control purposes are

described; see Appendix E for a list of glossary terms. The intention is to demon-

strate significant properties that affect the control characteristics of torque con-

trolled PMSMs. The current and field-weakening controllers implemented in the

experiments are also discussed together with various implementation issues.

2.1 A PMSM Model Taking Harmonics into Account

In order to present a detailed model of a PMSM, several properties of geometry

(lack of symmetry), materials (non-linear material parameters) and operating en-

vironment have to be taken into account. Because of this, finite element methods

often have to be utilized. However, for control purposes, much simpler models can

be relied on due to the use of feedback in the closed-loop control. The controller

suppresses the impact of several phenomena and only a few, key properties of the

PMSM have to be taken into account when designing the controller. In this section,

modeling of PMSMs for control purposes will be discussed.

The fact that three-phase symmetrical sinusoidal quantities are transformed into

two dc components through the well known Park transformation, has made mod-

eling of PMSMs in the rotor-fixed dq-reference frame used almost exclusively for

control purposes. Capturing the most important phenomena, the current and me-

chanical dynamics can be described as a simple third-order, bilinear system, in

which currents and voltages are constant under steady-state conditions. Additional

properties, such as harmonics and core losses, can easily be incorporated into the

9



Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

model.

2.1.1 The Park Transformation

For symmetrical conditions, the Park transformation transforms three-phase com-

ponents, fa, fb, and fc, which can be either currents, voltages or fluxes, into two-

variable quantities, fd and fq [42]. For motor control purposes, the transformation

angle, θ, is typically the angle between fa and the d-axis, as shown in Fig. 2.1. For

PMSMs, it is common to align the d-axis with the magnetic north pole of the rotor

magnet (or, for sensorless control, an estimation thereof). In case of multipole ma-

chines, the electrical rotor angle is used. Collecting the phase and dq-quantities into

Fig. 2.1 Three-phase quantities and the dq-coordinate system. The transformation angle,
θ, is the angle between fa and the d-axis. The angle ϑ (see below) is fixed to the
d-axis.

vectors, the Park transformation is given by [fd fq f0]
T = Tdq,ph[fa fb fc]

T , where

Tdq,ph is known as the Park-transformation matrix and f0 is the zero-sequence com-

ponent, defined as

f0 = fa + fb + fc. (2.1)

Thus, f0 is nonzero only under non-symmetrical conditions, which typically arise

under fault conditions. These types of conditions are not covered in this work, so f0

will be assumed to be zero throughout the thesis.

The Park-transformation matrix is defined as

Tdq,ph = K




cos θ cos (θ − 2π/3) cos (θ + 2π/3)

− sin θ − sin (θ − 2π/3) − sin (θ + 2π/3)

1/2 1/2 1/2


 (2.2)

where the scaling constant K is chosen K = 2/3, which yields an amplitude-

invariant transformation. This implies that for any constant set of fd and fq (and

10



2.1. A PMSM Model Taking Harmonics into Account

f0 = 0), fa, fb, and fc are symmetrical sinusoids which amplitudes are given by√
f 2
d+f 2

q . Choosing the scaling constant differently, power-invariant or rms-invariant

scalings are also possible to define. However, amplitude-invariant scaling is perhaps

the most common choice for control of PMSMs. It is the opinion of the author that

the main advantage of using amplitude-invariant Park transformation is that during

experiments, if the d-current is set to zero (which is a common choice when con-

trolling PMSMs), the q-current is directly obtained by simply measuring the peak

value (using a current sensor connected to an oscilloscope for example) of any of

the phase currents.

2.1.2 Stator Flux Linkage

Depending on the specific rotor structure, the radial flux-density distribution pro-

duced by the rotor magnets, will be more or less ideal, i.e., of sinusoidal shape. Fig.

2.2 shows a schematic design of a four-pole rotor of inset magnet type, where the

d-axis is aligned to a north pole rotor magnet. For a rotor structure of this type, the

radial flux density can be approximated as in Fig. 2.3 (the rotor magnet angle ϑ,

which is fixed to the d-axis, is also shown in Fig. 2.4. It can be expanded into a

Fourier series as

Br(ϑ) =
∞∑

i=1

B2i−1 cos [(2i− 1)ϑ] (2.3)

where Bi = 4B̂
πi

sin(iτm/2), B̂ = Br(0) and τm is the magnet pitch, expressed in

electrical radians.1

Fig. 2.2 Schematic design of a four pole rotor of inset magnet type.

Fig. 2.4 shows a simple type of three-phase stator winding. As the impact of har-

monics will be investigated, this type of winding is suitable for modeling purposes

1For the machine used in the experiments, τm = 0.65π.

11



Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

Fig. 2.3 Approximate radial flux-density distribution in the air gap for a rotor of inset mag-
net type.

instead of a sinusoidally distributed winding, or variants thereof. With this type of

stator winding, and the assumption that the flux density distribution is radial only,

the expression for the magnet flux linkage in phase a can be expressed as

ψm,a(θ) =

−(θ−π
2
)∫

−(θ+ π
2
)

Br(ϑ)rslsdϑ (2.4)

where rs is the inner radius of the stator and ls is the stator length [29]. Evaluating

the integral using (2.3) yields

ψm,a(θ) = 2rsls

∞∑

i=1

(−1)i+1B2i−1

2i− 1
cos ((2i− 1)θ) . (2.5)

Eq. (2.5) shows that the flux linkage from the rotor magnets in the stator winding

Fig. 2.4 Simplified model of the stator winding.

can be expressed as a sum of odd cosines where the amplitude of each harmonic

decreases rapidly. This expression was derived assuming the flux-density distribu-

tion to have only the radial component given by (2.3) and using the simplified stator

winding shown in Fig. 2.4. Depending on the specific stator winding and magnet

configuration, this filtering property can be altered by the machine designer [29].

Thus,

ψm,a(θ) = ψ1 cos θ + ψ3 cos 3θ + ψ5 cos 5θ + · · · (2.6)

12



2.1. A PMSM Model Taking Harmonics into Account

where the amplitude of the fundamental and each harmonic depends on the specific

design of the rotor magnet configuration and stator winding.

From Figs. 2.1–2.4, it can be seen that the flux linkage in each phase from the

rotor magnets can be expressed in vector form as



ψm,a(θ)

ψm,b(θ)

ψm,c(θ)


 =




ψm,a(θ)

ψm,a(θ − 2π/3)

ψm,a(θ + 2π/3)


 = ψm,ph. (2.7)

Remark: For completeness, it is useful to calculate the flux linkage assuming an

ideal sinusoidally distributed winding. In this case, the number of conductors can be

expressed as a function of the angle %, see Fig. 2.4, as N(%)= (Ns/2) sin %, where

Ns is the number of (series) turns in the phase. The contribution of flux linkage of

the winding at the angle % is then given by [29]

dψm,a = N(%)d%

%−θ∫

−(%+θ)

Br(ϑ)rslsdϑ. (2.8)

Note that this integral can be expressed as the sum of integrals containing the flux

linkage of the fundamental and each harmonic of Br(ϑ). The total flux linkage is

then found as

ψm,a(θ) =

π∫

0

dψm,a =
πrslsNsB1

2
cos θ. (2.9)

As shown, no contribution from the harmonics in Br(ϑ) are found in ψm,a(θ).

Hence, for an ideal sinusoidal stator winding, the flux linkage from the rotor in

the stator winding will only contain the fundamental [29].

Fig. 2.5 shows a measurement of the open-circuit voltage va at ωr ≈ 0.1 pu

for the PMSM used in the experiments. As shown, the open-circuit voltage is not

perfectly sinusoidal and contains low-order harmonics (the influence of the stator

slotting can also be clearly seen). Naturally, these harmonics will affect the current,

causing it to be of a less sinusoidal shape (see Section 2.2).

2.1.3 Inductance Expressions

Typically, the magnetic permeability of the rotor magnet material is approximately

the same as air [29]. Hence, the parts of the stator that are aligned to a rotor magnet

“see” a wider air gap, that yields a rotor angle dependence of the stator phase self

13
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Fig. 2.5 Measured open-circuit voltage va/ωr at ωr ≈ 0.1 pu.

inductances. Fig. 2.6 shows the inductance measured using an inductance meter in

phase a of the PMSM used in the experiments. As can be seen, the inductance is at a

minimum when the rotor is aligned in the direction of the stator flux in phase a. The

continuous line is a least-squares approximation that takes the second and fourth

harmonics into account. Thus, the angular dependency of the self inductances can,

at least under non-saturated conditions, be approximated as [47]

Ls,a(θ) ≈ Ls,0 + Ls,2 cos 2θ + Ls,4 cos 4θ (2.10a)

Ls,b(θ) = Ls,a(θ − 2π/3) (2.10b)

Ls,c(θ) = Ls,a(θ + 2π/3). (2.10c)

Similary, the mutual inductances between the phases are [47]

Lm,ab(θ) = Lm,ba(θ) ≈ Lm,0 + Lm,2 cos(2θ − 2π/3) + Lm,4 cos(4θ + 2π/3)

(2.10d)

Lm,ac(θ) = Lm,ca(θ) ≈ Lm,0 + Lm,2 cos(2θ + 2π/3) + Lm,4 cos(4θ − 2π/3)

(2.10e)

Lm,bc(θ) = Lm,cb(θ) ≈ Lm,0 + Lm,2 cos 2θ + Lm,4 cos 4θ (2.10f)

where the expressions for the mutual inductances have also been truncated to con-

tain harmonics only up to the fourth order. These inductance expressions can be

14
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Fig. 2.6 Inductance Ls,a(θ). Circles (◦) indicate measured values.

collected into a symmetric inductance matrix, Lph, as

Lph =



Ls,a(θ) Lm,ab(θ) Lm,ac(θ)

Lm,ba(θ) Ls,b(θ) Lm,bc(θ)

Lm,ca(θ) Lm,cb(θ) Ls,c(θ)


 . (2.11)

2.1.4 Current Dynamics

Using (2.7) and (2.11), the voltage equation in each phase can be expressed in ma-

trix form, which yields

vph =
d

dt
(Lphiph + ψm,ph) +Rsiph (2.12)

where Rs is the phase resistance in each phase. Eq. (2.12) describes the open-loop

current dynamics in each phase. However, for control purposes, this equation is

far from ideal since the steady-state currents are of sinusoidal shape unless ωr =

dθ/dt = 0 rad/s. Current control utilizing PI controllers are common in electric

drives. As they are inherently incapable of giving a zero steady-state control error

for a sinusoidal reference, the Park transformation is applied to (2.12), which results

in

vdq = Tdq,ph
d

dt

(
LphT

−1
dq,phidq + ψm,ph

)
+Rsidq. (2.13)
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Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

Assuming that no zero-sequence component exists, the d- and q-components of

(2.13) can, in matrix form, be reexpressed as2

vdq = Ldq
didq
dt

+ Zdqidq + ωrψm,dq (2.14)

where Ldq, Zdq, and ψm,dq are given by

Ldq =

[
Ld + L6

5
cos 6θ −L6

5
sin 6θ

−L6

5
sin 6θ Lq − L6

5
cos 6θ

]
(2.15a)

Zdq =

[
Rs − ωrL6 sin 6θ −ωrLq − ωrL6 cos 6θ

ωrLd − ωrL6 cos 6θ Rs + ωrL6 sin 6θ

]
(2.15b)

ψm,dq =

[ ∑∞
i=1 ψd,6i sin(6iθ)

ψm +
∑∞

i=1 ψq,6i cos(6iθ)

]
. (2.15c)

Here, the notation

Ld = Ls,0 + Ls,2/2− Lm,0 + Lm,2 (2.16a)

Lq = Ls,0 − Ls,2/2− Lm,0 − Lm,2 (2.16b)

L6 = 5

(
Ls,4
2

+ Lm,4

)
(2.16c)

ψm = ψ1 (2.16d)

is introduced and the flux-linkage harmonics, expressed in the dq-reference frame,

are, using (2.6), given by

ψd,6i = −(6i− 1)ψ6i−1 − (6i + 1)ψ6i+1, i = 1, 2, . . . (2.16e)

ψq,6i = −(6i− 1)ψ6i−1 + (6i+ 1)ψ6i+1, i = 1, 2, . . . (2.16f)

If all harmonics (flux linkage and inductance) are neglected, (2.14) can be simplified

significantly and the d- and q-components can be found as

vd = Rsid + Ld
did
dt
− ωrLqiq (2.17)

vq = Rsiq + Lq
diq
dt

+ ωrLdid + ωrψm (2.18)

which is the standard model (for control purposes) of the current dynamics for a

salient PMSM. Eqs. (2.17) and (2.18) are very attractive for control purposes since

2Since zero-sequence components are not considered in the present thesis, they are, in most cases,
removed from the notation of current and voltage vectors. For example, the vector idq typically only
contains two components, idq = [id iq ]

T .
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2.1. A PMSM Model Taking Harmonics into Account

no angular-dependent sinusoids are present. The harmonics can be considered as

disturbances, causing additional ripple in the controlled d- and q-currents.

Using (2.14) and (2.15), it is apparent that the flux-linkage harmonics will pro-

duce voltage harmonics that increase with speed and will not be dependent on the

magnitude of the current. The inductance harmonics, on the other hand, will cause

voltage harmonics which magnitudes will increase with increased current. For ex-

ample, it can be expected that in a current-controlled PMSM with irefd =0, harmon-

ics will still arise in id, depending on the magnitude of iq, due the coupling term

−ωrL6 cos 6θ in the first row and second column of Zdq.

The flux-linkage harmonics, expressed in dq-coordinates, can be identified by

simply measuring the phase-to-neutral voltages3 while rotating the motor at a con-

stant speed and then performing a dq-transformation in order to obtain vd and vq.

The flux-linkage harmonics, ψd,6i and ψq,6i, are then obtained by identifying the

harmonics of vd/ωr and vq/ωr, respectively. For a full sensorless drive, no rotor

position sensor is mounted and, in such a case, (2.16e) and (2.16f) can be used to

obtain the flux-linkage harmonics expressed in dq-coordinates.

Since the flux linkage due to the permanent magnets is dependent on the oper-

ating temperature [29], measuring the flux-linkage harmonics in this way will only

yield approximate values. However, this is sufficient in order to determine their im-

pact on torque and current ripple. Typically, only the first two or three harmonics

(6, 12, and 18 in dq-coordinates) are of interest.

2.1.5 Mechanical Dynamics

Assuming a stiff shaft, the mechanical dynamics are governed by the simple relation

J
dωm
dt

= Te − TL − Tfric (2.19)

where J is the moment of inertia as seen from the rotor side, ωm the mechanical ro-

tor speed, Te the electro-mechanical torque, TL the load torque and Tfric the friction

torque arising in bearings, gearbox, etc.

In a vehicle application where the PMSM is used for propulsion, the inertia

can be considered very large, efficiently damping any torque ripples that may be

produced by the PMSM, although the ripple will still add to the mechanical wear in

the transmission. However, in order to complete the derivation of the PMSM model

3If the neutral point is not available, the two line-to-line voltages va− vb and vc− va can be
measured and the phase-to-neutral voltage is then obtained using (va− vb)− (vc− va) = va− vb−
vc + va = 3va.
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Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

and gain further understanding, it can still be useful to calculate an expression for

the electro-mechanical torque, taking both flux linkage- and inductance harmonics

into account.

In three-phase quantities and assuming linear magnetic conditions, the magnetic

coenergy, W , is given by [42]

W =
1

2
i
T
phLphiph + i

T
phψm,ph. (2.20)

Hence, the torque expression is given by [29, 42]

Te(θ) =
∂W

∂θm
= np

∂W

∂θ
= np

(
1

2
i
T
ph

∂Lph

∂θ
iph + i

T
ph

∂ψm,ph

∂θ

)
. (2.21)

Transforming (2.21) into the dq-coordinate system yields

Te(θ) = np

(
1

2

(
T
−1
dq,phidq

)T ∂Lph

∂θ
T
−1
dq,phidq +

(
T
−1
dq,phidq

)T ∂ψm,ph

∂θ

)
. (2.22)

Introducing ∆L=Lq−Ld and truncating (2.22) to containing inductance harmon-

ics up to the sixth order and flux-linkage harmonics up to order 12, (2.22) can be

expressed as

Te(θ) =
3np
2

[
ψmiq −∆Lidiq −

2

5
L6

(
(i2q − i2d) sin 6θ + 2idiq cos 6θ

)

+ id (ψd,6 sin 6θ + ψd,12 sin 12θ) + iq (ψq,6 cos 6θ + ψq,12 cos 12θ)] . (2.23)

The first term on the right-hand side of (2.23) is the main torque-producing com-

ponent. The second term is known as the reluctance torque and is nonzero only if

the machine possesses saliency (∆L 6= 0). Thus, for a salient machine, this torque

can be utilized to obtain a larger torque for a given q-current. The other terms arise

due to the harmonics in inductance and flux linkage and are dependent on the rotor

position, θ. Thus, they will produce torque ripple even at constant d- and q-currents.

Eq. (2.23) demonstrates that removing torque ripple through control action is

challenging for two reasons. First, some kind of estimation algorithm is needed to

estimate the amplitude of the harmonics (in the general case, both in inductance and

flux linkage) correctly since they will vary with shifting operation conditions (tem-

perature and current variations). Second, an accurate current controller is needed in

order to follow the desired current references that will be far from constant. This is

especially challenging at high speeds.

Novelty of the PMSM model presented here, (2.22) and (2.14), is not claimed;

it has been used in several applications where the object is torque-ripple minimiza-

tion. Examples are [12, 16, 69, 79] where only [16] takes into account the effect
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2.1. A PMSM Model Taking Harmonics into Account

of inductance harmonics. In this thesis, the model will be used for predicting the

current ripple that may arise if standard PI controllers are used for current control.

The harmonics can also have a negative impact on the performance of speed and

estimation algorithms (see Chapter 4).

Another source of torque ripple is known as cogging torque, which generated by

the interaction of the rotor magnetic flux and the angular variation in the magnetic

reluctance of the stator [33]. This torque component produces no stator excitation.

Although algorithms have been presented that focus on minimizing the total torque

ripple (including the cogging torque) [33], reduction of this ripple component is

typically achieved using various design techniques.

2.1.6 Parameter Variations

The model parameters of the PMSM, particulary the resistance and inductance pa-

rameters, vary significantly with operating conditions. In [28], the phase resistance

of the experimental PMSM, at room temperature, with the rotor unmounted, has

been measured as a function of applied frequency. The increase in resistance, due

to the skin effect, from zero to ω=2 pu, is approximately 170%.

A temperature rise also causes the resistance to increase. The temperature de-

pendence of the stator resistance can typically be modeled as [43]

Rs =
235 + T

235 + T0

Rs,0 (2.24)

where T is the winding temperature, and Rs,0 is the stator resistance at room tem-

perature, T0 =20◦ C. During the design of the experimental PMSM, an upper limit

on the stator-winding temperature has been set at 130◦ C [28, 45]. According to

(2.24), the increase in resistance at the upper temperature limit, compared to room

temperature, is then approximately 40%.

Saturation of the iron causes changes in the inductances Ld and Lq. This is es-

pecially pronounced in Lq, since the effective air gap of the q-axis is much smaller

than for the d-axis, which is aligned to the rotor magnet; the effect of the saturation

of Ld can often be neglected. This causes a decrease in Lq as a function of iq due

to saturation in the iron [62]. As will be discussed in Chapter 4, rotor-position es-

timation is particulary sensitive to uncertainties in Lq. Also, in order to maximize

the torque-to-current ratio, the effect of the saturation of Lq must be taken into ac-

count. For the PMSM used in the experiments,4 Lq has been measured using the

4See Appendix B for further details on parameters and rating.
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Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

techniques given in [6]. From these measurements, the variation of Lq as a function

of iq can, in the per-unit system, be approximated as

Lq(iq) =

{
0.86, |iq| < 0.37

0.86− 0.35 (|iq| − 0.37) 0.37 ≤ |iq| ≤ 1.
(2.25)

2.1.7 Core Losses

Although resistive losses are included in the model described above, core losses

are not. Modeling of core losses is complex since they arise owing to different

phenomena, namely, eddy currents and hysteresis in the laminations [29]. These

losses can be analyzed using finite element methods, but for control purposes it is

common to identify the parameter Rc in parallel with vd and vq, as shown in Fig.

2.7, typically assuming only a nonlinear dependency of the frequency.

Neglecting the flux-linkage harmonics, the voltage equations can now be ex-

pressed as

vd = Rsid,o +
Rs +Rc

Rc

Ld
did,o
dt

− ωrLq
Rs +Rc

Rc

iq,o (2.26)

vq = Rsiq,o +
Rs +Rc

Rc

Lq
diq,o
dt

+ ωrLd
Rs +Rc

Rc

id,o +
Rs +Rc

Rc

ωrψm (2.27)

id =
vd +Rcid,o
Rs +Rc

, iq =
vq +Rciq,o
Rs +Rc

. (2.28)

The impact of core (and resistive) losses and how it can be reduced by means of

control is further investigated in Chapter 3.

(a) d-axis. (b) q-axis.

Fig. 2.7 Equivalent circuit taking core losses into account.

2.2 Current Controller Design

A simple and efficient way to achieve fast and accurate current control in inverter-

fed PMSMs is to utilize synchronous-frame PI controllers [38]. The mechanical
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2.2. Current Controller Design

dynamics can be neglected as they are typically much slower than the current dy-

namics. Neglecting the impact of harmonics, the open-loop current dynamics, given

by (2.17) and (2.18), can in operator form, i.e., p→ d/dt, be expressed as

idq(p) = G(p)(vdq(p)−E). (2.29)

Here, G(p) is the open-loop transfer function,

G(p) =

[
Rs + pLd −ωrLq
ωrLd Rs + pLq

]−1

(2.30)

and E = [0ωrψm]T is the back EMF, that acts as a load disturbance. A block diagram

of (2.29) is shown in Fig. 2.8. The current controller discussed here is a variant of

Fig. 2.8 Block diagram of the open-loop current dynamics. The back EMF acts as a load
disturbance, that reduces the available “current-producing” voltage.

the controller proposed in [25], derived using the concept of internal model control

(IMC) [60], and further modified for improved load-disturbance rejection capability

in [27]. For salient PMSMs, it can be expressed as

vref
d = kp,d(i

ref
d − id) + ki,d

∫
(irefd − id)dt− ωrL̂qiq − Ra,did (2.31)

vref
q = kp,q(i

ref
q − iq) + ki,q

∫
(irefq − iq)dt+ ωrL̂did −Ra,qiq. (2.32)

The first two terms on the right-hand sides of (2.31) and (2.32) represent standard PI

controllers. As G(p) is non-diagonal, the current dynamics are coupled and the third

terms are added for decoupling purposes. The last terms are called active damping

[27] (named active resistance in [9]) and are added in order to improve the capabil-

ity of load disturbance rejection (see below). In state-space form, the current control

dynamics can be expressed as

did
dt

=
1

Ld
(vd − Rsid + ωrLqiq) (2.33)

diq
dt

=
1

Lq
(vq −Rsiq − ωrLdid − ωrψm) (2.34)

dId
dt

= irefd − id (2.35)

dIq
dt

= irefq − iq (2.36)
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where (2.33) and (2.34) are the current dynamics and (2.35) and (2.36) represent the

additional state variables due to the integrators. The output of the current controller

forms two voltage reference commands. These are inputs to the pulse-width modu-

lator, i.e., the actual voltages applied to the PMSM are given by vd = PWM(vref
d )

and vq = PWM(vref
q ) (see Appendix B for a description of the laboratory setup).

A block diagram of the closed-loop system is shown in Fig. 2.9, where the con-

troller consists of the blocks inside the dashed region. The PI part of the controller

is represented by F(p) and the decoupling and active damping, implemented as an

inner feedback loop, are represented by the matrix W. They can be expressed as

F(p) =

[
kp,d + ki,d/p 0

0 kp,q + ki,q/p

]
, W =

[
−Ra,d −ωrL̂q
ωrL̂d −Ra,q

]
. (2.37)

Fig. 2.9 Block diagram of the closed-loop current dynamics. The current controller given
by (2.31) and (2.32) consists of the blocks inside the dashed region.

Design rules for the parameters of the PI controllers are proposed in [27]. The

parameters should be chosen as

kp,d = αcL̂d, ki,d = αc(R̂s +Ra,d) (2.38)

kp,q = αcL̂q, ki,q = αc(R̂s +Ra,q) (2.39)

where αc is the desired bandwidth of the closed-loop system and “hats” indicate

model parameters. The block diagram in Fig. 2.9 can be simplified using standard

block transformations. In matrix form, this simplifies the relation between the out-

put and reference current to

idq = − [I + G
′(p)F(p)]

−1
G
′(p)︸ ︷︷ ︸

S(p)

E + [I + G
′(p)F(p)]

−1
G
′(p)F(p)︸ ︷︷ ︸

Gcl(p)

i
ref (2.40)

where G
′(p) = [I−G(p)W]−1

G(p) is introduced for simplicity. S(p) represents

the sensitivity function, relating the output current to the load disturbance. With the
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recommended selection of the controller parameters and assuming no parameter

errors, the closed-loop dynamics, Gcl(p), and the sensitivity function become

Gcl(p) =




αc
p+ αc

0

0
αc

p+ αc


 (2.41)

S(p) =




p

(p+ αc)(pLd +Rs +Ra,d)
0

0
p

(p+ αc)(pLq +Rs +Ra,q)


 . (2.42)

As can be seen in (2.41), the closed-loop dynamics consist of two, decoupled, first-

order systems. As is well known, the rise time, tr, of a first-order system is related

to the bandwidth, α, as tr = ln 9/α. Hence, the controller is parameterized in mo-

tor parameters and the desired bandwidth. This is attractive since it simplifies the

implementation considerably as the tuning procedure of the controller is removed.

The sensitivity function, S(p), has a zero at the origin. Hence, stepwise (and

quasi-constant) disturbances will be fully rejected when a steady-state condition is

reached. As the load disturbance, E, ideally acts only in the q-direction, the proper-

ties of S(2,2)(p) are particulary important. Without the active damping, i.e., Ra,q=0,

the two poles are located at p = −αc and p = −Rs/Lq, respectively. Typically,

Rs/Lq�αc so the load-rejection dynamics are considerably slower than the closed-

loop current dynamics. In order to improve the load rejection capability, the active

damping should be chosen as [27]

Ra,d = αcL̂d − R̂s, Ra,q = αcL̂q − R̂s. (2.43)

With this choice and assuming no parameter errors, S(p) is simplified to

S(p) = diag

(
p

Ld(p+ αc)2
,

p

Lq(p+ αc)2

)
. (2.44)

Hence, the load-rejection dynamics become as fast as the closed-loop dynamics. A

Bode diagram of the gains |S(1,1)(jω)|, |S(2,2)(jω)| and |Gcl(1,1)(jω)|= |Gcl(2,2)(jω)|
is shown in Fig. 2.10 for αc = 1 pu. This is a typical value used in the simulations

and experiments (it corresponds to a desired current rise time of 1.7 ms).

Impact of Parameter Variations

As mentioned in Section 2.1.6, parameter variations are most pronounced inRs (due

to temperature and frequency variations) and Lq (due to saturation). Both of these

phenomena can be taken into account. However, this makes the current controller
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Fig. 2.10 Bode diagram of the closed-loop dynamics and sensitivity functions for αc = 1
pu.

considerably more complex as the six controller parameters (kp,d, kp,q, ki,d, kiq , Ra,d

and Ra,q) then must be updated at each sample step.

The impact of parameter variations can be studied by computing Gcl(p) assum-

ing L̃q 6= 0 and R̃s 6= 0. The variation in Ld is neglected as the variation of this

parameter, as mentioned previously, is typically small. Assuming |R̃s|�2αcLd and

|R̃s|�2αc(Lq − L̃q) results in

Gcl(p) ≈




αc
p+ αc

αcp(Lq − L̃q)L̃qωr

Ld(p+ αc)(p2Lq + 2pαc(Lq − L̃q) + α2
c(Lq − L̃q))

0
αc(Lq − L̃q)(p+ αc)

p2Lq + 2pαc(Lq − L̃q) + α2
c(Lq − L̃q)


 .

(2.45)

Hence, no strong dependence on R̃s can be expected. However, Gcl(p) is upper

triangular, indicating that small disturbances in id can arise along with large steps

in iq. Performing a Taylor series expansion around L̃q=0 for each element, Gcl(p)

can be further simplified to

Gcl(p) ≈
αc

p + αc




1
L̃qωrp

Ld(p+ αc)2

0 1− L̃qp
2

Lq(p+ αc)2
.


 (2.46)

Whether or not the effect of saturation of Lq should be taken into account when

implementing the current controller depends on the specifications of both motor and
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desired performance of the closed-loop current control. The effect of saturation has

not been taken into account in any of the current controllers used in the simulations

or experimental results presented in this thesis.

Anti-Windup and Overmodulation

Due to limited dc-link voltage, the output of the current controller, i.e., the volt-

age reference commands to the inverter, must be limited. However, this causes the

integral part of the PI controller to accumulate the control error. This results typi-

cally in large overshoots because the integral part of the controller will still be high

even when the control error becomes small. The phenomenon is known as integra-

tor windup. Several different methods to avoid windup have been proposed in the

literature and examples developed for electrical drives are found in [10, 27, 77].

The back-calculation method [27] (also known as realizable references [10]) is

given by

u = kpe+ kiI (2.47)

u = [u]max
min (2.48)

dI

dt
= e+

1

kp
(u− u) . (2.49)

Here, e is the control error and I is the integral state variable. As can be seen, the

integrator part of the controller is updated not with the control error, but with a

modified error that would have given u=u, effectively avoiding integrator windup.

Note that when u= u, the integrator is updated with the control error e, i.e., when

not in saturation, the controller acts as a standard PI controller.

The output voltage vector of a PWM inverter must be within the well known

voltage hexagon, drawn using the stationary αβ-coordinate system [42] and shown

in Fig. 2.11. Linear modulation is possible up to the radius of the maximum circle

that can be fitted within the hexagon. In order to enhance the transient response of

the current loop, operation outside this circle can be utilized. Some overmodula-

tion strategy must then be used. A review of different overmodulation strategies for

three-phase PWM inverters can be found in [66].

2.2.1 Experimental Evaluation

In order to demonstrate the impact of harmonics of the performance of the current

controller discussed above, a simulation and results from an experiment of a step

response is presented here. The parameters of the PMSM correspond to the PMSM
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Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

Fig. 2.11 Voltage hexagon. The six realizable voltage vectors (excluding the two zero vec-
tors) are shown. Linear modulation is possible within the circle.

used in the experiments and can be found in Appendix B. As perfect knowledge

of the motor parameters is not to be expected, the parameter errors L̃q =−0.2Lq,

L̃d = 0.2Ld, R̃s = 0.5Rs are introduced. Note that L̃q < 0 to take into account the

effect of saturation and R̃s > 0, assuming that the true stator resistance is higher

than its estimated (measured) value.

The impact of harmonics in both flux linkage and inductance are taken into ac-

count. The flux-linkage harmonics are, as mentioned previously, simply identified

using measurements of the open-circuit voltage. The inductance harmonic, L6, is

assumed to be L6 = 0.4Ld. As mentioned in Section 2.1.4, it can be expected that

current harmonics will arise in id along with large iq due to the coupling of harmon-

ics caused by L6.

The bandwidth of the current controller is set to αc = 1.17 pu, which corre-

sponds to a desired rise time of 1.5 ms. The rotor speed is assumed to be constant,

ωr = 0.25 pu. The dominant flux-linkage harmonic is ψq,6 and its impact can be

investigated by computing the gain of the sensitivity function at ω = 6ωr, which

is |S(2,2)(jω)|ω=6ωr
≈ 0.61. Thus, a small current ripple in iq with an amplitude of

0.61·ωrψq,6≈5 · 10−3 pu due to the flux-linkage harmonic ψq,6 can be expected. At

t=0.1 s the current references are set to irefq =0.8 pu and irefd =−0.25 pu, where irefd
is set according to the max torque-per-ampere trajectory (see Chapter 3).

Simulation and experimental results are shown in Fig. 2.12. For t < 0.1 s, the

simulation shows a current ripple in id and iq (due to the flux-linkage harmonics)

that is less than 6·10−3 pu (not visible in the figure). The corresponding measurement

result shows a current ripple that is less than 1·10−3 pu. At t=0.1 s, a current step

is introduced and the measured rise time of id and iq, both in the simulation and

the results obtained from the experiment, is approximately 1.5 ms, as predicted by

theory. The coupling between id and iq, due to the inductance harmonics, is also

clearly visible. Due to the large amplitude of iq, ripple arises in id when t≥0.1 s.
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2.3. Operation in the Field-Weakening Region

Fig. 2.12 Current step at t= 0.1 s. The desired closed-loop bandwidth αc = 1.17 pu and
rotor speed ωr=0.25 pu. a) Simulation. b) Experimental result.

2.3 Operation in the Field-Weakening Region

For operation above base speed, the back EMF, due to the permanent magnets on

the rotor, can exceed the available inverter voltage. For induction machines, the

flux-producing component is therefore reduced to lower the back EMF and enable

operation above base speed, at the cost of reduced output torque. For PMSM drives,

the impact of the back EMF can be reduced by adding a demagnetizing current

component, i.e., id < 0. This allows for operation above base speed, although the

obtainable torque, also in this case, is reduced due to the demagnetizing current

component [32, 63].

The properties of operation above base speed, i.e., field-weakening operation, is

commonly described in terms of limitations in the current dq-plane. The current is

limited by
√
i2d + i2q ≤ Imax (2.50)

where Imax is the limit set by either the inverter rating or thermal constraints of the

PMSM. Similarly, the available inverter voltage is limited by
√
v2
d + v2

q ≤ Vmax (2.51)

where Vmax is the maximum available inverter voltage. Keeping the inverter voltage

vector inside the largest circle possible within the voltage hexagon (see Fig. 2.11),
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Chapter 2. Modeling of Permanent-Magnet Synchronous Motors

Vmax is related to the available dc-link voltage as Vmax =Vdc/
√

3, where Vdc is the

dc-link voltage [66]. In vehicle applications, where the dc-link voltage is expected

to change, this voltage is typically monitored.

The way (2.51) sets a limit on the available currents is easily found by substitut-

ing the expressions for vd and vq, by using (2.17) and (2.18), in (2.51). Neglecting

the current derivatives, the following condition is obtained

V 2
max = (Rsid − ωrLqiq)

2 + (Rsiq + ωrLdid + ωrψm)2 . (2.52)

As the resistive voltage drop is relatively small, it can be neglected and (2.52) can

be simplified to [32]

(
id +

ψm
Ld

)2

+

(
Lq
Ld
iq

)2

=

(
Vmax

ωrLd

)2

(2.53)

which describes an ellipse (or a circle in the case of a non-salient PMSM) in the

dq-plane, with its center at id = −ψm/Ld and ellipticity Lq/Ld. Thus, the current

is not only limited within the circle
√
i2d + i2q ≤ Imax, but also within this voltage-

limit ellipse. As the speed increases, the voltage-limit ellipse shrinks towards its

center. The voltage-limit ellipse is shown in Fig. 2.13 at three different rotor speeds:

ωr = 1, 1.2 and 1.5 pu. As also shown in Fig. 2.13, two additional phenomena affect

the shape of the voltage-limit ellipse. The impact of the stator resistance causes it

to slightly rotate anti-clockwise, and the saturation of Lq causes it to increase in

the vertical direction [87]. Due to additional voltage drops because of harmonics,

inductive voltage drops due to current derivatives, voltage drops in the inverter,

etc., the outermost region embraced by the voltage-limit ellipse is not obtainable in

practice.

2.3.1 Review of Field-Weakening Strategies

The vector-control schemes for operation in the field-weakening region can be di-

vided into two categories. In the first category, the solutions are based on different

types of flow charts, examples are [49, 62, 83]. Here, different current reference tra-

jectories, expressed using motor parameters or derived from experiments, are used

depending on if the rotor speed is under or above base speed. Above base speed, id
is typically limited by

id ≤ −
ψm
Ld

+
1

Ld

√
V 2

max

ω2
r

− L2
qi

2
q (2.54)
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2.3. Operation in the Field-Weakening Region

Fig. 2.13 Available operation region, expressed in the currents dq-plane, for the three ro-
tor speeds ωr = 1, 1.2 and 1.5 pu. Solid lines indicate the voltage-limit ellipse
equation given by (2.53). Dashed lines include the resistive voltage drop and
dashed-dotted lines also take into account the impact of the saturation of Lq. The
current-limit circle is also shown.

which is found by solving for id in (2.53).

Solutions which utilize (2.54), or variants thereof, must take several additional

limitations into account. The strong dependence on motor parameters is a drawback,

since both Vmax, Lq, and, for some machines, also Ld, may change significantly at

different operating points. These effects have to be taken into account in order to

assure that the voltage really is limited. Another drawback is the utilization of the

computationally costly square root; important in drives where the DSP, typically

owing to cost, is very simple. Further, since the impact of resistive voltage drops are

neglected in (2.54), they also have to be taken into account with some method [76].

The selection when to switch over from the normal control strategy to the field-

weakening control strategy is also not trivial. The reason for this is that the base

speed, which typically defines when to switch between normal and field-weakening

strategies, is dependent on the available dc-link voltage. If the dc-link voltage is

changed, the base speed must be recomputed, which further complicates the control

strategy.

Although all these limitations can be taken into account, it is the opinion of the

author that field-weakening strategies which utilize (2.54), or variants thereof, due

to their complexity, are less suited for applications where the dc-link voltage can

be expected to change depending on the quality of the dc source. In practice, this
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includes most applications.

The second category of vector-control schemes that allow for operation in the

field-weakening region is based on closed-loop voltage control, which generates

current references that keep the voltage magnitude within the limit set by the in-

verter. This technique can be applied to drives that use both permanent-magnet as

well as induction motors and will be considered in the rest of this section.

An early reference that utilizes this technique for PMSM drives is [41], which

proposes an additional PI controller to control the value of irefd in order to reduce

the voltage magnitude.5 The input of this PI controller is Vmax−
√

(vref
d )2+(vref

q )2,

where vref
d and vref

q are the output voltage references from the current controller.

A simplification is given in [53], where the algorithm is modified by letting the

input of the PI controller be V 2
max−(vref

d )2−(vref
q )2. The algorithm is simplified by

the removal of the square root. The method is further developed in [27], although

this reference considers induction motors. Here, the PI controller is replaced with

pure integration and a design rule for the selection of the integrator gain is derived.

The latter is important in order to achieve proper operation when torque or speed

changes rapidly. This is also highlighted in [7] and [54], where the former also

presents a selection rule for the integrator gain.

2.3.2 Closed-Loop Field-Weakening Control

The field-weakening controller which is used in the experiments is essentially a

variant of the controller presented in [41], with the modifications given in [27].

Pure integration is utilized on irefd in order to keep the voltage within the limit set by

the inverter, i.e.,

direfd
dt

= γ
(
(V ′

max)
2 − (vref

d )2 − (vref
q )2

)
. (2.55)

Here, γ is a positive gain that affects the dynamics of the field-weakening con-

troller. Of course, the selection of γ will also affect the overall system dynamics of

the drive. The voltage V ′
max is the upper voltage limit allowed. As mentioned, due

to additional voltage drops because of harmonics, inductive voltage drops due to

current derivatives, voltage drops in the inverter, etc., V ′
max must be set lower than

the maximum available inverter voltage, Vmax.

The current in the d-direction must not be smaller than −Imax in order to avoid

permanent demagnetization of the rotor magnets. Furthermore, when (V ′
max)

2 >

5In [87], a similar algorithm is proposed where not irefd is controlled, but rather the angle of the
current vector to the d-axis.
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(vref
d )2+(vref

q )2, (2.55) will force irefd to increase, so irefd must therefore also be lim-

ited by the max-torque-per-ampere curve, id,max(T/i) (see Chapter 3). Hence, irefd is

limited by

−Imax ≤ irefd ≤ id,max(T/i) (2.56)

Inside the current-limit circle, no limit is put on irefq and this mode of operation is in

this thesis designated Mode A. When operating in Mode A, the algorithm will then

reduce irefd so that, in the steady state, (V ′
max)

2 =(vref
d )2+(vref

q )2.

If irefd is reduced so much that the current-limit circle is reached, Mode B, the

static constraint

irefq =
√
I2
max − (irefd )2 (2.57)

is put on irefq . This will force the current vector to remain within the current-limit

circle. The two modes of operation are shown in Fig. 2.14.

Fig. 2.14 Different modes of operation for the field-weakening controller. Operation in
Mode B and two examples of Mode A operation are shown. For increasing speed
(back EMF), the controller will move the current references in the direction indi-
cated by the arrows.

2.3.3 Gain Selection for the Field-Weakening Controller

As mentioned above, the selection of the integration gain, γ, will not only affect

the dynamics of the field-weakening controller, but will also have impact on the

current dynamics. The reason for this is due to the fact that the output of the field-

weakening controller consists of current references, which are inputs to the current

controller. Therefore, current- and field-weakening dynamics are coupled, and this

factor should be taken into account when selecting γ. This was done in [27], which

studied the closed-loop dynamics of the current- and field-weakening controller,

although the reference considered induction motors.
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Essentially following [27], but considering salient PMSMs, a design rule for

the selection of γ will be presented here. The characteristic polynomial is found

by collecting id, iq, Id, Iq, and irefd into a state vector. The dynamics are given by

the linear expressions (2.33)–(2.36) and the nonlinear (2.55). Note that the mechan-

ical dynamics are neglected, i.e., ωr is considered as a slowly varying parameter.

This assumption is valid if the dynamics of both the current- and field-weakening

controller are much faster than the mechanical dynamics. With the selection of γ

presented below, this assumption will always be valid. Now, assuming no parame-

ter errors and neglecting the resistive voltage drops, vd = vref
d , vq = vref

q , where vref
d

and vref
q are the output voltage references from the current controller, given by (2.31)

and (2.32), are substituted in (2.33)–(2.36). Eqs. (2.33)–(2.36) and (2.55) now form

a nonlinear state-space system, ẋ = f(x,u), which can be linearized around some

operating point as ẋ = Ax+input. The linearized dynamics are governed by the

characteristic polynomial, c(p), which is given by c(p)=det(pI−A).

Mode A, Small Torques

For Mode A, the characteristic polynomial, for some current irefq , is found as

c(p) = (p+ αc)
3[p2 + 2αcγ|ωr|Ld

√
(V ′

max)
2 − (ωrLqirefq )2

+ αcp(1− 2γωrLdLqi
ref
q )]. (2.58)

For small torques, irefq can be neglected, which yields

c(p) = (p+ αc)
3
(
p2 + αc (p+ 2γ|ωr|LdV ′

max)
)
. (2.59)

With the selection of γ as

γ =
αfw

2ωfwL̂dV ′
max

, ωfw =

{
ωbase, |ωr| ≤ ωbase

|ωr| |ωr| > ωbase

(2.60)

and assuming αfw�αc and ωfw = |ωr|, (2.59) can be simplified to

c(p) = (p+ αc)
4(p+ αfw). (2.61)

Hence, with the selection of γ given by (2.60), the dynamics of the field-weakening

controller, operating in Mode A and assuming small torques, is governed by the pole

located at p =−αfw.
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Mode A, Large Torques

For large torques, the impact of irefq cannot be neglected in (2.58). The square-root

expression in (2.58) can then be approximated as
√

(V ′
max)

2 − (ωrLqirefq )2 ≈ xV ′
max,

where 0 < x ≤ 1. The characteristic polynomial is then simplified to

c(p) = (p+ αc)
3

(
p2 + αcαfwx + αcp

(
1− αfwLqsign(ωr)

V ′
max

irefq

))

≈ (p+ αc)
4(p+ αfwx) (2.62)

where the approximation is valid assuming |(αfwLqsign(ωr)i
ref
q )/(V ′

max)| � 1, ωfw =

|ωr|, and αfw � αc. Considering a worst-case scenario, where, V ′
max = 0.9Vmax,

ωr =ωbase and irefq = Imax, this gives x≈ 0.7 (assuming the motor parameters given

in Appendix B). Thus, the field-weakening dynamics will be somewhat, although

not significantly, slower compared to Mode A operation with small torque.

Mode B

Operation in Mode B adds the additional static constraint, due to the current-limit

circle, on irefq , given by (2.57). As in [27], (2.57) is first linearized around some

operating point {id,0, iq,0}:

irefq = iq,0 + ξ
(
irefd − id,0

)
(2.63)

where ξ=−id,0/iq,0. Replacing irefq with this expression, the characteristic polyno-

mial is found as

c(p) = (p + αc)
3
{
p2 + αc [p(1 + 2γLqωrψmξ)

+ 2γ|ωr|
√
L2
d(V

′
max)

2 + ξ2L2
q[(V

′
max)

2 − (ωrψm)2]
]}

. (2.64)

Now, the assumptions V ′
max ≈ ωrψm and |2γLqωrψmξ| � 1, are made. These as-

sumptions are valid if the operation points when irefq ≈ 0 are neglected. This is

reasonable since operating in Mode B with irefq ≈ 0 corresponds to a theoretical

maximum speed when no further field weakening can be applied to reduce the im-

pact of the back EMF. With these approximations, also in this mode, choosing γ as

(2.60), c(p) is found as

c(p) = (p+ αc)
4(p+ αfw). (2.65)
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Selection of αfw

As shown above, the dynamics of the field-weakening controller are governed by a

single pole at p=−αfw in both modes of operation. In order to avoid voltage satura-

tion during accelerations, the dynamics of the field-weakening controller should be

faster than the mechanical dynamics. For applications where closed-loop speed con-

trol is used, choosing αfw = 10αs, where αs is the bandwidth of the speed control

loop, is a reasonable design rule, provided that αfw�αc still holds.

However, for vehicle applications, where the drive is typically torque controlled,

this is not applicable. Instead, a reasonable recommendation is to choose the field-

weakening dynamics at least a decade faster than the mechanical time constant, i.e.,

αfw≥10b̂/Ĵ , where b is the viscous damping constant.

2.3.4 Simulation and Experimental Evaluation

Simulation

The field-weakening controller presented above is verified through a simulation

shown in Fig. 2.15, in which closed-loop speed control (designed following the rules

presented in [27]) is utilized. The current controller, motor parameters, and param-

eter errors are the same as for the simulation in Section 2.2.1. The bandwidth of the

speed control loop, αs, is chosen αs=αc/100 and accordingly, αfw =10αs=αc/10.

The moment of inertia of the shaft is assumed to J =200 pu, which can be consid-

ered small and allows for rapid accelerations.

Initially, the PMSM is loaded with a load torque of TL = 0.75 pu, which is re-

moved at t = 0.6 s. At t = 0.1 s, the speed reference is set to ωref
r = 2 pu, which

activates the field-weakening controller approximately at t=0.15 s. Clearly, appro-

priate field weakening is achieved as the amplitude of the voltage vector
√
v2
d + v2

q

never reaches 1 pu (V ′
max is set to 0.9 pu). As can be expected, current ripple arises

both in current and voltages due to the harmonics in both flux linkage and induc-

tance.

Experimental Results

Fig. 2.16 shows an experimental result where the PMSM operates at ωr = 1 pu

and the measured electro-mechanical torque is 0.9 pu, (corresponding to approx.

70 Nm). The closed-loop bandwidth of the current controller is set at αc = 1 pu,

αfw = αc/200 and V ′
max = 0.85 pu. Due to the field-weakening controller, irefd is

reduced from irefd = −0.27 pu down to irefd = −0.45 pu to reduce the impact of
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2.3. Operation in the Field-Weakening Region

Fig. 2.15 Simulation of a closed-loop speed controlled PMSM including field-weakening
control. At t = 0.1 s, the speed step ωref

r = 2 pu is applied.

the back EMF. As can be seen, the current and field-weakening controllers work

properly and the harmonic content in ia is low (compare with Figs. 23 and 24, p.

150 in [45]).

Fig. 2.17 shows an experimental result that demonstrates dynamics of the field-

weakening controller. The rotor speed, shown in Fig. 2.17a), is initially set (con-

trolled by the loading dc machine) at ωr≈0.5 pu. The PMSM is current controlled

with irefq = 0.36 pu and irefd is set corresponding to the max torque-per-ampere tra-

jectory. At t ≈ 1 s, the rotor speed is ramped up to ωr ≈ 0.7 pu. To allow for

field-weakening operation below base speed, V ′
max is reduced to V ′

max =0.3 pu. As

the dynamics of the field-weakening controller are evaluated, this is done in order

to avoid reaching very high speeds during the experiment. As can be seen, the field-

weakening controller is activated and id is reduced down to id≈−0.7 pu in order to

avoid voltage saturation.

The experimental results in Fig. 2.17 have been obtained using the speed and

position estimator discussed in Chapter 4. Hence, the rotor speed and position used

in the control algorithms are not measured, but rather estimated. The gain of the

estimator (see Chapter 4) is chosen as ρ = αc/20. Fig. 2.17c) shows the angular

estimation error, θ̃= θ− θ̂, where θ̂ is the estimated rotor position. As can be seen,
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the angular estimation error is minor, less than 5◦. Although not shown, the speed

estimation error, ω̃r = ωr− ω̂r is very small, |ω̃r| ≤ 0.005 pu. Similar results have

been obtained whether the speed and position estimator is used or not.
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Fig. 2.16 Steady-state operation at ωr=1 pu, Te≈0.9 pu. a) ia, b) Harmonic content of ia.
Note that the amplitude of the fundamental of ia is approx. 0.97 pu.
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Fig. 2.17 Experimental results that demonstrates the dynamics of the field-weakening con-
troller. The speed and position estimator discussed in Chapter 4 has been utilized.
a) ωr, b) id and iq, c) position estimation error.

2.4 Summary of Chapter

This chapter has dealt with modeling and control of vector-controlled PMSMs which

are equipped with a rotor position sensor. A transient model that takes harmonics

into account was reviewed, and its impact on current harmonics was verified, both

with simulations and through experimental results. Furthermore, control algorithms

for operation in the field-weakening region were reviewed. The field-weakening

controller, presented in [41] and further developed in [27], was chosen for imple-

mentation. The selection rule of the integral gain of the field-weakening controller

presented in [27] (considering induction motors) was verified with a similar analysis

but considering salient PMSMs.
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Chapter 3

Loss-Minimization Control of PMSM

Drives

This chapter considers minimization, by means of control, of losses in PMSM drives

(motor+inverter). Resistive, core and inverter losses are considered. First, the the-

ory of achieving operation with minimized losses is reviewed. A case study is then

presented to investigate the impact of loss minimization, by means of control, for

the experimental PMSM developed in [28, 45].

3.1 Introduction and Outline of Chapter

In an HEV application, the PMSM must operate at varying loads and speeds, which

requires careful selection of motor parameters for the machine designer, in order to

minimize losses [23]. However, electrical losses in the PMSM can also be affected

by control action. The problem resolves into selecting id and iq for each operating

point (torque and speed) so that losses are minimized [17, 37, 51, 64, 85, 86]. As

losses are minimized in the PMSM, this will also minimize the current from the dc

source (if inverter losses are neglected). In this thesis, the term loss-minimization

control is used for algorithms that control the PMSM (or PMSM+inverter) so that

losses are minimized. Efficiency improvement by keeping the power factor equal to

unity is presented in [48], but, although the real-to-apparent power is maximized,

the power losses are not minimized.

In an HEV application, operation with minimized losses is important, since high

efficiency is vital to reduce the fuel consumption of the vehicle. This is very attrac-

tive since it also results in improved fuel economy and increased operating range;

two very important factors for a potential vehicle customer. Ideally, since no extra
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hardware is added, energy is saved with no additional drawbacks. The main purpose

of this chapter is to investigate how losses can be reduced through control action and

see what impact it can have on a PMSM drive system (used for propulsion) in an

HEV application.

The methods for achieving loss-minimization control in PMSM drives can be

divided into two categories. In the first category, the input power to the drive is

measured and some type of search controller is implemented where id is changed

in order to reach minimum input power [17, 85, 86]. The advantage of these tech-

niques is the independence of motor parameters, but finding the operating point with

minimized losses by using a search controller is difficult in a vehicle application,

since the shape of the loss minimum at a given operating point (torque and speed)

and as a function of id is flat [51]. This forces the search controller to search using

small steps, and therefore the dynamics will be slow [5]. Typically, a speed con-

troller is also added to guarantee that the operating point (torque and speed) does

not change during the operation of the search controller. This makes the use of these

techniques somewhat limited in vehicle applications, where the drives are typically

torque controlled and the operating point changes continuously.

The second category identifies the motor parameters through some measurement

procedure and the loss minimization condition, i.e., the id that minimizes losses

at a given speed and iq, is computed and implemented in the controller program

[37, 51, 64]. Typically, the loss minimization conditions obtained are verified, and

adjusted, so that losses really are minimized. Since this approach is suitable for

torque-controlled drives and since motor parameters can be assumed to be well

known in a vehicle application, this approach is adopted in this chapter.

This chapter is organized as follows. First, the theory of achieving operation

with minimized losses is presented. In order to investigate the impact of using loss-

minimization control on the PMSM drive developed in [28, 45], a case study based

on simulations, where also inverter losses are considered, is then presented.

3.2 Loss Expressions

The losses in the PMSM can be separated into two parts, mechanical and electrical.

Mechanical losses arise due to air friction and friction in bearings. These losses are,

by nature, strongly dependent on rotor speed and cannot be affected through control

action. Hence, the input power, Pin, can be separated into

Pin = PTe
+ Ploss,PMSM + Pfric (3.1)
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3.2. Loss Expressions

where PTe
is the part of the input power producing torque, Ploss,PMSM are the elec-

trical losses and Pfric are the friction losses. The electrical losses consist of resistive

losses, Pres, and core losses, Pco. Hence,

Ploss,PMSM = Pres + Pco. (3.2)

The resistive losses arise due to the resistance in the stator winding (losses in the

rotor are neglected due to the permanent excitation of the rotor magnets). They

are dependent on both temperature and frequency. In the dq-reference frame, the

resistive losses can be expressed as

Pres =
3

2
Rs

(
i2d + i2q

)
(3.3)

where amplitude-invariant dq-transformation is assumed.

As mentioned in Section 2.1.7, core losses are typically predicted using finite el-

ement methods in the design stage of the PMSM. For control purposes, complicated

loss models are not practical and, if taken into account, the core loss resistance, Rc,

as shown in Fig. 2.7, is typically added. Since Rc represents different phenomena,

its value will change with shifting operating points; often it is modeled only as a

nonlinear function of the rotor speed (frequency), ωr. Of course, since no current

dependence of Rc is assumed with this simple representation of core losses, the

representation is not valid for operating conditions with large loads (currents).

From (2.26)–(2.28) and Fig. 2.7, the core losses can be expressed as

Pco =
3

2
Rc

(
i2d,c + i2q,c

)
=

3Rcω
2
r

2(R2
c + ω2

rLdLq)
2

[
(RcLdid + ψmRc + ωrLdLqiq)

2

+ L2
q(Rciq − ωr(Ldid + ψm))2

]
. (3.4)

As the core loss resistances are added, this will also affect the expression for the

electrical torque. The part of the input power that produces electrical torque is given

by (see also Fig. 2.7)

PTe
=

3

2
[−ωrLqiq,0id,0 + (ωrLdid,0 + ωrψm)iq,0] . (3.5)

Hence, the torque expression is given by Te = npPTe
/ωr which, expressed using id

and iq, can be written as

Te =
1

2(R2
c + ω2

rLdLq)
2

(
3npRc[Rciq − ωr(Ldid + ψm)][(ψm −∆Lid)R

2
c

−ωrLq∆LRciq + ω2
rL

2
qψm]

)
. (3.6)
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Of course, if core losses are neglected (Rc→∞), the standard torque expression

(harmonics are neglected) is obtained, i.e.,

lim
Rc→∞

Te =
3np
2

(ψmiq −∆Lidiq) . (3.7)

3.2.1 Loss Minimization Conditions

Since friction losses are dependent only on rotor speed, they cannot be affected

by control action. However, an analytical loss minimization condition can be de-

rived by finding the d-current that minimizes the electrical losses assuming constant

torque and speed. Hence, the loss minimization condition is obtained by solving for

id in:
∂Ploss,PMSM

∂id
= 0 (3.8)

∂Te
∂id

= 0. (3.9)

where (3.8) is solved for constant ωr. Eq. (3.9) is used for obtaining an expression

for ∂iq/∂id and is also solved assuming constant ωr.

In [51], (3.8) and (3.9) are solved analytically using another model of the core

losses. In [64], core losses are modeled with the core loss resistance, but (3.8) and

(3.9) are differentiated with respect to id,0. The current iq,0 is then found by solving

for iq,0 in the torque expression (expressed using id,0 and iq,0). Finally, the currents

id and iq are obtained from id,0 and iq,0. A similar method is used in [37], although

numerical methods are used to find the solutions.

For completeness, an analytical solution to (3.8) and (3.9) is presented in Ap-

pendix C and it is given by (C.3). Unfortunately, this solution, id(iq), is complicated

and hardly suitable for implementation on a DSP. However, some remarks can be

made. First, it can be noted that id(iq) is strongly dependent both on rotor speed and

motor parameters [85], including the stator resistance. Since both stator resistance

and the magnetic flux will vary with temperature, it is important that if id(iq) is de-

termined experimentally, care must be taken so that a thermal steady-state condition

is reached before measurements are made. Dependence on rotor speed is expected,

since the core losses increase with increasing frequency, which must be reflected in

the solution.

Secondly, if core losses are neglected (Rc→∞) or zero rotor speed is assumed

(ωr→0), the well known max torque-per-ampere solution is found, i.e.,

lim
Rc→∞

id(iq) = lim
ωr→0

id(iq) =
ψm

2∆L
−

√(
ψm

2∆L

)2

+ i2q. (3.10)
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Fig. 3.1 shows a plot of (C.3), where fixed motor parameters have been assumed,

saturation of Lq is neglected, and the rotor speed is varied as ωr = {0, 0.5, 1} pu.

The core loss resistance, Rc, is assumed to be constant: Rc = 30 pu. In order to

demonstrate the validity of (C.3), the squares (�) are results obtained using numer-

ical methods. It can be seen that, when the rotor speed is increased, more negative

id should be added, as compared to the results given by (3.10).

Fig. 3.1 Solution curves for id(iq) for ωr = {0, 0.5, 1} pu. The arrow indicate increasing
ωr. The squares (�) are results found using a numerical method. The solution
id(iq) for ωr=0 pu is identical to the solution given by (3.10).

In [51], the core losses are not modeled with a resistance Rc, but rather as a

nonlinear function of current and rotor speed but, as expected, similar results are

obtained (compare to [51], Fig. 5).

3.3 Case Study

The PMSM and inverter used in the experiments is developed for propulsion in an

HEV application. In order to investigate to what extent losses can be reduced by

control action in this application, a case study, based on simulations, is presented in

this section.

3.3.1 Identification of Rc

Except for Rc, all parameters of the PMSM are known and they are found in Ap-

pendix B. In order to take core losses into account when minimizing losses by con-
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trol means, the core loss resistance, Rc must be known with sufficient accuracy.

Methods for identifying Rc are given in [6, 84, 88]. Unfortunately, the method pre-

sented in [6] requires that core losses are a significant part of input power. This can-

not be fulfilled for the PMSM used in the experiments since the dc machine acting

as load, connected through a reduction gearbox, makes the mechanical losses too

large to neglect. The dc machine cannot be easily disconnected due to the fact that

a careful and expensive lining-up procedure is needed due to the high speed of the

PMSM. The method presented in [84] requires knowledge of the stator resistance

and is developed for non-salient PMSMs. The method given in [88] also requires

knowledge of stator resistance and core and friction losses must be separated. The

PMSM used in the experiments is water cooled, which offers the possibility to mea-

sure no-load core losses by measuring the temperature difference between the inlet

and outlet water. Provided that rotor and friction losses are small (or taken into ac-

count) and leakage losses are estimated with sufficient accuracy, the no-load core

losses can be identified for different rotor speeds [2]. As the no-load core losses are

measured, values of the core loss resistance, as a function of rotor speed, Rc(ωr),

can then be computed.

As the calorimetric method can provide accurate measurements of core losses,

it is very time consuming and has not been utilized in this thesis. To obtain a rough

estimate ofRc(ωr) to be used in the case study, Fig. 3.2 showsRc(ωr), adapted from

previous measurement results where core losses have been estimated by subtract-

ing modeled friction losses (assuming a smooth rotor surface) from the mechanical

input power (obtained by measuring torque and rotor speed). Therefore,Rc will rep-

resent the total core losses, including those arising due to flux harmonics. Because

of this, the value of Rc that represents core losses due to the fundamental should

be somewhat larger (yielding smaller losses). Included is also the measured stator

resistance as a function of frequency at room temperature with the rotor unmounted

(adapted from [28]).

Remark: Since the core loss resistance is identified only for no-load conditions,

the value of Rc may change with increased load. Hence, only small loads will be

considered in the simulations. A complete utilization of loss minimization would

require measurements at several different rotor speeds and output torques.

3.3.2 Impact of Electrical Losses in the PMSM

For the PMSM used in the experiments, Ld, Lq, and ψm have been measured using

the methods presented in [6]. The stator resistance, Rs, is increased by 30 percent,
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Figure 3.2: Measured stator resistance, Rs(ωr), at room temperature with the rotor
unmounted and estimated core loss resistance, Rc(ωr).

since the measured values are given at room temperature. Thus, at least for small

loads, all parameters of the PMSM are known and comparisons between different

control strategies, with respect to electrical losses in the PMSM, can be performed.

Fig. 3.3 shows simulated electrical losses for three control strategies: zero d-current,

max torque-per-ampere current (id(iq) given by 3.10) and loss-minimization control

(id(iq) given by C.3). The simulation is made for three different speeds: ωr = 0.5,

0.75, and 1 pu.

It is clear from Fig. 3.3 that loss-minimization control is efficient only at speeds

near (and above) base speed. This is expected because of the dependence of core

losses on rotor speed. Only low output torques are considered (due to the uncertainty

in Rc for large currents). Operation with minimized electrical losses is possible also

above base speed if only low torques are considered, since the resistive voltage

losses are small and additional restrictions on id, due to the lack of available voltage,

are not needed.

3.3.3 Drive Cycle Simulation

Using loss charts for the PMSM, vehicle dynamics, transmission and inverter, a

drive cycle simulation model has previously been developed [28, 45]. The effect

of different control methods is not reflected in the loss charts, but the drive cycle

simulations can still be useful to determine if the PMSM operates significant times

45



Chapter 3. Loss-Minimization Control of PMSM Drives

Figure 3.3: Simulated losses at three different rotor speeds (ωr = 0, 0.5, 1, and 1.5
pu) for zero d-current, indicated by asterisks (∗), max torque-per-ampere (◦) and
loss minimization control (�).

in regions where loss-minimization control may be of benefit. The U.S. FTP-72,

shown in Fig. 3.4a), is chosen as a relevant driving cycle since it simulates an urban

route with frequent stops [20]. Fig. 3.4b) presents one-second samples of operating

points for the PMSM (torque and speed) when operating in the U.S. FTP-72 driving

cycle. Clearly, there is a region containing operating points with high speeds and

small torques (indicated with a circle). Within this region, operation with minimized

motor losses is attractive, when considering motor losses only, as compared to both

operation with zero d-current and max torque-per-ampere control. Naturally, this

possibility to reduce losses will be more pronounced for drive cycles containing

more operating points at high speeds, i.e., highway driving.

3.3.4 Impact of Inverter Losses

As the electrical drive system consists of both PMSM and inverter, the impact of

inverter losses should also be considered. A model of inverter losses, suitable for

comparisons, can be found in [1]. The voltage drop and resistance of the diode and

transistor are approximately equal respectively for the inverter used (see Appendix

B for data of the inverter). Therefore, the loss model in [1] can be further simplified

and the conduction losses in each inverter leg can be approximated as [68]:

Pcond =
2
√

2V Irms

π
+ rI2

rms (3.11)
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Fig. 3.4 a) The U.S. FTP-72 driving cycle. b) Corresponding operating points (one second
samples) for the PMSM.

where V = VCEO ≈ VTO is the transistor (and diode) on stage voltage, r = rCE ≈
rT is the transistor (and diode) lead resistance and Irms is the root mean square

(RMS) value of the (sinusoidal) current to the PMSM. Assuming that the switching

losses in the transistor are proportional to the current [1], the switching losses in

each inverter leg can be approximated as

Ps,T = (Eon + Eoff)
2
√

2Irmsfsw

πIc,nom
(3.12)

Ps,D = Errfsw (3.13)

where Eon and Eoff are the turn-on and turn-off energy losses for the transistor, fsw

is the switching frequency, Ic,nom is the nominal current through the transistor, and

Err is the reverse recovery energy of the diode. The total losses of the three inverter

legs can now be approximated as

Ploss,inv = 3 (Pcond + Ps,T + Ps,D) . (3.14)

The transistors used in the inverter are insulated gate bipolar transistors (IGBTs).

From the specifications of the IGBTs [57], approximations of the parameters intro-

duced above can be identified. They are also summarized in Appendix B.

Taking inverter losses into account when computing the set of id and iq that,

for a given torque and speed, minimizes losses is preferably accomplished using

numerical methods. Fig. 3.5 shows a simulation result for 0 ≤ Te ≤ 0.25 pu and

ωr = 0.5, 0.75, and 1 pu. The zero d-current control method is indicated with as-

terisks (∗), max torque-per-ampere with circles (◦), minimization of motor losses
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with squares (�), and minimization of motor+inverter losses indicated with dia-

monds (�). The zero d-current, max torque-per-ampere, and minimization of motor

losses corresponds to the results given in Fig. 3.3 (where only motor losses are pre-

sented). The result shows that, due to the extra inverter losses, the advantage of

adding negative id in order to minimize motor losses, is reduced significantly. The

corresponding losses (motor+inverter) are shown in Fig. 3.6. Even for high speeds,

the difference in losses between minimization of motor+inverter losses and max

torque-per-ampere control is very small. For larger torques, the difference becomes

larger, but since the core loss resistance is computed for a no-load condition, no

certain conclusion can be made for operating points with larger torques.

Figure 3.5: Corresponding currents for the results given in Fig. 3.6. Zero d-current
indicated with asterisks (∗), max torque-per-ampere (◦), minimization of motor
losses (�), and minimization of total losses, including inverter (�).
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Figure 3.6: Simulated losses, taking inverter losses into account, for three rotor
speeds (ωr = 0.5, 0.75 and 1 pu) for zero d-current (∗), max torque-per-ampere
(◦), minimization of motor losses (�), and minimization of total losses, including
inverter (�).

3.4 Summary of Chapter

This chapter has reviewed methods for achieving operation with minimized losses,

by means of control. The technique is general and can be applied to any electrical

drive system using a PMSM and inverter. The impact of reduced losses on the exper-

imental PMSM and inverter was investigated, through simulations, by a case study.

The result of the case study showed that although the PMSM operates a significant

part in regions where the reduction of losses in the PMSM, by means of control,

is beneficial, the additional inverter losses reduce the amount of energy gain con-

siderably. This further enlightens that when designing electrical drive systems for

EVs and HEVs, the impact of losses in both power electronics and electrical motors

should not be considered separately.
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Chapter 4

Speed and Position Estimation

In this chapter, rotor position and speed estimation, i.e., sensorless control, of salient

PMSMs is discussed. A brief overview of different methods found in the literature is

presented. The phase-locked loop (PLL) type algorithm proposed by Harnefors and

Nee [26] is analyzed extensively and improvements are proposed, thus making the

estimator suitable for vehicle applications. The results of the analysis are supported

by simulations and experimental results.

4.1 Overview

As is well known, there are, in principle, two different methods of obtaining esti-

mates of speed and rotor position in a vector controlled PMSM.

In the first category, information is obtained from the back EMF. The number of

contributions here is vast, recent examples, presenting different types of estimator

designs, are [4, 8, 14, 24, 61, 67]. These estimators show good performance in

the medium and high speed regions. Since the back EMF vanishes at low speeds,

low and zero speed operation is challenging, although recent research has moved

towards a solution to this problem [24, 59, 73, 89].

In the second category, a high-frequency carrier signal is added, and informa-

tion is obtained provided that the machine possesses rotor anisotropy, i.e., saliency.

The algorithms proposed are typically variants of the high-frequency signal injec-

tion presented in [19] or the INFORM method [75]. Recent examples are found

in [18, 22, 70]. Although this technique allows for zero- and low-speed operation,

obvious drawbacks of the technique are that it, at least to some extent, leads to

acoustic noise, torque ripple and increased losses. If the PMSM possesses saliency,

a combination of the two categories are typically used where high-frequency signal
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injection methods are relied on at low speeds and a transition to back-EMF estima-

tion methods is performed at higher speeds.

In a vehicle application, the PMSM must operate at all speeds (including zero

speed). Only very small steady-state estimation errors are allowed due to reasons of

energy efficiency. Operation deep into the field-weakening region can be expected

and stable (safe) operation at all possible operating points must be guaranteed. Nat-

urally, these demands can be fulfilled by accurately tune a specific estimator, con-

nected to a specific drive. However, to support results obtained from measurements,

analysis of the algorithms should be carried out to better understand their properties

at different modes of operation. Preferably, to simplify an implementation, design

rules for all parameters introduced should also be presented.

This chapter considers the implementation of a speed and position estimator for

a salient PMSM in a vehicle application. An estimator of phase-locked-loop (PLL)

type, previously developed by Harnefors and Nee [26], is modified to take into ac-

count effects, such as saliency, large d-currents and operation in the whole speed

region. A technique to improve the estimator’s capability to handle large speed es-

timation errors is also presented. Design rules for the selection of all parameters,

that removes the initial tuning procedure, are proposed. The estimator is then evalu-

ated, with good results, by simulations and experimental results. Although a specific

speed and position estimator is considered, the principle of the analysis is general,

and should also be applicable to other candidate estimators.

4.2 General Properties of the PLL-Type Algorithm

The PLL-type speed and position estimation algorithm presented in [26] has the

following form

˙̂ωr = γ1e (4.1)

˙̂
θ = ω̂r + γ2e (4.2)

where ω̂r is the estimated rotor speed, θ̂ is the estimated rotor position, γ1 and γ2

are estimator gains, and e is the error signal used to correct the estimator updates (in

[26], ε is used to denote the error signal). The error signal, e, contains an angular

estimation error and is obtained using information from a back-EMF estimate or

using signal-injection techniques. These two methods will be described in detail in

this chapter. However, both methods will produce an error signal in the following

52



4.2. General Properties of the PLL-Type Algorithm

form1

e = sin θ̃ (4.3)

where θ̃ denotes the angular estimation error, θ̃=θ−θ̂.

The function of the estimator can be explained as follows. For small angular

estimation errors, the error signal, e, can be approximated as e= sin θ̃≈ θ̃. Hence,

if θ>θ̂, and provided that γ1>0, (4.1) states that ω̂r will increase, i.e., the estimator

will “catch up” and this update in ω̂r will increase as long as θ̃ 6=0. As seen in (4.2),

the rotor-angular estimate is not only updated as the integral of the speed estimate,

but corrected with error the signal, γ2e to further assure correct operation.

Local Stability

For e = sin θ̃ and assuming ω̇r = 0, i.e., no acceleration (the impact of ω̇r 6= 0 is

investigated below), the error dynamics of (4.1) and (4.2) are governed by

˙̃ωr = − ˙̂ωr = −γ1 sin θ̃ (4.4)

˙̃θ = θ̇ − ˙̂
θ = ω̃r − γ2 sin θ̃. (4.5)

Equilibrium points of (4.4) and (4.5) are given by {ω̃?r , θ̃?}={0, nπ} where n is an

integer. Naturally, the equilibrium points given by {ω̃?r , θ̃?} = {0, 2nπ} should be

stable and well damped, since they correspond to perfect field orientation. Lineariz-

ing (4.4) and (4.5) around {ω̃?r , θ̃?}={0, 2nπ}, the characteristic polynomial, c(p),

is found as

c(p) = p2 + γ2p+ γ1. (4.6)

By choosing the gain constants γ1 and γ2, arbitrary placement of the two poles,

i.e., the solutions to c(p) = 0, is possible. In order to obtain a well damped system

(reducing the impact of noise and oscillations), the poles of the linearized system

are placed in p1,2 =−ρ, where ρ is a positive, real constant, which can be chosen

arbitrarily. This leads to the following selection for the gain parameters γ1 and γ2:

γ1 = ρ2, γ2 = 2ρ. (4.7)

With this selection of γ1 and γ2, the poles of the equilibrium points {ω̃?r , θ̃?} =

{0, nπ}, n odd, are given by p1,2 = ρ(1 ±
√

2). As p1 > 0, this set of equilibrium

1For the signal-injection method, sin θ̃ should be replaced by
sin 2θ̃

2
.
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points are unstable, which is attractive since they correspond to an angular estima-

tion error of π electrical radians.2

Impact of Noise

Around the stable equilibrium points, sin θ̃ can be approximated as sin θ̃ ≈ θ̃, an

approximation which also was used in the linearizing procedure above. However, in

practice, there will be noise in the error signal e, arising due to disturbances such as

harmonics and measurement noise. Hence, e≈ θ̃−ν, where ν is the noise term. A

block diagram of the error dynamics (4.4) and (4.5) is shown in Fig. 4.1.

Fig. 4.1 Block diagram of the error dynamics (4.4) and (4.5), where ν represents additional
noise added to the error signal e.

The transfer functions from ν to ω̃r and ν to θ̃ are given as

Gν,ω̃r
(p) =

ρ2p

(p+ ρ)2
(4.8)

Gν,θ̃(p) =
ρ(2p+ ρ)

(p+ ρ)2
(4.9)

respectively. As the estimated speed is used in the current controller, it is vital

that the noise content of the speed estimation error is low. A Bode diagram of

|Gν,ω̃r
(jω)| for ρ=0.05, 0.1 and 0.2 pu is shown in Fig. 4.2. As seen, the impact of

noise on the speed estimate is most severe for noise frequencies around ω≈ρ. Also,

the peak magnitude of |Gν,ω̃r
(jω)| is given by max(|Gν,ω̃r

(jω)|)=ρ/2; it is increas-

ing linearly with increased ρ. Thus, ρ should not be selected larger than necessary

(to achieve good tracking) as the sensitivity to noise then would increase.3

Regarding |Gν,θ̃(jω)|, the peak magnitude is found as max
(
|Gν,θ̃(jω)|

)
=2/

√
3,

which is obtained at ω=ρ/
√

2.

2The estimated d-axis is then aligned to a magnetic south pole of the rotor rather than a north
pole, which corresponds to perfect field orientation.

3A typical choice for ρ used in the experiments is ρ=0.1 pu. Hence, noise of frequencies around
ω≈0.1 pu, will be magnified by approximately 35 dB (obtained from Fig. 4.2).
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Fig. 4.2 Bode diagram of |Gν,ω̃r (jω)| for three typical selections of the gain constant ρ.

4.2.1 Non-Linear Effects

Proof of Stability

The error dynamics given by (4.4) and (4.5) are nonlinear due to the sin θ̃ expres-

sion. Therefore, not only the local stability properties of the equilibrium points, de-

termined by the locations of the poles, but also the global stability properties should

be taken into account. In [26], stability of (4.4) and (4.5) is shown using Lyapunov

theory [39].

Loss of Synchronism – Cycle Slips

The described estimator possesses many attractive properties. First, the estimator

will always converge to the locally stable equilibrium points, which was shown us-

ing Lyapunov theory. Thus, any estimation error will be recovered from. Secondly,

the poles of the equilibrium points are located at p1,2 =−ρ. Thus, the system is well

damped which will increase the estimator’s ability to quickly recover from minor

deviations from the equilibrium points.

By normalizing the angular frequency and time by introducing Ω̃r = ω̃r/ρ and

τ =ρt, the error dynamics, given by (4.4) and (4.5), with the selection of γ1 and γ2

given by (4.7), can be expressed as

˙̃Ωr = − sin θ̃ (4.10)

˙̃
θ = Ω̃r − 2 sin θ̃. (4.11)
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Studying (4.10) and (4.11) instead of (4.4) and (4.5) allows conclusions to be made

which are not directly dependent on the parameter ρ, although the time scale, of

course, is changed.

Since the system is of second order, drawing phase portraits is a useful technique

for analyzing the systems behavior far away from the equilibrium points and by

doing this, an interesting property is revealed.

Fig. 4.3 shows a phase portrait of (4.10) and (4.11). Of particular importance are

the separatrices, i.e., the solutions that converge to the saddle points at Ω̃r= ω̃r/ρ=

0, θ̃=nπ, n odd. These divide the phase plane into convergence regions. If the esti-

mator is initialized in the region enclosed by separatrices A and B, θ̃ will converge

to 0. However, if initialized in the region enclosed by separatrices B and C, θ̃ will

converge to 2π, and so forth. This means that the estimator falls one or more revolu-

tions behind the machine (cycle slips in PLL terminology [80] and pole slipping in

synchronous machine terminology [74]); synchronism is temporarily lost. Note that

the separatrices are stacked densely for |Ω̃r|>3⇒|ω̃r|>3ρ; initialization at θ̃≈0,

|ω̃r|> 3ρ may, thus, lead to numerous cycle slips, giving a long re-synchronization

process. This is unacceptable, and should, if possible, be avoided.

While selecting ρ larger (a selection rule is given in (4.74)) would improve the

situation, this also increases the estimator’s sensitivity to disturbances, as discussed

above. Therefore, ρ should only be large enough to cope with accelerations that

occur normally, while a function by which abnormally rapid accelerations can be

handled safely should be incorporated. A method to achieve this is presented in

Section 4.6.

4.3 Signal Injection

The input of the PLL-type estimator discussed in the previous section is the error

signal, e, which ideally has the form e = sin θ̃. Two methods how to obtain this

signal will be discussed, here and in Section 4.4, respectively.

The first method is based on adding an additional high-frequency voltage and

obtaining the error signal from the produced high-frequency content in the current.

The method was, in this form, first presented by Corley and Lorenz [19]. The key

idea is to inject a high-frequency voltage, Ve cosωet, in the d-direction seen by the

control system, i.e., determined by θ̂. Due to saliency, spatial information can ob-

tained in the estimated q-component of the current. The technique can be explained

as follows.
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Fig. 4.3 Phase portrait of the error dynamics of the estimator. Solid lines indicate solu-
tion curves. The dashed lines are the separatrices of the saddle points at {ω̃r, θ̃}=
{0, nπ}, n odd, indicated by squares (�). The circles (◦) mark the stable equilib-
rium points at θ̃=nπ, n even.

The voltage equation in rotor-fixed dq-coordinates is, from (2.14), given as

v = (Z + pL) i + ωrψm (4.12)

where p→ d/dt and the subscripts, dq, have been dropped. Neglecting the induc-

tance harmonics, Z and L are found as

Z =

[
Rs −ωrLq
ωrLd Rs

]
L =

[
Ld 0

0 Lq

]
. (4.13)

Furthermore, neglecting the flux-linkage harmonics, ψm=[0 ψm]T .

Now, a set of estimated rotor coordinates is introduced, displaced with the angle

θ̃=θ−θ̂. The true dq-coordinate system, fixed to a magnetic north pole of the rotor,

as well as the estimated coordinate system are shown in Fig. 4.4. The transformation

of a general current or voltage vector, f = [fd fq]
T , is given by f̂ = eJθ̃f , where

f̂ =[fd̂ fq̂]
T . The matrices J and eJθ̃ are introduced as:

eJθ̃ =

[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

]
, J =

[
0 −1

1 0

]
. (4.14)

Now, a high-frequency voltage, with amplitude Ve and angular frequency ωe, is

injected in the d̂-direction. Thus, the voltage vector, expressed in the set of estimated
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Fig. 4.4 Definition of the rotor-fixed dq-coordinates and their estimates.

coordinates, is given by

v̂ = [Ve cosωet 0]T . (4.15)

As will be shown, the method has drawbacks which makes it suitable only for zero-

and low-speed operation. Therefore, ωr ≈ 0 is assumed. The current vector, ex-

pressed in estimated rotor coordinates, is then given by

î = eJθ̃ (Z + pL)−1 e−Jθ̃
v̂. (4.16)

Assuming that θ̃ changes slowly as compared to the frequency ωe, it can be viewed

as a slowly varying parameter. Eq. (4.16) can then be solved analytically using the

traditional jω-method. The steady-state solution for the current in the q̂-direction

can then be found as

iq̂ =
ωe(Ld + Lq)Rs cosωet + (ω2

eLdLq − R2
s) sinωet

2(R2
s + ω2

eL
2
d)(R

2
s + ω2

eL
2
q)

Veωe∆L sin 2θ̃. (4.17)

Thus, rotor position information is found in iq̂, due to the term sin 2θ̃, provided

that the machine possesses saliency, i.e., ∆L 6= 0. Naturally, iq̂ will also contain a

dc component if irefq 6= 0. This can be removed by adding a high-pass filter with a

very low angular cut-off frequency, ωhp, typically corresponding to only a few Hertz

[46]. Since the frequency of the added signal is perfectly known, demodulation of

the signal can easily be performed. Thus, the q̂-current is then demodulated, i.e.,

multiplied by sinωet, and filtered using a low-pass filter with the angular cut-off

frequency ωlp. Since sin2 ωet= (1 − cos 2ωet)/2, the low-pass filtered current is a

dc component containing rotor position information. This signal, esi, is then found

as

esi = LPF{HPF{iq̂} sinωet}

=
Veωe∆L (ω2

eLdLq − R2
s)

4(R2
s + ω2

eL
2
d)(R

2
s + ω2

eL
2
q)

sin 2θ̃ = K ′
e sin 2θ̃ (4.18)
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where ideal filters has been assumed. Provided that Rs�ωeLd (which is a reason-

able assumption), esi can be simplified to

esi ≈
Ve∆L

4ωeLdLq
sin 2θ̃ = Ke sin 2θ̃. (4.19)

Hence, esi contains suitable information of the angular error and (4.19) can be used

as an error signal for the estimator (4.1) and (4.2). So, when using the signal-

injection technique, the error signal, e, is obtained as

e =
esi

2K̂e

≈ sin 2θ̃

2
≈ sin θ̃ (4.20)

where the approximation is valid for no parameter errors and small θ̃. K̂e is an

estimate of Ke using estimated parameters L̂d and L̂q. Note that even with perfect

knowledge of the inductances and assuming an ideal inverter, K̂e will not be equal

to the true value K ′
e due to the impact of the stator resistance.

4.3.1 Operation Without Filters

As seen in Fig. 4.2, the estimator is sensitive to noise of frequencies around ω≈ ρ.

However, it is reasonable to assume that the frequency of the injected signal is much

higher compared to ρ. Fig. 4.2 also shows that frequencies much higher than ρ are

strongly damped (limω→∞Gν,ω̃r
(jω)= 0) . Hence, it is useful to investigate if any,

or both, of the filters used can be removed (simplifying the estimator somewhat),

since the estimator itself has band-pass filter characteristics.

Operation Without Low- and High-Pass Filters

As shown above, the current in the estimated q-direction (assuming accurate model

parameters) is given by

iq̂ = 2Ke sinωet sin 2θ̃ + iq0 ≈ 4Ke sin(ωet)θ̃ + iq0 (4.21)

where iq0 is the dc component and the approximation sin 2θ̃≈2θ̃ has been used. As

above, iq̂ is demodulated and the error signal is obtained as

e =
iq̂ sinωet

2Ke
≈ θ̃ +

iq0 sinωet

2Ke
− θ̃ cos 2ωet

︸ ︷︷ ︸
−ν

(4.22)

where the second and third terms on the right-hand side of the approximation in

(4.22) can be considered as noise, ν. Hence, if filters are not used, a noise term
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arises in the error signal which is proportional to iq0. The amplitude of this noise,

ων, can then, from (4.8), be calculated as

ων =

∣∣∣∣Gν,ω̃r
(jωe)

iq0
2Ke

∣∣∣∣ =
ρ2|iq0|
2Keωe

=
2ρ2LdLq|iq0|

∆LVe
. (4.23)

Note that ωe is cancelled as it also appears as ω−1
e in Ke. As a numerical example,

consider the PMSM of which parameters are given in Appendix B. Assume that the

voltage Ve=0.2 pu is allowed for high-frequency signal injection. A very moderate

demand is that when the PMSM is operated at base current, the amplitude of the

noise on the speed estimate should be less than 0.01 pu (note that this noise will be

also present during steady-state conditions), i.e., ων ≤ 0.01 pu at iq0 = Ibase =1 pu.

From (4.23), the following limit on the bandwidth of the estimator is then obtained:

ρ ≤
√

ων∆LVe
2LdLqIbase

(4.24)

With the parameters assumed above, this gives the limit ρ ≤ 0.04 pu. The limit

imposed on ρ, with this set of motor parameters (saturation of Lq is neglected)

and the selection of Ve, is fairly strong. In the experiments, choosing ρ = 0.1 pu

has often been used (see also Section 4.5.1). Therefore, sensorless operation of the

PMSM utilizing signal injection without filters is not recommended for the PMSM

used in the experiments. For other drives, (4.24) can be used to predict if filters are

needed when utilizing signal injection. However, as shown below, the quality of the

estimates, especially at transients, is improved significantly if low- and high-pass

filters are used.

Operation Without a Low-Pass Filter

As discussed above, the dc component of iq will add additional noise to the error

signal. If a high-pass filter, with a very low angular cut-off frequency, is added, the

dc component will be effectively removed during steady-state conditions. However,

consider a stepwise change in irefq . In vehicle applications, where the effective iner-

tia of the shaft of the PMSM typically is large, the rotor speed will increase very

slowly (as compared to the time scale of the estimator dynamics). Since the cut-off

frequency of the high-pass filter is low, the corresponding (stable) poles are located

close to the origin and therefore, transients will be removed slowly. Hence, although

the high-pass filter will remove the dc component arising in the error signal com-

pletely, it will be clearly apparent initially and add noise the estimates (speed and

rotor position). It can therefore be expected that the quality of the estimates, when
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operation with only a high-pass filter, will be good during steady-state conditions,

but noise will arise during current transients.

Fig. 4.5 shows simulation results of the speed-estimation error, ω̃r, where fixed

speed, ωr = 0.025 pu, is set and id = iq = 0 at t = 0 s. The parameter errors

L̃q = −0.2Lq, L̃d = −0.2Ld, R̃s = 0.5Rs are assumed and the bandwidths of the

current loop and estimator are set to αc = 1 pu, ρ = αc/10. At t = 0.01 s, irefq is

changed to irefq =0.5 pu. The carrier frequency is set to ωe=10 pu and Ve=0.1 pu.

In Fig. 4.5a), neither the high- or low-pass filters are used. As seen, there is a

steady-state noise in ω̃r with an amplitude of approximately 0.05 pu. This agrees

fairly well with (4.23) which predicts an amplitude of approximately 0.04 pu. A

second-order Butterworth high-pass filter with an angular cut-off frequency, ωhp =

0.025 pu (corresponding to 5 Hz), is now added, and the results are shown in Fig.

4.5b). As mentioned above, the high-pass filter removes the dc-component in an

exponential rate so noise arises initially in ω̃r, but vanishes in the steady state. In

Fig. 4.5c), no high-pass filtering is being done, but a low-pass filter is added. In

order not to degrade the performance of the estimator, the angular cut-off frequency

of the low-pass filter is set to ωlp = 5ρ (see also Section 4.3.5). As seen, the major

part of the noise arising in ω̃r vanishes, but some noise is still apparent even in the

steady state. In the results shown in Fig. 4.5d), both the high- and low-pass filters

are used and the noise in ω̃r is very small and vanishes in the steady state.

From the discussion above and the corresponding simulation results, it can be

concluded that sensorless control for the estimator without using low- and high-pass

filters is possible, although a steady-state noise will arise in the estimates. To im-

prove the quality of the estimates, especially at current transients, it is recommended

to use both low- and high-pass filters. Regarding the selection of cut-off frequencies

for the filters, see Section 4.3.5.

4.3.2 Impact of Inductance Saturation

The inverter is not an ideal voltage source and cannot produce the ideal carrier

voltage Ve cosωet. Also, the filters used in (4.18) to obtain esi should be of low order

(first or second) in order to reduce the amount of computations for the DSP used in

the implementation. Other phenomena, such as inverter dead time and measurement

errors in the current sensors, will further affect the obtained signal esi. Thus, (4.18)

represents a somewhat idealized situation. Nevertheless, it is important to analyze

the effect of parameter variations on esi, since this will affect the obtained error

signal, in the actual implementation, in a similar way.
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Fig. 4.5 Simulation showing the speed estimation errors arising due to a step in iq at t=
0.01 s. a) Without low- and high-pass filters. b) With high-pass filter only. c) With
low-pass filter only. d) With high- and low-pass filters.

As shown above, the impact of the stator resistance is minor, so K ′
e ≈ Ke is

typically a good approximation. With the selection of the gain constants given by

(4.7), the error dynamics, when using (4.20) as error signal, are found to be

˙̃ωr = − Ke

2K̂e

ρ2 sin 2θ̃ (4.25)

˙̃θ = ω̃r −
Ke

K̂e

ρ sin 2θ̃. (4.26)

Ideally, K̂e equals to Ke and the quotient Ke/K̂e = 1. However, since Lq saturates

for large q-currents, the value of Ke will decrease for increased iq0. For a saturation

level of Lq given by (2.25), the quotient Ke/K̂e, when using a non-saturated value

62



4.3. Signal Injection

of Lq when calculating K̂e, will decrease from Ke/K̂e = 1 (for iq0 = 0), down

to Ke/K̂e ≈ 0.76 for iq0 = 1 pu. The error dynamics, given by (4.25) and (4.26),

can easily be linearized around the stable equilibrium point {ω̃?r , θ̃?}= {0, 0} by

replacing sin θ̃ by θ̃. The poles of the linearized error dynamics are then found as

p1,2 = −ρξ
(

1±
√

1− 1

ξ

)
, ξ =

Ke

K̂e

. (4.27)

Hence, for K̂e=Ke⇒ξ=1, the poles (eigenvalues) of the error dynamics are given

by p1,2 =−ρ, which is the desired pole placement. Fig. 4.6 shows the root loci of p1,2

when the ξ is varied as 0.5≤ ξ ≤ 1.5. It is seen that the damping is reduced when

ξ is decreasing. This is unwanted, since it would yield a “less stable” estimator,

increasing the risk of large deviations from the equilibrium point during transients.

During the convergence procedure back to an equilibrium point, the estimator might

converge to an equilibrium point corresponding to incorrect magnetic polarity (see

below). Computing an accurate value of K̂e, by taking saturation of Lq into account

and update K̂e at each sample step is possible. A simpler solution is to calculate K̂e

using a saturated value of L̂q. The poles of the error dynamics will then be real (even

for loaded conditions) and both placed near p=−ρ. A drawback, that typically is

minor, is that the estimator will be slightly slower when Lq is not saturated than

otherwise.

Fig. 4.6 Root loci for the linearized error dynamics (4.25) and (4.26), linearized around
ω̃?r = θ̃? = 0, when K̂e is computed excluding the effect of saturation of Lq. The
arrows indicate the direction of decreasing ξ.

4.3.3 Magnetic Polarity

The equilibrium points of (4.25) and (4.26) are given by {ω̃?r , θ̃?}={0, nπ
2
}, where

the stable equilibrium points correspond to even ns. It is important to note that the
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equilibrium points corresponding to n = ±2,±6,±10, . . . also are stable (due to

the sin 2θ̃ expression). These equilibrium points correspond to a field orientation

aligned to a magnetic south pole of the rotor rather than a north pole, which is

incorrect. Hence, the d̂-axis is aligned to the negative d-axis.

The fact that the signal injection method (at least as it is formulated in this the-

sis) is unable to determine magnetic polarity is a disadvantage, especially during a

start-up procedure. Several different schemes to detect the correct magnetic polarity

have been proposed in the literature. Many of these schemes rely on the fact that the

saturation of Ld and Lq are different due to a smaller effective air gap for Lq. Al-

though not covered in this thesis, some examples of methods to detect the polarity

are found in [22, 34, 65].

4.3.4 Summary of Properties of the Signal Injection Method

In the opinion of the author, the signal injection method has several important prop-

erties, of which only one can be considered as an advantage. They can be summa-

rized as follows:

1. Potential to operate at very low, including zero, speed

As mentioned, speed and position estimation at zero and low speeds when uti-

lizing back-EMF estimation methods can be considered very challenging. Al-

though the signal injection method requires that the PMSM possesses saliency

(at least in the form discussed in this thesis), the possibility to operate at zero

and low speeds must be considered as a major advantage.

2. Magnet polarity cannot be detected

The fact that the magnetic polarity cannot be detected directly is a disadvan-

tage, since it requires some, perhaps time-consuming, initiation procedure to

detect the true rotor position at start-up. This will increase the complexity of

the estimation algorithm.

3. Additional losses

Since the inverter must produce the additional high-frequency carrier voltage,

this will naturally produce additional losses, both in the PMSM and inverter.

The resistive losses in the stator can be estimated by solving for the steady-

state solution of (4.16) assuming θ̃≈0. The solutions are found as

id̂ = id =
Ve (Rs cosωet+ ωeLd sinωet)

R2
s + ω2

eL
2
d

(4.28)

iq̂ = iq = 0. (4.29)
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The resistive losses in the stator (solely due to the signal injection) can then

be estimated as

Ploss,PMSM =
3

2
v̂
T
î =

3

2
Ve cos(ωet)id (4.30)

where the expression of id is given by (4.28). The mean value of Ploss is found

as

P loss,PMSM =
3V 2

e Rs

4 (R2
s + ω2

eL
2
d)
≈ 3V 2

e Rs

4ω2
eL

2
d

. (4.31)

The rms value of the carrier current in each phase is

Irms =
id√
2
≈ Ve√

2ωeLd
(4.32)

where Rs � ωeLd is used in the approximation. The additional conducting

losses in the inverter are from (3.11) and (3.14) given by

Ploss,inv ≈
3Ve
ωeLd

(
2V

π
+

rVe
2ωeLd

)
. (4.33)

Assuming Ve = 0.1 pu, ωe = 2.5 pu and using the inverter parameters given

in Appendix B, the additional losses, consisting of Ploss,PMSM and Ploss,inv

correspond to approximately 50 W (0.001 pu), where the major part arises

due to the on-stage voltage drops of the transistor and diode. Naturally, due

to the simplicity of the loss models used, this value is very approximative.

Though not considered in this thesis, additional losses in the magnet due to the

high-frequency carrier injection can be estimated using finite-element meth-

ods.

4. Reduction of available inverter voltage

Since the carrier voltage is added to the fundamental voltage, produced by

the current controller, this reduces the available voltage that can be used for

control purposes. If the signal injection method is utilized in the whole speed

region, this will reduce the maximum speed that can be reached.

5. Dependency of inverter dead time

For PMSMs with small saliency, as shown in [78], the voltage distortion due

to the inverter’s dead time can have a significant influence on the speed and

position estimates. Therefore, choosing a suitable dead-time compensation

method is of essence when signal injection techniques are used for PMSMs

with small saliency [78].
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6. Introduction of additional parameters

An attractive property that simplifies the implementation of any estimator is if

design rules for each parameter introduced are included. The rules (formulas)

should preferably be based on parameters of the PMSM and inverter. For the

signal injection method, the parameters introduced are:

1. Amplitude of the injected carrier signal.

The amplitude of the carrier signal, Ve, should be set so that the am-

plitude of the produced high-frequency current is large enough to be

detected clearly by the current sensors [18]. However, increasing the

carrier voltage naturally also increases losses and reduces the amount of

voltage available for producing the fundamental currents.

2. Frequency of the injected carrier signal.

Increasing the carrier frequency, ωe, is an advantage since, as indicated

earlier, it reduces the sensitivity to the stator resistance. Results given in

[71]4 also indicate that the carrier frequency should be selected as high

as possible (up to the limit set by the motor parasitic effects). The limit-

ing factor here is the inverter switching frequency which, with increased

carrier frequency, limits the possibility to obtain a carrier signal with

sufficient quality.

3. Filter bandwidths.

The error signal, e, which is obtained from esi is obtained using two fil-

ters. Angular cut-off frequencies of these filters should be recommended

in order to simplify the implementation.

4.3.5 Parameter Selections for the Signal Injection Method

To obtain proper estimates with the signal injection method, the amplitude and fre-

quency of the injected carrier frequency must be chosen correctly, as well as band-

widths of the low- and high pass filters utilized. Rules of thumb for the selection of

these parameters can be determined as follows.

First, the frequency of the carrier signal is limited by the switching frequency,

fsw. Thus, keeping ωe≤ωsw/10 will produce a carrier voltage of high quality. How-

ever, the carrier frequency must also be set high enough so that it does not affect

the current controller. These two demands are somewhat contradictory, since it is

4The paper contains a sensitivity analysis, with respect to rotor position, of the transfer function
between the injected carrier voltage and its corresponding high-frequency current.
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often natural to increase the current controller bandwidth, αc, to obtain as fast dy-

namic response as possible. Selecting ωe at least five times higher than αc will keep

the carrier frequency sufficiently separated from the current control loop. Thus, ωe
should be selected as

5αc ≤ ωe ≤ ωsw/10. (4.34)

Due to high harmonic content in the magnetic-flux linkage and inductances, it is

sometimes desired to increase the current controller bandwidth as much as possible

to obtain sinusoidal currents. A result of this can be that the lower limit in (4.34)

can be hard to fulfill.5 In this case, it can be recommended to reduce the lower limit

and replace the decoupling elements±ω̂rLd,qid,q in the current controller with their

reference values, i.e., ±ω̂rLd,qirefd,q. With this choice, the current controller will be

less sensitive to the high-frequency carrier current at the cost of a higher impact of

cross coupled currents during current transients.

Remark: Since the carrier frequency is perfectly known, the carrier frequency

visible in the current signals fed to the current controller could also be removed by

adding a notch filter. This technique is, however, not utilized in this thesis.

The amplitude of the injected carrier current, proportional to Ve, must be high

enough so that it can be detected with good accuracy from the current measurement.

In order to reduce the effects of current sensor and analog-to-digital-quantization

noise, it is natural to select the maximum amplitude of the current containing the

error signal (given by (4.21)) at least larger than five percent of base current, since it

will then be accurately sensed by the current sensors. This gives the following rule

for the selection of Ve:6

Ve ≥
IbaseωeLdLq

10∆L
. (4.35)

Remark: When utilizing (4.35) to select Ve, the impact of the quality of the

current sensors, as described above, has a large influence and should be taken into

account.

The bandwidth of the high-pass filter, ωhp, should be selected very low, typically

a few Hertz, to remove only the dc component in iq. Regarding the selection of ωlp,

a rule of thumb is to select ωlp 5–10 times larger than ρ, in order to avoid degrading

the performance of the estimator.

5As a numerical example, consider a desired rise time of 1 ms for the closed-loop current control.
The closed-loop current bandwidth (expressed in SI units) is then αc = ln 9/(1 ·10−3). With the
recommendation in (4.34), the carrier frequency should not be lower than fe≥5αc/(2π)≈1700 Hz.

6With the setup of motor parameters for the PMSM used in the experiments and a carrier fre-
quency of fe =500 Hz, this gives Ve≥0.15 pu, which corresponds to 28 V.
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4.4 Back-EMF Estimation

Above low speeds, the back EMF becomes significant and rotor position informa-

tion can be obtained using a back-EMF estimate. Error signals, suitable for the

estimator, can be obtained as follows.

The voltage equation in rotor-fixed dq-coordinates is given by (4.12), where Z

and L are defined in (4.13). Using the set of estimated rotor coordinates, (4.12) can

be expressed as

v̂ = eJθ̃ (Z + pL) e−Jθ̃
î + eJθ̃ωrψm

= eJθ̃Ze−Jθ̃
î− eJθ̃L

(
J(ωr − ω̂r)e

−Jθ̃
)

î + eJθ̃Le−Jθ̃p̂i + eJθ̃ωrψm. (4.36)

Selecting the bandwidth (gain) of the estimator, ρ, a decade lower than the band-

width of the closed-loop current dynamics, αc, the current dynamics can safely be

neglected (i.e., p = d/dt = 0). Since accurate current control is assumed, v̂ is the

output voltage from the inverter. Hence, v̂ = [vref
d vref

q ]T can be assumed. An error

vector, e=[ed eq]
T , can now be obtained by subtracting the resistive and rotational

voltage drops from v̂ as

e = v̂ − Ẑî, Ẑ =

[
R̂s −ω̂rL̂q
ω̂rL̂d R̂s

]
. (4.37)

In component form, ed and eq are computed as

ed = vref
d − R̂si

ref
d + ω̂rL̂qi

ref
q (4.38)

eq = vref
q − R̂si

ref
q − ω̂rL̂di

ref
d (4.39)

where the measured currents (expressed in the set of estimated rotor coordinates)

have been replaced by their reference values in order to reduce noise. Substituting

(4.36) in (4.37), expressions for ed and eq are found as

ed = −ωrψm sin θ̃ + (ωr + ω̃r)∆L sin θ̃
(
id cos θ̃ + iq sin θ̃

)

+ R̃sid −
(
(ωr − ω̃r)L̃q + ω̃r∆L

)
iq (4.40)

eq = ωrψm cos θ̃ + (ωr + ω̃r)∆L sin θ̃
(
id sin θ̃ − iq cos θ̃

)

+ R̃siq +
(
(ωr − ω̃r)L̃d − ω̃r∆L

)
id (4.41)

where ω̂r has been replaced with ω̂r=ωr − ω̃r.

68



4.4. Back-EMF Estimation

Remark: If a rotor position sensor is used, no angular or speed estimation errors

arise in ed and eq, i.e., ω̃r= θ̃=0. The error signals, ed and eq are then simplified to

ed = R̃sid − ωrL̃qiq (4.42)

eq = R̃siq + ωrL̃did + ωrψm. (4.43)

Hence, ed and eq can (provided that a rotor position sensor is mounted) be used to

estimate the electrical parameters of the PMSM [40, 58].

The first term on the right-hand side of (4.40) contains the factor sin θ̃, which can

be used for updating the estimator. Assuming no parameter errors and a non-salient

PMSM (∆L = 0), ed is simplified to

ed = −ωrψm sin θ̃. (4.44)

For this case, the proposed error signal used in the estimator is [26]

e = − ed

ω̂rψ̂m
= − ed

(ωr − ω̃r)(ψm − ψ̃m)
≈ sin θ̃ (4.45)

where the approximation is valid assuming ψ̃m= ω̃r≈0.

4.4.1 Impact of Saliency

Modification for Large d-currents

As mentioned in Chapter 2, many PMSM concepts in HEV applications have a

salient rotor structure. Furthermore, they are designed to operate deep into the field-

weakening region; results in [23] indicate that a base-to-maximum speed ratio be-

tween 1:3-4 is optimal. The impact of not taking large negative d-currents into ac-

count for a PMSM possessing saliency is demonstrated by studying the error dy-

namics of (4.1) and (4.2):

˙̃ωr = −ρ2e (4.46)

˙̃θ = ω̃r − 2ρe. (4.47)

Selecting e as in (4.45), the characteristic polynomial, c(p), of (4.46) and (4.47)

around the (stable) equilibrium point ω̃?r = θ̃? = 0 is given by

c(p) = p2 + 2ρ

(
1− x +

ρ∆Liq
2ωrψm

)
p− ρ2(x− 1) (4.48)
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where x = ∆Lid/ψm and no parameter errors have been assumed. Large negative

d-currents arise (due to field weakening) only for high speeds, so the approxima-

tions |(ρ∆Liq)/(2ωrψm)|� |x| and |(ρ∆Liq)/(2ωrψm)|� 1 are reasonable. This

simplifies the characteristic polynomial to

c(p) ≈ (p+ ρ)2 − ρ(2p+ ρ)x. (4.49)

For id=0 ⇒ x=0, the poles are strictly real, both located at p=−ρ. However, for

id<0 ⇒ x<0, the poles are moved according to

p1,2 = −ρ+ ρ
(
x±

√
x(x− 1)

)
. (4.50)

Thus, although strictly real, the poles are moved away from p=−ρ. At maximum

speed, the d-current is opposing the total magnet flux, i.e., id = −ψm/Ld ⇒ x =

1 − Lq/Ld. With the set of motor parameters given in Appendix B, the poles are

moved to {p1, p2}≈{−4.3ρ,−0.6ρ}, i.e., the bandwidth of the estimator is reduced

down to 60% of the nominal value. Depending on the saliency ratio, i.e., the quo-

tient Lq/Ld, p1 is moved to the left in the p-plane. This is also unwanted since, if

current derivatives can be neglected when calculating ed, the poles of the estima-

tor must be located far to the right of p = −αc in the p-plane. Hence, the result

is a slower estimator which is also more sensitive to noise and current transients.

This is unwanted at high speeds, since oscillations in speed and position estimates

can cause the back EMF, reduced by the negative d-current, to grow larger than the

available inverter voltage with an increased risk of inverter shutdown or failure.

However, the negative impact of the terms containing ∆L in (4.40) (similar to

the concept extended electromotive force in [14]) are, with this type of estimator,

taken into account by computing the error signal as

e = − ed

ω̂r

(
ψ̂m − ∆̂Lirefd

) . (4.51)

With the selection of e as in (4.51), the characteristic polynomial around ω̃?r = θ̃?=0

is found as

c(p) = p2 + 2ρ

(
1 +

ρ∆Liq
2ωr(ψm −∆Lid)

)
p+ ρ2. (4.52)

The assumption |(ρ∆Liq)/(2ωr(ψm −∆Lid))|�1 is reasonable if very low speeds

are disregarded. This simplifies the characteristic polynomial to

c(p) ≈ (p+ ρ)2. (4.53)

Hence, the ideal pole placement in p1,2 =−ρ is obtained.
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Low-Speed Instability due to Saliency

An interesting observation can be made regarding the low-speed properties of the

estimator, if the back-EMF estimation method is relied upon. Assuming id = 0,

the characteristic polynomial around the equilibrium point ω̃?r = θ̃? = 0 are the

same, regardless if e is chosen as in (4.45) or (4.51). It is simply obtained by setting

x= id=0 in either (4.48) or (4.52). The resulting polynomial becomes

c(p) = p2 + 2ρ (1 + β) p+ ρ2. (4.54)

where β = (ρ∆Liq)/(2ωrψm). A necessary and sufficient condition for stability

is that the sign of all coefficients in the characteristic polynomial are equal. The

following condition for stability is then obtained

2ρ (1 + β) > 0. (4.55)

Hence, the limits

iq < −
2ψm
ρ∆L

ωr, ωr < 0 (4.56)

iq > −
2ψm
ρ∆L

ωr, ωr > 0 (4.57)

are put on iq in order to guarantee stability. These limits are also visualized in Fig.

4.7(a). The slope of the line, iq = kωr, indicating the region of instability, is also

shown. The characteristic polynomial, given by (4.54), can be rewritten by intro-

ducing p′=p/ρ. The result is

c(p′) = ρ2
(
p′2 + 2 (1 + β) p′ + 1

)
. (4.58)

As the poles are governed by c(p′)=0, there is no direct dependency on ρ (although

it is still apparent in β). The root loci of (4.58) is shown in Fig. 4.7(b) where the

parameter β has been varied as −1≤β≤0.5. For the poles to be located within 45◦

of the real axis, β >−0.3 which can be used as a rule for determine below which

speeds signal-injection methods must be relied upon. Hence, the following rule is

obtained

ωmin1 =
ρ∆LImax

2 · 0.3ψm
=

5ρ∆LImax

3ψm
. (4.59)

As a numerical example, consider ρ=0.1 pu and using the parameter of the PMSM

as given in Appendix B, this gives ωmin1≈0.1 pu.

The nature of this instability was derived assuming no parameter errors, which

is not a reasonable assumption. However, it still demonstrates an inherent property
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(a) Region of low-speed instabil-
ity arising due to saliency. The
hatched area indicates where insta-
bility arises.

(b) Root loci for (4.58) when β
is varied as −1 ≤ β ≤ 0.5. The
arrows indicate decreasing β.

Fig. 4.7 Stability region and root loci for (4.58).

of the estimator, if used a low speeds with a salient PMSM. This instability will

also arise for PMSMs with round rotors since a small saliency, due to saturation,

will typically arise for large torques (large iq). This indicates that the estimator

presented here, is not, in its present form, a good candidate for low-speed operation

of non-salient PMSMs.

Results from simulations are shown in Fig. 4.8, where fixed speed, ωr = 0.02

pu, no harmonics and no parameter errors have been assumed. In Fig. 4.8(a), iq
is reduced down to iq = −(2ψmωr)/(ρ∆L) + 0.1 pu. As predicted, the error dy-

namics are stable, although poorly damped. In Fig. 4.8(b), iq is reduced down to

iq =−(2ψmωr)/(ρ∆L) − 0.1 pu. As predicted, the error dynamics become unsta-

ble.

Bifurcations

Another phenomenon, also arising due to saliency, can be observed. Assuming no

parameter errors and irefd ≈0, ed and eq can be approximated as

ed ≈ −ωrψm sin θ̃ + ωr∆Liq sin2 θ̃ (4.60)

eq ≈ ωrψm cos θ̃ − ωr∆Liq sin θ̃ cos θ̃ (4.61)
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Fig. 4.8 Demonstration of low-speed instability, caused by saliency. Fixed rotor speed,
ωr=0.02 pu, ρ= αc/10=0.1 pu and no parameter errors is assumed.

where ω̂r≈ωr is assumed. With these approximations and using (4.51) to derive the

error signal, the error dynamics are given by

˙̃ωr = −ρ2 sin θ̃ +
ρ2∆Liq sin2 θ̃

ψm
(4.62)

˙̃θ = ω̃r − 2ρ sin θ̃ +
2ρ∆Liq sin2 θ̃

ψm
. (4.63)

For small error angles, sin2 θ̃≈0 and these terms can be neglected, yielding the de-

sired error dynamics. This is not the case for large position estimation errors, how-

ever. The equilibrium points of (4.62) and (4.63) are given by {ω̃?r , θ̃?} = {0, nπ}
and

ω̃?r = 0 (4.64)

θ̃? =





arcsin
(

ψm

∆Liq

)
+ 2πn

− arcsin
(

ψm

∆Liq

)
+ (2n+ 1)π.

(4.65)

73



Chapter 4. Speed and Position Estimation

This extra set of equilibrium points (bifurcations) will not arise if the following

inequality is fulfilled

|iq| ≤
ψm
∆L

. (4.66)

The equilibrium points corresponding to θ̃? =− arcsin (ψm/(∆Liq)) + (2n + 1)π

are stable and clearly unwanted, since they yield an erroneous field orientation.

However, for the machine parameters of the experimental motor, (4.66) sets the

limit |iq|≤1.4 pu. This value is obtained by not taking saturation of Lq into account.

Saturation of Lq for large q-currents will decrease the effective saliency, so |iq|≤1.3

pu should be considered as a conservative limit.

4.4.2 Steady-State Impact of Parameter Errors

In [26], the impact of erroneous model parameters on the position estimation error

was analyzed for id=0. As mentioned previously, this is not the general case for a

salient PMSM or if field weakening is utilized. Hence, the analysis is here extended

to cover also the case of a nonzero id. As noted previously, in the steady state with

ω̇r=0 and choosing the error signal, e, as in (4.51), it follows from (4.46) and (4.47)

that e=ed= ω̃?r =0, i.e., there is no steady-state speed estimation error. To calculate

the asymptotic rotor position estimation error, consider

ed = −ωrψm sin θ̃ + ωr∆L sin θ̃
(
id cos θ̃ + iq sin θ̃

)

+ R̃sid − ωrL̃qiq = 0. (4.67)

For small rotor-position estimation errors, a Taylor series expansion of (4.67) around

θ̃≈0 is accurate. The asymptotic rotor-position estimation error is obtained as

θ̃? ≈ − L̃qiq
ψm −∆Lid

+
R̃sid

ωr (ψm −∆Lid)
. (4.68)

For id=0, the only sensitive parameter is Lq, while for id 6=0, there is a singularity

for ωr=0. This clearly shows the need for a transition to the signal-injection method

as the speed becomes small. With the recommendations given in [26], the value of

L̂q used in the estimator should be that of a saturated condition. With this choice,

the first term on the right-hand side of (4.68) can be neglected, even for large iq.

With these assumptions, the minimum speed, ωmin, that will not yield a too large

angular estimation error is given by solving for ωr in (4.68). The following rule is

obtained

ωmin2 =

∣∣∣∣∣
R̃sid

θ̃?(ψm −∆Lid)

∣∣∣∣∣ . (4.69)
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Allowing for an angular error of 10◦; for the machine used in the experiments,

assuming R̃s = 2Rs, (4.69) gives ωmin2 ≈ 0.05 pu. A modification of the estimator

so that it relies on signal-injection techniques at zero and low speeds and the back-

EMF estimation technique at higher speeds is presented in Section 4.5.

Remark: The estimator’s sensitivity to L̃q is clearly shown in (4.68). It is inter-

esting to note that the same property also is found in [8] where speed and position is

estimated using an extended Kalman filter. In [8], results from experimentes are pre-

sented to support the sensitivity to L̃q (no analytical results are presented though).

4.5 Combination of Signal Injection and Back-EMF

Estimation

The two methods described in the previous sections can be combined by modifying

the estimator as follows

˙̂ωr = ρ2e (4.70)

˙̂
θ = ω̂r + 2ρe (4.71)

e =
ftr(ω̂r)esi

2K̂e

+ [1− ftr(ω̂r)]
ed

ω̂r(ψ̂m − ∆̂Lirefd )
. (4.72)

Here, ∆̂L= L̂q− L̂d and ftr is a transition function that determines which error sig-

nal to rely on. The shape of the transition function is shown in Fig. 4.9. It is similar

to the weight-coefficient algorithm given in [3]. Reasonable choices are ωls =2ωmin

and ωhs = 2ωls. This modification provides a smooth transition between the two

available error signals. The recommended parameter selections for the estimator,

presented in Section 4.3.5 and 4.4.2, are also summarized in Table 4.1. With the

recommended selections of ωls and ωhs, it can easily be verified that the position

estimation error remains small for all speeds and reasonable motor parameters.

Figure 4.9: Transition function ftr(ω̂r).
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Table 4.1: Recommended Parameter Selections
Parameter Recommended selection
ρ ρ ≤ αc/10
ωls max(ωmin1, ωmin2)
ωhs 2ωls

ωe 5αc ≤ ωe ≤ ωsw/10
ωhp Corresponding to a few Hertz
ωlp 5ρ ≤ ωlp ≤ 10ρ
Ve Ve ≥ (IbaseωeLdLq) /(10∆L)

4.5.1 Experimental Evaluation

The proposed estimator is evaluated on the PMSM of which parameters are found in

Appendix B. The PMSM is current controlled and the rotor speed is maintained by

the speed controller on the dc machine. The closed-loop bandwidth of the current

control is set to αc = 1.17 pu. (corresponding to a desired current rise time of 1.5

ms) which was found to be near the upper practical limit. Estimator parameters

(used in all experiment results given in this section): ρ=0.06 pu, ωls =0.5ωhs =0.1

pu, ωe = 2.5 pu, ωhp = 0.015 pu, ωlp = 5ρ, Ve = (IbaseωeLdLq) /(10∆L), which

all are in accordance with Table 4.1. The forward difference approximation is used

for discretization. The filters implemented are of second-order Butterworth type.

Naturally, the true rotor position and rotor speed are measured to obtain the amount

of error in the estimated speed and position.

Properties of the Transition Function

To demonstrate the properties of the transition function ftr, Fig. 4.10 shows an ex-

perimental result of a slow speed reversal with high load torque. As seen, the tran-

sition between the two estimation methods is performed smoothly and only small

estimation errors is observed, |θ̃|. 10◦, |ω̃r|≤ 0.01 pu (not shown). The additional

high-frequency component in id, due to the signal injection, is clearly seen. The

predicted amplitude of this high-frequency signal is Ve/(ωeLd)≈0.2 pu, which cor-

responds well to the results obtained from the measurements. The q-current also

contains a 6th order harmonic component because of the cross coupling between id
and iq due to the inductance harmonics (see Section 2.1.4).

As discussed in Section 4.2, the estimator is sensitive to noise with frequencies

near ρ. Noise in ω̂r is particulary crucial as it is used in the current controller. The

bandwidth of the estimator is set to ρ=0.06 pu. At these low speeds, the dominant

noise sources are inductance- and flux-linkage harmonics of which the lowest are of
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order 6 (see Section 2.1.4). Hence, the speed estimation should be most sensitive to

noise for rotor speeds around ωr≈ ρ/6=0.01 pu, i.e., at very low rotor speeds. As

seen in Fig. 4.10d), the noise content in ω̃r is very low but, as expected, the noise

content is increasing around the lowest speeds.

Figure 4.10: Experimental results from a slow speed reversal with high load torque.

It is interesting also to investigate the performance of the estimator when it relies

equally much on both error signals, i.e., when ftr =0.5. In Fig. 4.11, a step in iq at

t=0.1 s is shown when ftr≈ 0.5. As seen, the initial current transient causes only

minor influence on the angular estimation error also in this case. Due to the slow

dynamics of the speed controller on the dc machine, the rotor speed is increasing,

causing ftr to drop down to zero at t ≈ 0.25 s. Additional measurements with iq≤1

pu have been made, showing similar results (although the rotor speed is increasing

much faster due to the limitations of the speed controller on the dc machine).
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Figure 4.11: Experimental results showing the impact of a step in iq at ftr≈0.5.

Vehicle Operation

The U.S. FTP-72 driving cycle, shown in Fig. 3.4a), is again chosen as a relevant

driving cycle since it simulates an urban route with frequent stops [20].

Fig. 4.12 presents one-second samples of operating points for the PMSM (torque

and speed). The operating points that are chosen for experimental evaluation are in-

dicated as squares in the figure. Fig. 4.13 shows measured angular estimation errors

for two electrical periods at operating points A, B, and C, respectively. Clearly, the

angular estimation error is small (less than 10◦) in all cases.

At rotor speeds below 0.1 pu, signal injection is utilized. Due to the frequent

stops in the U.S. FTP-72 driving cycle, the drive cycle-simulation shows that the

signal-injection technique is utilized in approximately 23% of the whole cycle.

However, the estimated energy loss due to the signal injection in inverter and PMSM,

estimated using (4.31) and (4.33), during the drive cycle is less than 0.9% of the to-

tal energy loss in the PMSM and inverter. Thus, it is reasonable to assume that the

impact of additional losses in PMSM and inverter, due to the signal injection, are

low in a vehicle application.

Remark: The parameters of the estimator are set according to Table 4.1 and

no additional tuning is being done. Hence, the measurement results presented in
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Figure 4.12: One-second samples of operating points for the PMSM in the U.S.
FTP-72 driving cycle (also shown in Fig. 3.4a)). The dashed line indicates the region
up to where the signal injection method is utilized.

Fig. 4.11 and Fig. 4.13 could possibly be improved somewhat further by additional

(time consuming) tuning of the estimator’s parameters. Other possible sources of

error include inaccuracies of the current sensors and impact of dead time and ad-

ditional voltage drops in the VSI. However, as the purpose of the experiments is

to demonstrate significant properties of the estimator, no additional tuning is being

done.

4.6 Modification for Improved Tracking

The tracking performance of the estimator for ω̇r 6= 0 (accelerations) is also of im-

portance to study. In a well-designed estimator, the bandwidth ρ should be selected

so that accelerations that occur normally are tracked with only small excursions

about the equilibrium point ω̃r= θ̃=0.

Consider a moderate, and approximately constant, acceleration (which is rea-

sonable, seen over a short time interval); this implies adding ω̇r to the right-hand

side of (4.4). Setting ˙̃ωr=
˙̃
θ=0 in (4.4) and (4.5) and solving for {ω̃?r , θ̃?} yields the

following asymptotic tracking errors

ω̃?r =
2ω̇r
ρ
, θ̃? = arcsin

ω̇r
ρ2
. (4.73)
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Figure 4.13: Experimental angular estimation error, θ̃ in electrical degrees, and rotor
angle, θ in radians, at operation points a) A, b) B, and c) C, respectively. The time
is normalized with the period time T , i.e., τ = t/T .

From this, a rule for selecting ρ can be obtained [26]

ρ =

√
|ω̇r|max

sin |θ̃|max

(4.74)

where |ω̇r|max is the maximal normally occurring acceleration, while |θ̃|max is the

maximum allowed transient error angle (e.g., 5◦ to 10◦).

This, however, does not take into account rapid accelerations of short duration.

An example is a vehicle where the speed changes abnormally fast at slipping or

locked wheels. The result is a quick buildup of the speed estimation error. Another

example is if the speed and position estimates are re-set (due to some fault) while

the rotor speed is high. A similar case is the initiation of a sensorless drive if the

rotor is rotating with unknown speed.

The resulting behavior of the estimator can be found by studying (4.10) and

(4.11) initialized at θ̃≈ 0, |Ω̃r|> 0. As discussed in Section 4.2.1, due to the dense

stacking of the separatrices at |Ω̃r| ≥ 3, numerous cycle slips can arise, giving a

long, unacceptable, re-synchronization process.
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The desired improvement can be achieved by also using the error signal eq
which, assuming no parameter errors and a non-salient machine, is, from (4.41),

given by

eq = ωrψm cos θ̃. (4.75)

Of interest is that eabs =
√
e2d + e2q gives the modulus of the speed, regardless of θ̃:

eabs =
√
e2d + e2q = |ωr|ψm. (4.76)

Consequently, given that the sign of ωr is known, (4.76) can be used to obtain an

approximate speed estimation error ω̃ ′r

ω̃′r =
eabs

ψ̂m
sign(ω̂r)− ω̂r. (4.77)

This can be utilized by adding a “resetting” term to the estimator (4.70)–(4.72) as

follows

˙̂ωr = ρ2e + γ0(ω̃
′
r)ω̃

′
r (4.78)

˙̂
θ = ω̂r + 2ρe (4.79)

e =
ftr(ω̂r)esi

2K̂e

+ [1− ftr(ω̂r)]
ed

ω̂r(ψ̂m − ∆̂Lirefd )
. (4.80)

The error dynamics can, for nominal and high speeds, with ω̃ ′r ≈ ω̃r, now be ex-

pressed as

˙̃ωr = −γ0ω̃r − ρ2 sin θ̃ (4.81)

˙̃θ = ω̃r − 2ρ sin θ̃. (4.82)

Comparing to (4.10) and (4.11), the error dynamics is now modified with the addi-

tion of the term −γ0(ω̃
′
r)ω̃r. As will soon be evident, −γ0(ω̃

′
r) is chosen as

γ0(ω̃
′
r) =





0, |ω̃′r| ≤ ∆ω1
ρ(|ω̃′

r|−∆ω1)
∆ω2−∆ω1

, ∆ω1 < |ω̃′r| < ∆ω2

ρ, |ω̃′r| ≥ ∆ω2.

(4.83)

Stability of the modified error dynamics given by (4.81) and (4.82) can be shown

by considering the following Lyapunov function candidate

V (ω̃r, θ̃) =
ω̃2
r

2
+ ρ2(1− cos θ̃) ≥ 0, {ω̃r 6= 0, θ̃ 6= nπ}. (4.84)
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Fig. 4.14 Choice of the gain γ0.

In order for V (ω̃r, θ̃) to be a Lyapunov function, V̇ ≤0, {ω̃r 6=0, θ̃ 6=nπ}. The time

derivative is found as

V̇ = −γ0ω̃
2
r − 2ρ2 sin2 θ̃ ≤ 0, {ω̃r 6= 0, θ̃ 6= nπ}. (4.85)

Thus, V is a Lyapunov function and stability of (4.81) and (4.82) is therefore shown.

Reasonable selections for ∆ω1,2 are ∆ω1 = ρ and ∆ω2 = 2ρ; the “resetting” term

is then fully phased in when |ω̃r| reaches the critical 3ρ. Fig. 4.15 shows the phase

portrait of the modified estimator. The separatrix stacking has now disappeared. An

initial speed estimation error of |ω̃r|≈7ρ can now be handled without risk for cycle

slips, while larger errors yield only at the most a few cycle slips (compare to Fig.

4.3).

Fig. 4.15 Phase portrait of the error dynamics of the proposed estimator with “resetting
term”. Solid lines indicate solution curves. The dashed lines are the separatrices
of the saddle points at {ω̃r, θ̃}= {0, nπ}, n odd, indicated by squares (�). The
circles (◦) mark the stable equilibrium points at θ̃ = nπ, n even.
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4.6.1 Limit Cycles due to Saliency

The advantage of the method to improve the tracking of the estimator was clearly

seen for a machine that does not posses saliency. However, the impact of saliency

should also be considered. Using (4.60) and (4.61), eabs can be approximated as

eabs =
√
e2d + e2q ≈ |ωr|(ψm −∆Liq sin θ̃) (4.86)

provided that |iq|<ψm/∆L. Assuming sign(ω̂r)=sign(ωr) and sin2 θ̃≈0, the error

dynamics are then, with ψ̂m= ψm, given as

˙̃ωr ≈ −γ0ω̃r − ρ2

(
1− γ0ωr∆Liq

ρ2ψm

)

︸ ︷︷ ︸
κ

sin θ̃ (4.87)

˙̃θ ≈ ω̃r − 2ρ sin θ̃. (4.88)

For γ0 = 0—i.e., for small ω̃′r ≈ ω̃r − [(ωr∆Liq)/(ψm)] sin θ̃—these equations are

identical to (4.4) and (4.5), which is a stable system. As an indicator of the perfor-

mance for large ω̃r, consider the following Lyapunov function candidate

V (ω̃r, θ̃) =
ω̃2
r

2
+ κρ2(1− cos θ̃). (4.89)

The time derivative is found as

V̇ =
∂V

∂ω̃r
˙̃ωr +

∂V

∂θ̃

˙̃θ = −γ0ω̃
2
r − 2κρ3 sin2 θ̃. (4.90)

Thus, for V to be a Lyapunov function, V >0 (V =0 for ω̃r= θ̃=0) and V̇ ≤0, it is

required that κ>0. One way of assuring this is to select ρ sufficiently large, which,

however, may have the negative impact of increased noise sensitivity, as argued

previously. A better alternative would be to impose the following constraint on the

reference for iq

|irefq | <
ρ2ψm
γ0ωr∆L

. (4.91)

But, since ωr of course is not known in a sensorless drive, instead it is recommended

to use

|irefq | <
ρ2ψ̂m

γ0ωmax∆̂L
. (4.92)

where ωmax is the maximum occurring rotor speed. Note that this restriction van-

ishes when γ0 =0, i.e., for normal operation. Hence, if γ0 6=0, arising if a large speed
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estimation error occurs, the limit put on iq (4.92) is used to simplify the conver-

gence procedure back to an equilibrium point corresponding to {ω̃?r , θ̃?}={0, 2nπ}.

Hence, the limit put on iq is not critical since during large estimation errors, large iq
will not produce a constant torque component since the field orientation is incorrect.

As the estimator is converging and correct field orientation is reached, the limit put

on iq vanishes.

Through simulations it is found that limit cycles tend to occur when κ < 0, as

illustrated in Fig. 4.16.

Remark: Observe that the Lyapunov function candidate (4.89) is applied to an

approximation, (4.87) and (4.88), of the estimation error dynamics. Therefore, it

does not give a strict proof of stability for κ>0 (except when ∆L=0; the proof is

then identical to that in [26]).

Fig. 4.16 Phase portrait of the error dynamics of the estimator using the error signals given
by (4.40) and (4.41). ρ=0.1 pu, ωr=1 pu, iq=2 pu, and id=0 pu. The presence
of limit cycles is clearly seen.

4.6.2 Simulation and Experimental Evaluation

Recovery from a Large Speed Estimation Error – Simulation

To investigate the proposed estimator’s capability of handling rapid accelerations,

Figs. 4.17 and 4.18 show results from simulations where the rotor speed is changed

rapidly from ωr = 1 pu, down to ωr = 0.5 pu at t = 0.1 s. The PMSM is current

controlled with irefd = irefq = 0 (similar results are obtained for irefq 6= 0 provided
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that the limit given by (4.92) is imposed. The desired closed-loop bandwidth of

the current loop is set to αc = 1 pu and the bandwidth of the estimator is set to

ρ = αc/10. The parameter errors L̃q =−0.2Lq, L̃d =−0.2Ld and R̃s = 0.5Rs are

also introduced.

In Fig. 4.17, the parameter γ0 is zero for all times and the large speed estimation

error is not recovered from quickly. During the convergence procedure, the estima-

tor undergoes 14 cycle slips, and large transients in id and iq arise.

In the simulation results shown in Fig. 4.18, the parameter γ0 is activated and

the speed estimation error is recovered from quickly, no cycle slips arise and only

small transients arise in id and iq.

Recovery from a Large Speed Estimation Error – Experiment

In this experiment, the rotor speed is controlled by a dc machine, connected to the

shaft of the PMSM. The purpose of the experiment is to demonstrate how a large

speed estimation error can be quickly recovered from as a consequence of the added

“resetting term.” The speed is adjusted to ωr = 0.32 pu and the PMSM is current

controlled with the references irefd = irefq = 0. The bandwidth of the current controller

is set to αc = 0.87 pu and the bandwidth of the estimator is selected as ρ=αc/30.

At t=0.05 s, ω̂r is set to zero, yielding a large speed estimation error, ω̃r=ωr.

Fig. 4.19 shows an experimental result where the “resetting term” is not used,

i.e., γ0 = 0. For this case, ftr = 0 in order not to activate the signal injection when

ω̂r is small. Here, the large speed estimation error is not recovered from quickly.

During the time of recovery, transients arise in id and iq, which can be reduced by

further increasing the bandwidth of the current controller. When the estimator has

converged, it has undergone five cycle slips.

Fig. 4.20 shows an experimental result of the proposed estimator. The large

estimation error vanishes quickly (within 50 ms) due to the “resetting term.” Small

transients in id and iq occur due to the estimation error. For clarity, also the phase

portrait of the two experiments is shown in Fig. 4.21, which corresponds well to

Figs. 4.3 and 4.15.

85



Chapter 4. Speed and Position Estimation

Fig. 4.17 Simulation of recovery from a large speed estimation error with γ0 =0.

Fig. 4.18 Simulation of recovery from a large speed estimation error with γ0 given by
(4.83).
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Figure 4.19: Experimental evaluation of recovery from a large speed estimation er-
ror with γ0 =0.

Figure 4.20: Experimental evaluation of recovery from a large speed estimation er-
ror with γ0 given by (4.83).
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Figure 4.21: Phase portrait of the experimentally evaluated error dynamics.

4.7 Summary of Chapter

In this chapter, the PLL-type speed and position estimator, previously developed

by Harnefors and Nee, was investigated further, particulary with respect to parame-

ter variations and the impact of saliency. Modifications were proposed for use in an

HEV application which requires operation in the whole speed region, including zero

speed. Recommended selections for each parameter introduced were given, simpli-

fying the implementation since the tuning procedure is avoided. A “resetting term,”

with the gain factor γ0 was added, which improved the estimator’s ability to handle

large speed estimation errors. The results of the experimental setup showed that the

estimator works properly. This indicates that the algoritm, with the modifications

presented, is suitable in electric vehicle applications.
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Conclusions

5.1 Summary

In this thesis, control algorithms for PMSM drives used in EV and HEV appli-

cations, were studied. Particular focus was on operation without a rotor position

sensor, i.e., sensorless control. In a vehicle application, the PMSM must operate at

very different operating points, including zero speed with large torques and at very

high speeds, thus utilizing field-weakening techniques. Therefore, the attention was

on analysis of the estimation algorithm with respect to the different operating con-

ditions that may arise.

The following summarizes the most important conclusions from Chapter 4, re-

garding sensorless control of salient PMSMs.

• The PLL-type algorithm, originally presented in [26], was modified to allow

for operation at all speeds (including zero speed).

• The resulting error dynamics, that govern the speed and position estimation

errors, were analyzed with respect to both parameter variations and shifting

operation conditions. The impact of saliency, that reduces the robustness of

the estimator if not taken into account, was highlighted and modifications

were proposed to circumvent these issues.

• A modification was proposed to improve the estimator’s capacity of han-

dling large speed estimation errors. Situations in which this can arise include

rapid accelerations and the initialization of the estimator when the initial rotor

speed is unknown.

• Simple parameter selection rules were derived for the estimator, thus elimi-

89



Chapter 5. Conclusions

nating the amount of trial-and-error tuning needed to implement the estimator.

The results obtained from measurements, using these selection rules, were of

good quality with only small transient and steady-state estimation errors.

The following summarizes the most important conclusions from Chapters 2 and 3.

• The selection rule of the integral gain of the field-weakening controller pre-

sented in [27] (considering induction motors) was verified with a similar anal-

ysis, but considering salient PMSMs.

• A transient model that takes harmonics into account was reviewed, and its

impact on current harmonics, when utilizing synchronous-frame PI current

controllers, was verified, both through simulations and experiments.

• The theory reviewed (and somewhat extended) in Chapter 3, on loss mini-

mization by means of control, can be useful as a tool when designing the

control system of any electrical drive consisting of a PMSM and VSI.

5.2 Proposed Future Work

This thesis has considered control algorithms for electrical drives in EV and HEV

applications. As always, there are many more interesting aspects that can be con-

sidered.

Regarding the development of speed and position estimation techniques, an in-

teresting issue is the development of estimators capable of low and zero-speed op-

eration of PMSMs with small (or zero) saliency. Due to increased potential to uti-

lize the compartment space as well as reduced mechanical complexity, electrical

in-wheel motors are promising candidates for propulsion in future EVs and HEVs.

Analysis and design of control algorithms for this application is therefore recom-

mended. Examples of interesting issues are experimental studies of the impact of

loss minimization control, the correct management of a common dc-link voltage

feeding each motor and the detection and handling of faults (in the inverters or

electrical machines) by means of control.
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Appendix A

Per-Unit System

The base values of the per-unit system used in the present thesis are given in Table

A.1. The system is intended for a motor with rated current In, rated electric angu-

lar frequency ωn, and np pole pairs. The available inverter voltage is used as base

voltage.

Table A.1: Base values of the per-unit system.
Base value Denomination Definition

Base voltage Vbase Vmax =
Vdc√

3

Base current Ibase

√
2In

Base impedance Zbase
Vbase

Ibase

Base angular frequency ωbase 2πfn

Base flux ψbase
Vbase

ωbase

Base inertia Jbase
VbaseIbase

ω3
base

Base power Pbase Pn

Base torque Tbase Tn
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Appendix B

Laboratory Setup and Data of

PMSM and VSI

B.1 Laboratory Setup

Fig. B.1 shows a schematic diagram of the laboratory setup used in the experiments

and which parameters also been used in the simulations in this thesis. The PMSM

is connected to a dc machine through a 3.09:1 reduction gearbox (GB). The dc ma-

chine is fed through a thyristor inverter and can be both speed and torque controlled.

A torque sensor is mounted on the shaft of the PMSM to measure the mechanical

torque (Tmech). The output flow rate (qv) as well as input (Tin) and output (Tout)

temperature of the cooling water are available for calorimetric measurements.

Figure B.1: Laboratory setup. Thick lines indicate power cables while dashed lines
indicate measurement signals.

The VSI is fed by a dc supply (0–450 V). Conducting voltage drops and dead
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time of the inverter are compensated for [44, 81]. The dc-link voltage (Vdc), phase

currents (iph) and resolver angle (θm) are available signals for the DSP, which con-

trols the VSI. The dc current (Idc) is also available for measurements. The control

algorithms are written in the C language and downloaded to the DSP (Texas In-

struments TMS320c30). The voltage references to the VSI are modulated digitally

and sent from the DSP to the VSI via optic fibers. The DSP is also equipped with

8 analog output channels for signals that are desired to be fed to the measurement

system.

A more thorough description of the laboratory setup can be found in [45].

B.2 Data of the PMSM and VSI

The nominal values of the PMSM are given in Table B.1. The parameters of the

Table B.1: Nominal values of the PMSM.
Connection Y
No. of pole pairs np 2
Rated current In 160 A
Rated frequency fn 200 Hz
Rated power Pn 50 kW
Rated torque Tn 80 Nm

PMSM are given in Table B.2. Corresponding per-unit values are also given. The

per-unit system used is defined in Appendix A.

Table B.2: Parameters of the PMSM (cold, condition).
Stator res. (f=0 Hz) Rs 7.9 mΩ ⇔ 0.010 pu
d-axis inductance Ld 0.23 mH ⇔ 0.35 pu
q-axis inductance (non sat.) Lq 0.56 mH ⇔ 0.86 pu
q-axis inductance (iq=1 pu) Lq 0.42 mH ⇔ 0.65 pu
Magnet flux linkage ψm 104 mWb ⇔ 0.71 pu
6:th harm. d-axis ψd,6 2.1 mWb ⇔ 0.014 pu
12:th harm. d-axis ψd,12 0.5 mWb ⇔ 0.0034 pu
6:th harm. q-axis ψq,6 6.0 mWb ⇔ 0.041 pu
12:th harm. q-axis ψq,12 1.2 mWb ⇔ 0.0082 pu

94



B.2. Data of the PMSM and VSI

The parameters of the VSI are given in Table B.3, where the values are adapted

from the manufacturers data sheet [57].

Table B.3: Parameters of the VSI.
Type Mitsubishi PM600DSA060
Ic,nom 600 A
rCE 2.7mΩ
VCEO 0.9 V
Eon + Eoff 306 mJ
rT 2.5mΩ
VT 0.84 V
Err 15 mJ
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Appendix C

Derivation of the Analytical Loss

Minimization Condition

In this appendix, the details of the derivation of the analytical loss minimization

condition used in Chapter 3 are presented.

The left-hand side of (3.8) can be expanded, using (3.3) and (3.4), into

∂Ploss,PMSM

∂id
= 3



ω2
rL

2
qRc (Rciq − ωr(Ldid + ψm))

(
Rc

∂iq
∂id
− ωrLd

)

(R2
c + ω2

rLdLq)
2

+
ω2
rLdRc((Ldid + ψm)Rc + ωrLdLqiq)

(
Rc + ωrLq

∂iq
∂id

)

(R2
c + ω2

rLdLq)
2

+Rs

(
id + iq

∂iq
∂id

)]
= 0. (C.1)

Here, saturation of Lq is neglected, i.e., ∂Lq/∂iq=0 is assumed. The expression for

the partial derivative ∂iq/∂id can be obtained by noting that, since the torque and

rotor speed are kept constant, ∂Te/∂id = 0 must hold for constant ωr. Evaluating

∂Te/∂id=0 using (3.6), the partial derivative is found as

∂iq
∂id

=
[
(2∆L(Ldid + ψm)− 2∆L2id − Lqψm)R2

cωr − ω3
rLdL

2
qψm

−∆LRciq(R
2
c − ω2

rLdLq)
]
/
[
Rc((∆Lid − ψm)R2

c + 2ωr∆LLqRciq

−ω2
rLq((∆L+ Lq)ψm − Ld∆Lid))

]
. (C.2)

Substituting (C.2) in (C.1) and solving for id(iq), the loss-minimization condition
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that minimizes the electrical losses is obtained as

id(iq) =
[
(−2iq(Ld + Lq)∆LR

2
cωr(R

2
cRs + ω2

rLdLq(Rc +Rs))

+ ψmRc(R
4
cRs +R2

c(2∆L2Rc − 3Lq∆LRc + L2
q(Rc + 2Rs))ω

2
r

+ ω4
rL

2
q(L

2
q −∆L2)(Rc +Rs))− {Rc(R

2
c + ω2

rLdLq)
2((4i2q∆L

2

+ ψ2
m)R5

cR
2
s − 4ωr∆L(2Lq − Ld)iqψmR

4
cR

2
s + 2R3

cRs(Lq∆Lψ
2
m(−Rc

+Rs) + 4L2
q∆L

2(Rc +Rs)i
2
q − 4Lq∆L

3(Rc +Rs)i
2
q + 2∆L4i2q(Rc

+Rs) + L2
qψ

2
m(Rc +Rs))ω

2
r − 4iqLq∆L(2L2

q − Lq∆L

+ ∆L2)ψmR
2
cRs(Rc +Rs)ω

3
r + L2

qRc(Rc +Rs)(L
2
d(4i

2
q∆L

2

+ ψ2
m)Rc + (4L2

d∆L
2i2q + (2Lq − Ld)

2ψ2
m)Rs)ω

4
r

−4L2
dL

3
q∆Liqψm(Rc +Rs)

2ω5
r)}1/2)

]
/
(
2Rc∆L(R4

cRs+

ω2
rL

2
dR

3
c − ω4

rL
2
dL

2
q(Rc +Rs)

)
. (C.3)

Hence, the solution, id(iq), given by (C.3), will minimize the total losses. As seen,

the solution is very complicated and hardly usable in a DSP implementation. To

demonstrate the validity of the solution, id(iq) is computed in the limits Rc→∞
and ωr → 0 (corresponding to no core losses and zero speed respectively). The

results are

lim
Rc→∞

id(iq) = lim
ωr→0

id(iq) =
ψm

2∆L
−

√(
ψm

2∆L

)2

+ i2q (C.4)

As expected, the well-known max torque-per-ampere solution is obtained in both

cases, see also Fig. 3.1. An analytical max torque-per-ampere solution, taking satu-

ration of Lq into account, can be found in [50].
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Sample Software Implementation

The piece of C code below implements the current controller with incorporated

field-weakening control for operation above base speed. Speed and position is esti-

mated using the estimator presented in Chapter 4. Declarations of constants, vari-

ables and certain functions are not shown. The limit on irefq , (4.92), is not included.

Forward difference discretization with the sample period Ts is used.

//Speed and position estimation**********************

te=te+Ts*we; //Compute added high-frequency signal

if (te>TwoPi) te=te-TwoPi;

udhf=Ve*cos(te);

iqhpf=hpf(iq); //High-pass filter iq

esidem=iqhpf*sin(te); //Demodulate

esi=lpf(esidem); //Low-pass filter esi

//Compute Lq taking saturation into account

Lq=Lqcomp(iqref);

ed=vd+Lq*wh*iqref-Rs*idref; //Compute ed

eq=vq-Ld*wh*idref-Rs*iqref; //Compute eq

eabs=sqrt(ed*ed+eq*eq); //Compute eabs

//Compute approximate speed est. error

wrt=(eabs/psi)*(fsign(wh))-wh;

if (fabs(wrt)<dw1) //Compute g0

g0=0.0;

else {

99



Appendix D. Sample Software Implementation

if (fabs(wrt)>dw2)

g0=rho;

else

g0=(rho/(dw2-dw1))*(fabs(wrt)-dw1);

ed=ed/(-wh*(psi-(Lq-Ld)*idref));

//Compute transition function

ftr=ftrans(wh,wls,whs);

e=(ftr*esi)/(2.0*Ke)+(1.0-ftr)*ed;

//Update estimates

wh+=Ts*(rho*rho*e+g0*wrt);

th+=Ts*(wh+2.0*rho*e);

if (th<-pi) th+=2*pi;

if (th>pi) th-=2*pi;

sinth=sin(th+1.5*Ts*wh); //Compute sinth and costh

costh=cos(th+1.5*Ts*wh);

//Transform to the dq-reference frame

abc2dq (i1,i2,i3,sinth,costh,&id,&iq);

//End of estimation algorithm************************

//Current control incorporating field weakening******

wfw=wfwcomp(wh);

//Max torque per amp including saturation of Lq

idrefnom=maxTi(iqref);

gf=af/(2*wfw*Ld*Vmax);

//Reduce idref if available voltage is insufficient

idref+=Ts*gf*(Vmax*Vmax-vd*vd-vq*vq);

//Limit idref

if (idref>idrefnom) idref=idrefnom;

if (idref<-imax) idref=-imax;

iqzero=read_ad(iqzero); //Find iqref from A/D-input

iqref=iqzero;
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//Limit iq if mode B operation

if (idref*idref+iqzero*iqzero>imax*imax)

iqref=fsign(iqzero)*sqrt(imax*imax-idref*idref);

ed_curr=idref-id;

eq_curr=iqref-iq;

//Compute ideal voltages

vd=kid*xd+kpd*ed_curr-wh*Lq*iq-Rad*id;

vq=kiq*xq+kpq*eq_curr+wh*Ld*id-Raq*iq;

vabs=sqrt(vd*vd+vq*vq); //Limit voltages

if(vabs>Vmax)

{

ud=(vd*Vmax)/vabs;

uq=(vq*Vmax)/vabs;

}

else

{

ud=vd;

uq=vq;

}

xd+=Ts*(ed_curr+(ud-vd)/kpd); //Back calculation

xq+=Ts*(eq_curr+(uq-vq)/kpq);

//Add additional carrier voltage

if (fabs(wh)<=1.1*whs) ud=ud+udhf;

//End of current control*****************************

dq2abc(ud,uq,sinth,costh,&ua,&ub,&uc);

pwm(ua,ub,uc);
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Appendix E

Glossary of Symbols, Subscripts,

Superscripts and Abbreviations

Symbols
A system matrix

Br radial flux density

b viscous damping constant

E back-EMF vector

Eoff transistor turn-off energy

Eon transistor turn-on energy

Err diode reverse recovery energy

e control error

F controller transfer function matrix

fsw switching frequency

ftr transition function

G, G transfer function and transfer function matrix

I identity matrix

I current or integration state

Ic,nom nominal transistor current

i, i current and current vector

id,max(T/i) max torque-per ampere curve

J rotational matrix, J=

[
0 −1

1 0

]

J inertia

j imaginary unit,
√
−1

K Park-transformation scaling constant or gain constant
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ki integration gain

kp proportional gain

L, L inductance and inductance matrix

ls length of stator

N turn distribution

Ns number of turns in each phase

np number of pole pairs

P power

Ps,D diode switching losses

Ps,T transistor switching losses

p d/dt

R resistance

rCE transistor lead resistance

rs inner radius of stator

rT diode lead resistance

S sensitivity function

Tdq,ph Park transformation matrix

T period time, temperature or torque

Te electro-mechanical torque

Tfric friction torque

TL load torque

t time

tr rise time

V Lyapunov function or voltage

VCEO transistor on stage voltage

VT0 diode on stage voltage

v, v voltage and voltage vector

W decoupling transfer function matrix

W coenergy

x state vector

Z, Z impedance and impedance matrix

α bandwidth

γ gain constant

∆L ∆L = Lq − Ld

θ electrical rotor angle

ϑ rotor magnet angle

ξ denotes a relative quantity
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ρ gain constant

% conductor-density distribution angle

τ normalized time

τm magnet pitch

ψ, ψ flux linkage and flux linkage vector

ω angular frequency

ωe angular frequency of the high-frequency carrier signal

ωr electrical rotor speed

· d/dt

ˆ estimated

˜ error

− modified, resulting

Subscripts
a active damping or phase a component

b phase b component

c core, current or phase c component

cl closed loop

co core component

cond conducting

d direct axis component

fric friction

fw field weakening

hp high pass (filter)

in input (power)

L load

loss losses

lp low pass (filter)

m magnet, mutual or mechanical

n nominal

ph phase quantity

q quadrature axis component

r rotor

res resistive

rms root mean square

s stator, self (inductance) or speed

ν noise
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0 zero component

Superscripts
ref reference

T transpose of matrix/vector

? equilibrium point

Abbreviations
batt. battery

DSP digital signal processor

dc direct current

det determinant

diag diagonal matrix

EMF electromotive force

EV electric vehicle

el. mach. electric machine

gen. generator

HEV hybrid electric vehicle

HPF high-pass filter

ICE internal combustion engine

IGBT insulated gate bipolar transistor

IMC internal model control

LPF low-pass filter

max maximal

min minimal

PE power electronics

PI proportional plus integral

PLL phase-locked loop

PMSM permanent-magnet synchronous machine

PWM pulse width modulation

pu per unit

ref reference

rms root mean square

trans. transmission

VSI voltage source inverter
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[27] L. Harnefors, K. Pietiläinen, and L. Gertmar, “Torque-maximizing field-

weakening control: design, analysis, and parameter selection,” IEEE Trans.

Ind. Electron., vol. 48, no. 1, pp. 161–168, Feb. 2001.

[28] J. Hellsing, “Design and optimization of a permanent magnet motor for a hy-

brid electric vehicle,” Chalmers University of Technology, Göteborg, Sweden,
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