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ABSTRACT

The present paper shows how the FTIR measurements in the combustion chamber of a
commercial fluidized bed boiler was performed and evaluated. Problems with interfering
compounds are discussed. It is concluded that the present instrument is not suitable for
measurement of hydrogen cyanide. The influence of instrument resolution and the removal
of the main interfering component, carbon dioxide are demonstrated. However, the problem
with interfering species is much less severe for ammonia, and the present instrument can
be used for the determination of this species.

INTRODUCTION

As part of a larger NO/N20 project concerning the measurement of local concentrations of
gaseous species in the combustion chamber of the 12 MW circulating fluidized bed (CFB)

boiler! at Chalmers University of Technology, nitrogen species have been measured as well.

For this purpose an fourier transform infra-red (FTIR) analyser was used. The measurement
of reducing nitrogen species such as ammonia (NHs) or hydrogen cyanide (HCN) is
important for the understanding of the nitrogen chemistry in combustion chambers.
Measurement of concentration profiles of NH3z and HCN thereby becomes an important link
of knowledge in the area of formation and reduction of nitric oxide (NO) and nitrous oxide
(N20) during fluidized bed combustion (FBC). From a previous project carried out at the
Chalmers boiler2 it can be concluded that N2O is partly formed from oxidation of HCN, while
NHs to a greater extent is oxidised to either N2 or NO depending on the local oxygen con-
centration. The purpose of this paper is to analyse the ability of the FTIR technique for
measuring NHs and HCN in combustion gases containing high concentrations of carbon
dioxide (CO2), water (H20) and unburned species such as carbon monoxide (CO) and
hydrocarbons (HC).

EXPERIMENTAL

The Boiler. The boiler has been described in detail i earlier publications23. Of special
interest for this project is the measurement holes which are located at the right side of the
combustion chamber, Figure 1. Figure 1 also shows a cross-section of the combustion
chamber seen from above.

The Operating Conditions. The fuel was the same as that used in ref. 2, a high volatile
bituminous coal. Pure silica sand was used as bed material and no lime for sulphur capture
was supplied in order to minimise the catalytic effects of the bed material on the nitrogen
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chemistry. The gas-concentration profiles were measured with the boiler operated at typical
operating conditions corresponding to a bed temperature of 850 °C, an excess air ratio of
1.20 to 1.25 and a primary air stoichiometry of 0.8. The lowest secondary air register was
used.

The Gas Sampling Probe. The gas sampling probe is shown in Figure 2. This probe is
specially designed for analysis of wet combustion gases which is important when NHs and
HCN are to be analysed. The combustion gas first passes through a ceramic filter mounted
at the tip of the probe, Figure 2c, shielded and cooled by the cooling shield of the probe.
The combustion gas is then transported through the center-pipe which was electrically
heated to approximately 200 °C, Figure 2b. In order to control the cooling of the center-pipe
heated water was used as cooling medium for the probe, Figure 2a, (temperature between
45 and 95 °C). Downstream the probe the combustion gas is transported to the gas
analysers through heated gas sampling lines. In order to clean the ceramic filter from ash
and bed material the probe is regularly back-flushed with pressurised air.

The Gas Analysis System. The Chalmers boiler is equipped with on-line conventional
flue-gas analysers for continuous monitoring of oxygen (Oz), CO, sulphur dioxide (SOz2),
NO, and N20 in the stack and Oz, NO, CO, CO2 and SOz in the combustion gas from the
gas analysis probe. Further details about the analysers can be found in ref. 1. The FTIR
analyser is connected in series with the on-line continuous gas analysers. The FTIR is a
Bomem M110-D11 with a 500 cm3 quartz glass gas cell with an optical path length of 3.6
meter. This instrument is equipped with a MCT detector and the maximum resolution is 4
cm-1. This maximum resolution was used in all tests with this instrument. The gas cell was
heated to 175 °C during the present tests. The Spectra Calc software package was used for
evaluation and control of the spectrometer. Spectra were collected in a continuous mode
where 22 mirror scans for each single-beam spectrum stored were sampled. Each scan
takes approximately one second and the stored single-beam spectra were added afterwards
to form and "average" single beam spectrum. An absorbance spectrum was then produced
from the ratio of this average single beam spectrum an a reference spectrum (100%
nitrogen) collected immediately before the sampling of the single-beam spectra. Evaluation
of spectra was carried out by spectral subtraction using spectra from pure calibration gases.

RESULTS

In Figure 3 a spectrum of a typical combustion gas sample is shown. Calibration spectra for
the major components COz and Hz20 as well as for trace components such as NHs, HCN,
N20, acetonitile (CH3CN) and isocyanic acid (HNCO) are shown in Figure 4. In an ideal
case it is possible to find an isolated wavenumber band where only the substance of
interest absorbs. It is clear from Figure 4 that there are no such regions for any of the trace
components mentioned. In addition, quantitative analyses of multiple component mixtures
can be complicated by interferences (matrix effects) in such a way that the spectrum for the
mixture differs from the spectrum obtained if the spectra for all pure components were
added. Rudling?* discusses FTIR analysis of CO2, H20, CO, N20, NO, SO2 and NH3 and
reports matrix effects for mixtures of CO2 and H20 and for the system N20-COz2 at 2200
cm. In the analyses reported below, matrix effects were assumed to be negligible.

NHs Analysis. NH3 has two distinct absorption peaks at 930 cm-! and 965 cm', Figure 4.
The major interfering component at this frequency is ethene (C2H4), whereas COz2, and for
the peak at 930 cm' also HNCO, propene (C3Hs), propadiene (CaH4) and CH3CN absorbs
weakly, Figure 4. C3H4 and CH3CN were not detectable using the present instrument, while
HNCO was subtracted according to ref. 5. The subtraction of ethene (C2H4 from a spectrum
of a measurement in the lower part of the combustion chamber (0.65 meter above the
nozzles) in the Chalmers boiler is shown in Figure 5a. The subsequent subtraction of NHsis
shown in Figure 5b. At this position in the bed a slightly higher value was obtained when the




subtraction was performed for the peak at 930 cm-! compared to that of 965 cm'. The
difference is not significant, although it can be noted that some combustion gas compo-
nents such as propene have a higher absorption at 930 cm! than at 965 cm-!. Subtraction
of propene from the sample spectrum did not influence the quantification of NHs signi-
ficantly, and at all other sample positions higher up in the combustor, where the hydro-
carbon concentration is lower, the subtractions yield approximately the same number at
both frequencies. The peak absorbance versus concentration of NH3a can be fitted by a
second order polynome, Figure 6a. In all subtractions a calibration spectrum of 525 ppm
NHs was used. The subtraction factors are given in ref. 5. The absorbance (Asample)
corresponding to the subtraction of the calibration spectra according to:

Asample' Fx A525ppm NHa = 0

where F is the subtraction factor and As2sppm NHs is the absorbance for the NH3 calibration
spectrum used. In order to achieve the concentration of NHs the calibration plot of Figure 6b
was used. The resulting NH3 concentration vs. height in the combustor is plotted in Figure
6c¢. In Figure 6¢ the uncertainty in the determination of the subtraction factor (F) on the final
NHs concentration is indicated.

HCN Analysis. From the calibration spectrum in Figure 4 it can be seen that HCN absorbs
in two regions. Its strongest peak at 714 cm-! interferes mainly with CO2. The subtraction of
a calibration spectrum of COz from a sample spectrum is shown in Figure 7a, and the
subsequent subtraction of a HCN calibration spectrum is shown in Figure 7b. As discussed
in ref. 5,6 caution is needed when the absorbance is high and it is not possible to say
whether the apparent absorption at 714 cm-! is due to the presence of HCN in the sample,
or if it is an effect of an inadequate subtraction. The "HCN peak" that appears at ca 714
cm! after the COz2 subtraction (Figure 7b) may be a result of the subtraction. A higher
spectral resolution of the FTIR analyser or a removal of the COz prior to the analysis could
favour the use of this absorption band around 714 cm-! for the HCN quantification of
combustion gases. These options are discussed in more detail later. Alternatively, the total
absorption of the sample can be reduced to acceptable values simply by diluting the sample
with a non-absorbing gas such as N2 prior to the FTIR analysis. This last obtion has not
been tested so far.

Although the absorption is weaker, an alternative band for HCN quantification is
located at 3200-3375 cm-'. In this region water has to be subtracted from the sample
spectrum prior to HCN, Figure 8a. After the water subtraction, the double peak of HCN
clearly appears on the spectrum which can be seen more clearly in Figure 8b, where the
subsequent subtraction of HCN is shown. The absorbance in this region is low and Beer's
law can be expected to be obeyed. Indeed, this is the case as seen in Figure 9, where the
peak absorbance at 3343 cm- for the HCN calibration spectrum is plotted as a function of
concentration.

Consequently, the HCN concentrations in the sample spectra obtained from the
measurements in the Chalmers boiler were quantified using the band at 3200-3375 cm-1. All
subtractions were performed using the same H20 and HCN calibration spectrum (i.e. the
water calibration spectrum corresponding to saturation at atmospheric pressure at 40 °C
(7.3% H20) and the HCN calibration spectrum to 199 ppm HCN). The main difficulty
performing the subtraction in this spectral region is that the signal-to-noise ratio (SNR) is
low. The spectral subtractions were carried out manually, and the subtraction factors were
estimated by visual observation. In order to estimate the accuracy of the analyses, both
minimum and maximum values of the subtraction factors were estimated, as well as a "best"
value. Although the low SNR makes absolute concentration predictions difficult, the analysis
gives an indication of the magnitude of the HCN concentrations. In relative terms the values
obtained can be compared. The result of the spectral subtractions is shown in Figure 10
where also the uncertainty is indicated. The minor interference with the HCN absorption
caused by the presence of C2H4 and C2H2 was not considered. In addition, CH3CN, CsHa4




and CsHe would interfere in this region, but the concentrations of these species were found
to be below the detection limit.

Removal of CO2 Prior to the Analysis of HCN. In order to investigate the possibility of
removing the COz prior to analysis of HCN, a laboratory investigation has been carried out”
with three different sorbents: ascarite™, soda lime and calcium oxide. Ascarite consists of
solid silicate particles coated with NaOH, while soda lime consists of a mixture of Ca(OH),
(> 75 weight-%), NaOH (< 3.5 weight-%) and water (< 21 weight-%). The calcium oxide was
prepared from Faxe Bryozo limestone, a Danish limestone of relativly high sulphur capture
reactivity?. The removal of CO2 was carried out at 180 °C with ascarite and soda lime, while
for the calcium oxide a temperature of 410 °C was used. Under these conditions all three
materials proved to be effective in removing almost all COz2 in the gas. Unfortunately, the
sorbents also remove all HCN present in the gas. This is illustrated in Figure 11-13 in which
a spectrum of HCN when the sorbents was by-passed can be compared with the sub-
sequent spectrum achieved after the passage of the sorbent. For the ascarite case, Figure
11 is it also shown that part of the HCN is converted to N2O. Initially, formation of N2O from
HCN was even higher for the soda lime, Figure 12, whereas the calcium oxide leads to a
conversion of HCN to NHs instead, Figure 13. In other words none of the materials tested
are suitable for removal of COz2 prior to the analysis of HCN, since all the sorbents also
affect the HCN concentration in the gas.

Analysis of HCN Using a Higher Spectral Resolution. The test of the improvement of
evaluation of HCN around 714 cm! was performed using another Bomem FTIR analyser in
series with the one used above. This extra FTIR analyser was equipped with an DTGS
detector, instead and could be operated with an resolution down to 1.0 cm-'. For this
comparison 1 cm'! was used. An average single-beam spectrum was obtained by adding 3
single-beam spectra, each produced from 5 mirror scans. An absorption spectrum could
then be produced using the reference spectrum (100% nitrogen) collected immediately
before the combustion gas. Figure 14 shows the result of the subtraction of a calibration
spectrum of COz, and Figure 14b shows the subsequent subtraction of HCN. Comparing
this last subtraction with the result of the similar subtraction in Figure 7 where the instrument
resolution was 4 cm-! shows that the HCN peak around 714 cm™' becomes much clearer
with a higher resolution. Still, the result is not satisfactory enough for quantification, and
dilution of the sample prior to the analysis is probably needed.

CONCLUSIONS

The tests on a FTIR analyser of the combustion gases from the furnace of the Chalmers
CFB boiler, show that it is possible to determine the concentrations of NH3 and HCN.
Interference from other components present at high concentrations, such as COz2, H20, CO
and a large number of hydrocarbons, complicates the analysis. NHa can be detected and
quantified using the absorption peaks at 930 and 965 cm-1, where the major interfering
components ethene can be subtracted from the sample spectrum. HCN can be detected
and quantified at 3200-3375 cm-! where the major interfering component is H20. The low
signal-to-noise ratio makes the quantification rather uncertain. The major HCN peak at 714
cm-! interferes with COz, and could not be used for quantification with the low resolution
instrument (4 cm-1). Additional tests with an instrument of higher resolution (1 cm') shows a
much better possibility for using this peak for HCN determination, but the result is still not
satisfactory. Selective removal of CO2 would improve the HCN analysis. However the
laboratory study performed shows that none of the sorbents tested can remove COz without
also affecting the concentration of HCN.
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