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ABSTRACT

Influence of homogeneous and/or heterogeneous reactions for formation and
destruction of N2O under fluidized-bed combustion conditions has been subject of

discussion during the two previous workshops on N20 (Lisbon, Tsukuba). The research

program on N20 emissions from combustion at the Chalmers circulating fluidized bed
(CFB) boiler has been focused on projects that further elucidate the various reaction
paths connected with N2O. These projects include tests where NHs, CHsCN, NO and
N20 were injected into three locations in the combustion chamber when burning fuels
of different volatile content. Apart from this, measurements of local concentrations of
nitrogen species including NHs and HCN in the entire combustion chamber have been
carried out with bituminous coal as fuel. The present paper summarizes the results
from these tests. It is concluded that both homogeneous and heterogeneous reactions
are important for the formation and destruction of N2O. Furthermore, the various
regions (bottom, top) of the CFB play different roles for the effective formation of the
N20 emitted.

INTRODUCTION

During the previous two N2O-Workshops [1], [2] there were discusions on the
significance of homogeneous and heterogeneous reactions for the emissions of N2O
from fluidized-bed combustion. It is the purpose of the present paper to illustrate the
influence of homogeneous and heterogeneous reactions for the formation and
reduction of N20 in a circulating fluidized bed (CFB) combustor using measurement
results from the 12 MW CFB boiler at Chalmers University of Technology




EXPERIMENTAL

Research equipment. The boiler and the measurement equipment have been
described in several publications [3], [4], [5] and here only a few complementary
remarks are given. Figure 1 shows the location of the measurement holes and
measurement positions. Only results from the "CC" position (Figure 1) will be used
below.

For the determination of NHs, HCN and HNCO a Fourier transform infra-red (FTIR)
analyser was used, a Bomem M110-D11 with a 500 cm3 heated quartz glass cell in
which an optical pathlength of 3.6 meter is achieved. The instrument is equipped with a
MCT detector and the resolution was 4 cm-1. Spectra were evaluated by spectral
subtraction. The following wavelengths were used: NH3: 930 and 965 cm-1; HCN: the
dubble peak between 3200-3375 cm-1; HNCO: absorption between 760-860 cm-1. The
determination of HCN and especially HNCO are very uncertain due to severe problems
with spectral interferences from water and carbon dioxide, which could not be
eliminated with the present equipment. The uncertainty is estimated, but care should
be taken nevertheless when the absolute levels of HCN are discussed. For HNCO the
concentration level is only an indication of the presence of HNCO. Further details about
the determination of NHs, HCN and HNCO can be found in [6].

The Tests. The present paper summarizes results from the following three projects:
1. Supply of CH3CN, NHs, NO and N20 to three locations in the combuston
chamber during operation with three different fuels.

2. Measurement of gas-concentration profiles along the height of the combustion
chamber.
3. Recirculation of flyash from the secondary cyclone to the combustion chamber.

The Fuels. Several fuels were used in the projects. Two bituminous coals with very
similiar fuel analysis served as reference fuel. In addition, high-volatile wood chips and
low-volatile coke were used for comparison. The fuel analyses can be found in Table 1.

The operating conditions. A reference case with standard operating conditions was
run during all tests in order to make interpretation easy. This reference case is
characterized by the following operating conditions:

Bottom-bed temperature=850 °C; excess-air ratio=1.20 to 1.25;quotation of primary to
secondary air corresponding to a calculated primary-air stoichiometry = 0.70 to 0.75;
load=8 MW giving a fluidisation velocity of 5 to 6 m/s at the top of the combustion
chamber with the air ratio chosen.

Since calcined lime is known to influence the formation of N2O as well as to catalyze
the decomposition, the tests were carried out without lime addition in order to avoid this




furher complication. The bed consisted of commercial silica sand mixed with some fuel
ash and char from the combustion of the various fuels.

RESULTS AND DISCUSSION

FORMATION OF N20

The increase of N20 as function of height, Figure 2, is similiar to that obtained

previously [3]. However, the present N20 profile shows a more pronounced formation in

the lower part of the combustion chamber than the previously measured one.

This formation may be caused by several processes:

1. Oxidation of volatile nitrogen species, such as NHs, HCN and HNCO, which are
present in the lower part of the combustion chamber (Figure 3-5) together with
volatiles such as total hydrocarbons and hydrogen, Figure 6.

2. Simultaineous reduction of NO, especially in the bottom bed region, Figure 2.

3. Combustion of the char, in the bottom below the 2 meter level where most of the
char is located and burns, Figure 7.

In order to study the significance of these processes a series of tests have been carried

out, the results of which will be discussed in the following.

Formation of N20 from Volatile Nitrogen. When CHsCN was injected to the bottom of
the combustion chamber during combustion of bituminous coal, 35% of the CHsCN
added was oxidized to N20, Figure 8. This value was calculated by measuring the
excess emission of N2O in the stack caused by the CHsCN injection considering the
N20 reduction along the height of the combustion chamber as obtained from separate
N20 injection tests presented in [17], Figure 9. In a similiar test with NHs injection only
about 5-10% of the NHs was oxidized to N20, Figure 10.These tests prove that volatile
nitrogen in the form of HCN and NHs can explain some of the increase of N20 in the
lower part of the combustion chamber as caused by homogeneous conversion in spite
of the high concentration of solids. A larger fraction of HCN than of NHs is oxidized to
N20, but since the concentration of NHas is about four times higher than that of HCN
(Figures 3 and 4) the N20 formation from NHs oxidation cannot be neglected. The
larger tendency of HCN to form N20O compared to NHs is in agreement with calculations
with kinetic models using homogeneous reactions, [7] to [9], and with laboratory
investigations, [8] and [9].

Formation of N20 when NO is Reduced. Injection of NO to the bottom of the
combustion chamber during combustion of bituminous coal showed that 45% of the NO
reduced was found as N20, Figure 11. This proves that part of the NO reduced at the
bottom of the combustion chamber (Figure 2) is transformed into N20.The mechanism
is however unclear. Is it a pure homogeneous step where, according to calculations [9],




[7], NO reacts with NCO radicals to form N20 or is char involved? In order to
investigate this, NO was also injected when coke was used as a fuel and the influence
of volatile nitrogen was minimized. In this case 35% of the NO reduced was converted
to N20 (Figure 11). On the other hand, in the case with almost no char present (and
probably less HCN also), the wood chips case, the lowerst conversion of added NO
was obtained. These tests prove that the char-related NO reduction is important for the
formation of N2O as well. The mechanism is however unclear. If the char-related N20
formation is a purly heterogeneous step, which was suggested by Tullin & Sarofim [10]
or if a homogeneous step is also involved, according to the disussion in [5], remains to
be investigated.

Formation of N20 from Oxidation of Char Nitrogen. Combustion of coke without any
injection of chemicals leads to the highest conversion of fuel nitrogen to N20 of all
investigated fuels. This is shown in Figure 12 together with results from other
investigations carried out in CFB combustors of various sizes. (A key to Figure 12 is
found in Table 2.) All investigations yield a higher conversion of fuel nitrogen to N20 for
fuels with a lower volatile content. The same result was also obtained in an
investigation of emissions from a bubbling fluidized bed [14].

During the test with coke as fuel in the Chalmers boiler most of the fuel nitrogen was
bound to the char fraction of the fuel and formation of N2O during char combustion is
therefore the most plausible reason for the high overall fuel nitrogen conversion to N20.
On the other hand, primary formation of NO during char oxidation and secondary
formation of N2O when NO is reduced on char (see above) cannot be exluded. In other
words, it is difficult to distinguish between indirect formation from NO reduction on char
surfaces and direct formation from char nitrogen oxidation to N20O. The flyash-
recirculation experiment discussed below is a further effort to understand the role of
char.

Recirculation of Flyash to the Combustion Chamber. Figure 13 shows the result
from a 4.5 hours test with flyash recirculation from the secondary cyclone to the
combustion chamber. The test can be divided into five separate periods. Period | and V
correspond to the reference conditions without flyash recirculation. Period Il is a case
with flyash recirculation. The primary fuel feed rate was kept constant and this resulted
in a lower overall excess-air ratio during this period. During period Il flyash re-
circulation substituted the primary fuel and the same excess-air level was maintained
as during period | (reference conditions). Finally, during period IV the flyash
recirculation was stopped, but the primary fuel feed rate was kept constant for another
30 minutes leading to an increase of the overall excess-air ratio before the reference
conditions were attained again, period V. Substitution of the primary coarse fuel with
fine devolatilized char particles contained in the recirculated flyash led to an increase




of the combustion in the cyclone. This is demonstrated by the difference in behaviour
between oxygen concentration measured 4.8 meters from the bottom of the combustion
chamber and the concentration measured in the stack as seen in Figure 13. The
oxygen concentration at 4.8 meters did not change when the flyash recirculation was
started or stopped. Also, the oxygen concentration in the inlet of the primary cyclone
was higher during period Il (compared to period | and V) than the oxygen
concentration in the stack, and this is another proof of the combustion of fines in the
cyclone. Finally the CO concentration increased followed by an increase of the
temperature after the cyclone, and this is also an indication of cyclone combustion.
Interpretation of the N20 (and NO) data is far more complicated because of the
simultaineous change of local oxygen concentration and temperature in the cyclone,
parameters which are known to influence both N2O and NO [11],[4]. For this reason the
various differences between the periods are summarized in a qualitative way in Table
3. It is most important to point out the difference between period | and Ill. Period lll
where more combustion of devolatilized char particles took place, led to a much higher
concentration of N2O in the stack, than during period I, despite the higher temperature
in the cyclone. This is taken as a poof of N2O formation from oxidation of char nitrogen.
The imediate change of the NO reduction performance when the flyash recirculation
was started or stopped (period | to period II; period Il to period V) did not give any
corresponding change of the N2O emission, probably because of the simultaineous
change of both temperature and excess-air ratio.

REDUCTION OF N20

The N20 injection tests, Figure 9 show that injected N2O was more effectivly reduced
during combustion of the high-volatile wood chips than in the case when the boiler was
run on the low-volatile coke. This means that the volatiles in the wood chips promote a
radical-induced reduction of N20 in agreement with the homogeneous gas phase
reaction schemes. This reaction seems to be far more important for the reduction of
N20 than the large amounts of char present in the combustion chamber when coke was
burned, char which could be expected to favour the char-catalyzed N20O reduction
according to the investigations carried out by de Soete [15] and Suzuki et al. [16].

In [17] an estimation was carried out of N20 reduction in the combustion chamber
during combustion of bituminous coal. The calculation was based on mass flows and
content of char and solids taken from the measurements during the actual injection test.
The boiler was treated as a plug flow reactor and simple first order kinetics evaluated
by Johnsson [18] were adopted. The results of the calculations are shown in Figure 14.
With the actual concentrations of solids and char and the calculated residence times,
both heterogeneous reduction on char and on bed material are shown to be important
parallel to the thermal decomposition in the gas phase. The importance of the char
found is probablly an overestimation due to the simple kinetic expression used. The




influence of radicals could not be included at this stage of calculation. Finally, both
measurements and calculations show that the reduction potential is extremly high when
N20 was injected to the bottom of the combustion chamber. This means that, if the N2O
emission should be substantially decreased by increasing the reduction potential, this
should be done by further increasing the N20O reduction capacity in the upper parts of
the combustion chamber and/or in the cyclone.

CONCLUSIONS

Formation of N20. N20 is formed from both volatile and char nitrogen, and when NO
is reduced both homogeneously and with char surfaces present. All these three
reaction paths contribute to the N2O formation seen in Figure2. The relative
importance of the various reaction paths cannot be evaluated at present.

Reduction of N20. Both homogeneous and heterogeneous reactions are important for
the total N20O reduction potential achieved in a full-scale CFB combustor. The relative
importance of the various reduction paths cannot be evaluated at present. Efforts in
increasing the N20 reduction should be focused on the upper parts of the combustion
chamber and the cyclone.
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Table 1 Fuel Characteristics

Type Wood-chips  Bituminous  Bituminous Coke
coal® coal®
Size, mass mean (mm) 9.6 6.0 not analysed 2.5
% smaller than 1 mm 0.0 28.5 not analysed 54.5
Volatiles, % m.a.f. 78.0 39.9 28.2 3.4

Proximate analysis,
% as delivered:

Combustibles 71.1 78.6 88.6 79.5
Ash 0.2 6.6 6.7 9.8
Moisture 28.7 14.8 4.7 10.7 |
|
Ultimate analysis, |
% m.a.f.:
C 50.6 79.8 86.9 96.1
H 6.2 5.3 5.2 0.7
@) 43.0 12.6 5.6 1.2
S 0.02 0.7 0.8 0.7
N 0.14 1.6 1.5 1.3

a The bituminous coal used in 12—MW CFB boiler.
b The bituminous coal used for the production of coke in a cokery.




Table 2 Key to Figure 12
This work Amand™ Mann'? Moritomi'®
A B C D
o0—0—0 ¥ LK LX 4+ ——+ o—eo—o
Bed temp.,°C 850 850 830—875 850
Excess air ratio 1.2—1.25 1.2—-1.25 unknown 1.4-1.5
Prim. air stoichiometry 0.7-0.75 0.7-0.75 unknown unknown
Bed area, m? 2.9 1.8 0.20 0.008
Height of furnace, m 13.5 8.5 12.8 5.0
Ca/S 0 0 0 0
Fuels used Coke Pet. coke Bitum.coal Idemitsu—B coal
(% volatiles, maf) (2.5) (14.4) (39.5) (30.9)
Bitum.coal Bitum.coal Subbit.coal Datong coal
(35.7) (35.5) (42.0) (33.1
Bitum.coal Bitum.coal Lignite Taiheiyo coal
(39.9) (35.5) (50.7) (54.8
Wood-chips  Brown coal
(78.0) (53.1)




Table3  Flyash recirculation Test in Figure 13

Change between subsequent periods
Effect on I-1II II—III M-IV IV—Vv
Flyash—
recirc. / — N —
Coarse
fuel flow — N\ — /
Excess
air ratio N\, / / N\,
Temp. after
cyclone / — N\, —
Emission
Emission
of N20 \ /' — \
Emission
of NO N\, / Ve N\

unchanged = —+ increased = / decreased = \
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