
Machine Learning Based
Error Prediction for
Spray Painting Applications
Master’s Thesis in Complex Adaptive Systems

Paul Lange

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016





Master’s Thesis

Machine Learning Based Error Prediction for
Spray Painting Applications

Paul Lange

Department of Computer Science and Engineering
Division of Computing Science

Chalmers University of Technology

and University of Gothenburg

Gothenburg, Sweden 2016



Machine Learning Based Error Prediction
for Spray Painting Applications
Paul Lange

© Paul Lange, 2016.

Examiner: Graham Kemp
Computer Science and Engineering, Chalmers University

Supervisor: Niklas Karlsson
Fraunhofer-Chalmers Centre for Industrial Mathematics

Supervisor: Peter Damaschke
Computer Science and Engineering, Chalmers University

Master’s Thesis
Department of Computer Science and Engineering
Division of Computing Science
Chalmers University of Technology and University of Gothenburg

Cover: Comparison of the measured projection error and the predicted
projection error for a flat disc painting scenario.

Gothenburg, Sweden 2016

iv



Machine Learning Based Error Prediction
for Spray Painting Applications
Paul Lange

Master’s Thesis in Complex Adaptive Systems
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

abstract

Physics-based simulation tools for spray painting exist but are not fast
enough to be useful for automatic optimization of the spray painting
process.

The results of spray painting depend primarily on the process
parameters, the path of the paint applicator and the geometry of the
target object. These factors affect the air flow and the electrostatic field
and are hard to incorporate in approximate simulation tools.

This thesis proposes a novel approach based on combining fast,
approximate simulations with machine learning based error correction.
The proposed approach is to create a height profile of the target
geometry from the local coordinate system of the paint applicator.
This height field captures most parameters that affect the simulation
error and can be used as an input for machine learning regression
algorithms. These algorithms are then trained to estimate the painting
error. The training is performed with a set of samples from common
painting scenarios that are generated beforehand.

Creating a training set for dynamic simulations is time-consuming.
Static simulations can sufficiently approximate dynamic simulations
and are therefore used for training. This drastically improves the
time to create training sets and reduces training time for the machine
learning models.

Linear regression, tree-based regression models and support vector
regression are compared on benchmarking problems and especially
tree-based regression methods show promising prediction accuracy
and are able to reduce the projection error more than 40% on real
world benchmarks. Tree-based models are also the fastest algorithms
among the compared regression models.

Finally, a way to integrate the proposed method into the simulation
framework is presented. The results are investigated for different
artificial and real world painting scenarios.

Keywords: spray painting, computer aided development, machine
learning, regression, error prediction, error correction, simulation.

v





acknowledgements

I would like to thank to my supervisor Niklas Karlsson for his ex-
pertise, help and support. During many fruitful discussions he gave
valuable feedback and positively influenced this thesis.

I also thank my examiner professor Graham Kemp for his support
and comments and my supervisor Professor Peter Damaschke for his
valuable help in regard to machine learning and validation of machine
learning models.

I also want to thank Stefan Jakobsson for his explanations of the
spray painting simulation framework and valuable feedback.

Last but not least I thank the Fraunhofer-Chalmers Centre for the
opportunity to work on this thesis and the support I received.

Paul Lange, Gothenburg, June 2016

vii





C O N T E N T S

1 introduction 1

2 simulation of spray painting 3

2.1 Multi physics framework 4

2.2 Paint thickness estimation 5

2.2.1 Binning 5

2.2.2 Kernel Density Estimation 6

2.3 Projection method 6

3 machine learning 8

3.1 Linear regression 8

3.2 Decision trees 10

3.2.1 Tree pruning 12

3.2.2 Bagging 12

3.2.3 Random forests 13

3.3 Support vector regression 13

4 machine learning approach 17

4.1 Response variable 17

4.2 Process parameters 18

4.3 Feature creation 19

4.4 Rotation and variation 20

5 methodology 21

5.1 Data set creation 21

5.2 Available data sets 24

5.3 Machine learning 26

5.3.1 Encoding position 26

5.4 Application of error predictions 27

6 results 29

6.1 Comparison of regression algorithms 29

6.2 Applied corrections 39

7 conclusions 45

8 future work 46

ix



L I S T O F F I G U R E S

Figure 2.1 Rotary bell sprayer mounted on a robot arm
while painting a flat surface. 3

Figure 2.2 Illustration of paint applicator, target geome-
try, computational octree grid and the simu-
lated droplets. The grid refinement can be seen
around the geometry and the applicator. 4

Figure 3.1 Training data with the fitted linear regression.
The error for each sample is shown in grey. 9

Figure 3.2 One-dimensional regression trees trained on
noisy data with maximum depths of 2 and
4. 10

Figure 3.3 Internal structure of a regression tree with a
depth of two. 11

Figure 3.4 Illustration of a linear ε-SVR and the ε-insensitive
loss function (illustrated with inspiration from
[16]). 14

Figure 3.5 One-dimensional support vector regression trained
on noisy data with with different kernels func-
tions. 16

Figure 4.1 A paint applicator with opening angle of 60

degrees over surfaces with different tilt. 17

Figure 4.2 Schema of the hybrid simulation model. 18

Figure 4.3 Illustration of ray tracing with parallel rays and
the respective outputs. 20

Figure 4.4 Rotation of rays to extract more samples from a
painting scenario in the one-dimensional case. 20

Figure 5.1 Example geometry mesh (black) with rectilin-
ear grid created by ray tracing (red) in 2D. In
three dimensions the ray tracing grid is not
necessarily rectilinear. 24

Figure 6.1 Relative error Ehybrid for different regression
methods and different test sets. All regres-
sion models were trained with the easy data
set. 30

Figure 6.2 Relative error Ehybrid for different regression
methods and different test sets. All regression
models were trained with the medium data
set. 32

Figure 6.3 Change of the relative error ∆Ehybrid for train-
ing with training sets easy and medium. Changes
for different regression methods and different
test sets are shown. 33

x



List of Figures xi

Figure 6.4 Relative error Ehybrid for different regression
methods and different test sets. All regres-
sion models were trained with the data set
hard. 34

Figure 6.5 Change of the relative error ∆Ehybrid for train-
ing with training sets medium and hard. Changes
for different regression methods and different
test sets are shown. 35

Figure 6.6 Training time for different regression meth-
ods. 36

Figure 6.7 Development of training times for different
training sets. 36

Figure 6.8 Performance of error prediction for different
regression methods. Note the logarithmic scale
of the ordinate axis. 37

Figure 6.9 Model size for different regression methods. 38

Figure 6.10 Development of model size for different train-
ing sets. 38

Figure 6.11 Flat disc scenario with centered applicator in
20 cm height. 40

Figure 6.12 Curved disc scenario with the applicator in
20cm height and 30cm offset from the cen-
ter. 41

Figure 6.13 A scenario from the Saab hood data set. The
applicator is positioned 20cm over the target
geometry. 42

Figure 6.14 A scenario from the Saab hood data set. The
applicator is positioned 25cm over the target
geometry. 43

Figure 6.15 A scenario from the Saab hood data set. The
applicator is positioned 20cm over the edge of
the target geometry. 44



1
I N T R O D U C T I O N

As development cycles shorten and products have to comply with
ever higher standards, industry relies increasingly on virtual product
development and therefore on effective simulation methods. Com-
puter aided design helps to reduce the need for expensive prototyping,
accelerates information gains and opens possibilities for automatic
optimization methods which are not feasible within the traditional
product development cycle.

The use of simulation tools is indispensable in certain disciplines like
the mechanical design of components and structures, where mature
software for finite element analysis exists and is commonly used
during the development cycle [8]. In other areas like computational
fluid dynamics adoption of simulation tools is in progress. In the area
of surface treatment simulation methods are highly specialized on
specific use-cases and not readily available. This stems from the fact
that complex multi-physics processes have to be considered, which
poses problems in simulation technology as well as in computational
capacity.

Surface treatment is a term for industrial processes that alter the
surface of a product in order to achieve certain properties. These
properties may be functional (e.g. corrosion resistance, hardness or
smoothness), aesthetic (e.g. color, glossiness or finish) or a combina-
tion of both. Common examples for surface treatment methods are
spray painting in the automotive and furniture industries and thermal
spraying in the aerospace industry.

Spray painting in the automotive industry has a big environmental
impact. It is the process that consumes most water and chemicals,
while producing most waste and pollution. Furthermore, roughly
40% of the energy in automotive manufacturing is consumed in paint
shops [7].

To support sustainable production and an efficient product de-
velopment the Fraunhofer-Chalmers Research Centre for Industrial
Mathematics1 (FCC) develops the state-of-the-art simulation software
IPS Virtual Paint [12] for electrostatic rotary bell sprayer painting
(see Chapter 2), a technique used by companies mainly within the
automotive industry. The software is able to simulate around three
seconds of painting time in one hour of real time currently. This is
faster than other approaches but still requires significant time for large
scale geometries.

1 http://www.fcc.chalmers.se/

1



introduction 2

In order to automatically generate and optimize paths for spray
painting, significantly faster methods are necessary. One approach is
to project pre-measured paint thickness distributions on the geometry
(see Section 2.3). This method works in real-time but results in a
considerable loss of accuracy.

To solve this problem a hybrid simulation model is presented in this
thesis. It combines the fast simulation model with an error correction.
With this approach it is possible to achieve high simulation speeds
and high accuracy.

The error prediction model is based on machine learning algorithms
(see Chapter 3) which stands in stark contrast to traditional approaches
which employ analytical models of the error. Analytical modeling
of the error is hard, as it usually depends on a multitude of factors
whose interactions are hard to isolate. In contrast, machine learning
is based on exploiting statistical patterns in a set of samples which is
called the training set. The process of creating the training set and the
necessary tools is a fundamental part of this thesis and presented in
Chapter 5.

To use machine learning techniques in the context of spray painting,
certain simplifications are necessary. Furthermore, a procedure to
capture the relevant parameters of a painting scenario are required.
The approach taken in this thesis is presented in Chapter 4.

The results of the hybrid simulation model are presented in Chap-
ter 6. Here the error prediction performance of different machine
learning algorithms is compared. Afterwards the predictions are used
to correct the projection error in real geometries and the results are
compared to the projection.



2
S I M U L AT I O N O F S P R AY PA I N T I N G

In this chapter the spray painting process as well as different simula-
tion approaches are presented. While not central for this thesis, the
theoretical foundations are crucial to understand the complexity of
the physics-based simulation. It also motivates the use of approxi-
mate simulation methods and clarifies the trade-offs of the different
methods.

Spray painting in the automotive industry is commonly performed
with the electrostatic rotary bell sprayer (ERBS) method. Here the
liquid paint is injected in the center of a rotating bell. From there it
travels to the bottom edge, where it is atomized and forms small paint
droplets.

To drive the droplets towards the target geometry two techniques
are used. First, air is exhausted around the bell to create an air
flow towards the surface. Second, the paint particles are charged
electrostatically by applying a potential difference between target and
applicator. This potential difference usually lies in the order of 50 kV
to 100 kV.

A picture of the ERBS method can be seen in Figure 2.1, where a
flat surface is painted.

Figure 2.1: Rotary bell sprayer mounted on a robot arm while painting
a flat surface.

The simulation tools developed at FCC focus on the electrostatic rotary
bell sprayer (ERBS) method. By employing unique algorithms for two-
way coupled simulations of air flows, electrostatic fields and charged
paint droplets, simulation times are drastically reduced compared to
other simulation frameworks.

3



2.1 multi physics framework 4

The following sections give an overview over the physical modeling
of the physics-based simulation and the projection simulation. Ad-
ditionally, two methods for estimating paint thickness from droplet
impacts are presented and an approximate paint simulation method
introduced.

2.1 multi physics framework

The simulation of electrostatic rotary bell spray painting is character-
ized by “multiphase and free surface flows, multiphysics, multiscale
phenomena and large, moving geometries” [12]. It therefore poses
challenges in both mathematical formulation and computational com-
plexity.

The two major factors on paint distribution are the air flow and the
electrostatic field. The air flow is simulated by solving the incompress-
ible Navier-Stokes-equations.

∇ · ū = 0 (2.1)

ρ f
∂ū
∂t

+ ρ f ū · ∇ū = −∇p + µ∇2ū + s̄ (2.2)

Here ū is the fluid velocity, ρ f is the fluid density, p is the pressure, µ

is the dynamic viscosity and s̄ is the droplet source term.
These equations are discretized on a Cartesian octree grid that is

refined in areas of high interest, such as around geometries and the
applicator, and coarsened in areas where less accuracy is needed (an
illustration of the refinement around objects is shown in Figure 2.2).
Objects are handled by using immersed boundary methods [10, 11].

Figure 2.2: Illustration of paint applicator, target geometry, compu-
tational octree grid and the simulated droplets. The grid
refinement can be seen around the geometry and the ap-
plicator.

The electrostatic solver is based on a similar octree-based grid,
where the potential of target geometry and applicator are modeled



2.2 paint thickness estimation 5

using immersed boundary conditions. The governing equation is
Poisson’s equation.

∇2φ = −ρ

ε
(2.3)

Here φ is the potential, ρ is the droplet space-charge density, and ε is
the permittivity of the fluid, which is air in this case.

The paint droplets are simulated as Lagrangian particles. The
trajectory is governed by the Basset-Boussinesq-Oseen equation.

ρp
dūp

dt
= (ρp − ρ f )ḡ− ūr|ūr|Cd

ρ f

ρp

mp

2rp
+ Ēqp (2.4)

Here Ē denotes the electric field, ρp and ρ f denote the droplet and fluid
density, ḡ is the gravitational acceleration, ūp is the droplet velocity, ūr

the relative droplet velocity, mp is the droplet mass, rp is the droplet
radius, qp is the droplet charge and Cd is the drag coefficient. For
more information about the numerical algorithms used for solving
these equations see [12].

2.2 paint thickness estimation

The physics-based simulation calculates the trajectories of the paint
droplets and the location of impact on the target geometry mesh.

Based on the droplet impacts the resulting paint thickness distri-
bution on the geometry mesh has to be calculated. For that problem
several solutions with varying complexity and accuracy exist. Two of
them will be presented below.

2.2.1 Binning

The most common thickness estimation method is the binning ap-
proach. Here the painted surface is segmented into small bins. This
segmentation is usually already available from computer aided design
tools or can be generated efficiently.

Once the bins are available, the paint thickness is estimated as the
sum of the volume of all impacts divided by the area of the bin.

Tb(b) =
1

A(b)

Nb

∑
i=1

Vi (2.5)

Here b denotes the index of the bin, A(b) is the area of bin b, Vi is the
volume of a particle i, and Nb is the number of particles that impacted
in bin b. Subsequently the thickness estimation can be smoothed by
interpolating values for the mesh nodes from the values calculated for
the individual bins.

A problem with the binning method is its sensitivity on the size
and shape of the bins. Too small bins result in high variance in the
estimated thickness, while large bins result in details getting lost by



2.3 projection method 6

the bleeding effect. Therefore optimal bin sizes depend on the spray
painting process parameters and thus are hard to achieve in general.

2.2.2 Kernel Density Estimation

A different method for paint thickness estimation is kernel density
estimation [18]. The fundamental idea here is that the surface paint
thickness can be interpreted as the density of the paint droplet impact
volumes. Therefore, estimating the paint thickness equals to estimating
the unknown Probability Density Function (PDF) from the given
samples (i.e. the droplet impacts). This approach results in the
following equation for the thickness estimate at position x̄.

Th(x̄) =
1

h2SK

N

∑
i=1

ViK
(

x̄− x̄i

h

)
(2.6)

Here x̄i denotes the position of impact i, N is the total number of
impacts, K is a positive, normalized and symmetric kernel function
and SK is a surface normalization constant for K.

SK = 2π
∫ ∞

0
xK(x)dx (2.7)

Common choices for kernel functions include the Epanchnikow and
Biweight kernels. The parameter h is called bandwidth and is crucial
for good results. It can be chosen automatically using methods like
cross-validation.

To reduce bleeding over sharp edges the surface is locally flattened
around impacts, which leads to accuracy problems with complex
geometries. In order to not underestimate electrostatically induced
edge-effects, this approach can be extended to use multivariate band-
widths. For more information see [18].

2.3 projection method

For testing or optimization of paint paths, faster simulation times
are necessary. The projection method offers a solution by drastically
simplifying the underlying model.

Technically, the projection method is a deposition model. Generally,
there are two approaches towards deposition models – analytic and
footprint based.

In the analytic approach paint thickness is approximated by analyti-
cal models that are then integrated in timely and spacial dimensions.
These methods are not used in IPS Virtual Paint, as they are difficult
to develop and often are highly specific to the application. See [6] for
more information about analytic deposition models.

The footprint-based approach is based on a measurement of the
directional mass flow of paint for the given process parameters in a



2.3 projection method 7

representative environment. This is usually done by spraying a flat
surface for a fixed time from a fixed spray gun position. The resulting
thickness is then measured and can be seen as the representation of
the directional mass flow. The advantage of this method is that it can
handle arbitrary flow conditions, even highly unsymmetrical ones.

In practice it is not efficient to measure the footprint for all possible
process parameters in experiments. Therefore, in IPS Virtual Paint
experiments are used for tweaking the parameters of the physics-
based simulation, while the projection footprints are generated from
the results of physics-based simulations.

Once a projection footprint has been generated, it can be applied to
a target geometry by re-projecting it onto the target surface (see [9]
for details). This projection is fast but also the reason for decreased
accuracy.

As the footprint and the projection on the target geometry are static,
the thickness from projection is calculated in every time step of the
simulation. The result is then obtained via temporal integration.



3
M A C H I N E L E A R N I N G

Machine learning is a scientific discipline that studies computer sys-
tems that automatically improve with experience without being ex-
plicitly programmed to do so.

Machine learning techniques are usually divided in two groups. In
the supervised group the aim is to learn a mapping between given
inputs x and outputs y. The set of pairs D = {(xi, yi)}N

i=1 is called a
training set with N training examples.

The inputs xi are usually vectors of scalar values. These values
represent properties of the problem at hand and are called features.

In unsupervised learning the aim is to find information or patterns
in the data. Thus, only the inputs xi are given in the training set
D = {xi}N

i=1. As unsupervised learning will not be used in this thesis,
no further information will be given here.

A different division can be made depending on the form of the
output. If the output variables are of categorical form and thus part
of a finite-size set, the problem is called a classification problem.
Depending on the size of this set there are further distinctions. If there
are only two possible classes one has a binary classification problem,
whereas problems with more than two classes are called multi-class
classification problems.

If the outputs yi are continuous the resulting problem is called a
regression and represents the mapping from x ∈ RN to y ∈ R. Some
specific regression methods can generate multiple outputs and thus
map to y ∈ RM.

In the following sections the theory behind a subset of regression
models will be presented.

3.1 linear regression

Linear regression is a simple approach for predicting a continuous
response based on one or more features. In case of a prediction based
on one feature it is commonly called simple linear regression.

Simple linear regression assumes an approximately linear relation-
ship between the feature x and the response y, which can be formu-
lated as follows.

y ≈ β0 + β1x (3.1)

Here β0 and β1 are unknown parameters of the model, which have
to be fitted to the training set. In the one-dimensional case β0 and β1

are also known as intercept and slope.

8



3.1 linear regression 9

The fitted parameters β̂0 and β̂1 lead to a model that predicts ŷ for
a given x.

ŷ = β̂0 + β̂1x (3.2)

The goal is now to minimize the distance between the prediction ŷ
and the known response y. A common approach is to minimize the
least squared criterion. This is equal to minimizing the residual sum
of squares (RSS).

RSS =
N

∑
i=1

(yi − ŷi)
2 (3.3)

This approach is visualized in Figure 3.1. The blue points represent
the training set. The black line is the linear regression obtained by
minimizing the RSS. The grey lines show the difference between
predicted and actual value for each data point.

40 45 50 55 60 65 70 75 80 85 90 95 100
150

160

170

180

190 Training data
Linear regression

Figure 3.1: Training data with the fitted linear regression. The error
for each sample is shown in grey.

In practice often more than one feature is available. Thus the basic
model in (3.1) is extended to accommodate multiple features. Every
feature gets a separate slope coefficient. This results in the following
model.

y = β0x0 + β1x1 + β2x2 + · · ·+ βpxp (3.4)

Here β0 is the intercept term, so x0 = 1. Equation (3.4) can also be
written as y = 〈β̄, x̄〉, where 〈·, ·〉 denotes the dot product.

It is important to note that the linear regression method is intended
for a low-dimensional approach. Thus, the number of samples in the
training set should be much greater than the number of features. In
the high-dimensional setting, where the number of features is bigger
than the number of samples, issues such as problems with overfitting
arise.



3.2 decision trees 10

3.2 decision trees

A decision tree [5] is a machine learning method that stratifies the
predictor space (the set of possible combinations of the features xi)
into several regions. These splitting rules can be visualized in form
of a tree (see Figure 3.3), which is where the method takes its name
from.

Tree-based methods are easy to understand and interpret, but usu-
ally their performance is not competitive with more advanced methods.
However, ensemble methods based on tree-based methods exist and
improve their performance. Two ensemble methods will be presented
after a description of the general decision tree.

To use a regression tree it first has to be trained. This is done by
dividing the predictor space into J non-overlapping regions R1, . . . , RJ .
Subsequently the return value can be calculated by computing the
average of all training samples that fall into region RJ .

Prediction is now trivial. The algorithm only has to determine
which region the given sample belongs to and can then return the
previously calculated value.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1 Training data
Max depth 2
Max depth 4

Figure 3.2: One-dimensional regression trees trained on noisy data
with maximum depths of 2 and 4.

An example for simple regression trees with only one feature can
be seen in Figure 3.2. Here two regression trees have been trained
with noisy data from a sine wave. During training the regression trees
were limited to different maximum tree depths. One can see that the
tree with a maximum depth of two cannot represent the curve as it
is to biased. In comparison, the tree with a maximum depth of four
is already prone to over fitting as can be seen at some of the noisy
outliers (e.g. x ≈ 3.6 or x ≈ 3.8). The internal structure of the tree
with a maximum depth of two can be seen in Figure 3.3.

The problem for training the tree is how to stratify the predic-
tor space. For simplicity and ease of interpretation usually high-



3.2 decision trees 11

Figure 3.3: Internal structure of a regression tree with a depth of two.

dimensional rectangles, so called boxes, are chosen for division. In
theory however, there is no limitation on the form of subdivision.

The goal is now to find a division of regions R1, R2, . . . , RJ that
minimizes the residual sum of squares (RSS) which is given by the
following term, where ŷRj is the average of all training samples in Rj.

RSS =
J

∑
j=1

∑
i∈Rj

(yi − ŷRj)
2 (3.5)

It is computationally infeasible to consider all possible partitions of
the predictor space into J regions, especially as the optimal value of J
itself is unknown. Therefore a top-down, greedy approach is usually
taken.

Top-down means that the algorithm starts with one region, that
contains all samples. This regions is subsequently divided into smaller
regions. Greedy means that the algorithms selects the best split avail-
able, without consideration for splits that might lead to better divisions
in a later stage.

In every step the algorithm checks every feature Xj and every
possible split s. By each of these combinations a pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s} (3.6)

is created. The values of j and s are chosen to minimize the following
equation.

∑
i: xi∈R1(j,s)

(yi − ŷR1)
2 + ∑

i: xi∈R2(j,s)
(yi − ŷR2)

2 (3.7)

After a split has been found, the same procedure is applied re-
cursively to both of the resulting half-planes until some terminal
condition for tree growth is hit. Examples for these conditions include
maximum tree depth, minimal number of samples per leaf node or a
maximum number of leaf nodes in the whole tree.



3.2 decision trees 12

3.2.1 Tree pruning

An important question when training decision trees is the number
of divisions J and thereby the size of the tree. While a big tree with
many divisions is usually at risk of overfitting and thus does not
generalize well on new data, a small tree might not capture important
structural information. However, in general it is impossible to know
when to stop growing a tree due to the horizon effect, which makes
it impossible to know if an additional node will have a big impact
on prediction performance [15]. It is therefore a common strategy to
grow trees until each node contains a small number of samples and
then prune it in order to obtain a subtree.

The problem is that, depending on the size of the tree, a large
number of subtrees may exist, which makes it infeasible to check
all of them. Here cost complexity pruning offers a solution by just
comparing the best subtrees as measured by the cost of the tree Cα.

Cα(T) =
|T̃|

∑
m=1

∑
i: xi∈Rm

(yi − ŷRm)
2 + α|T̃| (3.8)

It consists of an error term and a penalty term for the complexity of
the tree α|T̃|, where |T̃| is the number of leaf nodes in tree T and α is
a free parameter that determines the penalty for complex trees. If α

is zero, no penalty on tree complexity is applied. For growing α, the
algorithm favors smaller trees by allowing higher errors in exchange
for smaller trees.

In the next step the best value of α is determined using either cross-
validation or an additional validation set. Then the optimal subtree
can be calculated. For a more detailed description see [5].

3.2.2 Bagging

Decision trees as described in section 3.2 are prone to overfitting and
thus exhibit high variance. This stands in contrast to methods like
linear regression, which show high bias. This means that if the data
set is halved and decision trees and linear regressors trained on both
halves, the resulting models will look similar for the linear regression,
but might be quite different for the case of decision trees.

Bagging [3] is a general purpose ensemble algorithm which con-
structs several instances of an estimator from a given data set and
combines their predictions into a final prediction. This provides a way
to reduce variance, based on the foundation that averaging reduces
variance. For example, the variance of the average Z̄ of a set of n
observations Z1, Z2, . . . , Zn with variance σ2 is σ2/n.

As bagging reduces variance, it works best with complex models like
fully developed trees. For that reason no tree pruning is performed
when using bagging in the context of decision trees.



3.3 support vector regression 13

As described above, bagging works by creating multiple instances
of decision trees. Ideally, all trees would be trained on different data
sets which are usually not available. Therefore one creates different
data sets by drawing samples (with replacement) from the main data
set. Subsequently a decision tree is trained for each of these data sets.
The final prediction of the bagging classifier can then be calculated
from the results ŷi(x) given the following equation, where B denotes
the number of individuals.

ŷbagging(x) =
1
B

B

∑
b=1

ŷb(x) (3.9)

3.2.3 Random forests

When building the ensemble of individual trees in bagging, at every
split all features are considered. This usually leads to good features
(in the sense of strong prediction abilities) being chosen early during
tree growth. This in turn results in an ensemble of strongly correlated
trees in which the variance does not get reduced as much as for
uncorrelated trees.

Random forests [4] present a further improvement over bagged
trees by decorrelating the individual trees in the ensemble. This is
done by limiting every split to a random subset of m of the total p
features. This results in (p−m)/p of the splits not seeing the strong
features and thus growing more diverse trees with less correlation,
which results in higher accuracy. Furthermore, as fewer features have
to be considered, random forests are generally faster than bagging
methods.

In this regard bagging can be seen as a special case of Random
Forests with m = p. For best results, typically m ≈ √p is chosen for
random forests.

3.3 support vector regression

Support vector machines (SVMs) are a set of supervised learning
methods that have been shown to perform well in a variety of settings.
One particular advantage is that they work well in high-dimensional
spaces.

SVMs are primary used for classification problems. To model regres-
sion problems with support vector machines a model called Support
Vector Regression (SVR, [17]) is used. The idea here is to find a func-
tion f (x) that includes the real targets yi in a deviation range of ε (see
Figure 3.4 for an illustration) and is as flat as possible at the same time.
Based on the parameter ε it as also known as ε-SVR.



3.3 support vector regression 14

+ε

0
−ε

ξ

y− f (x)

loss

+ε−ε

ξ

Figure 3.4: Illustration of a linear ε-SVR and the ε-insensitive loss
function (illustrated with inspiration from [16]).

Assume a linear function f of the following form, where 〈·, ·〉 de-
notes the dot product.

f (x) = 〈w, x〉+ b (3.10)

The flatness requirement can be interpreted as searching for small w.
One possible way for ensuring this is to minimize the norm ‖w‖. This
results in the following optimization problem, where the constraints
ensure that all targets yi lie within the ε-corridor.

minimize
1
2
‖w‖2

subject to

{
yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

(3.11)

The assumption of all yi lying within the ε-corridor of f (x) is not
always true for reasonable values of ε. Also one might want to
allow certain small errors. In that case the model can be extended by
introducing slack variables ξi and ξ∗i to cope with the constraints of
the optimization problem (3.11) which would otherwise be infeasible.
This leads to the following extended formulation.

minimize
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(3.12)

Here C determines the trade-off between allowing deviations bigger
than ε and the flatness of f (x) and is usually chosen with a cross-
validation approach. The extensions ξi and ξ∗i of the constraints
corresponds to an ε-insensitive loss function |ξ|ε, which is illustrated
in Figure 3.4.

|ξ|ε =
{

0 if |ξ| ≤ ε

|ξ| − ε otherwise
(3.13)



3.3 support vector regression 15

The next step is to construct a Lagrange function from the objective
function. This step is well described in [17] and will not be repeated
here. It finally leads to the dual optimization problem, where αi and
α∗i are Lagrangian multipliers.

maximize


−1

2

N

∑
i,j=1

(αi − α∗i )(αj − α∗j )〈xi, xj〉

−ε
N

∑
i=1

(αi − α∗i ) +
N

∑
i=1

yi(αi − α∗i )

subject to


N

∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C

(3.14)

From one of the saddle point conditions of the primal objective func-
tion follows w = ∑N

i=1(αi − α∗i )xi. With Equation (3.10) it results in the
following term for f .

f (x) =
N

∑
i=1

(α1 − α∗i )〈xi, x〉+ b (3.15)

The parameter b can be computed by exploiting the Karush-Kuhn-
Tucker conditions (see [17] for more information). Notable is also that
f (x) can be described solely by dot products of the data and w does
not have to be computed explicitly. This observation readies the way
for nonlinear predictions by using kernels. f can then be calculated as
follows, where K(·, ·) is a kernel function.

f (x) =
N

∑
i=1

(αi − α∗i )K(xi, x) + b (3.16)

The term kernel here refers to a different class of functions than the
kernel functions mentioned in Section 2.2.2. In the context of SVMs a
kernel is a similarity function for a pair of samples. In kernel density
estimation a kernel is a weighting function.

Examples for general kernels that are in common use for support
vector regression are listed below [16].

• Linear kernel: K(x, y) = 〈x, y〉

• Polynomial kernel: K(x, y) = (〈x, y〉+ r)n

• Radial basis function kernel (RBF): K(x, y) = exp
(
−γ‖x− y‖2)

• Sigmoid kernel: K(x, y) = tanh(κ〈x, y〉+ Σ)

The values of the hyperparameters used in the kernels are usually
found by cross-validation.

The results of support vector regression with different kernels on
the example from Section 3.2 can be seen in Figure 3.5. As expected,
the linear kernel cannot fit a sinus-function. The polynomial kernel
gives a better fit, while the RBF kernel predicts the underlying function
really well.



3.3 support vector regression 16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

Training data
Linear

Polynomial
RBF

Figure 3.5: One-dimensional support vector regression trained on
noisy data with with different kernels functions.



4
M A C H I N E L E A R N I N G A P P R O A C H T O PA I N T
T H I C K N E S S E S T I M AT I O N

After presenting the theory of spray painting simulation and the intro-
duction of some popular machine learning algorithms, this chapter
presents the fundamental ideas of the hybrid simulation model.

First the selection of the response variable for regression is ex-
plained. Then the approach to incorporating all relevant parameters
into features for the machine learning algorithm is presented.

4.1 response variable

The choice to use machine learning algorithms instead of analytic
error models for the error prediction task leads to the fundamental
question which quantity should be predicted.

The obvious choice would be to predict the paint thickness directly.
This approach has the advantage that no simulation tools other than
the trained model are necessary. Therefore, the necessary measure-
ments and calibrations for the projection method could be omitted.
Additionally the source code of the projection method could be re-
moved and thus ease maintenance of the simulation software.

(a) Even surface. (b) Tilted surface.

Figure 4.1: A paint applicator with opening angle of 60 degrees over
surfaces with different tilt.

A different approach to machine learning is the prediction of the
error of the projection method. This error is called projection error and
represents the difference of the paint thickness of the physics-based
simulation and the projection simulation.

Predicting the projection error has different advantages. First, the
estimate of the error can simply be added to the thickness calculated
with the projection simulation. Thus the method adds little complexity
and can easily be exchanged once a better error prediction is available.

17



4.2 process parameters 18

Geometry

Projection Simulation Feature generation

Error prediction

Combine results

Corrected paint thicknessPaint thickness

Figure 4.2: Schema of the hybrid simulation model.

Second, by predicting the projection error, one can utilize some
intrinsic knowledge. In Figure 4.1 we see an applicator over two
differently tilted surfaces. The rays, which are indicated by dashed
lines, are representative for the projection simulation. In Figure 4.1a,
where the surface is not tilted, they hit the surface evenly spaced. In
comparison, in Figure 4.1b the surface is tilted relative to the applicator
and thus the rays hit unevenly spaced. In the projection simulation
rays that lie further apart correspond to a bigger area covered by the
same paint volume, and thus less resulting paint thickness. As a result
of this, the projection method encodes some knowledge about the
geometry and the position of the applicator relative to the surface
of the target. This intrinsic knowledge does not have to be learned
by the machine learning algorithm, which results in more accurate
simulation results.

Based on this reasoning this thesis focuses on estimating the pro-
jection error instead of predicting the paint thickness directly. The
resulting hybrid simulation model can be seen in Figure 4.2. The left
part represents the projection method, while the right part shows the
necessary steps for the machine learning based error correction.

4.2 process parameters

In order to generate input features for the regression model, a generic
way to get information about the painting scenario is necessary. Ideally
one wants to include all relevant parameters into the features that are
supplied to the regression algorithm.

There are different sources of parameters that affect the spray paint-
ing simulation. The three major sources are listed below.



4.3 feature creation 19

• The process parameters of the paint applicator have a big impact
on the simulation. Examples for such parameters are the volume
of emitted paint per second, the direction and velocity of the
shape air flow and the applied voltage.

• The applicator path, i.e. the motion of the robot arm, describes
the applicators path and therefore its distance, orientation and
speed relative to the target geometry.

• The target geometry with its geometrical features shapes the
airflow and the electrostatic field around it and thus influences
paint deposition.

For the scope of this thesis the process parameters of the applica-
tor were set by using the same applicator for the generation of the
whole training set. The parameters used are listed in Section 5.1.
This reduction of parameters simplifies the machine learning task
significantly.

A different parameter that has an impact on paint thickness is the
velocity of the applicator over the surface. A high velocity leads to an
asymmetrical air flow, which in turn results in an asymmetrical paint
distribution. However, this effect is negligible at small velocities and
generally weaker than other factors like the distance of the applicator
to the target. For this reason dynamic simulations can be sufficiently
approximated by static simulations. These simulations are faster and
need smaller simulated time frames to give meaningful results, which
accelerates the generation of the training set as well.

4.3 feature creation

After the mentioned simplifications, the remaining parameters are the
applicator’s position and orientation relative to the target geometry,
and the surface structure of the target. One way to incorporate these
parameters into the features for the machine learning algorithm is to
generate a height map of the target geometry from the applicator’s
point-of-view. This can efficiently be done by utilizing ray tracing.

The principal idea can be seen in Figure 4.3a. From the position of
the applicator and with its current direction rays are generated. They
are then traced until they hit a triangle of the target or expire. In case
of a hit, the distance to the triangle as well as the exact hit location in
the triangle are returned.



4.4 rotation and variation 20

(a) Schematic illustration of ray trac-
ing from the applicator.

2 4

−1

−0.5

0

Ray ID

H
ei
gh
t[
un
its
]

(b) Sample outputs for ray tracing.

Figure 4.3: Illustration of ray tracing with parallel rays and the respec-
tive outputs.

4.4 rotation and variation

As the multi-physics simulations are computationally expensive it is
advisable to keep the number of painting scenarios as low as possible.
It is therefore important to extract as much information as possible
from each scenario.

There are several ways to do that. A simple way is to rotate the ap-
plicator around its symmetry axis. This idea is illustrated in Figure 4.4
for the one-dimensional case. Here the line, along which the ray
tracing is performed, gets rotated and thus allows to retrieve multiple
samples from the same scenario.

Another idea that is not yet implemented is to add small variations
to the applicator’s position and direction. This way more possible
states of the applicator’s position and direction get covered which
results in a higher quality training set.

γ

Figure 4.4: Rotation of rays to extract more samples from a painting
scenario in the one-dimensional case.



5
M E T H O D O L O G Y

5.1 data set creation

To train the machine learning algorithm to predict the projection error,
a representative set of common painting scenarios in the form of a
training set is necessary. This training set should cover the space of
possible painting scenarios. It should also avoid redundancy, which is
necessary to keep the training set reasonable sized and the training
process itself fast.

The creation of the necessary tools to manage the painting scenarios
and generate data sets from them was a essential part of this thesis. It
will be presented in this chapter.

Organization of painting scenarios

As described in Section 4.2, the machine learning approach is based on
some simplifications that reduce the parameter space. The remaining
parameters, which have to be covered by the training set, are the
applicator’s position and orientation relative to the target geometry
and the surface structure of the target. These parameters have the
highest impact on the paint thickness and, besides all simplifications,
still span a significant parameter space.

In this space, the parameters are systematically varied to create
a comprehensive data set. In order to simplify management of the
painting scenarios, the simulation files are organized in a tree. In it
every node represents a common parameter (e.g. the same model or
options file), while its children differ in one parameter. This method
allows easy addition of further parameters or painting scenarios and
deduplicates common files at the same time.

Implementation of painting simulations

After the different painting scenarios have been created, they have to
be transformed into valid input files for the simulation tools. The sim-
ulation tools rely on several files which contain settings for different
parts of the simulation.

• The geometry file stores the triangulation of the target object as
well as its position in space.

21



5.1 data set creation 22

• The option file includes settings for the simulation. These in-
clude the boundaries of the simulation, output frequency of
intermediate results or the selected solvers.

• The applicator file contains the process parameters of the appli-
cator. As described in Section 4.2, the same process parameters
are used for the generation of the whole training set in this thesis.
The settings of the adopted applicator are listed in Table 1.

• The path file stores the position of the applicator over time and
controls the applicators paint flow (i.e. controls if paint particles
are emitted or not).

• The script file is the interface to the simulation program and
used to set up the simulation with help of the other mentioned
files.

The static multi-physics simulations consist of three stages. First
a duration of 0.4 seconds is spent to initialize the air flow and to
stabilize it. During this time the emission of paint droplets is disabled.
Subsequently, a period of one second follows in which paint is ejected.
Then follows a third part with a duration of 0.5 seconds, where the
paint flow is turned off again. The idea of the last stage is to give the
paint particles that are still in the air time to reach the target geometry
before winding the simulation down. This improves the accuracy of
the simulation.

Parameter Value

Bell RPM 27 000 rpm
Paint flow 380 cc/min
Shape air flow 600 l/min
Voltage 80 000 V

Table 1: Paint applicator process parameters.

Running simulations efficiently

After the static simulations have been created and added to the tree
structure, the results for each simulation have to be calculated. This
is a highly computationally expensive task. Depending on the actual
parameters and the available hardware, one simulation can take several
hours to complete. The set of painting scenarios itself comprises of
several hundred painting scenarios.

In order to make it feasible to work with this high number of
painting scenarios, a parallel system for running the simulations
has been implemented. It is able to distribute the required work
on multiple computers while offering a simple interface. As the



5.1 data set creation 23

simulation tasks are independent of each other, the system scales
linearly with the number of computers it runs on and therefore allows
big reductions in total runtime.

Creation of input features

As supervised learning is used, both the inputs and the expected
outputs of the error prediction have to be collected for the training set.
The input consists of the height field generated by ray tracing.

For the ray tracing, a layout of the rays has to be chosen. This
thesis uses an approach were the rays are parallel and directed in the
direction of the applicator. This method is displayed in Figure 4.3a
and gives a high-level overview over the geometry.

A different possibility is a layout that resembles a cone. Here the
origin of all rays is the origin of the applicator but point towards
the same endpoints as in the parallel method. This method gives a
more local estimate but might run into problems for more complex
geometries.

The ray tracing framework is based on the OptiX ray tracing package
[13] by NVidia. It provides a low-level ray tracing framework for
highly parallel architectures. In particular the OptiX Prime APIs
are used, as they are “specialized to deliver high performance for
intersecting a set of rays against a set of triangles” and exhibit better
performance than the OptiX APIs.

Calculating the expected output

To train the regression algorithms the expected output (i.e. the projec-
tion error) is required. The projection error is the difference between
the simulated paint thickness from physics-based simulation and
projection simulation.

The features are supplied in a grid which is defined by the rays. The
same grid is used for the error prediction results. However, the paint
thickness values from multi-physics and projection simulation are only
known at the nodes of the geometry mesh. These nodes usually do not
coincide with the hit locations of the rays as illustrated in Figure 5.1.
For that reason the paint thicknesses at the intersection points of the
rays with the geometry have to be calculated. As the barycentric
coordinates of the ray intersections are known, the required values can
be interpolated from the known nodal values in the target geometries
mesh with the following equation.

t = up1 + vp2 + wp3 (5.1)

Here t is the interpolated thickness for one ray. The barycentric
coordinates of the hit are denoted u, v and w and are multiplied with
the paint thicknesses pi at the triangle’s vertices.



5.2 available data sets 24

Once the paint thicknesses at the intersection points of the rays are
known for the physics-based and projection simulation, the projections
error can be calculated as the difference of them.

Figure 5.1: Example geometry mesh (black) with rectilinear grid cre-
ated by ray tracing (red) in 2D. In three dimensions the ray
tracing grid is not necessarily rectilinear.

Scaling

Before using the training set for training a regression model the input
features and expected outputs should be scaled. This makes it easier
for the algorithms to extract valuable information (especially support
vector machines are sensitive to badly scaled features).

The data sets are scaled as follows.

• The features are scaled to have a mean of zero and unit variance.

• The outputs are scaled to be contained in the interval (0, 1).

When scaling is applied to a data set the applied transformations have
to be saved. This is important as the same transformations have to
be performed on any input to the algorithm and its corresponding
output.

5.2 available data sets

To check the impact of the training set on prediction performance,
the training is performed on different data sets. The evaluation of
predictive performance is carried out on different data sets as well.



5.2 available data sets 25

Most of these data sets are based on simplified target geometries
that are created to train or to test special geometric features. As a
basis usually a flat disc is chosen. Subsequently, geometric features
that are present in real world geometries are added. Examples for
these feature are curvature, tilt or bumps.

The disc geometry has a diameter of 1 m. This size ensures that
in the middle of the disc no edge effects affect the simulation results.
When moving closer to the edge, edge effects appear and can be
trained as well.

There are three training set used for the training of the different
regression algorithms.

• The easy data set is the simplest and consists of 180 unique
painting scenarios which are based on a flat disc geometry. The
scenarios vary the radial position and the height of the applicator.
From each scenario 8 samples are extracted, so that the data set
consists of 1440 samples.

• The medium data set combines the easy data set with variations
of the disc geometry. Here discs with varying curvature and
discs that are tilted with different angles relative to the applicator
are used. The aim is to represent more realistic painting scenarios
where the applicator is not directed orthogonally to the target
geometry. This data set consists of 6120 samples from 765 unique
painting scenarios.

• The hard data set is the biggest and expands the medium data
set with further cases. These are cases in which the disc geometry
contains bumps in different versions. This data set contains
12360 samples from 1545 painting scenarios.

For the assessment of the predictive performance, the data set that
was used for training is used for cross validation. Additionally perfor-
mance is calculated on three other data sets.

• The interpolation data set contains painting scenarios which
interpolate parameter values used in the easy set. It therefore
gives a hint about the generalization abilities of the regression
model. It contains 24 samples from 3 unique painting scenarios.

• The complex data set is based on disc geometries that have com-
plicated structure like sine-waves. These cases are not included
in any of the training sets and thus show how well a model
can extrapolate and adapt to unknown painting scenarios. It
contains 120 samples from 15 painting situations.

• The Saab hood data set contains painting situations that are
based on a real world Saab car hood geometry and the respective
robot movement. From this path static cases have been sampled



5.3 machine learning 26

in different heights. Therefore, this data set shows how well
a model can be expected to work in paint simulation of a real
world geometry. It consists of 93 painting situations from which
744 samples are extracted.

5.3 machine learning

The implementation of the machine learning algorithms relies on the
scikit-learn library [14]. This is a machine learning library written in
Python that provides a consistent interface to a variety of implemented
algorithms. This makes it easy to test and compare different algorithms
with low implementational overhead.

In scikit-learn performance sensitive code is usually implemented
in C which gives it reasonable performance compared to pure Python
libraries. Furthermore it offers a high-level python API that is easy to
use and integrate with other tools.

In this thesis, a subset of the available regression algorithms avail-
able in scikit-learn is compared. The selected algorithms are listed
below. Their theoretical background is presented in Chapter 3.

• Linear regression is used as an indicator of whether linear mod-
els can be used in the context of spray painting error prediction.
However, it is unlikely that good results will be achieved as
linear regression usually works best in low-dimensional settings.

• Tree-based regression models are tested in the form of simple
regression trees and regression random forests. They represent
simple non-linear models that are easy to interpret and have
good performance characteristics. The number of individual
trees in the random forest is set to 10.

• The support vector regression model is included in the compari-
son as it is effective in high dimensional spaces and efficient. In
the comparison an RBF kernel is chosen.

• Additionally, a dummy predictor is added to the comparison. It
averages the training data and returns this value as the predic-
tion. It can therefore be seen as a reference in performance and
gives a better perspective on the performance of other models.

5.3.1 Encoding position

An important property of the error prediction task is that multiple
outputs are required, i.e. the error prediction at different positions
in space. Common regression approaches are only able to predict a
scalar continuous value and are therefore not sufficient in this case.
There are three different concepts to handle multiple outputs.



5.4 application of error predictions 27

multiple models The simplest way is to encode the position
implicitly by creating and training independent models for every
position. This approach has the advantage of being easy to implement.
A disadvantage is that correlations between adjacent positions are
neglected and thus predictive power is wasted.

Furthermore, as the number of positions grows (e.g. the two-
dimensional case), performance of this method collapses as multiple
models have to be stored and evaluated.

position encoding A different approach is to explicitly model
position relative to the applicator as an input to the regression model.
Thereby only one model has to be trained and stored. However, it still
has to be evaluated once for every position.

Another problem is that the encoding of position as a feature is not
trivial. The simplest way to do this is to supply the position as a real
numbered feature. But this encoding is generally hard to interpret by
the machine learning algorithm and leads to bad prediction results.

Another approach is the so called one-hot-encoding, which trans-
forms the continuous value into a discrete representation. The problem
here is that a large number of features are generated, which slows
down the training process.

multiple outputs The third way is to use special regression
algorithms that have the multi-output characteristic. This means that
they can predict vectors instead of scalars. This makes it possible to
use just one model, which is used to output all required predictions
and thus incorporates position implicitly.

The advantages are compelling. As only one model is used, per-
formance is better than with the other approaches. Furthermore,
the training is usually faster and can result in better predictions, as
correlations between positions can be exploited.

The problem is that not all regression methods support multiple
outputs. In scikit-learn the models for linear regression and tree-
based models can handle multi-output regression. For support vector
regression multiple outputs are currently not implemented. however,
there is a theoretical foundation for multi-output SVRs [19, 20].

5.4 application of error predictions

After the regression model has been used to predict the projection
error, one needs to use that information to improve the projection
method’s thickness result. The problem here is that the corrections
are not calculated on the geometry mesh but on an independent grid
which is created by the rays.

A exemplary, two-dimensional case is visualized in Figure 5.1. Here
the black nodes belong to the irregular geometry grid. The red crosses



5.4 application of error predictions 28

denote the intersections of the rays with the geometry. They form a
rectilinear grid which is shown in light red.

In order to make the corrections usable for improving the projection
method simulation, they have to be mapped back onto the geometry
grid. This is accomplished by a least-squares method. The general
idea is to find the nodal corrections v̄ from the hit corrections p̄ using
the following relation.

p̄ = Bv̄ (5.2)

Here B denotes the barycentric interpolation matrix, which can be
calculated from the ray tracing results. Given this relation it is possible
to create a minimization problem to find v̄.

min
v̄
‖ p̄− Bv̄‖2 + αv̄T Mv̄ + βv̄TKv̄ (5.3)

Here the additional regularization terms αv̄T Mv̄ and βv̄TKv̄ have
been added. These terms ensure that the system is non-singular and
therefore solvable. M denotes the mass matrix and K is the stiffness
matrix of the geometry mesh. These matrices stem from the finite
element method (FEM) and contain information about the mass and
stiffness properties of the target objects triangulation. α and β are
parameters that control the trade-off between details and smoothness.

The term can now be expanded and a matrix A factored out.

min
v̄
‖ p̄‖2 − 2p̄TBv̄ + ‖Bv̄‖2︸ ︷︷ ︸

=v̄T BT Bv̄

+αv̄T Mv̄ + βv̄TKv̄ (5.4)

A = BTB + αM + βK (5.5)

From that we get the following:

min
v̄
‖ p̄‖2 − 2p̄TBv̄ + v̄T Av̄ (5.6)

It is known that A is positive definite, so we find the minimum after
deriving for v̄, which can be solved easily.

Av̄ = BT p̄T (5.7)

The values of α and β have to be chosen empirically to get a good
trade-off between preserving important features and smoothing the
prediction.



6
R E S U LT S

In this chapter the results of this thesis are presented. First, the dif-
ferent regression algorithms are compared. Then the error prediction
model is used to correct the error on different painting scenarios. Here
positive and negative examples for the hybrid simulation model are
shown.

6.1 comparison of regression algorithms

To compare the performance of the projection simulation with the
hybrid simulation model, a measure of performance is necessary.
There are three paint thickness estimates from which this measure can
be constructed.

The physics-based simulation is assumed to be the right result and
the reference for the faster, approximate methods. The projection
method is the current base line performance and will be compared to
the hybrid model, which includes the error correction.

A good measure for the performance of an approximate method is
the following relative error, which assesses how similar the results are
to the physics-based simulation.

Ehybrid =
‖P̄physics − P̄hybrid‖
‖P̄physics‖

(6.1)

Here the norm of the paint thickness vectors P̄ are taken. Results will
be presented using the l2 norm, which gives a good overview over the
predictive performance. A value close to zero denotes good results, as
then physics-based simulation and hybrid simulation are very similar.

The same measure can be calculated for the projection simulation.
It then serves as a reference which should be improved by the hybrid
model.

Eprojection =
‖P̄physics − P̄projection‖

‖P̄physics‖
(6.2)

First the results for the error prediction with 50 rays per dimension
are presented. The rays are equidistantly spaced over a length of 40cm
in each dimension. This results in a grid of 2500 rays and therefore
2500 features as the input for the regression models.

In Figure 6.1 we see Ehybrid plotted for the selected regression algo-
rithms (see Section 5.3) and the different data sets (see Section 5.2).
Here, all models were trained on the easy data set.

We see that the dummy predictor has nearly no effect on the relative
error. For the cross validation and the interpolation data sets the error
decreases slightly but it increases for the other two data sets.

29



6.1 comparison of regression algorithms 30

0.1 0.2 0.3 0.4 0.5 0.6

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Du
mm
y

Sin
gle
Ou
tp
ut

SV
R

Sin
gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n

8.54 · 10−2

0.1

7.47 · 10−2

9.73 · 10−2

0.38

0.19

0.38

0.31

0.28

0.26

0.27

0.47

0.36

8.8 · 1011

0.17

0.18

0.17

0.17

0.36

0.17

0.37

0.37

0.35

0.35

0.35

0.49

0.37

9.8 · 1010

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Relative error Ehybrid

Projection
Complex

Interpolation
Saab Hood

Cross Validation

Figure 6.1: Relative error Ehybrid for different regression methods and
different test sets. All regression models were trained
with the easy data set. The relative error of the projection
method is shown in purple for comparison.



6.1 comparison of regression algorithms 31

Linear regression shows a similar picture for the cross validation and
the interpolation data set. Here small gains are made. However, the
error for the other two data sets increases dramatically and has to be
clipped to fit the diagram. It seems that linear regression overfits to the
given data and thus can handle cross validation and the interpolation
cases, but is unable to generalize to the more complicated validation
data sets.

Support vector regression shows better results. For cross validation
and the interpolation data set the relative error is more than halved.
The relative errors for the Saab hood data set and the complex data
set exhibit small gains.

The different tree-based methods show the best results. The cross
validation relative error decreases by more than 75 percent and the
relative error of the interpolation data set is more than halved. The
relative error of the Saab hood set decreases around 25 percent while
the relative error for the hard data set improved only marginally.

The regular regression tree models seem to perform slightly worse
than the random forest models. This is expected, as a random forest
is an ensemble of regression trees. No clear advantages for the single-
output or multi-output models can be seen in Figure 6.1.

In Figure 6.2 the results for training the regression models with the
medium training set are shown. This training set includes curved and
tilted surfaces as well and should improve predictive performance for
the Saab hood data set. One can also notice that the relative error of
the projection method grows slightly, as harder painting scenarios are
now contained in the training set.

The changes in relative error compared to the training with the easy
data set are shown in Figure 6.3. Here it is evident that the extension
of the training set improves predictive performance. The highest gains
are made for the complex and the Saab hood data sets. This shows
that the regression algorithms extract information and are able to
generalize from it.

The linear regression decreases its relative error the most but is still
the worst model in the comparison. The reason for the improvement
is probably that the number of samples is growing in comparison to
the number of features, which in generally considered necessary in
order to get good results from linear regression.



6.1 comparison of regression algorithms 32

0.1 0.2 0.3 0.4 0.5 0.6

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Du
mm
y

Sin
gle
Ou
tp
ut

SV
R

Sin
gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n

0.1

0.11

7.38 · 10−2

9.58 · 10−2

0.41

0.2

0.4

0.24

0.23

0.19

0.2

0.36

0.33

54,863.91

0.15

0.15

0.12

0.12

0.27

0.11

0.27

0.27

0.23

0.24

0.21

0.48

0.29

8,243.1

0.42

0.42

0.42

0.42

0.42

0.42

0.42

Relative error Ehybrid

Projection
Complex

Interpolation
Saab Hood

Cross Validation

Figure 6.2: Relative error Ehybrid for different regression methods and
different test sets. All regression models were trained with
the medium data set. The relative error of the projection
method is shown in purple for comparison.



6.1 comparison of regression algorithms 33

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Du
mm
y

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

SV
R

−1.56 · 10−3

2.43 · 10−2

−8.32 · 10−4

3.65 · 10−2

1.83 · 10−2

6.56 · 10−3

1.24 · 10−2

−6.74 · 10−2

−8.8 · 1011

−6.99 · 10−2

−0.11

−6.44 · 10−2

−4.98 · 10−2

−2.83 · 10−2

−4.98 · 10−2

−0.1

−4.84 · 10−2

−8.5 · 10−2

−1.31 · 10−2

−2.65 · 10−2

−6.62 · 10−2

−0.14

−9.8 · 1010

−0.11

−1.16 · 10−2

−0.1

−0.12

−8.2 · 10−2

Change of relative error ∆Ehybrid

Projection
Complex

Interpolation
Saab Hood

Figure 6.3: Change of the relative error ∆Ehybrid for training with train-
ing sets easy and medium. Changes for different regression
methods and different test sets are shown.



6.1 comparison of regression algorithms 34

Figure 6.4 shows the relative error for regression algorithms trained
with the hard data set. This is the biggest training set and includes
additional painting scenarios with bumps in the target geometry. The
relative error of the projection methods increases again. This in an
indicator that this data set is even more difficult to handle for the
projection simulation.

Here only multi-output models are shown. This is because training
the single-output models requires a lot of memory and time, now that
the training set contains 12360 samples. In comparison, the multi-
output models can be trained more efficiently. Figures illustrating this
behavior are presented further down.

0.1 0.2 0.3 0.4 0.5 0.6

Du
mm
y

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

0.51

9.36 · 10−2

0.14

0.45

0.2

0.27

0.32

0.13

0.13

0.48

0.26

0.31

0.53

0.53

0.53

Relative error Ehybrid

Projection
Complex

Interpolation
Saab Hood

Cross Validation

Figure 6.4: Relative error Ehybrid for different regression methods and
different test sets. All regression models were trained with
the data set hard. The relative error of the projection
method is shown in purple for comparison.



6.1 comparison of regression algorithms 35

The changes in relative error compared to the training with training
set 2 are shown in Figure 6.5. One can see that the performance of the
dummy regressor decreases as expected with growing difficulty of the
training set. The relative error of the multi-output, tree-based methods
degrades slightly. This looks like a decrease in performance but really
is an increase. While the relative error of the projection method grows
from 0.42 to 0.55, the tree-based models can nearly keep their relative
error stable which means that their predictive abilities increase.

−2 · 10−2 0 5 · 10−2 0.1
Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Du
mm
y

3.99 · 10−2

1.98 · 10−2

0.1

2.66 · 10−2

8.02 · 10−3

8.7 · 10−2

−2.27 · 10−2

7.72 · 10−3

5.35 · 10−2

4.05 · 10−2

2.25 · 10−2

4.5 · 10−3

Change of relative error ∆Ehybrid

Projection
Complex

Interpolation
Saab Hood

Figure 6.5: Change of the relative error ∆Ehybrid for training with train-
ing sets medium and hard. Changes for different regres-
sion methods and different test sets are shown.

In Figure 6.6 the training times on the easy training set are presented
for the different regression algorithms. The measurements were taken
on a computer with an Intel Core i7-4770 CPU and 32 Gigabyte RAM.

Regression trees are the fastest method and multi-output models
have an advantage over single-output models here. SVR is slower
than regression trees but faster than single- and multi-output random
forests. The multi-output model of random forests is also faster to
train compared to the single-output model which requires one minute
longer. Linear regression is the slowest of the compared methods.
This is surprising as efficient solvers are available for linear regression.



6.1 comparison of regression algorithms 36

The result therefore hints at a suboptimal implementation of linear
regression inside scikit-learn.

Figure 6.7 shows the training times for multi-output regression tree
and random forests models for different sizes of training sets. The
training of random forests is around one order of magnitude slower
than the training of regression trees. The scaling of the training times
is similar with regard to training set size.

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

SV
RSin

gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n

0

2

4

6

8

0.340.76

3.93
4.9

2.97

7.87

Tr
ai
ni
ng
tim

e
[m
in
]

Figure 6.6: Training time for different regression methods.

1,440 6,120 12,360

0

100

200

0.33 7.63 19.193.99

84.97

241.79

Samples in training set

Tr
ai
ni
ng
tim

e
[m
in
] Regression tree

Random forest

Figure 6.7: Development of training times for different training sets.

Figure 6.8 compares the prediction frequency of the different regres-
sion models. Note the logarithmic scale of the ordinate axis. One
can see that multi-output models generally outperform single-output
models in this regard.

The multi-output regression tree outperforms all other models by a
huge margin. After that comes the multi-output random forest which
is still a magnitude faster than the fastest single-output models.

Interesting to note is that the size of the training set seems to have
no negative impact on the prediction frequency of most models. Only
the SVR model halves its prediction speed. The other regression mod-



6.1 comparison of regression algorithms 37

els even show small improvements in prediction speed for growing
training set size.

Mu
lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

SV
RSin

gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n

100

101

102

103

104

105 24,186

11.18

177.94

1.08
3.68

12.36

24,977

11.3

193.8

1.15 1.68

13.15

Pr
ed
ic
tio
ns
pe
rs
ec
on
d Data set EASY

Data set MEDIUM

Figure 6.8: Performance of error prediction for different regression
methods. Note the logarithmic scale of the ordinate axis.

In Figure 6.9 the size of the serialized regression models is plotted.
As expected the linear regression model is the smallest. After that
follow the regression tree and random forest models. The serialized
SVR model is the biggest.

For the hard data set only tree-based multi-output models are com-
pared. Figure 6.10 shows the size of the trained models with different
sizes of the training set. One can see that the size of the serialized
models grows linearly with the number of samples contained in the
data set.

Another interesting point is that the random forest model is always
roughly 6.3 times bigger than an individual regression tree. As the
random forest consists of ten individual trees, some optimizations
must be performed inside scikit-learn.

Conclusion

In this section, several regression algorithms were compared. Their
predictive performance for error correction has be evaluated on differ-
ent training sets. Furthermore, other properties such as training time,
prediction frequency and the size of the serialized models have been
compared.

The result of this comparison is that tree-based methods work best
for the error prediction task. Random forests have the best error
prediction abilities in the comparison while having good predictions
speed as well. Regression trees are faster to train and offer higher
prediction speed, but their error prediction is worse in return. The



6.1 comparison of regression algorithms 38

Sin
gle
Ou
tp
ut

Lin
ea
r R
eg
res
-

sio
n Sin

gle
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Sin
gle
Ou
tp
ut

Ra
nd
om
Fo
res
t

Sin
gle
Ou
tp
ut

SV
R Mu

lti
Ou
tp
ut

Re
gre
ssi
on
Tre
e

Mu
lti
Ou
tp
ut

Ra
nd
om
Fo
res
t

0

500

1,000

14.4 52.12

346.22

1,132.12

29.87
189.98

M
od
el
si
ze
[M
B]

Figure 6.9: Model size for different regression methods.

1,440 6,120 12,360

0

1,000

2,000

29.87 173.52
366.84

189.98

1,101.78

2,330.72

Samples in training set

M
od
el
si
ze
[M
B]

Regression tree
Random forest

Figure 6.10: Development of model size for different training sets.

decision which algorithm to use is therefore also dependent on the
size of the training set and the number of rays that are used.

The support vector regression model does not generalize as well as
the tree-based algorithm. As a result, the error predictions on the Saab
hood benchmark are mediocre. A reason for these result might be the
feature scaling. In other tests the SVR model was really sensitive to
the scaling of features and outputs, so different scaling might improve
performance.

The SVR model is also the slowest model in the comparison. A prob-
lem here is also that SVR is not implemented as a multi-output model
in scikit-learn, which explains some of the performance differences.

Linear regression as a model is too biased for the error prediction
task. Therefore the error prediction actually resulted in worse results.
A reason for that might be the choice of feature representation and
the high-dimensional nature of the error prediction problem.



6.2 applied corrections 39

6.2 applied corrections

In the last section the performance of the error prediction is averaged
over whole data sets and and it is thus not tangible how error predic-
tion improves individual scenarios. For this reason, certain painting
scenarios are selected and visualized in this section. For each scenario,
the projection error, the error prediction and the error of the corrected
paint thickness are presented. The error prediction itself is generated
by a random forest which was trained on the hard data set.

One of the simplest painting scenarios can be seen in Section 6.2.
Here a flat disc geometry is painted with the applicator being posi-
tioned in 20 cm height over the center of the disc.

Figure 6.11a shows the real projection error. It is asymmetrical due
to some grid effects in the multi-physics simulation. Figure 6.11b
shows the predicted error. It captures the general features of the
error and is symmetric. The error of the corrected thickness is shown
in Figure 6.11c and shows a vastly improved picture with less and
weaker spikes of error.

For this scenario the relative error decreases from 7.55 · 10−5 to
4.39 · 10−5, which is a 40% reduction. This reduction is remarkable
as the projection method is adjusted on flat scenarios and thus gives
good thickness estimates.



6.2 applied corrections 40

(a) Measured error. (b) Predicted error.

(c) Corrected error.

Figure 6.11: Flat disc scenario with centered applicator in 20 cm height.



6.2 applied corrections 41

A more complicated painting scenario is shown in Section 6.2. Here a
curved disc geometry is painted with the applicator being positioned
in 20 cm height over the disc with an offset of 30cm from the center.
This position of the applicator introduces edge effects which have to
be respected by the error prediction model.

Figure 6.12a shows the projection error. It exhibits strong asym-
metry based on the curvature of the geometry and the edge effects.
Figure 6.12b shows the successfully predicted error. The error of the
corrected thickness is shown in Figure 6.12c.

For this scenario the relative error decreases from 3.88 · 10−4 to
1.30 · 10−4, which is a 66% reduction.

(a) Measured error. (b) Predicted error.

(c) Corrected error.

Figure 6.12: Curved disc scenario with the applicator in 20cm height
and 30cm offset from the center.



6.2 applied corrections 42

The previous two examples are taken from the cross validation set and
thus are expected to display good performance. Now a scenario from
the Saab hood data set is displayed. Here the applicator is located
20cm over the hood geometry and not close to any edge.

Figure 6.13a shows the projection error and Figure 6.13b shows the
predicted error. Here the error prediction model correctly predicts the
general shape of the error but underestimates its magnitude.

A possibility to improve the predictive performance for similar
scenarios is to add scenarios that combine curvature and tilt to the
training set.

The error of the corrected thickness is shown in Figure 6.13c. The
relative error is nearly halved from 2.70 · 10−4 to 1.48 · 10−4.

(a) Measured error. (b) Predicted error.

(c) Corrected error.

Figure 6.13: A scenario from the Saab hood data set. The applicator is
positioned 20cm over the target geometry.



6.2 applied corrections 43

This scenario is also taken from the Saab hood data set. Here the
applicator is located 25cm over an edge in the hood geometry.

The projection error and the predicted error can be seen in Figures
6.14a and 6.14b. Here the error prediction model correctly predicts the
general shape of the error but again underestimates its magnitude.

The error of the corrected thickness is shown in Figure 6.14c. The
relative error decreases from 3.11 · 10−4 to 1.50 · 10−4, a 52% improve-
ment.

(a) Measured error. (b) Predicted error.

(c) Corrected error.

Figure 6.14: A scenario from the Saab hood data set. The applicator is
positioned 25cm over the target geometry.



6.2 applied corrections 44

The last example is again taken from the Saab hood data set. This time
the applicator is located 20cm over the edge of the hood geometry.

Figure 6.15a shows the projection error and Figure 6.15b shows the
predicted error. Here the error prediction model is able to partially
predict the blue ring, but miss-predicts the orange spot on one side.

For that reason the error can not be reduced. The error of the cor-
rected thickness is shown in Figure 6.13c. The relative error increases
slightly from 3.51 · 10−4 to 3.56 · 10−4.

(a) Measured error. (b) Predicted error.

(c) Corrected error.

Figure 6.15: A scenario from the Saab hood data set. The applicator is
positioned 20cm over the edge of the target geometry.



7
C O N C L U S I O N S

Spray painting is a surface treatment process that is widely used in
industry. It has a high environmental impact which can be reduced by
automatic optimization tools. These tools rely on accurate simulations
of the painting process, which are generally not fast enough to be
useful in the context of automatic optimization. For that reason simpli-
fied, approximate simulation methods like the projection simulation
are used. They achieve high simulation speed but also result in a
considerable loss of accuracy.

In this thesis a novel approach for improving the approximate sim-
ulation methods is presented. By combining the projection simulation
with an error correction a hybrid model with good performance and
improved accuracy is created.

The error prediction is based on regression algorithms which rely on
input features that capture the important parameters of the problem.
These features are created in form of a local height field of the target
geometry from the paint applicators coordinate system. That way
captures all relevant parameters and can be efficiently computed
using ray tracing.

The regression algorithms require a set of paint scenarios to learn
from. For that reason, a database of common painting situations
has been created. To accelerate the creation of the training set static
simulations are used and efficient parallel tools for the management
of the database have been implemented.

The error prediction capabilities of linear regression, support vector
regression and tree-based regression methods are compared. The
impact of different training sets on the error prediction performance
is investigated as well. The results show that linear models cannot
predict the projection error and thus non-linear models have to be
used.

Tree-based methods provide the best error prediction abilities and
are able to reduce the projection error more than 40% on real world
benchmarks. Tree-based models are also the fasted algorithms among
the compared regression models. From benchmarks follows that multi-
output methods should be preferred of single-output methods in the
context of error prediction, where the error has to be predicted in
multiple positions.

45



8
F U T U R E W O R K

It has been shown that the general approach of using machine learning
for improving simulation results is feasible. However, the current work
flow is just a proof of concept and can be improved in numerous ways.

A first point is parameter selection. The presented concept contains
many parameters, like the number of rays per dimension or the width
of the ray tracing area. These parameters have been chosen according
to best knowledge, but have not been validated systematically. Further
parameter studies might be sensible here.

Additionally, some of the machine learning algorithms in scikit-
learn are not implemented efficiently and thus waste computational
resources. Performance gains are possible by switching to more effi-
cient low-level libraries.

Besides these viable improvements to the current process, there are
possible enhancements to the general approach.

An important factor for predictive performance is the compilation
of the training set. Currently the training set consists of manually
selected cases that are expected to improve predictive performance.
As has been shown, increasing the data set can result in accuracy
gains but does not necessarily do so. Therefore, it is advisable to find
ways to construct efficient training sets (i.e. sets with small numbers
of cases but good training results) for given target geometries. This
would both speed up training times of the regression models as well
as reducing the time spent to generate new training data.

A related aspect is the confidence of the prediction. Currently there
is no way to assess whether the error correction is reliable or just an
uncertain guess. A measure like this would yield opportunities to
evaluate worst-case performance as well as providing further ways to
improve the training set.

Another area where improvements can be made is the feature repre-
sentation. The current approach with generating the height map from
the applicator’s view is efficient and captures all important parameters,
but it also duplicates a lot of information. Different approaches for
feature engineering exist, from principal component analysis to more
recent deep learning techniques [2, 1]. Making use of these techniques
can result in more meaningful features, which in turn reduces the
number of features necessary for an accurate prediction.

A different, promising concept to reduce the number of features
is to make use of symmetries. Currently the models do not exploit
symmetry and thus the training set contains redundant data (i.e. dif-
ferent rotation angles of the applicator). By employing symmetry, the
model could focus on smaller areas, which would improve prediction
performance.

46



B I B L I O G R A P H Y

[1] Y. Bengio. Learning deep architectures for AI. Foundations and
Trends in Machine Learning, 2(1):1–127, January 2009. ISSN 1935-
8237. doi: 10.1561/2200000006.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning:
A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1798–1828, Aug 2013. ISSN
0162-8828. doi: 10.1109/TPAMI.2013.50.

[3] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996. ISSN 1573-0565. doi: 10.1023/A:1018054314350.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
ISSN 1573-0565. doi: 10.1023/A:1010933404324.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[6] S. Duncan, P. Jones, and P. Wellstead. A frequency-domain ap-
proach to determining the path separation for spray coating. IEEE
Transactions on Automation Science and Engineering, 2(3):233–239,
2005.

[7] F. Edelvik, A. Mark, N. Karlsson, and J. S. Carlson. Math-based
algorithms and software for virtual product realization imple-
mented in automotive paint shops. submitted, 2016.

[8] J. K. Hastings, M. A. Juds, and J. R. Brauer. Accuracy and econ-
omy of finite element magnetic analysis. In 33rd Annual National
Relay Conference, 1985.

[9] D. Hegels, T. Wiederkehr, and H. Müller. Simulation based itera-
tive post-optimization of paths of robot guided thermal spraying.
Robotics and Computer-Integrated Manufacturing, 35:1 – 15, 2015.
doi: 10.1016/j.rcim.2015.02.002.

[10] A. Mark and B. G. M. van Wachem. Derivation and validation
of a novel implicit second-order accurate immersed boundary
method. Journal of Computational Physics, 227(13):6660 – 6680, 2008.
ISSN 0021-9991. doi: 10.1016/j.jcp.2008.03.031.

[11] A. Mark, R. Rundqvist, and F. Edelvik. Comparison between dif-
ferent immersed boundary conditions for simulation of complex
fluid flows. Fluid dynamics & materials processing, 7(3):241–258,
2011.

47



Bibliography 48

[12] A. Mark, B. Andersson, S. Tafuri, K. Engstrom, H. Sorod,
F. Edelvik, and J. S. Carlson. Simulation of electrostatic rotary
bell spray painting in automotive paint shops. Atomization and
Sprays, 23(1):25–45, 2013. ISSN 1044-5110.

[13] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,
and M. Stich. Optix: A general purpose ray tracing engine. ACM
Transactions on Graphics, August 2010.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[15] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, 2 edition, 2003. ISBN 0137903952.

[16] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001. ISBN 0262194759.

[17] A. J. Smola and B. Schölkopf. A tutorial on support vector
regression. Statistics and Computing, 14(3):199–222, 2004. ISSN
1573-1375. doi: 10.1023/B:STCO.0000035301.49549.88.

[18] S. Tafuri, F. Ekstedt, J. S. Carlson, A. Mark, and F. Edelvik. Im-
proved spray paint thickness calculation from simulated droplets
using density estimation. In ASME 2012 International Design
Engineering Technical Conferences and Computers and Information
in Engineering Conference, pages 339–347. American Society of
Mechanical Engineers, 2012.

[19] E. Vazquez and E. Walter. Multi-output support vector regression.
In 13th IFAC Symposium on System Identification, pages 1820–1825.
Citeseer, 2003.

[20] S. Xu, X. An, X. Qiao, L. Zhu, and L. Li. Multi-output least-
squares support vector regression machines. Pattern Recognition
Letters, 34(9):1078 – 1084, 2013. ISSN 0167-8655. doi: 10.1016/j.
patrec.2013.01.015.


	Introduction
	Simulation of spray painting
	Multi physics framework
	Paint thickness estimation
	Binning
	Kernel Density Estimation

	Projection method

	Machine learning
	Linear regression
	Decision trees
	Tree pruning
	Bagging
	Random forests

	Support vector regression

	Machine learning approach
	Response variable
	Process parameters
	Feature creation
	Rotation and variation

	Methodology
	Data set creation
	Available data sets
	Machine learning
	Encoding position

	Application of error predictions

	Results
	Comparison of regression algorithms
	Applied corrections

	Conclusions
	Future Work

