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BOUTþþ is a software package designed for solving plasma fluid models. It has been used to

simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma

turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid

models. A verification exercise has been performed as part of a EUROfusion Enabling Research

project, to rigorously test the correctness of the algorithms implemented in BOUTþþ, by testing

order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We

present tests of individual components including time-integration and advection schemes, non-

orthogonal toroidal field-aligned coordinate systems and the shifted metric procedure which is used

to handle highly sheared grids. The flux coordinate independent approach to differencing along

magnetic field-lines has been implemented in BOUTþþ and is here verified using the MMS in a

sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-

Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal

coordinates, and 5-field reduced MHD in slab geometry. [http://dx.doi.org/10.1063/1.4953429]

I. INTRODUCTION

The BOUTþþ code1,2 is an open source toolkit for the

simulation of plasma models. Its applications include the

study of plasma transients including edge localised modes

and filament/blob transport, and turbulence in magnetised

plasma devices. Here, we present a rigorous code verification

exercise3,4 of the BOUTþþ core algorithms and numerical

methods using the Method of Manufactured Solutions

(MMS).3,5 Code verification is a process of checking that the

chosen set of partial differential equations is solved correctly

and consistently and is a purely mathematical exercise. Code

verification is not concerned with verifying that the chosen

numerical methods are appropriate for the chosen set of

equations. Code verification is also not concerned with test-

ing the ability of a given model to explain experimental

observations. This testing is dealt with in the subsequent

validation process. Code verification tests typically rely on a

known solution against which to check the result (the

Method of Exact Solutions). In relatively simple geometries

(e.g., slabs or cylinders) and equations (usually linearised),

an analytical solution can sometimes be found, and this kind

of test is used to verify BOUT6 and BOUTþþ1 as part of a

test suite, run regularly to reduce the chances of errors being

introduced. The requirement that there be an analytical solu-

tion restricts the usefulness of the tests, as the code cannot be

verified for realistic geometries and problems of interest,

where no such exact solution exists.

The Method of Manufactured Solutions (MMS)3,5 pro-

vide a method by which a simulation code can be verified in

general situations, even where analytic solutions cannot be

found. This is done by imposing a known “manufactured”

solution, and adding sources to the equations such that the

manufactured solution is an exact solution to the modified

set of equations. The manufactured solution and therefore

also the source can be composed of primitive analytical func-

tions sin; cos; tanh, etc., which can be evaluated with a very

high accuracy, typically double floating point precision. The

difference between the numerically calculated solution and

the “exact” manufactured solution provides the numerical

error. The scaling of the numerical error with the numerical

spatial resolution is known a priori, and hence any deviation

from the theoretical scaling must be due to code inconsisten-

cies or errors. The MMS is a very general technique, which

has been used to verify a wide range of engineering codes,

particularly in the fluid dynamics community.7 MMS has

been applied to components of plasma simulation codes such

as the European Transport Solver8 and gyrokinetic simula-

tions,9 and has recently been applied to the GBS turbulence

code10 and tokamak edge simulations.11

As in Ref. 10, here we focus on order-of-accuracy tests

as they provide the most rigorous test of numerical imple-

mentation.4 In Section II, we describe in more detail the

MMS procedure, and the changes made to BOUTþþ to

facilitate its routine use. BOUTþþ simulations typically

employ non-orthogonal curvilinear coordinate systems,

which are described in Section III along with the method

used to perform tests in these coordinates. Individual compo-

nents of BOUTþþ are first tested independently, including

time integration schemes in Section IV A, advection schemes

in Section IV B, and operators for wave and diffusion equa-

tions along magnetic fields in Section IV C. Coordinate sys-

tems are then tested in Section IV E. In Section V, complete

models are tested, in which these components are combined:

The 2-field Hasegawa-Wakatani model of drift-wave turbu-

lence in Section V A; a 3-field reduced Magnetohydrodynamicsa)Electronic mail: benjamin.dudson@york.ac.uk
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(MHD) model in Section V B; and a 5-field reduced MHD

model similar to that in Ref. 10 is tested in Section V C.

All source code, input files, and scripts needed to pro-

duce the figures and results in this paper are publicly avail-

able as part of the BOUTþþ development repository at

https://github.com/boutproject/BOUT-dev, revision 83c1f53.

Due to automation of the testing procedure (Section II), most

results and figures in this paper can be reproduced by run-

ning a single Python script. The location of these scripts will

be specified relative to the root of the git repository.

II. TESTING FRAMEWORK

The BOUTþþ code is not limited to a single set of

equations, but has been developed to allow an arbitrary num-

ber of evolving fields, and input of custom evolution equa-

tions in a form close to mathematical notation (see Refs. 1

and 2 for details). This flexibility presents a challenge for

verification, due to the large number of possible combina-

tions of operators and settings such as boundary conditions,

which could be employed. Fortunately, as pointed out in Ref.

5, only mutually exclusive settings and operators need be in-

dependently tested, not all possible combinations of options.

This still requires a relatively large number of tests to

adequately cover the code components, and to verify each

model. The process of MMS testing has therefore been auto-

mated as far as possible, by enabling all aspects of the test to

be specified in an input text file. This allows the same code

to be tested with different inputs, and new tests to be created

more easily. Here, we briefly outline the MMS procedure,

before describing the mechanisms implemented in

BOUTþþ to carry out MMS testing.

Time integration codes such as BOUTþþ evolve a set

of nonlinear equations for quantities f , e.g., for a two field

model evolving particle density and temperature f ¼ fn; Tg.
The system of equations is solved using the method of lines

and can be written in a general form as

@f

@t
¼ F f

� �
; (1)

where Fð�Þ is a nonlinear operator which contains discre-

tised differential operators in the spatial dimensions. In

order to test the correctness of the numerical implementa-

tion, a time-dependent function f MðtÞ is chosen (manufac-

tured) using a combination of primitive mathematical

functions which can be evaluated to machine precision.

Manufactured solutions should be chosen so that they exer-

cise all parts of the code, so should be varying in time and

all spatial dimensions. Ideally the magnitude of the terms in

the equations solved should be comparable, so that the error

in one does not dominate over the others. Since derivatives

of the solution will be taken numerically, the solution

should also be smooth. Where the domain is periodic, such

as toroidal angle in tokamak simulations, the manufactured

solutions must also be periodic in those directions. A

detailed discussion of selection criteria for manufactured

solutions can be found in Ref. 5.

The manufactured function f M is now inserted into the

function Fð�Þ and
@f M

@t to calculate a source function S

analytically

S tð Þ ¼
@f M

@t
� F f M

� �
: (2)

The function Fð�Þ is typically composed of a combination of

algebraic operations and differential operators. This results

in a closed analytic form for Fðf MÞ even when Fð�Þ is nonlin-

ear or evaluated in non-orthogonal curvilinear coordinate

systems, since f M is only ever differentiated with respect to

time and spatial coordinates, and not integrated. In some

cases Fð�Þ contains integrals, as in the models tested in

Section V, where the potential / is calculated by integrating

the vorticity. These integrals may not have a closed analytic

solution, and so in these cases a solution to the integral

(potential /) is manufactured, and a source then calculated

to be added to the integrand (vorticity).

Here, the symbolic packages Mathematica and the

Sympy library12 were used to calculate source functions.

Both can generate representations of the resulting expres-

sions which can be copied directly into source code or text

input files. For large sets of equations such as those in

Section V C, this is essential in order to avoid introducing

errors.

The system of equations to be solved numerically is

now modified to

@f

@t
¼ F f

� �þ S tð Þ (3)

so that the function f M is an exact (manufactured) solution of

Equation (3). Since S has been calculated analytically, it can

be evaluated to within machine precision at any desired

time, and passed to the time integration routines. At the start

of the simulation t¼ 0, the state is set to the manufactured

solution f ¼ f Mðt ¼ 0Þ. The simulation time is then

advanced to some later time t ¼ Dt, at which point the nu-

merical solution f is compared to the manufactured solution

f Mðt ¼ DtÞ. The norm of the difference between the numeri-

cal solution and the manufactured solution � ¼ jjf � f Mjj at

t ¼ Dt then gives a measure of the error in the numerical so-

lution, which should converge towards zero as the spatial

and temporal mesh is refined. Note that in order to obtain

convergence in the solution of a time-dependent Partial

Differential Equation (PDE), both the spatial and temporal

mesh (time step) must be refined.13 In general, separating the

spatial and temporal convergence is non-trivial, but in

Section IV D we use a slightly different procedure than out-

lined above, to verify spatial convergence and boundary con-

ditions independently of temporal convergence.

Boundary conditions must also be modified for testing

with the MMS. A Dirichlet boundary condition on a quantity

n (e.g., particle density), for example, must be modified to

set the solution equal to the time-varying manufactured solu-

tion nM on the boundary
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nðboundaryÞ ¼ nMðboundary; tÞ: (4)

Similarly for Neumann boundary conditions

@n

@x
boundaryð Þ ¼ @nM

@x
boundary; tð Þ: (5)

More complex boundary conditions such as sheaths, which

couple multiple fields together, can be treated by adding a

source function as for the time integration equation (3). The

boundary conditions applied to all fields now become time-

dependent and must be evaluated from an analytic expres-

sion at arbitrary points in time.

In order to test a numerical model using the Method of

Manufactured Solutions, three analytic function inputs are

therefore required for each evolving field (e.g., density n,

temperature T):

(1) A manufactured solution.

(2) A source function calculated from Equation (2) using a

symbolic package like SymPy.

(3) Analytic expressions for boundary conditions.

As described in Ref. 2, BOUTþþ contains an expres-

sion parser which evaluates analytic expressions in input

files. This was added as a convenient means to specify initial

conditions but has been extended and adapted for use in

MMS testing. Once MMS testing is enabled by setting a flag

in the input, BOUTþþ reads a manufactured solution from

the input for each evolving variable, using it to initialise the

variable and to calculate an error at each output time; a

source function is read and used to modify the time deriva-

tives which are passed to the time-integration code; and

expressions for boundary conditions are evaluated at the

required times. All of this machinery is independent of the

specific model, and in most cases, does not require any modi-

fication of the problem-specific code. (The only code

changes required for MMS testing are Laplacian inversions,

which currently require some modifications to their calls in

order to insert additional source functions.) The form of the

analytic expressions is of course problem specific, but once

calculated, a BOUTþþ executable can be tested using MMS

and then used to perform physics simulations without

recompiling, only changing the input file. This automation of

the testing process aims to lower the barriers to routine test-

ing of BOUTþþ simulation models using the Method of

Manufactured Solutions.

III. COORDINATE SYSTEMS

In strongly magnetized plasmas, the characteristic gradi-

ent length scales parallel to the magnetic field are often

much longer than the perpendicular length scales. This scale

separation is often exploited in numerical simulation to

reduce the computational cost by using a coarser discretisa-

tion in the direction parallel to the magnetic field. A widely

used approach is to express the model equations in magnetic

field-aligned, curvilinear coordinates. In most previous

BOUTþþ simulations,1 we have used the so-called balloon-

ing coordinates. Starting from orthogonal toroidal flux coor-

dinates14 ðw; h; fÞ with radial flux-surface label w, poloidal

angle h, and toroidal angle f, the coordinates are transformed

to field-aligned ballooning coordinates ðx; y; zÞ15

x ¼ w y ¼ h z ¼ f�
ðh

h0

�dh � ¼ Bfr

BhR
; (6)

where Bf and Bh are the toroidal and poloidal magnetic field

components, r is the minor radius, R is the major radius, and �
is the local magnetic field-line pitch. Moving along y at fixed

x and z follows the path of a field-line in both h and f. The co-

variant basis vector (the vector between grid-points) is1

~ex ¼
1

RBh

~̂ew þ IR~̂e f; (7a)

~ey ¼
hh

Bh

~B; (7b)

~ez ¼ R~̂e f; (7c)

where ~̂e are the unit vectors in the original orthogonal toroi-

dal ðw; h; fÞ coordinate system, and I ¼
Ð
@�
@w dh is the inte-

grated shear. The magnetic field is given by ~B ¼ rz�rx,

and so the derivative along the magnetic field reduces to a

simple partial derivative ~B � r ¼ rz�rx � ry@y. Since

fluctuations typically have long wavelengths along field-

lines, a lower resolution can be used in this parallel y coordi-

nate, with a corresponding reduction in computational

resources, both run time and memory.

In order to reduce the deformation of the coordinates

caused by magnetic shear I (see~ex in Equation (7)), a shifted

metric method16,17 is usually used, a discussion of which can

be found in Ref. 1 and more recently in Ref. 18. At each y ¼
const plane, a local coordinate system is defined in which x
and z are orthogonal. Mapping between these local coordi-

nates and the global field-aligned coordinates can be done

using Fast Fourier Transforms (FFTs) in the toroidal (f, z)

direction. As implemented in BOUTþþ, this procedure has

no effect on differencing in the parallel direction, but differ-

encing in x is modified by shifting quantities in z using FFTs

before calculating finite differences.

A toroidal coordinate system for MMS testing is gener-

ated by first specifying the path of magnetic field lines in

poloidal and toroidal angle. The poloidal magnetic field can

then be calculated by differentiation, ensuring that the result-

ing analytic metric tensor components have relatively com-

pact closed forms. The formula used here for the toroidal

angle f as a function of the radial (flux) coordinate w and

poloidal angle h is

f ¼ qðwÞ½hþ � sin h�; (8)

where qðwÞ is the safety factor, which is taken to be a para-

bolic function of w varying between 2 and 3 in Sections IV E

and V B. � ¼ r=R0 is the inverse aspect ratio, here taken to

be � ¼ 0:1. From this, the field line pitch is calculated as

� ¼ qðwÞ½1þ � cos h�: (9)

A fixed value of the poloidal current function f ¼ BfR and

minor radius r ¼ �R0 is used, and the major radius of a field
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line varies as R ¼ R0 þ r cos h. Equation (9) is then rear-

ranged to give an expression for the poloidal field. The inte-

grated shear is calculated from the differential of the field-

line toroidal angle f with respect to w

I ¼
ðh

h0

@�

@w
dh ¼ @q wð Þ

@w
1þ � cos h½ �: (10)

The resulting covariant and contravariant metric tensors

have the same non-zero pattern as in simulations of real

devices, and elements of the covariant metric tensor vary in

both radial and poloidal coordinates.15 Differencing opera-

tors parallel and perpendicular to the magnetic field are

tested in this coordinate system in Section IV E, and a 3-field

electromagnetic reduced MHD model is verified in this coor-

dinate system in Section V B.

A. Flux coordinate independent (FCI) scheme

Recently, a new approach to plasma turbulence simula-

tions has been developed,18,19 and work is ongoing to imple-

ment this scheme in several simulation codes. We have

implemented this Flux Coordinate Independent (FCI) scheme

in BOUTþþ, enabling the development of complex turbu-

lence models in arbitrary magnetic geometry. By assuming

that the poloidal plane equals the plane perpendicular to the

magnetic field, complex non-orthogonal curvilinear field-

aligned flux coordinates do not need to be used in the perpen-

dicular direction, but can use simple geometries (e.g.,

Cartesian). Here, we verify that these numerical schemes have

been implemented correctly for a sheared slab geometry.

Further development and verification in more complex geo-

metries will be the subject of a future publication.

The flux coordinate independent scheme, as imple-

mented in BOUTþþ, employs 3rd-order Hermite polyno-

mial interpolation in the plane perpendicular to the magnetic

field, and 2nd-order central differencing along the magnetic

field. The idea is illustrated in Figure 1: The grid is con-

structed to be dense in planes perpendicular to the magnetic

field and sparse along the magnetic field, since from physical

arguments we expect the solutions to vary slowly along mag-

netic field-lines (kjj � k?). To calculate derivatives of a

quantity f along magnetic fields, the magnetic field is first

followed from each grid point onto neighbouring planes; val-

ues of f on neighbouring planes are then interpolated onto

these intersection locations. This gives the value of f at 3

points along the magnetic field (the starting grid point, and

one point along the field in each direction), which is suffi-

cient to calculate second-order accurate first or second deriv-

atives using central differencing. If higher order derivatives

are required, then the magnetic field could be followed to

calculate intersections with further planes. There are subtle

issues with this scheme which will not be addressed here and

are left to future work: the treatment of boundary conditions

where magnetic field-lines intersect material surfaces, and

time-evolving magnetic fields where the mapping of field-

lines to neighbouring planes might need to be updated are

two areas of interest. The efficiency of the scheme in terms

of the computing time required for high-order interpolation

is also important in determining the best overall scheme to

employ and is also left to future work.

IV. RESULTS

Since operators can be tested and verified independently

(see Ref. 5 and discussion in Section II), a suite of smaller

tests is generally more useful than a test which combines

everything together. Whole models are tested in Section V,

but require considerable computing resources to run, and if

one of these fails then it is difficult to know where the error

lies. Tests of individual components can run in minutes on a

desktop, rather than hours on a supercomputer, and a test

failure provides better guidance as to the location of the

error. The difficulty is in the large number of tests needed to

ensure coverage. Here, we verify the major components of

BOUTþþ, including time integration schemes (Section

IV A), advection operators (Section IV B), central schemes

for wave and diffusion equations (Section IV C), and the cur-

vilinear coordinate system used for tokamak simulations

(Section IV E). Other components, such as calculation of

potential / from vorticity, are verified as part of full models

(Section V), and development of individual tests for these

components is a matter of ongoing work.

A. Time integration

Several explicit and implicit time integration schemes are

implemented in BOUTþþ, allowing users to choose at run-

time which scheme to use. Methods tested are the Euler,

RK4,20 a multi-step method derived by Karniadakis et al.21,22

and a third-order Strong Stability Preserving Runge-Kutta

method (RK3-SSP).23 Results obtained by integrating @f
@t ¼ f

between t¼ 0 and t¼ 1 are shown in Figure 2. Other functions

such as @f
@t ¼ cosðtÞ have also been tested, resulting in the

same convergence rate.

The Euler, RK3-SSP, and RK4 methods all reproduce

their expected convergence rates (first, third, and fourth

order in dt, respectively), and so can be considered verified.

The Karniadakis scheme is expected to be third order

FIG. 1. Flux Coordinate Independent (FCI) scheme. To calculate the deriva-

tive along the magnetic field at grid cells (large solid circles), field-lines are

followed in both directions to points on neighbouring planes of grid cells

(small open circles). Values at these points are found by high-order interpo-

lation using nearby points (blue box).
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accurate, but only second order convergence is observed.

This is most likely due to the initialisation procedure of the

multistep method: At each step, the value of f and its time

derivative at two previous timesteps are required, and so to

start the simulation these previous steps are constructed

using Euler’s method. This results in an Oðdt2Þ error, reduc-

ing the overall convergence to second order in dt.
Time integration in BOUTþþ simulations is typically

done using implicit adaptive Jacobian-Free Newton Krylov

(JFNK) schemes, provided by either the SUite of Nonlinear

and Differential/ALgebraic equation Solvers (SUNDIALS24)

or the Portable, Extensible Toolkit for Scientific Computation

(PETSc25,26). These use adaptive order and adaptive timesteps

in order to achieve a user-specified tolerance, and so are diffi-

cult to validate using the MMS method. Here, we take as

given that the time integration methods in these libraries are

implemented correctly and use SUNDIALS for time integra-

tion in the remainder of this paper with a relative tolerance of

10�8 and an absolute tolerance of 10�12. These small toleran-

ces are used so that the spatial discretisation error we are inter-

ested in dominates over the time integration error in the

results which follow.

B. Advection schemes

A key component of drift-reduced plasma simulations

are operators for drifts across magnetic field-lines. These can

be written in the form of an advection equation, or as a

Poisson bracket. For example, the E�B drift of a scalar

quantity f (e.g., density), due to an electrostatic potential / is

@f

@t
¼ � 1

B
~b �r/ � rf ¼ � /; f½ �: (11)

Several schemes for calculating the Poisson bracket using

both finite difference and finite volume discretizations are

implemented in BOUTþþ. Some of these preserve the sym-

metries of the Poisson bracket (e.g., second order

Arakawa27), whilst others are designed to handle shocks and

discontinuities robustly (e.g., WENO (Weighted Essentially

Non-Oscillatory)28,29). As with time integration schemes,

users can switch between these methods at run-time. In order

to test advection schemes, we simulate a single scalar field f
advected by Poisson bracket using an imposed potential /

@f

@t
¼ � /; f½ � � H � dx4r4

?f ; (12)

where H is a hyper-diffusion constant, dx is the mesh spacing,

and the r4
? operator is calculated using second-order central

differences. The manufactured solutions were chosen to be

f ¼ cos ð4�x2 þ �zÞ þ sin ðtÞ sin ð3�x þ 2�zÞ; (13)

/ ¼ sin ð6�x2 � �zÞ; (14)

where the coordinates perpendicular to the magnetic field are

normalised such that 0 � �x � 1 and 0 � �z � 2p. This solu-

tion varies smoothly in both �x and �z, and in time. Note that

the WENO scheme is a limiter scheme, which adapts its

stencils depending on the local gradients, and this functional-

ity is not properly tested here. Limiter and other adaptive

schemes reduce accuracy in steep gradient regions in order

to reduce or eliminate overshoot oscillations. This presents a

challenge for MMS testing of convergence order, and as far

as we are aware there is no accepted means of fully verifying

these schemes using the MMS.

Advection schemes require some form of dissipation at

the grid scale, in order to avoid numerical oscillations. In the

upwind and WENO schemes, this dissipation is provided by

upwinding as part of the advection scheme itself, but central

differencing schemes such as Arakawa have low dissipation,

and require additional dissipation to stabilise the solution, ei-

ther physically motivated or numerical. Since there is no

other dissipation in this toy problem, a 4th-order hyper-diffu-

sion term is added to Equation (12), with a coefficient H
which converges to zero at dx4 for grid spacing dx. Without

this dissipation term convergence is typically reduced to first

order and becomes dependent on the integration time due to

the growth of numerical oscillations. When dissipation with

H¼ 20 is included, the results are shown in Figure 3.

Both global error and local error are found to converge

at the expected rate in the asymptotic (small dx regime, as

measured by the l2 (RMS) error in Figure 3(a), and the l1

(maximum) error in Figure 3(b), respectively). Apart from

the first order upwind scheme, all schemes converge at sec-

ond order in grid spacing dx: The WENO scheme is formally

third order accurate in the bulk of the domain, but the advec-

tion velocity is calculated from / using 2nd-order central

differences, and boundary conditions are only second-order

accurate, reducing the overall convergence rate to second

order. The WENO scheme implementation cannot therefore

be considered fully verified, and as noted above the verifica-

tion of limiter schemes using MMS remains an outstanding

problem, and so we leave this for further work.

C. Schemes for wave equations

Along the magnetic field methods are implemented

which model wave propagation, such as sound and shear

FIG. 2. Error norm for explicit time integration schemes. Measured conver-

gence rates based on the two highest resolution cases are: 0.995 (Euler),

2.13 (Karniadakis), 3.00 (RK3-SSP), and 3.99 (RK4). Script:examples/
MMS/time/runtest.
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Alfv�en waves, and diffusion processes such as heat conduc-

tivity. Wave propagation operators often appear in the form

of coupled first order equations

@f

@t
¼ @g

@x

@g

@t
¼ @f

@x
: (15)

The manufactured solution was chosen to be

f ¼ 0:9þ 0:9�x þ 0:2 cosð10tÞ sinð5�x2Þ;

g ¼ 0:9þ 0:7�x þ 0:2 cosð7tÞ sinð2�x2Þ;

and the equations are solved using staggered 2nd-order cen-

tral differencing: Variable g was shifted to the cell bounda-

ries, whilst f was cell centred. This arrangement requires

different handling of boundary conditions to account for this

shift. To test boundary conditions and handling of staggered

variables, this test was performed in x and then in y (replac-

ing �x with �y=2p in the above manufactured solutions).

Results of a convergence test are shown in Figure 4,

which shows the l2 (RMS) and l1 (maximum) error norms

for quantity f as a function of the mesh spacing dx. This

shows convergence at an order around 1.97, as expected for

this scheme. This test has been conducted with combinations

of Dirichlet and Neumann boundary conditions, finding

essentially the same result in all cases.

D. Second derivative operators

In order to verify the second derivative (diffusive) oper-

ators and boundary conditions, a series of tests have been

performed: First, we verify the spatial convergence rate

towards a steady state (time-independent) manufactured so-

lution; and then we verify using a time-dependent manufac-

tured solution.

1. Steady-state manufactured solution

In order to verify spatial convergence for time-

dependent systems of equations, the approach taken in Ref. 5

is to evolve the equations towards a steady-state solution.

Here, we use this approach to verify boundary conditions

and second-order operators by solving the equation

@f

@t
¼ @2f

@x2
þ S: (16)

The manufactured solution is chosen to be

f M ¼ 0:9þ 0:9xþ 0:2 sin ð5x2Þ; (17)

in the range 0 � x � 1, i.e., boundaries are at x¼ 0 and

x¼ 1. The source function is therefore

S ¼ 20x2 sin ð5x2Þ � 2 cos ð5x2Þ: (18)

In contrast to the time-dependent MMS tests presented in

this paper, for this steady-state problem, we initialise the

simulation at t¼ 0 with f¼ 0, and not the exact manufactured

solution. This is suggested in Ref. 5 since even though this

increases the number of iterations to convergence, using the

exact solution can hide coding mistakes. Equation (16) was

then integrated in time to t¼ 10 using an absolute tolerance

FIG. 3. MMS test of advection operators. Equation (12) is solved on a 2D

domain with uniform grid spacing. The resolution varies from 16� 16 to

1024� 1024. Convergence rates for second-order Arakawa (1.998), 1st-

order upwind (0.993), 2nd-order central differencing (2.005), and 3rd-order

WENO (2.019). All methods are limited to at best second-order in mesh

spacing dx due to the central differencing applied to / and the boundary

conditions. Script:examples/MMS/advection/runtest.

FIG. 4. Error norms for f in wave equation (15) using 2nd-order central dif-

ferencing. A convergence rate of 1.97 is found, illustrated with a dashed

line. Script:examples/MMS/wave-1d/runtest.
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of 10�15 and a relative tolerance of 10�7. This is a suffi-

ciently long time that f reaches a steady state to within

tolerances.

Results are listed in Table I, showing l2 and l1 errors

and convergence rates. We first perform the test with

Dirichlet boundary conditions, then with mixed Dirichlet and

Neumann conditions. In all cases, 2nd-order convergence is

observed at high resolution.

2. Time-dependent manufactured solution

Diffusion equations in all three dimensions, separately

and in combination, have been verified, with convergence

for one example shown in Figure 5. The equation solved is

@f

@t
¼ r2f ; (19)

which is solved using 2nd-order central differences on a uni-

form grid. In 3D the manufactured solution used was

f ¼ 0:9þ 0:9xþ 0:2 cos ð10tÞ sin ð5x2 � 2zÞ þ cos ðyÞ;
(20)

in the range 0 � x � 1; 0 � y � 2p and 0 � z � 2p. Results

for a uniform 3D grid are shown in Figure 5, showing con-

vergence at the expected order.

These tests confirm that these simple operators and the

Dirichlet and Neumann boundary conditions have been imple-

mented correctly for uniform orthogonal grids. More compli-

cated geometries are tested in Sec. IV E, but the advantage of

these simple tests is that they run in under a minute on a desk-

top and so are now included in the standard BOUTþþ test

suite which is run routinely to check for errors.

E. Coordinate systems

The field-aligned coordinate system used for tokamak

simulations has been tested using the analytic input mesh

described in Section III. The manufactured solution was

f ¼ cos ð4�x4 þ f� hÞ þ sin ðtÞ sin ð3�x þ 2f� hÞ; (21)

where �x ¼ w=Dw is a normalised radial coordinate with a

range between 0 and 1. The safety factor was chosen to be

q ¼ 2þ �x2, and inverse aspect ratio � ¼ 0:1. Following the

procedure outlined in Section III, this results in toroidal and

poloidal magnetic field components

Bf ¼
1

1� 0:1 cos hð Þ
; (22a)

Bh ¼
0:1

�x2 þ 2ð Þ 1� 0:1 cos hð Þ½ �2 1þ 0:1 cos hð Þð Þ
; (22b)

and integrated shear

I ¼ 1125x½hþ 0:1 sin ðhÞ�: (23)

Results are shown in Figure 6 for a range of resolutions

from 43 to 1283, showing convergence of the Arakawa bracket

operator ½/; f �, a perpendicular diffusion operator r2
?, and

parallel diffusion operator r2
jj. Tests in both ballooning coor-

dinates (Equation (6), Figure 6(a)) and shifted metric (Figure

6(b)) show 2nd order convergence as expected: In addition to

verifying these operators in non-orthogonal curvilinear coordi-

nates, this test exercises the twist-shift matching used to close

field-lines in the core region of tokamak simulations, and the

calculation of radial derivatives in the shifted metric scheme.

Note that in Figures 6(a) and 6(b) the parallel diffusion opera-

tor r2
jj results are identical, as the use of shifted metrics does

not affect derivatives in the parallel direction (see Section III).

For this test case, the reference poloidal angle h0 in

Equation (10) was set to zero, so I¼ 0 at h¼ 0. At h¼ 0 the

TABLE I. Error norms and convergence rates for integration of Equation (19) as a function of number of grid points N. Shown are cases with Dirichlet bound-

ary conditions, then with one Dirichlet and one Neumann boundary (mixed).

Dirichlet Mixed

N l2 Rate l1 Rate l2 Rate l1 Rate

8 2.624� 10�2 6.088� 10�2 3.504� 10�2 6.317� 10�2

16 4.332� 10�3 2.126 1.227� 10�2 1.890 5.514� 10�3 2.182 1.242� 10�2 1.919

32 9.224� 10�4 2.030 2.720� 10�3 1.978 1.165� 10�3 2.039 2.733� 10�3 1.986

64 2.149� 10�4 2.007 6.400� 10�4 1.993 2.712� 10�4 2.009 6.415� 10�4 1.997

128 5.199� 10�5 2.001 1.552� 10�4 1.997 6.554� 10�5 2.003 1.554� 10�4 1.999

256 1.271� 10�5 2.009 3.822� 10�5 1.999 1.607� 10�5 2.005 3.825� 10�5 2.000

512 3.395� 10�6 1.894 9.572� 10�6 1.986 4.000� 10�6 1.996 9.488� 10�6 2.000

FIG. 5. Error norms for diffusion equation (19) in 3D on a uniform grid as a

function of grid spacing dx, showing convergence with an order of 2.06.

Script:examples/MMS/diffusion2/runtest.
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x – z mesh is therefore orthogonal, and there is no difference

between ballooning and shifted metric results in Figure 7 at

this location in h. Moving away from h¼ 0 the x – z mesh

becomes increasingly deformed, and differences between the

ballooning and shifted-metric procedures become apparent.

As expected, the error norm is largest close to h ¼ 2p where

the mesh is most sheared, and the error at this point is

reduced significantly by using the shifted metric procedure.

The shifted metric method is however not always more accu-

rate than the ballooning coordinate method, as shown for the

advection operator around h ¼ p=4 in Figure 7, where the

ballooning coordinates are more accurate: In general, the ac-

curacy of these methods will depend on the solution. It has

been found in simulations of Edge Localised Modes with

BOUTþþ30,31 that the use of the shifted metric method

improves numerical stability at the twist-shift location where

the mesh deformation changes abruptly. This coordinate sys-

tem is used in Section V B to verify the 3-field equations

used for edge localised modes (ELM) simulations.

F. Flux coordinate independent scheme

To verify the interpolation and central differencing

schemes implemented in BOUTþþ for FCI coordinates, we

simulate a wave (Equation (15)) in a sheared slab. On each

x – z plane perpendicular to the magnetic field a Cartesian

mesh is used, and the magnetic field is sheared so that the

points to be interpolated (small open circles in Figure 1)

span a range of locations between neighbouring grid points.

A sheared slab of size Ly¼ 10 m along the magnetic

field; Lx ¼ 0:1 m in the radial direction, and Lz¼ 1 m in the

binormal direction was used, with magnetic field

ðBx;By;BzÞ ¼ ð0; 1; 0:05þ ð�x � 0:05Þ=10Þ. The variation of

the magnetic field-line pitch with x therefore ensures that the

interpolation location varies so as to test the 3rd-order

Hermite interpolation scheme. The manufactured solution

used was

f ¼ sin ð�y � �zÞ þ cos ðtÞ sin ð�y � 2�zÞ; (24a)

g ¼ cos ð�y � �zÞ þ cos ðtÞ sin ð�y � 2�zÞ; (24b)

where �y and �z are normalised to be between 0 and 2p in the

domain (as in all manufactured solutions presented here).

Figure 8 shows the error norm as the resolution in both

parallel and perpendicular directions is varied. This shows

second-order convergence, most likely limited by the accu-

racy of the second-order central differencing scheme used to

calculate parallel derivatives. Note that in order to obtain

good convergence, it was necessary to stabilise the collo-

cated scheme, by adding a parallel diffusion term of the form

dx2@2
jj to each equation. This has been previously discussed

in the context of MMS testing of collocated numerical

schemes in Ref. 5.

V. MODELS

After verification of individual operators, the MMS

technique is now applied to the verification of entire models,

which combine operators and couple multiple fields. Here,

three models of interest are verified: the 2-field Hasegawa-

Wakatani system (Section V A), a 3-field reduced MHD

model which has been used extensively to simulate Edge

Localised Modes (ELMs) with BOUTþþ (Section V B),

FIG. 6. Verification of operators in toroidal field-aligned coordinates.

Coordinate system and input described in Section III. Script:examples/
MMS/tokamak/runtest.

FIG. 7. Comparison of RMS error norm for ballooning (dashed lines) and

shifted-metric scheme (solid lines), as a function of poloidal angle h, for the

highest resolution case in Figure 6 (1283 grid points). Integrated shear I
(Equation (10)) is zero at h¼ 0, and a maximum at h ¼ 2p.
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and a 5-field cold-ion model for tokamak edge turbulence

(Section V C).

Due to the large number of models which have been

implemented in BOUTþþ, we have introduced a naming

scheme which can be used in future publications to refer to a

specific model. A scheme BOUTþþ/name/year such as

BOUTþþ/HW/2014 is used here.

A. Hasegawa-Wakatani (BOUT11/HW/2014)

The Hasegawa-Wakatani model is a good starting place

as it contains many of the elements of more complicated

models, such as Poisson brackets, diffusion, and calculation

of electrostatic potential from vorticity, whilst being 2D and

faster to run than 3D models at high resolutions. As such, it

often forms a starting point for the construction of more

complex models. The equations solved are for plasma den-

sity n and vorticity x ¼ ~b0 � r �~v where~v is the E�B drift

velocity in a constant magnetic field, and ~b0 is the unit vector

in the direction of the equilibrium magnetic field

@n

@t
¼ � /; n½ � þ a /� nð Þ � j

@/
@z
þ Dnr2

?n; (25a)

@x
@t
¼ � /;x½ � þ a /� nð Þ þ Dxr2

?x; (25b)

r2
?/ ¼ x: (25c)

The manufactured solutions were chosen to be

n ¼ 0:9þ 0:9�x þ 0:2 cos ð10tÞ sin ð5�x2 � 2�zÞ; (26a)

x ¼ 0:9þ 0:7�x þ 0:2 cos ð7tÞ sin ð2�x2 � 3�zÞ; (26b)

/ ¼ sin ðp�xÞ½0:5�x � cos ð7tÞ sin ð3�x2 � 3zÞ�; (26c)

along with parameters

a ¼ 1 j ¼ 1

2
Dn ¼ 1 Dx ¼ 1: (27)

These parameters were chosen so that the magnitude of each

term in Equation (25) was comparable; in a realistic simula-

tion the parameters might be different, in particular, the diffu-

sion terms Dn;x would generally be smaller than is used here.

This does not present a problem for verification, since the cor-

rectness of the numerical method implementation does not

depend on these parameters. If the code is correct with Dn¼ 1

then it will also be correct with Dn ¼ 10�5. This does not

guarantee that the method will be stable with arbitrary param-

eters, and in general, the required resolutions and stability cri-

teria (e.g., maximum timestep) will be problem specific.

Note that the solution for both vorticity x and potential

/ are manufactured, despite the two quantities being related

through the vorticity equation (25c). This avoids integration

of manufactured solutions and is handled by adding an ana-

lytic source term to the right hand side of Equation (25c).

Results are shown in Figure 9, calculated on a 2D unit

domain, showing the l2 and l1 norms over both n and x, and

a fit showing second order convergence. This shows that the

operators in Equation (25) including the inversion of poten-

tial / from vorticity x are correctly implemented, at least on

orthogonal uniform grids. We now proceed to test these

operators in toroidal field-aligned coordinate systems typical

of realistic BOUTþþ simulations.

B. 3-field reduced MHD (BOUT11/FLUID3/2014)

The 3-field model used for ELM simulations1,30,31 has

been verified in field-aligned toroidal geometry with a radi-

ally varying safety factor q, using the shifted metric coordi-

nate system described in Section III, and tested in Section

IV E. This is in order to verify the methods implemented in

BOUTþþ in coordinate systems with a non-trivial metric

tensor.

The equations evolved are for vorticity x ¼ ~b0 � r �~v,

pressure p, and the parallel component of the magnetic vec-

tor potential Ajj ¼ ~b0 � ~A, where ~b0 ¼
~B0

j~B0 j
; ~B0 is the unit vec-

tor along the equilibrium magnetic field ~B0, and B0 ¼ j~B0 j is
the magnitude of the magnetic field

FIG. 8. Convergence of f (1.95) and g (2.04) in Equation (15) solved using

the FCI method in a sheared slab. Solid lines show l2 (RMS) error, whilst

dashed lines show l1 (maximum) error. Script:examples/fci-slab/
runtest

FIG. 9. Error norm of Hasegawa-Wakatani system (n and /, Equation (25))

on a Cartesian mesh, showing second-order convergence. Mesh resolutions

range from 16� 16 to 512� 512. Script:examples/MMS/hw/runtest.
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q0

dx
dt
¼ B2

0@jj
Jjj
B0

� �
þ 2~b0 �~j0 � rp; (28a)

@Ajj
@t
¼ �@jj/� gJjj; (28b)

dp

dt
¼ � 1

B0

~b0 �r/ � rp0; (28c)

x ¼ 1

B0

r2
?/; (28d)

Jjj ¼ Jjj0 �
1

l0

r2
?Ajj; (28e)

where the parallel derivative includes the perturbed magnetic

field

@jj ¼ ~b0 � r �
1

B0

~b0 �rAjj � r; (29)

where “0” subscripts denote equilibrium (starting) quanti-

ties: q0 is the (constant) density; ~B0 is the magnetic field;

and j0 ¼ ð~b0 � rÞ~b is the field-line curvature. The electro-

static potential / is calculated from the vorticity by invert-

ing a perpendicular Laplacian (with Dirichlet boundary

conditions here), and the parallel current Jjj ¼ ~b0 � ~J is cal-

culated from the vector potential. The convective derivative

is defined as

d

dt
¼ @

@t
þ 1

B0

~b0 �r/ � r: (30)

Background (equilibrium) profiles are chosen to mimic real-

istic cases, with a pedestal-like pressure profile P0, and a par-

allel current profile J0 which peaks on the outboard and

inboard midplanes

P0= �P ¼ 2þ cos ðp�xÞ J0=�J ¼ 1� �x þ sin2ðp�xÞ cos ðhÞ;
(31)

where �x is the normalised radial coordinate, which lies

between 0 and 1, and h is the poloidal angle, which lies

between 0 and 2p. Normalisation parameters are

ne ¼ 1019 m�3; Te ¼ 3 eV; �L ¼ 1m; �B ¼ 1T;

�P ¼ 2eneTe ¼ 9:6 Pa; �J ¼ �B=ðl0
�LÞ: (32)

The manufactured solutions used were

/ ¼ ½sin ð�z � �x þ tÞ þ 10�3 cos ð�y � �zÞ� sin ð2p�xÞ; (33a)

w ¼ 10�4 cos ð4�x2 þ �z � �yÞ; (33b)

U ¼ 2 sin ð2tÞ cos ð�x � �z þ 4�yÞ; (33c)

P ¼ 1þ 1

2
cos tð Þcos 3�x2 � 2�zð Þ þ 5� 10�3 sin �y � �zð Þsin tð Þ:

(33d)

A Lundquist number of S¼ 10 was used to set the resis-

tivity g. This is so that the resistive term in Ohm’s law

(Equation (28b)) becomes comparable to the other terms,

and S is much smaller (higher g) than would be the case in a

realistic tokamak simulation, for which S ¼ 108 would be

more typical.

Results are shown in Figure 10, with the l2 and l1 norms

shown for each evolving variable ðP;w;UÞ. The slow con-

vergence at large mesh spacing (small resolution) is due to

the solutions being under-resolved: the smallest grids have

only 4 grid points in each dimension, insufficient to resolve

the manufactured solution. At high resolution, the pressure

and electromagnetic potential fields converge at 2nd order as

expected, but the vorticity x converges at a rate between the

first and second order. The maximum (l1) error in vorticity

converges at close to 1st order at high resolution, indicating

that the source of this slow convergence is an order 1 error

on a sub-set of the domain, so that when averaged over the

domain the RMS (l2) error converges at a faster rate than the

maximum error. The location of the error maximum at high

resolution is at the radial boundary, but the reason for this is

not yet clear despite extensive investigation. Here, we con-

clude that although the model does converge, it does not con-

verge at the expected rate, and further investigation is

needed.

C. BOUT11/FLUID5/2014

Finally, the set of equations implemented in the Global

Braginskii Solver (GBS) code32 have been implemented in

BOUTþþ and verified in a simplified form using the

Method of Manufactured Solutions. In this current work,

electromagnetic effects and ion viscosity terms were

neglected. The equations are for plasma density n, electron

temperature Te, vorticity x, Ohm’s law, and parallel ion ve-

locity Vjji

@n

@t
¼ � R

qs0

1

B
/; n½ � þ 2n

B
C Teð Þ þ

T

n
C nð Þ � C /ð Þ

� 	

�n ~b � rð ÞVjje � Vjje ~b � rð Þnþ D nð Þ þ S; (34a)

FIG. 10. Error norms for 3-field set of equations. Solid lines show the l2

(RMS) error norms, whilst dashed lines are the l1 (maximum) error.

Convergence orders for pressure p is 1.95; vorticity x is 1.64; and vector

potential Ajj is 2.01. Resolutions range from 43 to 1283. Sctript:examples/
MMS/elm-pb/runtest.
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@Te

@t
¼ � R

qs0

1

B
/; Te½ � � Vjje ~b � rð ÞTe

þ 4

3

Te

B

7

2
C Teð Þ þ

Te

n
C nð Þ � C /ð Þ

� 	

þ 2Te

3

�
0:71 ~b � rð ÞVjji � 1:71 ~b � rð ÞVjje

þ0:71
Vjji � Vjje
� �

n
~b � rð Þn

	

þDTe
Teð Þ þ D

jj
Te

Teð Þ þ ST ; (34b)

@x
@t
¼ � R

qs0

1

B
/;x½ � � Vjji ~b � rð Þx

þB2 ~b � rð Þ Vjji � Vjje
� �þ Vjji � Vjje

� �
n

~b � rð Þn
� 	

þ 2B C Teð Þ þ
Te

n
C nð Þ

� 	
þ Dx xð Þ;

(34c)

@Vjje
@t
¼ � R

qs0

1

B
/;Vjje

 �

� Vjje ~b � rð ÞVjje

� mi

me
� Vjje � Vjji
� �þ mi

me

~b � rð Þ/

�miTe

nme

~b � rð Þn� 1:71
mi

me

~b � rð ÞTe þ DVjje Vjje
� �

;

(34d)

@Vjji
@t
¼ � R

qs0

1

B
/;Vjji

 �

� Vjji ~b � rð ÞVjji

� ~b � rð ÞTe þ
Te

n
~b � rð Þnþ DVjji Vjji

� �
; (34e)

where

qs0 ¼
Cs0

Xci
Cs0 ¼

ffiffiffiffiffiffiffiffi
e �Te

mi

s
Xci ¼

e �B

mi
; (35)

with vorticity and the curvature operator defined as

x ¼ r2
?/ C Að Þ ¼ B

2
r�

~b

B

� �
� rA: (36)

Here, the dissipation operators Dð�Þ were hyper-diffusion

terms in the plane perpendicular to the magnetic field of the

form

D fð Þ ¼ �dx4 @
4f

@x4
� dz4 @

4f

@z4
: (37)

In order to test all terms in this set of equations, the pa-

rameters of the simulation should be chosen so that the mag-

nitude of each term is of a similar order of magnitude. If this

is not done, then the error in the result will be dominated by

a small number of operators, and mistakes in the implemen-

tation of small terms may not become apparent until very

high (possibly impractical) resolution is reached. In order to

handle the large number of terms in Equations (34a)–(34e),

the magnitude of each term was estimated using SymPy by

replacing trigonometric functions sin ð�Þ and cos ð�Þ by their

maximum value (1), and the coordinates ð�x; h; fÞ by their

maximum values ð1; 2p; 2pÞ. This allowed parameters to be

quickly adjusted to find useful regimes. The resulting manu-

factured solutions are

n ¼ 0:9þ 0:9�x þ 0:5 cos ðtÞ sin ð5�x2 � zÞ þ 0:01

� sin ðy� zÞ; (38a)

Te ¼ 1þ 0:5 cos ðtÞ cos ð3�x2 � 2zÞ þ 0:005 sin ðy� zÞ sin ðtÞ;
(38b)

x ¼ 2 sin ð2tÞ cos ðx� zþ 4yÞ; (38c)

Ve ¼ cos ð1:5tÞ½2 sin ðð�x � 0:5Þ2 þ zÞ

þ 0:05 cos ð3x2 þ y� zÞ�; (38d)

Vi ¼ �0:01 cos ð7tÞ cos ð3�x2 þ 2y� 2zÞ; (38e)

/ ¼ ½sin ðz� �x þ tÞ þ 0:001 cos ðy� zÞ� sin ð2p�xÞ: (38f)

Parameters used were

�Te ¼ 3 eV; �ne ¼ 1019m�3; �B ¼ 0:1T; mi ¼ 0:1mp;

(39)

where mp is the mass of the proton. Light ions were used in

order to reduce the difference in timescales between elec-

trons and ion dynamics. Note that the manufactured solutions

and parameters are not required to be realistic, provided that

they do not violate any constraints such as positivity of den-

sity and temperature, as discussed in Section II.

Simulations were performed in a 3D slab geometry, with

resulting error norms shown in Figure 11. In this geometry,

the curvature polarisation vector r� ~b
B is set to a constant in

the z (binormal) direction. All fields show convergence at the

expected rate, approximately 2nd-order in mesh spacing dx.

This demonstrates that complex models can be verified using

the method of manufactured solutions in BOUTþþ.

FIG. 11. Error norms for 5-field set of equations. Solid lines show the l2

(RMS) error norms, whilst dashed lines are the l1 (maximum) error.

Convergence orders for density Ne is 2.02; electron temperature Te is 2.70;

vorticity x is 2.04; electron parallel velocity Ve is 2.36; and ion velocity Vi

is 2.42. Resolutions range from 83 to 1283. Script:examples/MMS/GBS/
runtest-slab3d.
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VI. CONCLUSIONS AND DISCUSSION

The Method of Manufactured solutions have been used

to rigorously test numerical methods implemented in

BOUTþþ, both independently as unit tests, and in combina-

tion as simulation models. Convergence to the correct solu-

tion at an asymptotic 2nd order has been demonstrated for

large sub-sets of the BOUTþþ framework: Though higher

order methods (3rd-order WENO and 4th-order central dif-

ferencing) are implemented in BOUTþþ, the overall con-

vergence rate is limited to 2nd order by the boundary

conditions.

Mechanisms have been implemented into BOUTþþ,

which simplify and partly automate the process of verifying

the correctness of a numerical implementation, requiring

minimal modifications to the code between production simu-

lations and verification runs. This will facilitate the routine

use of the MMS as an increasing variety of models are

implemented in BOUTþþ. Since code verification is an

ongoing process, particularly for an actively developed sci-

entific code such as BOUTþþ, the methods and tests

detailed here are now used as part of a test suite which is run

routinely and automatically (using Travis-CI) to test every

change made to BOUTþþ.

It is important to note the limitations of the present

work, which will be the subject of further development.

Whilst curvilinear coordinates in tokamak geometry with

varying safety factor have been verified, no tests have yet

been performed in X-point geometry. The Flux Coordinate

Independent (FCI) scheme has been implemented in

BOUTþþ, but only tested in sheared slab geometry.

Investigation of methods for simulations of X-point geome-

try, including FCI, and verification with MMS will be the

subject of future work.
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