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Neoclassical and turbulent transport in tokamaks has been studied extensively over the past

decades, but their possible interaction remains largely an open question. The two are only truly

independent if the length scales governing each of them are sufficiently separate, i.e., if the

ratio q� between ion gyroradius and the pressure gradient scale length is small. This is not

the case in particularly interesting regions such as transport barriers. Global simulations of

a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear

global gyrokinetic code GENE are presented. In particular, comparisons are made between

systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial

electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent

transport is observed for q�� 1=300. Furthermore, the dependency of the flux on the collisional-

ity changes. In simulations with fixed power input, we find that the presence of neoclassical

effects decreases the frequency and amplitude of intermittent turbulent transport bursts

(avalanches) and thus plays an important role for the self-organisation behaviour.

[http://dx.doi.org/10.1063/1.4947200]

I. INTRODUCTION

The modelling and prediction of cross-field transport

of particles, heat, and momentum in magnetically con-

fined plasmas remains one of the central tasks for the

development of future fusion power plants. It is a well-

established fact that the dominant transport channel of

the main ion species in the core region of tokamak

devices is ion-temperature-gradient driven (ITG) turbu-

lence.1,2 Collisions in connection with the toroidal geom-

etry of the magnetic guide field, however, provide

another relevant channel: neoclassical transport.3,4 In

contrast to turbulent mechanisms, it does not possess a

critical threshold for the driving pressure gradient and

also provides a minimal flux level in transport barriers

where turbulence is suppressed.5

Often turbulence and neoclassical transport are treated

separately in numerical modelling. This is justified by the

fact that in the local (flux-tube) limit both effects are for-

mally independent due to the separation of their characteris-

tic length scales. In global simulations, which take the radial

profiles of magnetic field geometry, density, and temperature

into account, however, the question arises to which degree

this decoupling still occurs. This is of special interest for

physical situations where global effects are known to be im-

portant such as small devices and the previously mentioned

transport barriers. A previous study6 of the role of collisional

effects in global turbulence simulations with fixed gradient

profiles found that the total heat conductivity of a collisional

simulation is larger than the sum of the purely neoclassical

conductivity for that collisionality and the turbulent conduc-

tivity of an otherwise identical non-collisional system. A

possible explanation for this can, however, be found without

involving neoclassical effects: Collisions themselves damp

zonal flows and hence can increase the level of turbulent

transport.7,8

In this work, we use the global gyrokinetic code

GENE
9,10 to compare collisional simulations which either

include or neglect neoclassical effects. In Section II, systems

with a fixed background density and temperature gradients

are covered where we especially study the role of the scaling

parameter q� ¼ qi=a, i.e., the ratio of ion gyroradius and de-

vice minor radius as it determines the interaction strength

between neoclassical and turbulent phenomena. The modifi-

cation of the zonal flow patterns by the additional radial elec-

tric field is investigated in this context. Additionally, we

present how the presence of neoclassical effects affects the

dependency on the ion-ion collisionality �� ¼ �ii=xb�, which

relates the bounce frequency xb of banana orbits to the effec-

tive ion-ion collision frequency �ii=� for scattering particles

from these orbits.

In Section III, results from simulations with a fixed

power input are presented. In particular, it is shown how the

presence of neoclassical effects changes the intermittency of

turbulence: Due to the additional transport channel without a

critical gradient turbulent burst tend to become less frequent.

When the power input is varied, it is also demonstrated that

the temperature gradient is stiff while heat transport scales

with the input power. In the final section, conclusions are

drawn from these results.a)Electronic mail: michael.oberparleiter@chalmers.se
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II. EFFECT OF NEOCLASSICAL PHYSICS
IN FIXED-GRADIENT SIMULATIONS

A. Simulation setup

When the gyrokinetic equations are derived in the df
formulation, i.e., the distribution function f is split into a

Maxwellian background F0 and a small perturbation df ¼ f1,

they can be formally written as

Lf1 þN ½f1� þ B ¼ Cðf1Þ; (1)

where L is a linear and N a nonlinear operator, Cðf1Þ is the

collision operator, and B ¼ vd � rF0 is a term which only

depends on the Maxwellian background distribution function

F0 and the drift velocity vd due to the background magnetic

field. This term B is responsible for the presence of neoclass-

ical effects in the system and consequently called the neo-

classical source or drive. In the flux-tube limit, this term only

contributes to the toroidally and radially symmetric mode

ðkx; kyÞ ¼ ð0; 0Þ, which does not couple to the turbulent

modes with finite wave numbers leading to the previously

mentioned decoupling of neoclassical and turbulent physics.

As this is not the case in global simulations, it is straightfor-

ward to perform simulations including or excluding neo-

classical phenomena with a numerical code based on this

equation such as GENE.

In the simulations presented in this work, circular con-

centric flux surfaces11 are employed where the safety factor

profile

qðx=aÞ ¼ 0:854þ 2:239ðx=aÞ2 þ 0:147ðx=aÞ4 (2)

is chosen so that the local values of q and the magnetic shear

ŝ at the reference position x ¼ 0:5a (half minor radius) are

close to the cyclone base case.12 This also applies to the

inverse aspect ratio �ðx ¼ 0:5aÞ ¼ 0:18.

For gradient-driven simulations, we set up the logarith-

mic gradient profiles of ion temperature and density in either

the “peaked” form

dlnT

dx̂
¼ jT

cosh
x̂ � cT

wT

� ��2

� cosh
cT

wT

� ��2

1� cosh
cT

wT

� ��2
(3)

or the “flat-top” form

dlnT

dx̂
¼ jT

2
tanh

x̂� cT þ dT

wT

� �
� tanh

x̂� cT � dT

wT

� �� �
(4)

and maintain this initial state in a time-averaged sense by

using an adaptive Krook type heating. The radial coordinate

x̂ ¼ x=a in Eqs. (3) and (4) is normalised to the minor ra-

dius a. The ion density n and temperature T are normalised

to their values nref ; Tref at x ¼ 0:5a. Time in the simulation

is measured in units of a=cs where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tref=mi

p
is the ion

thermal speed at x ¼ 0:5a. The electrons are treated in the

adiabatic limit.

We study both types of profiles with the shape and posi-

tion parameters given in Table I. Their initial state and their

time average over several hundred time units at around

t ¼ 2000a=cs in a typical simulation are shown in Fig. 1.

While some deviation from the initial state can be found, it

is not problematic and based on a trade-off with the modifi-

cation of the system caused by a stronger Krook source.

The gyrokinetic equations are solved on a fixed grid where

in configuration space the radial coordinate x and the direction

along the field lines z are considered in real space. The field

line label y, however, is represented in Fourier space. The

typical numerical grid is chosen as ðNx;Nky
;Nz;Nvk ;NlÞ

¼ ðNx; 32; 32; 64; 32Þ, where Nx is adapted when the system

size parameter q� is changed to ensure 1–1.33 grid points per

ion gyroradius. The y domain is chosen so that every simula-

tion covers 1/3 of the torus. The collisionality is set at the refer-

ence position as ��ðx ¼ 0:5aÞ ¼ 0:29 and varies with the

geometry and pressure profiles. The plasma is in the banana re-

gime over the entire radial domain, though. The simulation

time is chosen to cover at least 2 ion-ion collision times at all

radial positions in order to ensure sufficiently converged neo-

classical fluxes.

The uncertainties presented in the figures of this article

are standard error of the mean estimates based on batch

means. The individual batches are formed by grouping the

simulation data within a time window of 5 autocorrelation

times.

B. System size scaling

The physical parameter of primary interest is the nor-

malized gyroradius q� ¼ qi=a. Any observed interaction

between the ITG turbulence and the neoclassical effects

should weaken and disappear when q� decreases since the

simulations then approach the local (flux tube) limit. The q�
given here is its value at the position x=a ¼ 0:5. The local

ion gyroradius varies with the temperature and the magnetic

field strength. It should also be noted that since both profiles

are quite narrow the scaling of the turbulent flows does rather

TABLE I. Profile parameters for gradient driven simulations. For their defi-

nition see Eqs. (3) and (4).

Shape cn;T wn wT dn;T jn jT

Peaked 0.5 0.15 0.25 – 0.789 3.49

Flat-top 0.5 0.05 0.05 0.25 0.789 3.49

FIG. 1. Radial profiles for the logarithmic gradients of Ti and ni. Dashed: ini-

tial state, solid: time average over 500a=cs at t � 2000a=cs.
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depend on an effective q�eff ¼ q�=DT (where DT is related to

wT of Eq. (3) or dT of Eq. (4), respectively).13,14

The weakening of interaction can be observed compar-

ing Figs. 2 and 3 where the time-averaged heat fluxes are

plotted as a function of the radial position for the peaked gra-

dient profile for q�ðx=a ¼ 0:5Þ ¼ 1=500 and q� ¼ 1=150.

The turbulent flow is not affected by the presence of neo-

classical effects for q� ¼ 1=500 within the statistical error

while it is significantly increased for q� ¼ 1=150.

The time-averaged neoclassical heat flux Qnc agrees

well with the Chang-Hinton prediction15 in both cases if

the neoclassical source is present. The discrepancy found

in Fig. 3 for x< 0.15 can be attributed to wide-orbit

effects.16–18 If the neoclassical source is absent, non-zero

though small transport (ca. 10% of the physical NC trans-

port) is measured in this channel. This reflects the fact that

Qnc is the energy flux on the axisymmetric (ky¼ 0) mode

caused by the magnetic drift

Qx
nc ¼

�ð
mv2

2
f1½ �ky¼0v

x
d þ F0 v

x
/

� �
z

� 	
d3v



; (5)

whose dominant but not exclusive contribution is neoclassi-

cal effects. The second term is a small contribution from the

radial component of the E� B drift caused by variations of

the potential along z.

If we consider additional values for q� and compare the

value of the time-averaged fluxes averaged over the radial

region x=a ¼ 0:4� 0:6 (with the maximal turbulent flow

appearing at x=a � 0:43 for all cases), we arrive at the

scaling shown in Fig. 4. The general trend that turbulent

transport decreases with growing q� is a well established ob-

servation.14,19–22 Due to the narrow profile shape (see

above), the convergence to the local limit occurs at relatively

small q�. At this point, it is important to remember that the

fluxes are measured in units which imply the gyro-Bohm

scaling, i.e., diffusive behaviour with the scale of the ion

gyroradius and thus locality. Neoclassical heat transport out-

side of the near-axis region fulfils this condition and hence is

mostly independent of q� in Fig. 4. The observed scaling of

turbulent transport implies that system size effects start to

play a role at large q�. Below q� ¼ 1=300 the scaling is quite

close to Bohm-like, i.e., Q=QgB / 1=q�. Comparing its val-

ues for a fixed system size, we find a systematic increase

of 20%–30% for the system with neoclassical effects for

q� > 1=300. It should be emphasized that this difference is

not the neoclassical flux, which is measured separately and

comes on top for an estimate of the total energy flux.

For q� ¼ 1=50 both transport channels reach the same

magnitude because the turbulent eddies’ radial extent barely

fits into the region where the temperature gradient can drive

them. Since this case operates at the limits of the validity of

the used gyrokinetic model and boundary artefacts can

spread far across the radial domain, we do not analyse it

beyond this qualitative observation.

The time resolved turbulent ion heat flux profiles in

Fig. 5 both show the ripple structures which have been

observed in several studies of ITG turbulence.14,23 Such

structures of increased heat flux moving ballistically in- or

outwards are commonly called avalanches and are features

of so-called self-organized criticality.24–28 Reference 29

FIG. 2. Neoclassical and turbulent radial heat flux profile (peaked gradient,

averaged over last 600 time units, q� ¼ 1=500).

FIG. 3. Neoclassical and turbulent radial heat flux profile (peaked gradient,

averaged over last 600 time units, q� ¼ 1=150).

FIG. 4. Dependence on q� of the temporally and radially (x=a ¼ 0:4� 0:6)

averaged radial turbulent and neoclassical heat fluxes in global ITG simula-

tions. Dashed-dotted: flux-tube limit (shaded: uncertainty).
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finds their direction to be connected with the sign of the

E� B shear: xE�B > 0 means outward movement, xE�B

< 0 inward movement. Obviously, in Fig. 5 the presence of

neoclassical effects changes their directions from a singular

one (left) to a V shape (right). In consequence, we attribute

the transport modification at least partly to a change in the

zonal E� B shear pattern by the additional long range radial

electric field which appears self-consistently when neoclassi-

cal effects are included in the Vlasov equation.

Indeed, if we look at the time averaged E� B shearing

rate, xE�B, for q� ¼ 1=150 (Fig. 6), the presence of neoclassi-

cal effects seems to align an area with low shear—the mini-

mum of Er—with the peak of the gradient at x¼ 0.5 a. This is

illustrated by the measured ITG growth rates cloc from local

linear gyrokinetic simulations at the respective radial posi-

tions. Hence, the strongest turbulence drive coincides with the

weakest damping rate. The reason for this large scale shape of

the radial electric field lies in the radial force balance

eEr ¼ �rxpþ utBp � upBt; (6)

which has contributions from the pressure gradient rp and

the temperature gradient in the form of the neoclassical

poloidal velocity up.4 The toroidal velocity ut is a degree of

freedom in the neoclassical theory. It can also be written in

the following, normalised form:

hukiBi ¼ niTi k � 1ð Þ dlnTi

dx
� dlnni

dx
þ Er

Ti

� �
; (7)

where the poloidal rotation is now represented by the coeffi-

cient k. In Fig. 7, we compare the radial profile of this pa-

rameter from a simulation that includes the neoclassical

source term with two predictions from the neoclassical

theory, an approximate fit by Hinton and Hazeltine4 and the

more precise derivation by Hirshman and Sigmar.30 It

appears that the simulated radial electric field agrees well

with the neoclassical transport theory but its turbulent contri-

butions can locally also cause notable deviations from the

Hirshman-Sigmar prediction.

In contrast to the differences in the spatial structure, root

mean square radial averages of xE�B yield similar values for

simulations with and without neoclassical effects. This

implies that the additional radial electric field does not gen-

erate a significant amount of absolute shearing rate (which

would imply a decrease in turbulent transport).

In the case of smaller q�, the spatial scales of zonal

flows (20� 50qi) and long-range radial electric field (system

size, i.e., 500qi) are so far apart that the flow pattern is not

generally affected: The direction of the avalanches can be

found to change multiple times independently of the long-

range background field.

C. Profile shape

A straightforward way to see the different contributions

to the radial electric field and the statement made about the

alignment of temperature gradient and E� B shear profile is

to study systems with the flat-top profiles of Fig. 1(b). In this

case, the pressure gradient cannot contribute to the E� B

shearing rate in its flat-top region, so the neoclassical poloi-

dal velocity plays a larger role.

FIG. 5. Time resolved turbulent heat flux for q� ¼ 1=150 (left: without,

right: with NC source).

FIG. 6. Time averaged E� B shear in simulations without and with neo-

classical effects, q� ¼ 1=150, peaked gradient. Local linear ITG growth rate

for comparison.

FIG. 7. Force balance parameter k in a turbulent simulation with neoclassi-

cal effects (q� ¼ 1=150, peaked gradient) compared to neoclassical predic-

tions from Ref. 4 (H-H) and Ref. 30 (H-S).
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We find again a consistently increased (� 30%) turbu-

lent ion heat flux in the simulation with q� ¼ 1=150 when

the neoclassical source is present (Fig. 8). When we examine

the E� B shear profiles of the two cases in Fig. 9, the simu-

lation with neoclassical source exhibits a visibly lower level

of shear in the region x=a � 0:5� 0:8. On the other hand,

the shear is on average lower in the non-NC simulation

around x=a � 0:4. In comparison with the local ITG growth

rate, we find again that in the case with neoclassical effects a

region with a low E� B shear coincides with high turbulent

growth rates.

Consequently, for a flat-top gradient the alignment argu-

ment is insufficient when only considering the temperature

and E� B shear to explain the turbulent flux modification

by the neoclassical source. Although the gradient is the dom-

inant quantity for determining the turbulence drive, it is not

the only one: The magnetic shear ŝ, for example, also plays a

role.31,32 So the modification of the radial electric field by

the presence of the neoclassical source in Eq. (1) remains a

crucial effect.

The neoclassical flux in Fig. 8 now differs significantly

from the Chang-Hinton prediction. Since the equivalent case

for q� ¼ 1=500 shows agreement at the same level as its

peaked-profile counterpart in Fig. 2, this is another indication

for an interaction between neoclassical and turbulent effects.

D. Collisionality scaling

The collision frequency in the results presented so far is

chosen artificially high in order to achieve convergence of

the neoclassical fluxes with a reasonable computational

effort. The radial electric field is coupled to the parallel

dynamics in the form of the radial force balance and estab-

lishes much faster. Hence, we investigate the influence of

reducing the collision frequency which—as a side effect—

brings it closer to a realistic value (as far as our model sys-

tem can be considered realistic). This is achieved by setting

the collisionality to 1/3 or 1/10 of its original value, i.e.,

��ðx ¼ 0:5aÞ ¼ 0:095 or ��ðx ¼ 0:5aÞ ¼ 0:029. We will

refer to these cases as medium and low collisionality,

respectively.

The turbulent heat fluxes exhibit an interesting behav-

iour: Without the neoclassical source term (Fig. 10(a)), the

energy flux is reduced with decreasing collision frequency as

can be explained by a weaker collisional damping of zonal

flows.7,8 If neoclassical effects are present (Fig. 10(b)), how-

ever, this dependency vanishes and we find a flux profile

which is very similar for all three collisionalities considered

so far. Hence, the level of turbulent energy transport remains

independent from the collisionality over an order of magni-

tude. A possible approach for an explanation is that the back-

ground radial electric field which is mostly independent of

the collisionality in these cases provides a fixed structure to

which the zonal flow pattern of the turbulence adapts.

Further investigations, however, are needed to understand

how this can counteract the collisional damping.

It should be noted that even if the independence of the

fluxes holds numerically for � ! 0, it is not in contradiction

to results comparing collisional and collisionless systems such

as Ref. 6 because a different behaviour for the limit �i ! 0

and �i ¼ 0 is possible: A truly collisionless simulation needs

to neglect the neoclassical source term, too. Otherwise,

numerically necessary velocity space hyperdiffusion acts as a

crude collision term and any observed neoclassical effects

should be considered spurious.

The neoclassical radial heat fluxes (not plotted) behave

qualitatively as expected in the form that they scale approxi-

mately linearly for smaller collisionality as they obey the

standard neoclassical scaling in the banana regime.33

III. EFFECTS OF NEOCLASSICAL PHYSICS
IN FIXED-FLUX SIMULATIONS

It is often argued that flux-driven simulations allow

more self-organisation for the pressure profile and for trans-

port. Thus, we now turn from gradient-driven to flux-driven

scenarios. The heat source is no longer adaptive with the

possibility of acting as a sink but a localized profile with

fixed power input which is undeniably much closer to experi-

mental conditions. This principle is the natural operation

FIG. 8. Neoclassical and turbulent radial heat flux profile (flat-top gradient,

averaged over last 600 time units, q� ¼ 1=150).

FIG. 9. Time averaged E� B shear in simulations without and with neo-

classical effects, q� ¼ 1=150, flat-top gradient. Local linear ITG growth rate

for comparison.
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mode of full-f codes. Since this formalism automatically

includes neoclassical effects, a number of results exist on the

role they can play in turbulent flux-driven simulations. With

the GYSELA code,34 for example, it is found that the poloi-

dal rotation profile is dominated by the neoclassical mean

flow and the E� B shearing rate attributed to it has a similar

magnitude as the one caused by zonal flows.35 Temperature

gradients also tend to establish closer to their critical values

than in gradient-driven simulations so that the level of neo-

classical heat transport can compete with its turbulent coun-

terpart.36 In GT5D simulations,23,37 closeness to criticality is

observed as well in the sense that a significant part of the tur-

bulent heat flux occurs in the form of transient avalanches.

Since GENE is based on the df form of the gyrokinetic

equations, a mechanism needs to be found in order to allow

evolution of the temperature and density profiles while pre-

serving df=f 	 1. This can be achieved by monitoring df
and triggering a reset when its magnitude exceeds a prede-

fined threshold: The current state of the total distribution

function F0 þ df is used to calculate new radial profiles

which are then used as the initial state of a restarted simula-

tion. This amounts to optimizing the initial condition of the

gyrokinetic initial value problem until df remains within the

assumptions on its magnitude.

The heat source in our simulations is an input of fixed

shape equivalent to Eq. (4) (see also Ref. 36) positioned in

the radial region x=a ¼ 0� 0:4. Its amplitude is varied

between simulations. The inner radial boundary of the simu-

lation domain is floating (a Neumann boundary condition)

thus allowing for temperature and density evolution due to

the source. At the outer edge, temperature and density are

fixed—formally a Dirichlet boundary condition—and a

Krook type buffer zone is used to dissipate heat smoothly

there: A term of the form �kðx� xbÞ2f1 for x > xb is added

to the gyrokinetic Vlasov equation, i.e., the outer boundary

dampens the perturbed distribution function for x > xb

¼ 0:89a in our simulation. This sink model is similar to the

one in Ref. 23 where the term has exponent 1.

The temperature and density profiles are initialized

according to the flat-top gradient profiles of Eq. (4) with an

amplitude significantly above the critical gradient for the

temperature which accelerates their following evolution.

While the density profile remains static due to the adiabatic

electron approximation, the temperature evolves to adapt to

the heat source and its evolution makes an adaptation of the

background Maxwellian necessary. The threshold we use for

this is jf1=F0j 
 0:18. This is a relatively large value but trig-

gering the adaption too often can lead to undesired numerical

artefacts and we analyse simulations in a state when the last

such reset is around 1000 time units past, i.e., the system has

evolved to remain significantly below the threshold at that

point. We study a system of q� ¼ 1=150 for two different

power input amplitudes (Ŝ0 ¼ 11250 and 45 000 in units of

nrefq�cs=ðav3
thref
Þ) and examine the result of including or

neglecting neoclassical effects as well as the scaling with Ŝ0.

In Fig. 11, we present the time averaged temperature

and heat flux profiles for the high strength source in the ra-

dial region x=a ¼ 0:3� 0:85 where sources and sinks are not

present or very weak. As can be seen in Fig. 11(a), the tem-

perature gradients for the simulation with and without neo-

classical source are nearly equal. The averaged turbulent

heat fluxes in Fig. 11(b) accordingly have a similar magni-

tude. When the neoclassical source is present, however,

some energy is also transported through the neoclassical flux

channel. Hence, we observe a consistently lower turbulent

energy flux in that case.

The time-resolved turbulent heat fluxes in Fig. 12 pres-

ent a qualitatively different behaviour depending on the pres-

ence of the neoclassical source: Both cases exhibit the

fishbone-like patterns familiar from Fig. 5. As pointed out in

Section II B, the direction of these avalanches is related to

the sign of the E� B shear. Sign changes of the shear can

FIG. 10. Collisionality scaling of the

radial turbulent heat flux (values of ��
at x ¼ 0:5a).

FIG. 11. Time averaged temperature profile and heat flux (averaged over

last 1000 time units) in the source-free region for strong source amplitude

(Ŝ0 ¼ 45000). Dashed-dotted: without, solid/dashed: with NC effects.
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lead to corrugations in the temperature profile in flux-driven

simulations, and the resulting pattern has been given the

name E� B staircase.38,39 Curiously, in our simulations, the

only structure that fulfils the criteria for a stair step is occur-

ring close to the sink region at x � 0:75 in Fig. 12. While an

influence from the sink cannot be completely ruled out, the

density gradient also changes significantly at this radial posi-

tion (see Fig. 1(b)).

It is clear, however, when comparing the two simula-

tions shown in Fig. 12 that just as in gradient-driven cases

the avalanche pattern is fundamentally changed when neo-

classical effects are included. Furthermore, there is a clear

change to the intermittency of heat flux bursts: The system

with neoclassical effects (Fig. 12, right) appears calmer

with phases of low turbulent transport (Q< 5) lasting up to

100 a/cs. Without the neoclassical channel, on the other

hand, these phases end already after 30–40 a/cs (Fig. 12,

left).

The explanation for this lies in the closeness of flux-

driven systems to criticality.23,36 When the temperature gra-

dient decreases below the critical level, energy builds up and

pushes it beyond criticality again. The collisional Dimits

shift softening of the critical gradient smooths this behaviour

slightly. Since the neoclassical transport channel has no criti-

cal gradient, its presence will slow down this mechanism:

While it is in our case not sufficiently large to transport all

input heat, it provides a leak to the energy build-up.

Closeness to criticality is expected to be stronger when

we turn our attention to a system with halved heating power

(Ŝ0¼ 11 250) but otherwise identical parameters. As can be

seen for the time-averaged quantities in Fig. 13(a), the sys-

tem with neoclassical effects has a slightly higher ion tem-

perature gradient which leads to higher turbulent flux in the

outer region (Fig. 13(b)). Since we are comparing both sys-

tems for the same time window, the different convergence

behaviour with and without neoclassical effects is probably

responsible for this (neoclassical transport accelerates the

evolution of the temperature profile towards its steady state).

The region x=a < 0:5 in Fig. 13(b), however, confirms the

notion that part of the input power can be transported

through the neoclassical channel and is hence missing in the

turbulent flux.

For the time-resolved turbulent heat fluxes in Fig. 14, it

is found that the presence of neoclassical transport reduces

the strength of the intermittent turbulent bursts. In contrast

to the case with strong source, however, the simulation

without neoclassical effects (left) has a smaller burst

frequency than its counterpart with neoclassical transport.

The latter does not even exhibit a strong pattern of intermit-

tency. It appears that the significant fraction of neoclassical

transport inhibits the build-up of heat strong enough so that

the system remains in a relatively steady state of weakly

driven turbulence. This becomes more obvious when we

compare the probability density functions of the turbulent

heat fluxes in Fig. 15: In the simulation with neoclassical

effects, the distribution lacks a tail end at high fluxes

(Q=QgB > 4) and the quiet component (Q=QgB < 1) is sig-

nificantly weaker.

Finally, when we collect the information from the

two heating power scenarios and include a third intermedi-

ary heating amplitude, a comparison of the heat flux and

gradients at the representative position x=a ¼ 0:6 in Fig. 16

demonstrates the well-established phenomenon of profile

FIG. 12. Time resolved turbulent heat flux for strong source amplitude

Ŝ0 ¼ 45000 (left: without, right: with NC source).

FIG. 13. Time averaged temperature profile and heat flux (averaged over

last 1000 time units) in the source-free region for weak source amplitude

(Ŝ0 ¼ 11250). Dashed-dotted: without, solid/dashed: with NC effects.

FIG. 14. Time resolved turbulent heat flux for weak source amplitude

Ŝ0 ¼ 11250 (left: without, right: with NC source).
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stiffness40,41 in a very clear way: The temperature gradient

remains nearly constant while the total heat flux at least

doubles from the weakest to the strongest power input.

This is the inverse situation compared to gradient-driven

simulation where the fluxes are very sensitive to the input

gradient. In addition, the sum of the neoclassical and turbu-

lent heat flux for each power input agrees well with the tur-

bulent heat flux from the corresponding non-neoclassical

simulation.

IV. CONCLUSION

In this article, radially global gyrokinetic simulations

were used to explore the interaction between neoclassical

and turbulent effects. In gradient-driven scenarios (i.e., with

the time-averaged gradients fixed), it was demonstrated that

this interaction only occurs when non-local effects play a

role and that it vanishes for q� � 1=500. This indicates that

the analytical separation between the two effects in the local

limit can be reproduced. It also implies that treating neo-

classical and turbulent transport separately is valid for

q��1=400 where flux-tube simulations are justified by the

turbulent scaling with q�.
14,20 This is often assumed to be the

case for modelling of experiments. For larger q� (or q�eff

where the minor radius is replaced by the variation length of

the gradient13), however, including neoclassical effects in a

turbulent simulation becomes strongly advisable. It was

shown that the presence of neoclassical effects tends to

reduce the dependence of turbulent transport on the colli-

sionality. A possible explanation for this is that the addi-

tional radial electric field arising from the added neoclassical

term determines the spatial positioning of the zonal flow pat-

tern aligning zones with small E� B shear with ones of high

turbulence drive. It was also possible to reproduce the phe-

nomenon of radial heat flux avalanches whose direction fol-

lows the sign of the E� B shearing rate found in simulation

results in the literature.

Finally, systems with fixed power input (flux-driven)

were investigated where the temperature (gradient) profile

evolves self-consistently according to a localized heat

source. These simulations are considerably more complex

and computationally intensive but allow more insight into

self-organization phenomena. It was possible to reproduce

the basic qualitative behaviour of results from full-f simula-

tions such as the occurrence of intermittent bursts as a trans-

port mechanism for energy because the system is closer to

criticality. The frequency and amplitude of these bursts is

modified when the additional neoclassical transport channel

is present. By comparing different energy input powers, the

experimentally and theoretically established phenomenon of

profile stiffness was confirmed.

For future work, the flux-driven simulations can be ana-

lysed in more detail. Additionally, gradient-driven simula-

tions can be performed with the self-consistent steady-state

profiles in order to better understand the difference between

the two approaches. For both approaches, it is also feasible

to relieve some approximations made such as employing a

more realistic model for the magnetic equilibrium or includ-

ing electron dynamics in the investigation.
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