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Thesis for the degree of Doctor of Philosophy
DANIEL SÄÄF
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Abstract

In this thesis we present the ab initio no-core shell model (NCSM) and use this
framework to study light atomic nuclei with realistic nucleon-nucleon interactions.
In particular, we present results for radii and ground-state energies of systems
with up to twelve nucleons. Since the NCSM uses a finite harmonic oscillator
basis, we need to apply corrections to compute basis-independent results. The
derivation, application, and analysis of such corrections constitute important
results that are presented in this thesis. Furthermore, we compute three-body
overlap functions from microscopic wave functions obtained in the NCSM in order
to study the onset of clusterization in many-body systems. In particular, we
study the Borromean two-neutron halo state in 6He by computing the overlap
function < 6He(0+)|4He(0+) + n + n >. We can thereby demonstrate that the
clusterization is driven by the Pauli principle. Finally, we develop state-of-the-art
computational tools to efficiently extract one- and two-body transition densities
from microscopic wave functions. These quantities are important properties of
many-body systems and are keys to compute structural observables. In this work
we study the core-swelling effect in 6He by computing the average distance between
nucleons.

Keywords: nuclear physics, no-core shell model, halo nuclei, clusterization, transi-
tion densities, overlap functions
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Chapter 1

Introduction

Nuclear physics has played and is playing an important role in the quest
of understanding the building blocks of matter and how they are bound
together. It is well known that the Standard Model of particle physics
successfully describes the strong interaction between quarks and gluons.
However, modelling the atomic nuclei based on its basic constituents and
the strong interaction, does not seem to capture the complexity of atomic
nuclei. Despite the tremendous efforts put into modelling the hadron-hadron
interaction and properties of atomic nuclei using Lattice-QCD, we are still
far from a realistic result when computing the masses for even the lightest
nuclei in this approach [1].

One reason why this reductionistic approach fails is that the relevant
energy scale of nuclear physics does not resolve the dynamics of quarks and
gluons. Instead protons, neutrons and pions (the lightest hadrons) emerge
as the relevant degrees of freedom. Therefore, an effective field theory (EFT)
can be constructed, referred to as chiral EFT, which utilizes a separation
of scales in the hadron spectrum while obeying the symmetries of QCD.
From chiral EFT realistic nuclear interactions can be obtained and these
interactions are used extensively in this thesis. A more detailed description
will be presented in Sec. 2.3.

Irrespective of the interaction, the many-body problem of strongly in-
teracting nucleons is a difficult problem to solve. The two-, three- and, in
some cases, the four-body problem can be exactly solved. However when the
number of degrees of freedom increases the complexity of the problem grows
combinatorically. The resulting Schrödinger equation becomes extremely
challenging to solve numerically even on powerful supercomputers. There
are, however, several many-body methods that can be used to solve the
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Introduction

Schrödinger equation for some of these strongly interacting many-body sys-
tems. In this thesis, the No-Core Shell Model (NCSM) will be the method
of choice.

A realistic description of atomic nuclei needs to cover a large variety of
physics since they exhibit phenomena that span several time and energy
scales. Clearly, different many-body structures will emerge in a nuclear
landscape that span the lightest isotopes with just a few nucleons to nuclei
consisting of hundreds of them. An area in this landscape of isotopes where
the different scales are particularly apparent, is where nuclear binding ends.
This is called the dripline and nuclei close to the dripline are unstable and
quickly decay. The development of radioactive ion beam facilities has been
crucial to make it possible to create unstable nuclei and study them even if
their lifetimes are short.

1.1 Halo physics

Halo structures are particularly interesting many-body states. They appear
close to the dripline and are characterized by unusually large radii [2].
Indeed, it was through extracting the root-mean-square (rms) matter radius
from interaction cross-section measurements that Tanihata et al. [3] and
Jonson et al. [2] discovered the first known nuclear halo state in 11Li. A halo
state is formed when the confining barrier of the nucleons is small, i.e. when
their separation energy is small. Furthermore, these nucleons should occupy
a low angular momentum state, to reduce the effective angular momentum
barrier. Neutron halo systems are more pronounced due to the confining
nature of the Coulomb barrier for protons.

The ground states of 11Li and 6He are examples of two-neutron halo nuclei,
i.e. where two neutrons are orbiting a core nucleus. A property that makes
these particular halo states interesting is that the respective two-cluster
subsystems, 2n, 5He and 10Li are unbound. For this reason these systems are
sometimes called Borromean halo nuclei [4]. The name originates from the
Borromean rings, the heraldic symbol of the family of Borromeo, which is a
system of three rings connected, in such a way that if one ring is removed
the other two rings are disconnected, see Fig. 1.1.
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1.2. Ab-initio methods

Figure 1.1: Illustration of the Borromean rings. Figure from Ref. [5]

1.2 Ab-initio methods

Recent developments in theoretical nuclear physics have opened up an
avenue for a bottom-up description of the atomic nuclei that is rooted in
a microscopic description of the nuclear force. Methods and approaches of
this kind are usually called ab initio methods after the Latin term for from
the beginning. The rationale for such an approach to nuclear physics is to be
able to control all approximations at each step in the calculations. In turn,
this enables performing rigorous uncertainty quantification of computed
results. Directly linking the measured observables with ab initio results
creates an opportunity to make more reliable predictions for observables
that are challenging or impossible to measure.

In the last decade there has been a tremendous increase in the number
of isotopes that can be accurately described with ab initio methods [6, 7].
One of the reasons for this progress the increase of computational power,
basically following Moore’s law. The ab initio approach results in large-scale
problems that need powerful computational resources. Consequently, with
more resources available, ab initio methods can be applied to larger systems.
Moreover, we have seen the appearence of new many-body methods with
a more gentle scaling with the number of particles [6, 7]. Another reason
behind the increasing popularity of ab initio methods is the development of
realistic nuclear interactions based on chiral EFT.
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Ab initio methods are important to understand the mechanism behind
the clusterization exhibited by halo nuclei. In particular, it is interesting to
study the appearance of new length- and energy-scales from a microscopic
perspective. In clusterized states, the number of relevant degrees of freedom
can be reduced. Indeed, halo states can be described in terms of a core
plus loosely bound valence nucleons. It is the purpose of this thesis to
use An ab initio theory to bridge the gap between nucleonic degrees of
freedom and cluster models and provide insights into the driving force of
the clusterization.

This thesis is organized as follows: The NCSM will be presented in more
detail in chapter 2. The following chapter 3 deals with the consequences
of performing calculations in a finite oscillator basis and how corrections
can be applied to extrapolate to results of infinite model spaces. In chapter
4, the method of computing observables with transition densities will be
presented and our code ANICRE will be presented. The subsequent chapter
5 introduces a framework to study the clusterization in two-neutron halo
systems through overlap functions, and applies it to the halo state of 6He.
In chapter 6, a final conclusion of this work is presented together with a
brief outlook. Finally, chapter 7 rounds off with a summary of the appended
papers.
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Chapter 2

No-core shell model

A many-body method needs to be used to be able to solve the A-body
Schrödinger equation. In this work, with a focus on the light nuclei and in
particular 6He, the NCSM has been the method of choice. In this chapter I
will give a brief description of this method and explain why it is suitable for
our purposes.

The name NCSM suggests a similarity with the nuclear shell model (SM).
The most important difference is that the NCSM does not assume an inert
core but treats all particles as active, hence no-core in the name. The idea,
however, is similiar; to use the harmonic oscillator (HO) basis and powerful
second-quantization techniques. Therefore, the underlying technology is
the same as in the SM. However, in the NCSM one uses realistic nucleon-
nucleon interactions and aims to solve the full A-body problem without
approximations. The interactions used in this work will be introduced in
Sec. 2.3.

The specific aim is to solve the A-body Schrödinger equation

HAψA = EAψA, (2.1)

which is the equation governing a non-relativistic quantum system. This
goal is achieved by representing the Hamiltonian in a truncated many-body
basis and diagonalizing the resulting matrix to get the eigenvalues EA and
corresponding eigenvectors ψA. The dimension of the matrix can be huge
because the basis grows rapidly with A and many basis states are needed
for convergence. A diagonalization method with the capability to handle
this kind of problem is the Lanczos method, which is used in most of the
present-day NCSM implementations and in all calculations presented in this
thesis. The Lanczos algorithm will be presented in more detail in Sec. 2.4.
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No-core shell model

2.1 Many-body theory and second quantization

A fundamental tool that is used in the NCSM and that is utilized extensively
in this thesis is the second quantization formalism. This framework is based
on the concepts of Fock space and creation and annihilation operators. A
fermionic single-particle (sp) state is denoted |α〉, where α is a set of quantum
numbers needed to describe the state. In second quantization it is possible to
write the same state as a fermionic creation operator acting on the vacuum,

|α〉 = a†α |0〉 .

We can also introduce an annihilation operator, aα, which annihilates the
state |α〉. The annihilation operator is the Hermitian conjugate of the
creation operator.

The Fermi-Dirac statistic of fermions are ensured by the anticommutation
rules for the creation and annihiliation operators. The anticommutation
rules for fermions are

{a†α, a†β} = 0, {aα, aβ} = 0, {a†α, aβ} = δα,β. (2.2)

In this framework it is now possible to create antisymmetric many-body
states, named Slater determinant (SD) states, by acting on the vacuum with
multiple creation operators in a given order,

|α1, . . . αA−1αA〉 = a†αAa
†
αA−1

. . . a†α1
|0〉 . (2.3)

The basis employed in NCSM computations needs to differentiate between
protons and neutrons. This can be achived by using the isospin formalism,
which adds two quantum numbers to describe the state: the isospin t and
its projection mt. For nucleons we have t = 1

2
and mt = −1

2
(+1

2
) for proton

(neutron) states. Many-body theory and second quantization is a broad
subject that can be studied in more detail in for example Refs. [8, 9].

2.2 Many-body basis

The many-body basis consists of A-body SD states, as introduced in Sec.
2.1. The most important feature of the SD states is that they are completely
antisymmetric with respect to particle exchange. Every SD state is composed
of a linear combination of A sp states in sp coordinates. In the NCSM, these

8



2.2. Many-body basis

sp states correspond to HO eigenstates. The HO sp states are in coordinate
representation defined as:

ψnljm(~r, σ : b) = 〈r, r̂, σ : b| nljm〉

= Rnl(r : b)
[
Yl(r̂)× χ 1

2

]j
m
,

(2.4)

where the spin, s = 1
2
, is coupled together with the orbital angular momentum

l to a total spin j, with a z−projection m. Rnl is the HO radial function, Ylm
is the spherical harmonic function, while χ 1

2
is the eigenspinor. Furthermore,

b is the HO length and is related to the HO frequency, Ω, via

b =

√
~

mNΩ
, (2.5)

where mN is the nucleon mass. The HO frequency is a basis parameter that
can be varied together with the basis truncation (see below). The quantum
number n is the principal quantum number and corresponds to the number
of radial nodes of the HO function. The combination N = 2n+ l corresponds
to the eigenenergy of the HO state in the units of ~Ω and is called the major
HO shell number.

The HO basis has certain advantages that makes it useful in many-body
calculations. First of all, the HO basis states are easy to handle both in
momentum and in position space. This makes straightforward to compute
matrix elements from interactions expressed both in position and momentum
space.

Another advantage is that there are algebraic transformations that simplify
the calculations. For example, the Talmi-Moshinsky transformation makes it
possible to transform a system of two HO states described with sp coordinates
to a system described in relative coordinates [10]. This will be important in
the derivation of the overlap functions described in Chap. 5.

Finally, a very prominent advantage of the HO basis is that it is possible
to select a truncation such that an A-body state can be factorized into
one part dependent only on the center of mass (CM) motion and one part
dependent on the intrinsic motion, even if sp coordinates are used. The trick
is to truncate the many-body basis by a maximum total HO energy. The
physical eigenstate, which is translationally invariant, can then be selected
by shifting all spurious CM excitations up in the eigenspectrum using a
Lawson projection term [11]. The obtained eigenstates in the SD basis can
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No-core shell model

then be written as

〈~r1 . . . ~rAσ1 . . . σAτ1 . . . τA| AJM〉SD
=
〈
~ξ1 . . . ~ξAσ1 . . . σAτ1 . . . τA

∣∣∣ AJM〉Ψ000(~ξ0),
(2.6)

where ξi are relative Jacobi coordinates, which will be introduced in more
detail in Chap. 5. The ξ0 corresponds to the center of mass coordinate
and the CM motion is in the 0S ground state. One drawback of the
harmonic oscillator basis is the rapid Gaussian falloff (v e−αr

2
) of the basis

functions at large r. This is much steeper than the expected asymptotic
behaviour of atomic nuclei, which is v e−βr, where β is related to the single-
nucleon separation energy. This mismatch makes it difficult to describe the
asymptotic behaviour correctly in the NCSM, in particular for halo nuclei,
that have small separation energies.

In principle, a complete, i.e. infinite, many-body basis will assure that
the Schrödinger equation is solved exactly. In practice, however, the basis
needs to be truncated. The truncation scheme that we use is, as indicated
above, based on the total energy of the many-body state. The total energy
of a SD state is the sum of the energies of the A HO states,

Etot =
A∑
i=1

Ni~Ω =
A∑
i=1

(2ni + li)~Ω = Ntot~Ω.

Instead of labelling a many-body truncation by
∑

iNi ≤ Ntot we rather
introduce the parameter Nmax, which measures the maximal allowed number
of HO excitations above the lowest possible configuration, N0. N0 is defined
as N0 =

∑A
i Ni without excitations, as shown in Fig. 2.1. For s-shell nuclei

we have N0 = 0 and therefore Nmax = Ntot. For p-shell nuclei it will depend
on how many particles are in the N = 1 shell in the lowest configuration.
For example, in 6Li we have N0 = 2 and consequently Nmax = Ntot − 2.
In Fig. 2.1 we illustrate four different configurations of 6Li. All Ntot~Ω
configurations with Ntot =

∑
iNi ≤ Nmax −N0 where Nmaxis even (odd) for

natural (unnatural) parity span the Nmax~Ω-space.
There is a choice in how to treat the spin of the many-body states. Either

the sp states are spin-coupled to a total J , which then is a good quantum
number of the basis. This is called the J-scheme. The other option is that
the sp states remain uncoupled, with the total MJ =

∑A
i=1mi becoming

the good quantum number. We are using this scheme, which is called the
M-scheme. In addition, parity π and MT are also good quantum numbers. In
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2.3. Realistic nuclear interactions

N=0

N=1

N=2

NeutronsProtons

(a)

NeutronsProtons

N=0

N=1

N=2

NeutronsProtons

(b)

Figure 2.1: Sketch of many-body states in 6Li. Panel a: Nmax = 0 configuration.
Panel b: Nmax = 2 configurations.

an M-scheme basis with a particular MJ , all eigenstates with J ≥MJ can be
captured. The advantage of the M-scheme is that the antisymmetrization is
trivially achieved and there is no need to include spin-coupling algebra. The
disadvantage is that the many-body basis becomes much larger compared
with the J-scheme. The M-scheme is more efficient for systems with more
than four nucleons and it is therefore used in most NCSM calculations.

2.3 Realistic nuclear interactions

A specific goal of ab initio nuclear structure calculations is to employ and
test realistic nuclear interactions. Our fundamental understanding of nuclear
systems should in principle be based on QCD, which is the theory explaining
the strong interaction between quarks and gluons. Nuclear structure, however,
is a low-energy phenomenon on the scale of subatomic physics. Since QCD
is non-perturbative in this low-energy regime it is very difficult to use it
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No-core shell model

in direct computations. One way of overcoming this issue is to introduce
the concept of an effective field theory (EFT). The crucial starting point
for an EFT is to identify a separation of scales. In the case of low-energy
nuclear physics a natural separation of scales is observed in the meson
spectrum with mπ � mρ. The appropriate degrees of freedom are therefore
nucleons and pions. Based on this it is now possible to write down a general
Lagrangian with nucleon and pion fields obeying the underlying theory, QCD.
The Feynman diagrams that result from this Lagrangian can be ordered
in powers of Q/Λχ, with Q being the momentum scale of the process and
Λχ ≈ mρ the breakdown scale of the EFT. Consequently, the leading order
(LO) is the most important one. The EFT contain loop diagrams that need
to be renormalized and therefore a chiral regulator (characterized by a cutoff
scale ΛEFT ) is needed.

The effect of using a low-energy EFT is that all short-range physics is
condensed into contact terms in the Feynman diagrams. The strength of these
contact terms can be determined by fitting model predictions to experimental
nucleon-nucleon scattering data. In this work two different nucleon-nucleon
(NN) potentials based on chiral EFT have been used. The first one was
developed by Entem and Machleidt [12] and contains diagrams up to next-
to-next-to-next-to leading order (N3LO). This potential will further on
be referred to as Idaho-N3LO (I-N3LO). The other one, NNLOopt, was
developed by Ekström et al. [13] including diagrams up to NNLO. The
low-energy constants in the NNLOopt potential was determined by using
Pounders [14], a modern mathematical optimization algorithm. Both
NNLOopt and I-N3LO use a non-local chiral regulator with ΛEFT = 500
MeV.

2.3.1 Three-body forces

For a complete description of nuclear forces it is not enough with a NN
interaction. A realistic interaction-model needs to include also irreducible
many-body forces. In the chiral EFT power counting the three-body force
diagrams enter at next-to-next-to-leading order (NNLO) and seem to play an
important role in reproducing the physics of atomic nuclei. In this work we
have mainly considered two-body forces because it gives us the opportunity
to solve the eigenvalue problem in really large model spaces. However, the
frameworks presented in Chap. 5 and Chap. 4 are not restricted to any
specific type of interaction.

12



2.4. Matrix diagonalization and computational challenges

2.3.2 Unitary transformations

Realistic nucleon-nucleon potentials are characterized by a hard core (short-
range repulsion) and a strong tensor force. The result of this is that low-
energy physics is still dependent on higher momentum modes, and that very
large model spaces are required to capture all relevant UV physics. There
are different solutions to this problem, but a particularly useful one is to
apply a unitary transformation that uncouples the low- and high-momentum
modes from each other while keeping the physical observables unchanged.
This procedure can be viewed as lowering the resolution scale of the problem
to one that is more suitable for a truncated basis. The transformation needs
to be unitary to keep the observables, such as the energy, invariant. The
unitary transformation used in this work is the similarity renormalization
group (SRG) [15].

The SRG transformation is implemented as a flow equation and uses
a diagonal flow-generator to suppress the off-diagonal matrix elements in
momentum space. The transformation therefore evolves the potential towards
a band-diagonal form and decouples the high-momentum modes. There
is a flow parameter, ΛSRG, which is defined such that ΛSRG = ∞ means
no transformation and ΛSRG = 0 corresponds to taking the flow to infinity.
In principle, the SRG flow induces many-body forces. The calculations
performed in the scope of this work will only take into account effective two-
body forces. This approximation violates the unitarity of the transformation
and creates a dependence on the SRG flow parameter. The magnitude of
this dependence can be seen as an indicator of missing induced many-body
forces. However, it is important to note that the technical developments
presented in Paper C, allow us to perform the calculations in larger model
spaces. Consequently, most of the calculations presented in this thesis are
performed with bare interactions, i.e. not evolved.

2.4 Matrix diagonalization and computational chal-
lenges

In the NCSM the many-body problem is translated to an a eigenvalue
problem. This is achieved by expressing the wave function in a many-body
basis, |ΨA〉 =

∑
i ci |σi〉, where |σi〉 are many-body basis states and ci are

unknown (variational) parameters that need to be determined. Eq. (2.1) can
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No-core shell model

now be written as
D∑
i=1

〈σj|H |σi〉 ci = Ecj.

This generates an eigenvalue problem with Hij ≡ 〈σj|H |σi〉 being a huge
and (somewhat) sparse matrix. For example, 6Li can be computed in a
Nmax = 22 model space, which corresponds to a many-body basis dimension
of D = 2.5 × 1010, where the number of non-zero elements is Nnon−zero =
5× 1014. Storing all non-zero matrix elements would correspond to ≈ 6 PB
of data. The growth of the basis size with Nmax is demonstrated in Fig. 2.2
for a set of isotopes. In addition, the number of non-zero matrix elements in
the Hamiltonian is also displayed.
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Figure 2.2: The upper panel shows the number of non-zero matrix elements in the
Hamiltonian as a function of Nmax. The lower panel shows the dimensionality of
the many-body basis as a function of Nmax.

The eigenvalue problem can be solved by utilizing the Lanczos algorithm,
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2.4. Matrix diagonalization and computational challenges

which is an iterative methods that yields the extreme eigenvalues first [16,
17]. This is suitable for nuclear structure calculations, since the states of
interest are usually the low-energy states. The Lanczos method is very
efficient. The most time-consuming step is a matrix-vector multiplication,
followed by vector orthogonalization, with the consequence that the CPU
time scales likeO(D2), where D is the dimension of the many-body basis.This
can be compared to standard (full) diagonalisation methods that scale like
O(D3). In addition, the Lanczos algorithm is memory efficient and highly
parallelizable.

The idea behind the Lanczos algorithm is to iteratively build up a basis
in which the Hamiltonian, H, is tridiagonal and can be written as

Tk =



α1 β2 0 0 . . . 0 0
β2 α2 β3 0 . . . 0 0
0 β3 α3 β4 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . αk−1 βk
0 0 0 0 . . . βk αk,

 (2.7)

after k iterations. The eigenstates of the small tri-diagonal matrix, Tk are
easily computed and correspond to the full spectrum of eigenvalues of H, as
k →∞. However, only a few iterations are needed to converge the lowest-
lying eigenvalues. The eigenvectors of the tridiagonal matrix can easily be
transformed to the many-body basis. In this way the wave functions are
obtained.

The matrix Tk is computed and expanded iteratively. One starts with a
normalized basis (pivot) vector |q1〉 and that gives the first diagonal value,
α1 = 〈q1|H |q1〉. The second basis vector, which needs to be orthogonal to
q1 can now be computed, |q̃2〉 = H |q1〉 − α1 |q1〉. The norm of |q̃2〉 is the
non-diagonal value, β1, which normalizes |q2〉. |q2〉 is now the second vector
in the basis. To highlight the expensive matrix vector multiplication we will
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No-core shell model

introduce an intermediate vector
∣∣˜̃qk+1

〉
= H |qk〉. Continuing, we have:∣∣˜̃qk+1

〉
= H |qk〉 (2.8a)

αk =
〈
qk
∣∣ ˜̃qk+1

〉
(2.8b)

|q̃k+1〉 =
∣∣˜̃qk+1

〉
− βk |qk−1〉 − αk |qk〉 (2.8c)

βk+1 =
√
〈q̃k+1| q̃k+1〉 (2.8d)

|qk+1〉 =
|q̃k+1〉
βk+1

(2.8e)

In this recipe, it is clear that the costly step is the matrix vector multiplication,
H |qk〉, as all other steps only involve vector operations.

In numerical implementations with finite precision arithmetic, the Lanczos
vectors need to be re-orthogonalized to the preceding vectors. This is
due to the loss of orthogonality that is introduced as an effect of round-
off errors. The origin of the loss of orthogonality can be explained in
the following way: When calculating |qj+1〉, round-off errors introduces
components non-orthogonal to the preceding vectors, which by construction
should be orthogonal to |qj+1〉. In the next step, when |qj+2〉 is computed
from |qj〉 and |qj+1〉, it will not be orthogonal to |q1〉 . . . |qj−1〉 . In this way
the error builds up quickly and needs to be handled. There are different
ways of handling the re-orthogonalization. A more detailed review of the
Lanczos algorithm can be found in Refs. [16, 17].

When performing Lanczos diagonalization, a maximum number of it-
erations or a convergence criterion needs to be set. To prevent running
unnecessary iterations the latter option is generally used. The choice of an
accurate criterion is non-trivial since it is dependent on the observable being
computed. In Antoine, which is the code used in this work, the measure of
convergence is how much the converged energy eigenvalues of the computed
states changed during the last three Lanczos iterations.

To demonstrate the impact of the choice of the convergence criterion,
three different measures of convergence are presented in Fig. 2.3 for a 6Li
calculation in a Nmax = 14 model space. The energy convergence measure

is defined to be ∆(Ei) =
∣∣∣Ei−Ei−1

Ei

∣∣∣ at iteration i. In the same manner, the

convergence of the radius is defined as ∆(ri) =
∣∣∣ ri−ri−1

ri

∣∣∣ at iteration i. The

third definition estimates the changes in the Ritz vector for each iteration.
The Ritz vector, is the eigenvector of matrix Tk and its dimension obviously
grows for every iteration. The Ritz convergence measure is in this case
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2.4. Matrix diagonalization and computational challenges

defined as
√

1− ~vi · ~vi−1, where ~vi−1 is zero padded in the components that
were added to ~vi. In this way, it is possible to estimate the size of the changes
introduced to the wave function by adding another Krylov vector.

The performance of the Lanczos algorithm is demonstrated in Fig. 2.3.
It is evident that it takes a number of iterations to capture the physics of
the wave function. Additionally, it is important to note that the radius is
converging slower than the energy. Therefore, using an energy convergence
criterion can give a too optimistic estimate of the convergence of the radius.
The change of the Ritz vector seems to be a too conservative measurement
of the convergence. One of the goals of ab initio methods is to be able to do
an accurate error analysis. To achieve that we need to take the errors from
the many-body method into account and the use of different convergence
criteria needs to be studied further.

0 20 40 60 80 100 120
Iterations

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

C
on

ve
rg

en
ce

∆(E)

∆(vi · vi−1)

∆(Rpt−p)

E

Rpt−p

-30

-25

-20

-15

-10

-5

0

E
ne

rg
y

[M
eV

]

2.15

2.20

2.25

2.30

2.35

2.40

R
p
t−
p

[fm
]

Figure 2.3: Evolution of different convergence measures. The computed observable
for every Lanczos iteration is presented (diamonds) together with the change from
previous iteration (circles). The data is collected from a computation of the lowest
state of 6Li with NNLOopt[13], Nmax=14 and ~Ω = 20 MeV, starting with a
random pivot vector.
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Chapter 3

Correction due to the finite
harmonic oscillator basis

Due to the fact that the NCSM calculations utilize a finite harmonic oscillator
basis the computed results will be dependent on the model space. As the
model space size increases the calculated quantities converge to model-space
independent results. However, as described in Chap. 2, the basis size in the
NCSM grows rapidly with both A and Nmax, and therefore, in most of the
calculations the results are not fully converged. Consequently, we need to
handle the systematic error that arises from the model space dependence.

In recent years, a lot of progress has been made in quantifying the
model space dependence in finite oscillator spaces and a framework to
systematically compute converged results with a statistical error analysis has
been developed [18, 19]. In this chapter, we will introduce the main ideas
of this framework and highlight our contributions to it. In particular, we
will present how it is applied in the NCSM, based on the research presented
in Paper B. The last part of this chapter will focus on the extrapolation
of energy eigenvalues and in particular the exploratory study presented
in Paper C. This development is important in the quest of controlling all
approximations and constitutes a useful tool to quantify errors that originate
from the truncated HO basis, as well as a means to provide meaningful
values even when fully converged calculations are not feasible.
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3.1. Infrared and ultraviolet cutoff

3.1 Infrared and ultraviolet cutoff

The model space in NCSM are characterized by the HO frequency, ~Ω, and
the total number of included HO excitations above the lowest configuration,
Nmax. In Fig. 3.1 results for the ground-state energy of 4He are presented
as a function of ~Ω, for different model space sizes. The dependence on the
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Figure 3.1: Ground-state energy of 4He as a function of ~Ω. Computed with
antoine, using the NNLOopt interaction [13].

model-space parameters is clearly visible, although the dependence on ~Ω
decreases when Nmax increases. This effect is manifested by the fact that
the lines at constant Nmax flatten with higher Nmax. In addition, the energy
is converging from above when the model-space size is increasing, due to
the variational principle. The results in Fig. 3.1 include Nmax = 16. This
model space is large enough to obtain converged results in 4He with the bare
NNLOopt interaction. However, when studying heavier systems reaching
convergence is not always feasible, which is exemplified in Fig. 3.2 where the
ground-state energy of 10B is shown as a function of ~Ω. In contrast to Fig.
3.1 the results are far from converged and would need to be extrapolated to
reach a basis independent result. Note that Nmax = 12 is the largest model
space in which 10B has been computed.
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Correction due to the finite harmonic oscillator basis

Figure 3.2: Ground-state energy of 10B(3+) as a function of ~Ω. Computed with
antoine, using the NNLOopt interaction [13]

There have been different approaches to extrapolate the finite-space results.
The first attempts were based on a phenomenological extrapolation using the
Nmax and ~Ω parameters [20, 21]. However, in recent years a new approach
has been suggested [19, 18]. This approach is based on the fact that the
parameters of the HO basis, Nmax and ~Ω correspond to an ultraviolet (UV)
energy cutoff, and an infrared (IR) length cutoff. This can be motivated by
considering a decrease in the HO frequency for a certain Nmax model space,
which will cause a lower high-energy resolution but a better resolution in the
long-range part of the wave function. In Fig. 3.3 this is demonstrated by a
set of HO functions, where it is clearly seen that when the HO frequency
decreases the spatial extension of the basis states grow. The same effect is
caused by an increase in Nmax. In this way, the HO basis truncation can
be viewed as a Dirichlet boundary condition on the wave function, which is
dependent on Nmax and ~Ω. In addition, the same argument can be used in
momentum space. Thus, the maximum momentum included in a finite HO
basis corresponds to a boundary condition in momentum space at λUV.

Interactions based on EFT, introduced in Sec. 2.3, have an intrinsic
UV cutoff, ΛEFT, as an effect of the renormalization [19]. Typically, for
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3.2. Length scale of the NCSM basis

most available chiral interactions, ΛEFT is around 500 MeV. For data points
well above ΛEFT the dependence on ΛUV decreases and by only including
computations that are converged in ΛUV we can assume that the data
points capture all UV physics included in the interaction. Hence, only the
IR dependence needs to be extrapolated. This simplified pictured will be
discussed further in Sec. 3.3.

The precise determination of the UV and IR cutoffs for a particular
HO space truncation has been the subject of many studies. The first
attempt to determine the IR and UV cutoffs was based on the maximum
momentum and maximum displacement in the HO basis [22, 23]. For a
single-particle HO basis with the harmonic oscillator length b and the total
energy E = ~Ω(Ntot + 3

2
), the IR cutoff is to a first approximation

L0 =

√
2

(
Ntot +

3

2

)
b,

and the UV cutoff is

ΛUV,0 =

√
2

(
Ntot +

3

2

)
~/b.

The IR cutoff corresponds to the classical turning point in the harmonic
oscillator potential [23].

Furnstahl et al. [24] later suggested an improvement of the IR scale, based
on both empirical studies of sp states in the HO basis and an analytical
derivation where they compared the eigenvalues of the p2 operator in the
HO basis with the eigenvalues of the p2 operator in a finite box with a
Dirichlet boundary condition. By equating the lowest eigenvalues of these
two spectra the box radius, which corresponds to the IR length scale, could
be determined. In the following text, the corresponding cutoffs are labeled
L2 and Λ2.

3.2 Length scale of the NCSM basis

The naive estimate of the IR and UV cutoff presented in the previous section
fail to produce the expected results for many-body systems in the NCSM
truncation. This is exemplified in the left panel of Fig. 3.4, where the data
with the highest UV cutoff is not lowest in energy at a given L2. However,
the expectation is that data points that are converged in UV only should be

21



Correction due to the finite harmonic oscillator basis

dependent on the IR cutoff. For this reason, an envelope should have been
formed by the high UV-data. To solve this issue an accurate IR scale needs
to be derived for the NCSM many-body basis.

In Paper B, the scales of the NCSM basis were investigated. Inspired by
previous work [25], the aim was to equate eigenvalue of the kinetic energy
operator in the NCSM basis to the eigenspectrum of the kinetic operator
of a corresponding system in a infinite well of radius L. Consequently, the
radius of the well corresponds to the Dirichlet boundary of the NCSM basis.
Finding the corresponding system was one of the challenges. We realized that
a system consisting of A particles in 3 dimensions in a NCSM basis with the
energy truncation, Ntot, corresponds to a sp state in a 3A-dimensional HO
basis, with an energy truncation at Ntot, which at low momenta is equivalent
to a hyper-radial infinite well. The NCSM eigenstate, in sp coordinates, are
a product of a center-of-mass state and an intrinsic state. Thus, the relevant
IR length is an intrinsic scale. The intrinsic basis is 3(A− 1)-dimensional.
Consequently, the corresponding system is a D = 3(A − 1) dimensional
hyper-radial infinite well.

By comparing the kinetic energy spectra, demonstrated in Fig. 3.5 we
could confirm that the two systems does correspond to each other and we
could derive a relation for the IR scale of the NCSM basis:

Leff = bÑ(A,Nmax, π),

where b is the HO length and Ñ(A,Nmax, π) depends on the model space
truncation and the number of particles. It can be obtained by finding the
kinetic energy spectrum in a hyper-radial well and in the NCSM basis.
However, it is not necessary to compute the kinetic operator in the full
dimension of the NCSM basis. More details can be found in Paper B.

In Ref. [26] König et al. investigated the UV cutoff. By exploiting the
HO duality between momentum and coordinate space, they determined that
similarly to the description of the IR cutoff as a Dirichlet in coordinate space,
the UV cutoff can be viewed as a Dirichlet boundary condition in momentum
space. Consequently, they derived a relation between Leff and Λeff . Based

on that, the UV cutoff in the NCSM basis is Λeff = b−1Ñ(A,Nmax, π).

In the right panel of Fig. 3.4 the effective NCSM scales are used. In
contrast to the left panel, the envelope is formed by the data points with
highest ΛUV, as expected.
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3.2. Length scale of the NCSM basis
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Figure 3.5: The intrinsic kinetic energy spectra for A=4,6 particles in the NCSM
and for the corresponding D=3(A-1) dimensional hyper-radial infinite well.

3.3 Corrections to observables

After the IR and UV cutoff of the NCSM basis are determined, expressions for
the IR corrections need to be derived. As already stated, the UV correction
will be assumed negligible when limiting the dataset to only include UV
converged data points, where ΛUV � ΛEFT. In Fig. 3.6 the relation between
ΛUV and Leff is illustrated as a function of Nmax and ~Ω.

The IR correction to the energy was derived by Furnstahl et al. [18]. The
derivation was based on results from quantum chemistry, where the effect of
putting a hydrogen atom in a spherical infinite well has been determined [27].
They arrived at an expression for the leading-order (LO) IR correction,

E(L) = E∞ + A0e
−2k∞L +O(e−4k∞L), (3.1)

where k∞ is related to the single-nucleon separation energy. However, in the
many-body systems E∞, A0 and k∞ will be treated as fitting parameters.
To simplify the notation the LO correction term will be labeled: Ecorr

LO (L) =
A0e

−2k∞L. This notation will be used later as more terms are introduced.
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Correction due to the finite harmonic oscillator basis

3.4 Fitting procedure and error estimation

From the data points obtained in a finite HO basis, a basis-independent
result can now be extracted by fitting to Eq (3.1). The least-squares method
is used to perform the fits, implemented in lmfit [28]. From the fitting
procedure a statistical error on the fitted parameters can be extracted. This
error is only due to the least-square fit and does not reflect systematic
uncertainties such as missing correction terms.

In Paper C, the bootstrap method was also investigated as a tool to
understand the sensitivity of the fit on individual data points. The bootstrap
idea is based on the assumption that the original sample represents the
underlying distribution, usually named the population. Hence, the original
sample can be used to estimate the statistics of the population, which in
the bootstrap method is achieved by resampling. New samples are drawn
from the original sample with replacement, which implies that a data point
in the original sample can occur multiple of times in a new sample. In
this way the data points are weighted stochastically. The new samples are
constructed to have the same length as the original sample. In our case, a
bootstrap distribution is computed from repeated fits to the new sample and
statistical properties are extracted from this distribution. A more detailed
introduction to the bootstrap method can be found in Ref. [29]. In our case,
the computed dataset works as the original sample and a fit is performed on
every new sample. In particular this procedure will measure the sensitivity
of the fit on individual data points.

In Fig. 3.7 the bootstrap distribution, i.e. the distribution of extrapolated
E∞ from the bootstrap samples, is shown for different number of resamples
from a set of 6Li results. It is clear that the distribution converges to a
normal distribution. From the bootstrap distribution it is possible to extract
a statistical error. When the bias, which is the difference between the mean
of the bootstrap distribution and the original fit, is small, the statistical
uncertainty can be extracted from the 95% bootstrap confidence interval
[29]. This interval is shown in Fig. 3.7, and will be used as the statistical
error in the following.

3.5 Extrapolating data

The extrapolation technique was used in Paper A, B, C and D. In this section
the results from our exploratory study of higher-order corrections to the
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obtained from resampling. The data is from a calculation of 6Li with NNLOopt.
Only datapoints with ΛUV > 1300 MeV are included in the original sample that
consisted of 72 unique data points.
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LO IR term, presented in Paper C, will work as an example on how the
extrapolation is applied.

The technical improvements of the shell model code, presented in Paper
C, opens up the opportunity to study the performance of the extrapolation
for many-body systems in large model spaces, where the results are close to
converged. A clear indication that the IR and UV corrections need to be
studied further is revealed in Fig. 3.8 where we show that the extrapolated
value of E∞ is above the lowest computed energies. This result indicates that
something is missing in the extrapolation, since according to the variational
principle the computed result will always be above the true ground-state
energy.
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Figure 3.8: Ground-state energy of 6Li computed with NNLOopt [13]. Data points
with ΛUV > 1300 MeV are included in a LO IR fit. Vertical lines denote the
correction Ecorr

LO of each data point. The residuals from the fit are shown in the
right panel with the color of each bar determined by the mean ΛUV of data in that
interval.The errorbar is computed with the bootstrap method.

In the literature there are various suggestions of higher order effects that
may be important in the extrapolation. In particular, there are discussions of
a NLO IR correction term [24] and an UV term [18]. The NLO IR-correction
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3.5. Extrapolating data

has the suggested form

Ecorr
IR,NLO = (BL+ C)e−4k∞L.

By including this term and studying the correlation matrix of the fitting
parameters, we conclude that the NLO IR term was highly correlated with
the LO one. Consequently, adding this NLO term will not capture any
relevant new features in the fit.

In Ref. [18] a phenomenological UV correction term was suggested,

Ecorr
UV = A1e

−2(ΛUV /λ)2

.

When this term was added to the extrapolation the fitted parameter E∞
became too large. This result is not surprising. The data points closest
to the variational minimum are not the ones with the highest ΛUV , (see
Fig. 3.6). Consequently, these data points receive a large correction and
the new UV-term pushes the extrapolation parameter E∞ too far below the
variational minimum. An example is shown in Fig. 3.9, where this term is
included in the fit.

What is then the most relevant NLO correction? By studying the residuals
of the IR LO extrapolation, shown in Fig. 3.10, a clear Nmax-dependence
can be seen. Based on this finding we suggested in Paper C to add a UV/IR
cross-term on the form,

Ecorr
cross = A2e

−LeffΛUV /d1 ,

to the IR LO correction. The exponent in this expression can be written as

LeffΛUV

d1

=
Ñ(A,Nmax, π)2

d1

.

A cross-term on the form e−
√
LeffΛUV /d1 can with the same arguments also

be considered.
The inclusion of a ΛUV -dependent term allows us to include data that

is not completely UV-converged. This is an improvement compared to the
pure IR-correction an is of particular importance in large systems where the
results are further from converged. However, we still require ΛUV � ΛEFT.

In Fig. 3.9 the three suggested NLO correction terms are used for
6Li. Considering the size of the residuals, the extrapolated values, and
the statistical errors it seems clear that the cross-term provides the best fit.
Although the cross-term improves the fit substantially, it does not completely
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Figure 3.9: The three suggested extrapolation schemes are tested for 6Li computed
with NNLOopt and only including data with ΛUV > 1300 MeV. The errorbars are
computed with the bootstrap method.
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Figure 3.10: Residuals from a LO IR fit of 6Li data computed with NNLOopt [13].
Data with ΛUV > 1300 MeV was included in the fit.
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resolve the issue of extrapolating E∞ to a too high value. This finding is
demonstrated in Fig. 3.11, where the fitted E∞ is plotted together with
the variational minima for a number of Nmax-truncations. This truncation
implies a selection of data limited to Nmax ≤ Nmax,cut. The performance
for smaller values of Nmax is relevant to understand the applicability of the
extrapolation method to larger systems. The fit with the cross term is closer
to the variational minimum than the previous resluts with just the LO IR
term, but we find that it is still 400 keV above in the largest model space. To
resolve this issue, the extrapolation needs to be studied further. In particular,
the treatment of the dependence on ΛUV needs a better understanding.
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Chapter 4

Observables and two-body
operators in the NCSM

An advantage of the NCSM compared to some other methods is the ability
to obtain microscopic wave functions. From the wave functions different
observables can be computed. This can be achieved by utilizing the second
quantization formalism, already introduced in Chap. 2. In second quanti-
zation the expectation value of an operator can be written as a product
of a transition density matrix and matrix elements pf the operator in a
sp basis. The aim of this chapter is to introduce the transition density
matrix in more detail and present how it can be constructed and applied to
compute observables. The final section is based on our work presented in
Paper D, where we applied our efficient transition density code to compute
nucleon-nucleon distances in 6He to study the core-swelling effect.

4.1 Observables in second quantization

Many observables can be written as one- or two-body operators. In this
section the focus will be on one-body operators. However, in the end the
formalism will also be generalised to two-body operators. A one-body
operator acts on the coordinates, including spin, of only one nucleon at
a time. The total effect of a one-body operator on a many-body state is
obtained by summing the contributions from the actions on the individual
particles. For example, the total kinetic energy is the sum of the kinetic
energies of the individual nucleons.

In second quantization a one-body spherical tensor operator of rank λ,

32



4.1. Observables in second quantization

with projection quantum number µ, can be expressed as [8]

Tλµ =
∑
α,β

〈α|Tλµ |β〉 a†αaβ, (4.1)

where we used the notation introduced in Sec. 2.1. As a reminder, our sp
states are either HO functions labeled with small letters a = [na, la, ja] or
sp states that include the projection quantum numbers labeled with Greek
letters, α = [a,ma]. The matrix elements 〈α|Tλµ |β〉 completely characterize
the operator. However, the many-body aspect is probed by the latter term,
a†αaβ.

To compute the observable for a many-body system, the operator in Eq.
(4.1) will operate on a many-body state, which results in

〈ΛfJfMf |Tλµ |ΛiJiMi〉 =
∑
α,β

〈α|Tλµ |β〉
〈
ΛfJfMf

∣∣ a†αaβ ∣∣ΛiJiMi

〉
, (4.2)

where Λ corresponds to additional quantum numbers needed to characterize
the state. The matrix element,

ραβ =
〈
ΛfJfMf

∣∣ a†αaβ ∣∣λiJiMi

〉
, (4.3)〈

ΛfJfMf

∣∣ a†αaβ ∣∣λiJiMi

〉
, defines the uncoupled, one-body transition density

matrix. In this formalism the one-body operator matrix elements are com-
puted independently of the transition properties of the many-body states.
Similarly, if the transition densities are available they can be used to evaluate
the expectation value of different one-body operators.

The Wigner-Eckart theorem states that it is possible to write a matrix
element as a product of a factor dependent only on the projection quantum
number, i.e. the geometric orientation of the z-axis, and another factor
that contains the dependence on the dynamics of the operator [30]. The
Wigner-Eckart theorem can be applied to the one-body operator in Eq.
(4.1) [8],

Tλµ = λ̂−1
∑
a,b

〈a||Tλ||b〉 [a†aãb]λµ, (4.4)

where λ̂ =
√

2λ+ 1 and the ãb is an annihilation operator with the proper
behaviour of a spherical tensor of rank ja. The tilde operator is defined as

ãα ≡ (−1)ja+mαaa,−ma .
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Observables and two-body operators in the NCSM

In addition, 〈a||Tλ||b〉 is the reduced single-particle matrix element.
The Wigner-Eckart theorem can also be applied to Eq. (4.2), yielding an

expression in reduced form,

〈ΛfJf ||Tλ||ΛiJi〉 =
∑
a,b

λ̂−1 〈a||Tλ||b〉
〈
ΛfJf

∣∣∣∣[a†aãb]λ∣∣∣∣ΛiJi
〉

(4.5)

where
〈
ΛfJf

∣∣∣∣[a†aãb]λ∣∣∣∣ΛiJi
〉

is the reduced one-body transition density. The
reduction removes the dependence on the projection quantum number. Con-
sequently, the number of matrix elements and transition densities are smaller.

The treatment of the two-body operators, that depend on the coordinates
of pairs of nucleons, is analogous. The second quantization formalism can
again be applied to two-body operators and matrix elements of a two-body

operator, T
(2)
λµ , can be expressed〈

ΛfJfMf

∣∣∣T (2)
λµ

∣∣∣ΛiJiMi

〉
=
∑
α,β,γ,δ

〈
αβ
∣∣∣T (2)

λµ

∣∣∣γδ〉〈ΛfJfMf

∣∣∣ a†αa†βaγaδ ∣∣∣ΛiJiMi

〉
.

(4.6)

Similarly to the one-body case, the two-body operator can be expressed in
reduced form.

4.2 Transition densities in the NCSM

The computational challenge is the computation of transition densities from
large-dimension many-body states. In the NCSM these are expansions in a
SD basis,

|ΛAJM〉 =
A∑
i=0

ci |φi〉 , (4.7)

where φi consist of A HO sp states that together satisfy the energy truncation,
Nmax, and have a total M =

∑A
i=1mi.

The most time-consuming part of computing transition densities is to
find all connections between the many-body states. Inserting the expansion
(4.7) in the one-body transition density (4.3), we obtain

ραβ =

Af∑
i=0

cf

Ai∑
j=0

ci

〈
φ
JfMf

f

∣∣∣ a†αaβ ∣∣∣φJiMi
i

〉
.

To find all the connections the following recipe can be applied:
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4.3. Nucleon-nucleon distances

1. Loop over the basis states (i) of the ket state.

2. Loop over and remove, one at a time, the sp states β that are present
in the many-body basis state

∣∣φJiMi
i

〉
3. Insert a sp state α in the intermediate (A−1) many-body state such that

the resulting A many-body state exists in the final many-body basis,
i.e., that it has M = Mf and satisfies the energy truncation,N ≤ Nmax.

4. Find the index (f) of the resulting many-body state,
∣∣∣φJfMf

f

〉
5. Accumulate cicf for the combination of αβ.

In the case of two-body transition densities, there are two additional steps.
Firstly, after removing the first sp state, another state needs to be removed.
Secondly, an additional sp state needs to be inserted to find a connection
to a final many-body state. The number of connections grows rapidly with
Nmax, which was demonstrated in Fig. 2.2 that shows the number of non-
zero matrix elements as a function of Nmax. However, the sp states can be
coupled and the transition density can be obtain in reduced form, which will
decrease the number of connections. The code, ANICRE, that we developed
to compute one- and two-body transition densities in the NCSM is presented
in Paper D.

4.3 Nucleon-nucleon distances

As a test of the computed two-body transition densities, we studied the
nucleon-nucleon distance, rN−N , which corresponds to the expectation value
of a two-body operator. The two-body matrix elements of the operator can
be computed from matrix elements of the HO Hamiltonian by using the
relation

Hrel
HO =

A∑
i<j=1

Hrel
HO(i, j) =

A∑
i<j=1

(~pi − ~pj)2

2mNA
− mΩ2

2A
(~ri − ~rj), (4.8)

where i and j corresponds to particle i and j, respectively. The transition
densities are computed separately for neutron-neutron, proton-proton and
proton-neutron pairs. Therefore, it is possible to compute the nucleon-
nucleon distance for a specific pair of particles. In order to extract the mean
pair distance the resulting value needs to be normalized with respect to the
number of pairs of particles.
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Observables and two-body operators in the NCSM

4.4 Core-swelling in 6He

Having developed the ability to to compute nucleon-nucleon distances we
can study a very interesting physics question, namely the core-swelling effect
in halo systems. Consider, e.g., the ground-state of 6He. In the three-body
halo picture of 6He, the α core is surrounded by two valence nucleons. The
attractive behaviour of the nuclear force between the valence nucleons and
the ones in the core will cause an enlargement of the core compared to a free
α particle. This enlargement is called the core-swelling effect.

The size of the core in a halo system is an important input to cluster
models, since in such a model the core is one of the constituents. The impor-
tance of core-swelling is obvious when considering cluster model calculations
of the radius, in for example 6He [31, 4]. We will use the NCSM to study
the core-swelling from a microscopic perspective.

One way of estimating the core-swelling effect is to compute the proton-
proton distance in 4He and compare it with the corresponding distance in
6He. The average nucleon-nucleon distances in 6He are plotted as a function
of Leff in Fig. 4.1. The neutron-neutron distance is the largest distance, and
it is clear that our results are far from IR-converged, which is expected since
the distribution of the neutrons is particularly sensitive to the asymptotic
behaviour of the wave function. However, the proton-proton distance is much
smaller and better converged. These results are in more detail presented in
Paper D.

The proton-proton distance in 6He can now be compared to the corre-
sponding distance in 4He, both plotted in Fig. 4.2. Clearly, there is a
significant enlargement of the core in 6He. An estimate of the size of the
core-swelling effect can be extracted from the extrapolated values. Using the
NNLOopt interaction the resulting core-swelling effect in 6He is ≈ 9%. The
extrapolation in Fig. 4.2 is performed utilizing the framework introduced in
Chap. 3 and the IR correction derived for the radius [18],

r2(L) ≈ r2
∞[1− (c0β

3 + c1β))e−β] and β = 2k∞L, (4.9)

is used. It is notable that the expression for the IR correction of the radius
seems to work for the extrapolation of the nucleon-nucleon distance.
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4.4. Core-swelling in 6He
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Figure 4.1: Nucleon-nucleon distance in 6He computed with NNLOopt [13]. Data
points with Nmax ≤ 14 are included
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Figure 4.2: Proton-proton distance in 6He and 4He computed with NNLOopt [13].
The errorbars corresponds to the statistical uncertainty in the fit.
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Chapter 5

Microscopic description of a
three-body cluster system

The ability to compute translationally invariant wave functions in the NCSM
opens up the possibility to study the structure of the nucleus in detail. When
approaching the nuclear dripline a variety of cluster structures emerge that
are interesting to study from an ab initio perspective. In this thesis we
are particularly interested in the appearance of three-body (Core+N+N)
structures as found e.g. in Borromean halo states of 6He and 11Li. Such
states have earlier been described with phenomenological cluster models [4].

In Paper A we developed a framework to study the three-body clusteriza-
tion from a microscopic perspective by calculating translationally invariant
cluster form factors for the Core+N+N channel. A brief overview of the
derivation will be given in this chapter. In this framework, the 6He ground
state was studied as a three-body system consisting of a 4He-core and in the
final section of this chapter some of the results will be presented. A more
detailed derivation of the Core+N+N framework is presented in Ref. [32].

5.1 Overlap functions

In order to introduce overlap functions in general terms it is natural to start
with the definition of the two-body overlap function. Consider a nucleus
A that is composed of two clusters, B and C. The overlap function then
involves the integral over three wave functions, ψJAMA

A , ψJBMB
B and ψJCMC

C .
The nucleus A consists of the nucleons from B and C, A = B + C. The
Ji and Mi are the spin and the projection quantum numbers, respectively.
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5.1. Overlap functions

The integral is over the internal coordinates of the wave functions B and
C, which results in the overlap function being a function of the relative
coordinate ~r, between the clusters B and C. The general definition of the
two-body overlap function is

uJAMA
JBMB ,JCMC

(~r) =

∫
d~xBd~xC ψJAMA

A (~r, ~xB, ~xC)ψJBMB∗
B (~xB)ψJCMC∗

C (~xC),

where xB (xC) are the intrinsic coordinates of B (C) and in addition includes
the spin and isospin coordinates. Note that the overlap function is a non-
observable, it can not be written as the expectation value of an Hermitian
operator. Non-observable properties are model-dependet and can change e.g.
under unitary transformations.

The two-body overlap function was studied in the NCSM by P. Navrátil [33].
The formalism presented in Ref. [33] was relevant for our work and is best
introduced by studying the simplest two-body overlap function, namely the
Core+N obtained from

uAλJT(A−1)I1T1,I2T2
(η) = 〈AλJT |AA−1,1ΦAλJT

(A−1)λ1I1T1,I2T2
; δη〉, (5.1)

here expressed in braket notation. We will continue to use the braket notation
in the following. The bra in this expression corresponds to an A-nucleon
state with total spin (isospin) J (T) and an additional quantum number λ
that might be needed to characterize the eigenstate. The ket corresponds
to an antisymmetrized two-body cluster state with fixed relative distance,η.
The two clusters are an (A− 1)-nucleon state with quantum numbers I1T1,
and a single-nucleon state with I2T2 as quantum numbers. This general
notation will be used although it is clear that I2 = T2 = 1

2
in our case. The

A-nucleon state and the (A-1) cluster will be described in a SD basis. The
distance between the two clusters is described by the normalized Jacobi
coordinate,

~η =

√
(A− 1)

A

[
1

A− 1

A−1∑
i=1

~ri − ~rA
]
,

where ~ri is the absolute coordinate of particle i. Furthermore, AA−1,1 is a
cluster antisymmetrizer that ensures antisymmetrization with respect to
exchange of nucleons between the clusters. The Jacobi coordinate ~η is shown
in Fig.5.1 (a).

In Paper A we generalized the computation of overlap functions to three-
body systems. We considered a large cluster with A − a nucleons and
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Microscopic description of a three-body cluster system

two small clusters with a2 and a3 nucleons, respectively. This implies that
a = a2 + a3. In this case, another set of Jacobi coordinates need to be
introduced, corresponding to the vector ~η between the large and the center
of the small clusters, and the vector ~ν between the two small clusters,

~η =

√
(A− a)a

A

[
1

A− a
A−a∑
i=1

~ri −
1

a
(~rA−a+1 + ~rA)

]

~ν =

√
1

2

[
1

a2

A∑
i=A−a+1

~ri −
1

a3

A∑
i=A−a3+1

~ri

]
.

(5.2)

This coordinate system is shown in the lower panel of Fig. 5.1. The third
cluster with a3 nucleons is characterized by the additional quantum numbers
I3T3 and it is now possible to define a three-body cluster overlap function:

uAλJT(A−a)λ1I1T1,a2λ2I2T2,a3λ3I3T3
(η, ν)

= 〈AλJT |AA−a,a2,a3ΦAJT
(A−a)λ1I1T1,a2λ2I2T2,a3λ3I3T3

; δηδν〉.
(5.3)

The ket is an antisymmetrized three-body cluster wave function where the
relative distances are fixed.

Acting with the three-cluster antisymmetrizer on the A-body state to the
left, will simply give a combinatorial factor since the A-body state is already
fully antisymmetric. Furthermore, the Dirac δ-functions can be expanded in
terms of radial HO functions and in that way the overlap function can be
expressed in a HO basis. This results in the expansion:

uAλJT(A−a)λ1I1T1,a2λ2I2T2,a3λ3I3T3
(η, ν) =∑

nηlη
nν lν

Rnηlη(η)Rnν lν (ν)〈AλJT |AA−a,a2,a3ΦAJT
(A−a)λ1I1T1,a2λ2I2T2,a3λ3I3T3

;nηlη, nνlν〉.

(5.4)

5.2 Derivation of Core+N+N overlap function

The aim of this section is to highlight the main steps in the derivation of
an expression for the Core+N+N overlap function with matrix elements
between many-body states in an SD basis, which can be computed from
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5.2. Derivation of Core+N+N overlap function

~ν

~η

~η

a)

b)

Figure 5.1: The Jacobi coordinates used in the definition of the overlap functions.
a) is the two-body cluster system and b) is the three-body cluster system.

wave functions obtained in the NCSM. The derivation is presented in more
detail in Paper A and Ref. [32]. The derivation can be summarized in a
number of steps:

1. Introduce three-body cluster wave functions in relative and absolute
coordinates.

2. Relate the overlap function in relative coordinates to a corresponding
overlap function expanded in a SD basis

3. Expand the overlap function in mixed coordinates (absolute for particles
in the large cluster an relative for the others) and apply the Talmi-
Moshinsky transformation to the relative ones.

4. Express the sp states in terms of field creation operators and perform
recoupling of spins.

5. Integrate over the intrinsic sp coordinates of the large cluster and
perform a summation over the sp quantum numbers, thus yielding an
expression for the Core+N+N overlap function.

5.2.1 General three-body overlap function

The first step is to define the three-body cluster wave function in relative
Jacobi coordinates. In the end, the derivation will focus on the Core+N+N
channel where the two smaller clusters consist of only one nucleon each, but
as a start the general case will be considered. To treat the entire system
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Microscopic description of a three-body cluster system

microscopically, another set of relative coordinates needs to be introduced
to describe the relative distance between the nucleons in each cluster. These
coordinates are sets of normalized Jacobi coordinates. In cluster 1 they are
defined as

~ξ1 =

√
1

2
(~r1 − ~r2)

~ξ2 =

√
2

3

[
1

2
(~r1 + ~r2)− ~r3

]
...

~ξA−a−1 =

√
A− a− 1

A− a
×
[

1

A− a− 1
(~r1 + ~r2 + . . .+ ~rA−a−1)− ~rA−a

]
The intrinsic coordinates in clusters 2 and 3 are defined in the same way,
but denoted ~µi and ~ρi, respectively. All relative coordinates are shown in
Fig. 5.2 for a specific example. In the following, ξ will be used to denote all
~ξi vectors and µ, ρ will denote the intrinsic coordinates of clusters 2 and
3, respectively. A coordinate corresponding to the center of mass of the

~ξ1

~ξ2

~ξ3

~µ1 ~µ2

~ρ1

~ν
~η

Cluster 1 Cluster 2

Cluster 3

Figure 5.2: Sketch of the coordinate systems in a three-body cluster system

A-body system is also needed

~ξ0 =

√
1

A
(~r1 + ~r2 + . . .+ ~rA).
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5.2. Derivation of Core+N+N overlap function

Introducing a shorthand notation for the The cluster wave function can
now be defined in relative coordinates for a fixed set of relative distances
defined by η′ and ν ′〈

ξη′~ηµν ′~νρστ
∣∣ ΦAJMTMT

α ; δηδν
〉

=
∑

(lηmηlνmν |LML)

× (I2M2I3M3|I23M23)(I1M1I23M23|SMS)(LMLSMS|JM)

× (T2MT2T3MT3|T23MT23)(T1MT1T23MT23|TMT )
δ(η − η′)
ηη′

δ(ν − ν ′)
νν ′

× Ylηmη(η̂)Ylνmν (ν̂) 〈ξ, σ1 . . . σA−a, τ1 . . . τA−a| a1λ1I1M1T1MT1〉
× 〈µ, σA−a+1 . . . σA−a3τA−a+1 . . . τA−a3| a2λ2I2M2T2MT2〉
× 〈ρ, σA−a3+1 . . . σAτA−a3+1 . . . τA| a3λ3I3M3T3MT3〉 ,

(5.5)

where each cluster has a total angular momentum Ii, a total isospin Ti and
an additional quantum number λi to distinguish the eigenstate. Together the
three clusters form an A-body system with total angular momentum J and a
total isospin T, with the projections M and MT , respectively. Furthermore,
σ = [σ1, . . . σA] are the spin coordinates and τ = [τ1, . . . τA] the isospin
ones. The quantum numbers for the three-cluster state in LS-coupling are
combined into one index α = [(A− a)λ1I1T1, a2λ2I2T2, a3λ3I3T3 : LS].

In addition, a three-body cluster wave function with mixed coordinates
also needs to be introduced. In this wave function the largest cluster is
expressed in sp coordinates so that it can be expanded in a SD basis. This
definition of the cluster wave function is needed to use NCSM eigenstates to
describe the largest cluster. Since sp coordinates introduces a dependence on
the CM of the largest cluster, the coordinate η also needs to be transformed
to sp coordinates.

To relate the overlap function in relative coordinates to the corresponding
one in sp coordinates it is possible to use Eq (2.6) on the composite state
and on the large cluster state, both expanded in a SD basis. This factors out
the CM motion. Consequently, it is possible to apply the Talmi-Moshinsky
transformation [34] to finally get the relation〈

AλJMTMT

∣∣ AA−a,a2,a3ΦAJMTMT
α ;nηlη, nνlν

〉
=

SD

〈
AλJMTMT

∣∣ A(A−a),a2,a3ΦAJMTMT
α ;nηlη, nνlν

〉
SD

〈nηlη00lη| 00nηlηlη〉 a
A−a

,
(5.6)

where the denominator is a general HO bracket from the Talmi-Moshinksy
transformation.

43



Microscopic description of a three-body cluster system

5.2.2 Core+N+N overlap function

Until now, the cluster-state notation has been valid for a rather general
three-body system. In the following it will be assumed that the two smaller
clusters (2 and 3) only consist of one nucleon each. Still, the spin (isospin)
labels I2 and I3 (T2 and T3) will be kept, although they obviously correspond
to spin (isospin) 1

2
.

The next step in the derivation, as summarized in the bullet list on page
41, is to expand the overlap function in mixed coordinates, corresponding to
the coordinates in the mixed three-body cluster wave function. At this stage
it is possible to apply the Talmi-Moshinsky transformation to transform
the two HO states, corresponding to cluster 2 and 3, in relative coordinates
to HO states in absolute coordinates. By applying spin-recouplings and
rewriting the coordinates as field creation operators acting on a vacuum state
an intermediate expression of the three-body overlap function can be derived.
This expression can be simplified by integrating over the sp coordinates
of the large cluster and performing the summation over the sp quantum
numbers. The resulting expression for the three-body overlap function is

uAλJTα (η, ν) =
∑
nηlη
nν lν

...

Rnηlη(η)Rnν lν (ν)

〈nηlη00lη| 00nηlηlη〉 2
A−2

(−1)3I1+I23+Jab−T23−S+L

× 〈nalanblbL| nηlηnνlνL〉1
L̂ŜĴ2

abĵaĵb

Ĵ T̂

{
L I23 Jab
I1 J S

}la lb L
I3 I2 I23

ja jb Jab


×

〈
AλJT

∣∣∣∣∣∣∣∣∣∣∣∣[a†nalajataa†nblbjbtb]JabTab∣∣∣∣∣∣∣∣∣∣∣∣(A− 2)α1I1T1

〉
SD SD

,

(5.7)

where the last matrix element is a doubly reduced, non-diagonal transition
density computed from microscopic wave functions obtained in the NCSM.
This transition density is similar to the transition densities described in
Chap. 4 although this one connects states of two different nuclei with A and
(A− 2) nucleons, respectively.
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5.3. Clusterization of 6He

5.3 Clusterization of 6He

We are now in a position to analyse the clusterization of 6He by computing
the overlap function between 6He and an antisymmetric three-cluster state
consisting of 4He and two neutrons. This gives us the possibility to study the
inherent cluster structure in the microscopically calculated wave functions.
In this section we will show and discuss some of the results presented in
Paper A.

5.3.1 Overlap functions

There are two different spin-channels for the overlap 〈6He(0+)|4He(0+) +
n + n〉, namely S = L = 0 and S = L = 1. Recall that S is obtained by
coupling together I1, I2 and I3, and L by coupling lη and lν , where lη and lν
correspond to the angular momenta of the coordinates ~η and ~ν, respectively.
The overlap functions for these two different channels are shown in Fig.
5.1. The most obvious thing to note is that the S = L = 0 channel is
clearly dominating. This channel displays the characteristic shape of the two-
neutron Borromean halo with a di-neutron and a cigar configuration. The
di-neutron configuration corresponds to the two neutrons being close together
but far away from the core, while the cigar configuration the neutrons are
far from each other but their CM close to the core. This probability density
is in agreement with earlier phenomenological cluster model calculations [4]
and microscopic calculations done with a schematic interaction [35].

Very importantly, with this toolbox that we have developed it is now
possible to study the origin of the observed clusterization. In Fig. 5.4 the
overlap functions obtained in different Nmax truncated model spaces are
displayed. The panel in the top-left corner corresponds to a really tiny
model space, Nmax = 2, but already here the clusterization is clearly visible.
Compared to the panel in the bottom-left corner with a very large model
space, Nmax = 14, there are no distinct differences in the structure. The only
visible difference is that the overlap function in the larger model space has a
larger radial extension. The conclusion drawn from these results is that the
clusterization is driven by the Pauli principle, since in the tiny model space
the only property of the wave function that is guaranteed to be captured
is the antisymmetrization of the nucleons (due to the SD basis). Note that
the Nmax = 2 model space is much too small to capture the physics of the
interaction.
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Figure 5.3: Contour plot of the overlap function of 6He. The left (right) panel
corresponds to the S = L = 0 (S = L = 1) channel. This calculation is performed
in a NCSM model space with ~Ω = 20 MeV and Nmax = 14 . The interaction is
I-N3LO with ΛSRG = 2.0 fm−1.
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Figure 5.4: The overlap function for the S = L = 0 channel. The wave functions
are computed for increasing model spaces with ~Ω = 16 MeV and I-N3LO with
ΛSRG = 2.0 fm−1. The wave functions obtained from a Hamiltonian including
NN+3NF interactions are provided by R. Roth [36].
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5.3. Clusterization of 6He

5.3.2 Spectroscopic factors

An integrated measure of the amount of clusterization is the spectroscopic
factor, which is the norm of the overlap function. It is worth reminding the
reader that spectroscopic factors are non-observable quantities that change,
e.g. under unitary transformations of the Hamiltonian. However, they are
still important in phenomenological reaction theory as input for taking into
account the structure of the atomic nuclei [37].

Projection on a hyperspherical harmonics basis

In order to study the spectroscopic factors we have chosen to project the
three-body overlap functions onto a hyperspherical harmonics (HH) basis.
This is done by first transforming to hypercoordinates (ρ, θ, η̂, ν̂) where
η = ρ cos(θ) and ν = ρ sin(θ). The overlap function in Eq. (5.7) can be
written in hyperspherical coordinates,

uAλJTα (θ, ρ) =
1

ρ5/2

∑
K,lη ,lν

χAλJTα,Klηlν (ρ)ψ
lηlν
K (θ) (5.8)

where

χAλJTα,Klηlν (ρ) = ρ5/2

∫ π/2

0

dθ′ sin2 θ′ cos2 θ′ψ
lηlν
K (θ)

×
∑
nη ,nν

CAλJT
α,nηlη ,nν lνRnηlη(θ

′, ρ)Rnν lν (θ
′, ρ).

(5.9)

The ψ
lηlν
K (θ) are the hyperangular basis functions [38] and K is the hy-

perangular momentum, which can be written as K = lη + lν + 2n where
n = 0, 1, 2 . . .. The factor CAλJT

α,nηlη ,nν lν
contains all factors in Eq. (5.7) except

the radial HO functions. The projection onto HH basis is presented with
further details in Ref. [32].

Spectroscopic factors in 6He

In Table 5.1 the weights for the five most important terms in the HH
expansion are presented, together with the total spectroscopic factor. The
first observation from this data is that the dominant term is the K = 2 and
lη = lν = 0 one, in agreement with earlier calculations [35, 4]. This term is
responsible for the characteristic two-peak structure shown in Fig. 5.3. One
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Microscopic description of a three-body cluster system

Table 5.1: Relative weights (in %) of the HH expansion terms for the three-
body channel form factor

〈
6He(0+)|4He(0+) + n+ n

〉
calculated from NCSM wave

functions. We compare results obtained with Hamiltonians including two-body
forces only, and with two- plus three-body forces. The last row shows the total
spectroscopic factor. We have used: I-N3LO, ΛSRG = 2.0 fm−1, ~Ω = 20 MeV
and Nmax = 14. In addition, we have analysed a wave function computed with an
N2LO 3NF [40], ~Ω = 16 MeV, ΛSRG = 2.0 fm−1 that was provided by R. Roth
[36].

Three-body channel This work Ref. [4] Ref. [35]
K lη = lν L = S NN NN+3NF (cluster) (microscopic)

0 0 0 4.3 4.1 4.2 4.0
2 0 0 91.9 91.3 82.1 79.9
2 1 1 2.2 3.0 11.2 13.3
6 2 0 1.1 1.0 1.7 1.9
6 3 1 0.1 0.1 0.8 0.8

Spectroscopic factor: 1.3340 1.3284 0.9851 1.3957

detail that is important to note is that our total spectroscopic factor is larger
then one. This is in agreement with the spectroscopic factors computed in a
microscopic model presented in [35]. According to Timofeyuk [39] the fact
that the spectroscopic factor is larger then unity is due to the movement of
the CM of the cluster wave function and in Ref. [39] an upper limit of the
spectroscopic factor for this system was derived to be 25

16
≈ 1.56, which is

consistent with our results. In the cluster calculation [4], the wave functions
are normalized with respect to the CM motion, therefore the spectroscopic
factors sum up to unity.
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Chapter 6

Summary of papers

In Paper A, we derived an expression for computing the translationally
invariant overlap function for a core+N+N system starting from micro-
scopic wave functions obtained in the NCSM using single-particle coordi-
nates. In particular, we studied the two-neutron halo state in 6He, using
realistic nucleon-nucleon interactions, by computing the overlap function
〈6He(0+)| 4He(0+) + n+ n〉. By analysing this overlap function we demon-
strated that the clusterization is driven by the Pauli principle. We also
computed the spectroscopic functions in a Hyperspherical Harmonics basis.

The use of finite harmonic-oscillator model spaces introduces a model-
space dependence of the NCSM results. To obtain infinite model-space results
we need a way to correct for the model-space truncation. This truncation can
in fact be viewed as the introduction of infrared (IR) and ultraviolet (UV)
cutoffs. By working in the UV-converged regime and deriving the effect of
the IR cutoff, corrections can be determined for several observables (at least
to leading-order). Through applying these corrections we can extrapolate
to converged results. In Paper B, we determined the infrared length scale
of the NCSM model space, by equating the kinetic-energy eigenvalues in
the NCSM basis with the corresponding energy spectrum of a hyper-radial
well with Dirichlet boundary condition. We also demonstrated that we have
indeed identified an accurate IR cutoff by extrapolating ground state energies
from NCSM calculations for several light isotopes.

In Paper C, we presented new technical developments of the exact
diagonalization method as implemented in the NCSM. These developments
allow us to diagonalize very large model spaces, with basis dimensions
exceeding 1010. This gives us the ability to compute converged results for
many-body systems with up to six particles with a bare chiral nucleon-
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Summary of papers

nucleon interaction. In particular, we presented results for 6Li in model
spaces up to Nmax = 22 and 10B in model spaces up to Nmax = 12. We
used this capability to perform an exploratory study of the IR and UV
extrapolation of energies based on the length scale derived in Paper B. In
particular, we investigated the effects of adding higher-order corrections,
such as next-to-leading-order IR terms and a cross term dependent on both
the UV and IR cutoff.

As a continuation of the work presented in Paper A, where we studied
the clusterization of 6He in a microscopic model, we investigated in Paper
D the polarization of the α-core inside 6He. To be specific, we computed the
core-swelling effect by comparing the proton-proton distances in 6He and
4He. Nucleon-nucleon distances can be computed from two-body transition
densities. A new code, ANICRE, was developed in order to efficiently
compute one- and two-body transition densities from NCSM wave functions
for very large model spaces. To achieve this goal, ANICRE, performs a
pre-sorting of lists of allowed single-particle jumps and therefore succeeds to
efficiently find the connections between the many-body states.
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Chapter 7

Conclusion and Outlook

A large fraction of this work was devoted to the calculation of transition
densities in the NCSM. We developed a code to efficiently compute one- and
two-body transition densities from large-scale wave functions obtained in the
NCSM. In addition, we used transition densities to study clusterization in
light nuclei, and in particular the halo state of 6He, by computing three-body
overlap functions and the core-swelling effect.

Another component of this work involved corrections to results computed
in finite oscillator model spaces. The framework to compute such corrections
is rather new, and there has been a lot of progress during the last years, to
which our work has contributed. This framework opens up the opportunity to
compute, in a systematic way, basis-independent results for larger many-body
systems than previously feasible.

To continue this line of research there are some obvious following steps:
The transition density code, ANICRE, developed during this thesis has a
large scope of applications and can be applied to other interesting operators
as well. In particular, chiral EFT predicts the appearance of many-body
currents in the interaction of nuclei with external probes. The computation
of observables such as Gamow-Teller transition strengths in weak processes
will require the ability to handle many-body operators. In addition, there is
an ongoing project to develop a new NCSM code that, similarly to Antoine,
computes matrix elements on-the-fly, although with the capability to handle
three-body forces. In this code, ANICRE will play a crucial role and will be
used as an essential ingredient.

Furthermore, the framework to compute three-body overlap functions can
also be applied to larger systems. In particular, the study of 11Li would be
a natural continuation of the work presented in Paper A. In addition, as
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Conclusion and Outlook

previously suggested, further investigations of the corrections to the finite
oscillator spaces are needed, to resolve some outstanding questions that were
identified in this thesis.
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