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Abstract

This thesis concerns the interplay of superconductivity and other materials in nan-
odevices, or more specifically how transport properties are affected.

In the first part of the thesis we consider superconducting junctions with nanowires
serving as weak links. A combined experimental and theoretical study has been made,
spanning junctions from the short, ballistic, point-contact limit, all the way to the long
diffusive limit. Good agreement was found between theory and experiment, even
though the longer junctions showed a reduction in the Josephson critical current not
explained by the theory.

In the second part of the thesis, we consider a superconductor doped with magnetic
impurities. We consider two different limits for the magnetic impurities, random and
aligned impurity spins, and calculate how thermodynamic properties are influenced
by the introduction of the impurities. The aligned impurity spins induce a background
Zeeman field, which has the consequence that the superconducting phase transition
changes from being 2nd order to 1st.

The magnetic impurities induce subgap states, so called Yu-Shiba-Rusinov states.
By studying the noise and consequently the differential Fano factor, we show that,
in the tunneling limit, single particle transfer dominates the transport in the impu-
rity band. For the aligned impurity case, we also find that this transport is completely
spin-polarized.

KEYWORDS: Quasiclassical theory of superconductivity, nanowires, Yu-Shiba-Rusinov
states, Riccati parametrization, shot noise, differential Fano factor, spin polarized cur-
rents
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1Introduction

The field of nanophysics is concerned with physics in systems with a size on the or-
der of nanometers. On this length-scale, quantum effects become increasingly impor-
tant. These are effects that work against traditional electronics, with for example an in-
creased gate-leakage in metal-oxide-semiconductor field-effect transistors (MOSFETs)
due to quantum tunneling, at the same time they could be utilized in designing nano-
structured electronics. By harnessing these quantum effects one could possibly give an
extension to Moore’s law [1, 2], which is the observation that the number of transis-
tors on integrated circuits approximately doubles every other year. Moore’s law has
held true since it was first stated by Gordon Moore in 1965, but is expected to soon run
into fundamental limits of traditional manufacturing designs. Using these quantum ef-
fects as an advantage instead of a hindrance, new directions have shown promise as a
way to extend Moore’s law even further. An example of such a direction is spintronics,
where the electron’s spin instead of charge is utilized for logic operations[3]. Another
problem with current manufacturing design is that they are limited size-wise to what
is acchivable by lithography, but an altenative method allowing for smaller sizes is
nanowires[4]. Nanowires can be designed and grown directly in the laboratory.

In any device, the combination of different materials or the inclusion of barriers is
a necessitiy. This makes it important to study and understand how different materials
affect each other and whether any new characteristics appear in the interface region of
the materials.

It is interesting to consider superconductors both as a source of long-range spin-
polarized supercurrents in a spintronics setup, and as part of a nanowire junction to
study fundamental quantum phenomena. Through the superconductor, non-locality
and quantum coherence enters in a natural way, with for example the possibility to

1



2 Introduction

produce pairs of electrons which are entangled[5].

This thesis concerns the interplay of superconductivity and other materials in nan-
odevices, or more specifically how transport properties are affected. In the first part of
the thesis we study experimentally and theoretically how transport in superconductor-
nanowire junctions can be modeled. The second part concerns a superconductor with
a concentration of magnetic impurities. We investigate how thermodynamic properties
change by the introduction of the impurities and calculate how transport characteris-
tics, such as charge transport and fluctuations, are affected.

1.1 Nanowires

The electronics industry has so far limited themselves to using a, so called, top-down
approach, where bulk materials are carved into a desired shape. This approach is
dimension-wise limited to what is achievable using lithographic techniques. Another
promising route is the bottom-up approach, where tiny, hair-like wires are designed
and grown in a laboratory. The diameters of these wires can be less than even 10 nm[6],
awarding them the name nanowires, while the length on the other hand can be on
the order of microns. The use of semiconducting nanowires is prompted by their rel-
ative ease to manufacture, where the control of dimension, location, and composition,
amongst other properties, is extremely precise. This makes nanowires promising as a
way of having self-assembling electronics in the future[7, 8].

The nanowires are effectively one-dimensional objects, where the movement of the
conduction electrons are highly restricted to propagation in the length direction of the
wires. This strong confinement of the nanowire also affects the electronic properties of
the nanowires. If the diameter of the nanowire is comparable to the Fermi wavelength
of the conduction electrons, the energy spacing of the conducting modes will be signif-
icant, allowing the controlled access to individual channels, and the chance to observe
conductance quantization, see Ref. [9] and Paper I.

The extreme control of the growth stage enables one to create nanowire heterostruc-
tures, by varying the nanowire material in the growth direction. The difference in
the band structure of the different materials then creates tunnelbarriers and allows for
defining, for example, quantum dots[10].

Nanowires can also serve as a connecting weak link between superconductors, al-
lowing a supercurrent to flow between them. Semiconducting nanowires in proximity
with a superconductor, with an externally applied magnetic field, have been predicted
to hold the sought-after Majorana quasi-particles[11, 12]. The Majorana quasi-particle
is a topologically protected excitation that has been proposed as a building block in a
quantum computation setup[13].



1.2 Superconductors 3

1.2 Superconductors

At the beginning of the last century much of the physics at temperatures close to the
absolute zero was shrouded in mystery, since there existed no way to reach these tem-
peratures. Kamerlingh Onnes was one of the physicists that devoted much time to
developing schemes by which he could reach ever lower temperatures, and eventually
in 1908 succeeding in liquefying hydrogen. He worked on improving this apparatus
and had by 1911 developed a helium cryostat, able to maintain the liquid helium at
a constant low temperature, and was ready to start investigating other substances at
these temperatures.

At this time, many competing theories existed on what behavior the electrical resis-
tance would show at absolute zero. Kelvin thought that the electrons would be frozen in
place at absolute zero, making the resistance infinite, Dewar thought that the resistance
would smoothly approach zero for lower temperatures, while Matthiessen thought that
the resistance would reach a finite value since the resistance due to impurities would
dominate. With his new helium cryostat, Kamerlingh Onnes turned to this problem.
He measured the resistance of mercury1 as the temperature decreased and found to his
astonishment that at a temperature close to 4.2 K the resistance suddenly vanished[14].
Kamerlingh Onnes had discovered a new phase of matter, which he dubbed supercon-
ductivity. His work on low-temperature physics, which among other things led to the
liquefying of helium, awarded him the Nobel prize in physics two years later and was
the starting point of the research field of superconductivity.

In 1933 it was followed by the discovery[15] by Meißner and Ochsenfeld that su-
perconductors are perfect diamagnets, and will expel (almost) any externally applied
magnetic field. It would take until 1957 before a complete microscopic theory of super-
conductivity was put forward by Bardeen, Cooper, and Schrieffer[16], the so called BCS
theory. In the BCS theory superconductivity is possible through the creation of pairs of
electrons, so called Cooper pairs[17], in the material. The pairing of the electrons is
possible by an effectively attractive interaction between the electrons, mediated by an
electron-phonon coupling. By pairing up, the Cooper pairs take on some bosonic traits
and condense in a common ground state. The condensation of the Cooper pairs opens
an energy gap around the Fermi energy in the density of states of the superconductors.
In this energy gap single particle excitations are forbidden, which means that scattering
with energies below this gap is impossible. This is a simple way of thinking about why
the resistance in superconductors vanish.

Shortly after, it was predicted by Josephson that a junction made of two supercon-
ductors connected by an insulating layer would support tunneling of Cooper pairs,
producing a current without any applied voltage[18]. This is true even if we replace
the insulating layer with an extended piece of normal metal. The intuitive feeling is
perhaps that the superconducting gap would completely prohibit transport at energies

1He used mercury since he could produce a very clean sample, thereby excluding impurity effects.



4 Introduction

below it. But what actually happens is that an electron incident from the normal metal,
when it hits the superconducting gap, will form a Copper pair inside the superconduc-
tor by producing a hole that propagates back into the normal metal. By doing so, the
forbidden single-particle excitation is circumvented and a charge of 2e is transferred to
the superconductor, since a new Cooper pair is formed. This process, where an incident
electron is retro-reflected as a hole, is called Andreev reflection[19]. At the same time a
phenomenon dubbed the proximity effect[20, 21] was discussed. The proximity effect
describes how Cooper pairs leak into the normal metal, thereby giving it characteris-
tics normally only found in superconductors. In the end, it turned out that Andreev
reflection and the proximity effect just are two different viewpoints of the same kind of
effect.

In conventional superconductors, such as Hg or Al, the Cooper pairs have a spin-
singlet pairing, meaning that the pairs are made of electrons with opposite spins. This
make them susceptible to detrimental effects of spin-dependent scattering, which also
was shown already in the 1960s[22], with a linear decrease in both the transition temper-
ature and the order parameter for even small impurity concentrations. But spin-effects
are not always detrimental. In hybrid structures made of ferromagnets and supercon-
ductors it has been shown that long-range spin-triplet correlations may be induced. For
a review on the subject, see Ref. [23]. Spin-triplet correlations are pairing between elec-
trons of the same spin, which due to their long-range supercurrents and their use as a
possible controllable source of spin states, among other things, make them promising
for use in spintronics applications[24, 25, 26]. Spintronics is an emerging field that uses
the electron’s spin instead of charge for electronic devices.

In the late 1960s it was also shown that magnetic impurities with classical spins will
induce subgap states[27, 28, 29] in conventional superconductors. This topic has seen a
resurgence in popularity in the last half-decade. This newfound interest has two expla-
nations; the last decade has brought a huge technological advancement in the ability
to manufacture and control these type of systems, even down to the single impurity
level[30, 31] and it has also been shown that special arrangements of the impurities will
give rise to topologically protected states[32, 33, 34, 35, 36].

1.3 Noise

In the last decade it has become more and more evident that it is important to not only
consider the charge current, but to also consider its fluctuations. Some information that
vanish in the average current, such as statistics and charge of the current carriers, can
still be seen in the fluctuations.

In an electrical conductor there are many sources of noise. Perhaps the first noise
that comes to mind is noise caused by thermal excitations. For non-zero tempera-
tures, the occupation numbers of the states of a system are not fixed, rather they will
fluctuate. This gives rise to a non-zero current, which of course is zero on average,
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but that fluctuates in time. This thermal noise is commonly called Johnson-Nyquist
noise[37, 38], and it relates the fluctuations in the conductor to its conductance and
temperature. The Johnson-Nyquist noise is nothing else but a manifestation of the
fluctuation-dissipation theorem, which, simply put, states that fluctuations and dis-
sipation are related in equilibrium[39, 40]. Since we have this relationship between the
equilibrium current fluctuations and the conductance we will gain nothing new from
studying the thermal noise.

Another form of noise in a conductor comes from the discreetness of the electrical
charge of the current carriers. This noise is called the shot noise[41], a name that can be
understood by the thought of “shooting” individual, uncorrelated, charges at a conduc-
tor. Shot noise can also be called Poisson noise, since it can be modeled by a Poisson
process. A simple way to understand shot noise, is to think about coin tosses. After
many tosses, the difference between the number of heads and tails will be tiny but if
we instead repeatedly perform an experiment with only a few tosses, the outcome will
fluctuate a lot. In the same way as the fluctuations in the coin toss outcome will vanish
for larger number of coin tosses, the shot noise tends to not be the dominating noise
source for large currents.

In tunnel junctions there is a simple relation between the fluctuations and the time-
averaged current

S = 2qj. (1.1)

where q is the effective charge of the current carriers. This relation between the shot
noise, average current and the charge of the current carriers was used to definitely show
that the charges in the fractional quantum Hall effect had the value q = e/3[42, 43].

Away from the tunneling case it can be shown that the noise is proportional to the
product of the reflection and transmission probability of the conductor, ∝ DR. [44,
45] The consequence of this is that the shot noise actually will identically vanish for
a completely open and a completely closed channel, and take its maximum value for
D = 1/2. That the fluctuations vanish for the open and closed cased can be understood
by thinking of the noise as the fluctuations between different transport channels. When
the conductor is completely transparent or completely reflecting, there exist only one
possibility. There is no other transport channel to fluctuate with.

The problem of shot noise in a superconducting setup has been studied quite a bit.
Khlus[46] looked at a superconductor connected by a tunnel junction with arbitrary
transparency to a normal metal, and found that the noise spectrum is highly non-linear
at sub-gap voltages. For a transparency D = 1, he found that the high voltage fluctu-
ations do not vanish, as in the normal case, but rather the noise tends to a fixed value
of S = 8∆0/15RN , where ∆0 is the superconducting gap and RN the normal state resis-
tance of the interface. The reason for this “excess” noise is the existence of the Andreev
reflection process at the interface, which introduces a separate process to fluctuate with.
Following him a number of people[47, 48, 49, 50] could show by using different tech-
niques that the Andreev reflection process play an important role in the noise. The
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double charge of the Cooper pair is visible in the doubling of the low voltage noise to
current ratio compared to the normal state case.

With multiple superconductors the complexity of the problem grows, with the pos-
sibility of multiple Andreev reflections (MAR). For decreasing voltages the MAR roughly
transfers a charge q ∝ 1/V, from which one would expect a similar enhancement of the
fluctuations. This was also shown theoretically by several different groups[51, 52, 53].
Experimentally, this was qualitatively seen by Dieleman et al.[54] and later quantita-
tively confirmed by Cron et al.[55].

A comprehensive review on the subject of shot noise, both in the normal and the
superconducting state, has been written by Blanter and Bütticker [45].

1.4 Outline of the thesis

This thesis consists of two distinctly different, yet related, parts. One concerned with
transport through superconductor-nanowire junctions, and the other with thermody-
namics and transport properties of a superconductor with a concentration of magnetic
impurities.

Even though these may look like separate topics there are many things connecting
them. First of all is the fact that they both concern superconductivity. The nanowires
are connected to superconductors, and we study how the magnetic impurities affect su-
perconductors. Secondly, is the fact that we for both of our systems calculate transport
characteristics. And finally, all through the thesis we use the same theoretical frame-
work to solve the problem, the quasiclassical theory of superconductivity.

The outline of the thesis is as follows: In Chapter 2 we will review the quasiclassical
theory of superconductivity, which is the general theoretical framework that is used in
the thesis, and we will also give some simple examples of its usage. In Chapter 3 we
will present the theoretical model that we used to explain the measurements that were
made in Papers I and II. In Chapter 4, a model of a superconductor with a concentration
of magnetic impurities is presented. General results on thermodynamics, on one hand,
and transport measurements, on the other, is then shown. These results were the basis
of Papers III and IV. Finally in Chapter 5 we will present our conclusions, and discuss
possible future directions of the work.
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The idea behind the quasiclassical formulation of superconductivity is that all processes
relavant to the physics of superconductivity happen on a scale that is much smaller
than the Fermi energy [56, 57]. The Green’s functions can then be decomposed into
a fast oscillating component and a slowly varying envelope that varies on scale with
the superconducting coherence length. These fast oscillating components can then be
integrated out and we are left with a more manageable theory that still can calculate
all relevant physical observables, as long as all energy scales in the system are small
compared to the Fermi energy. A problem arises when dealing with interfaces, since
in the interface region the electronic potential may change very rapidly on a micro-
scopic length scale. This problem is dealt with by deriving boundary conditions for the
quasiclassical Green’s function in terms of the microscopic ones.

In this Chapter we will briefly try to show the general idea behind the derivation
of the quasiclassical equations, for a detailed derivation we refer the reader to Refs.
[58, 59]. Next we will present a parametrization, which is useful for numerical studies,
and finally at the end of the chapter we will, as a demonstration, solve some simpler
problems using the formalism presented in the Chapter.

2.1 Eilenberger equation

The object of interest in quasiclassical theory is the quasiclassical Green’s function,
which is the full Gor’kov Green’s function with the fast oscillating components inte-
grated out [58],

ǧ( p̂, R, ε, t) =
1
a

∫ εc

−εc

dξpτ̂3Ǧ(p, R, ε, t),

7



8 Quasiclassics

where the factor 1/a is a normalization factor, εc is a cut-off in energy and ξp = vF(p−
pF). The Green’s function ǧ is in general a 8× 8 matrix, in the combined Keldysh×
Nambu× spin-space. The “ˇ” denote a 2× 2 matrix structure in Keldysh [60] space

ǧ =

(
ĝR ĝK

0 ĝA

)
,

where the Retarded (R) and Advanced (A) components contain information about the
quasiclassical spectra while the Keldysh (K) about the dynamics of the system. The “ˆ”
denote a 2× 2 matrix structure in Nambu, or particle-hole, space. Each component of
the Nambu matrix is then a 2× 2 matrix in Pauli spin-space. We will let τ̂i denote Pauli
matrices in Nambu space, and σi in spin-space.

In deriving the quasiclassical equations we start from the Dyson equation for the
full Gor’kov Green’s function

(
Ǧ−1

0 − Σ̌[Ǧ]
)
◦ Ǧ = 1̌, (2.1)

where the “◦” is a convolution product, a matrix product in Nambu-space followed
by an integral over common energy or time variables, see Appendix A.1. Ǧ0 is the
free Green’s function and Σ̌ the self-energy. The self-energy Σ̌ is a functional of the full
Green’s function Ǧ. By expanding the self-energy in orders of kBTc/EF, h̄/pFξ0, · · · � 1
it can be shown to be weakly momentum dependent[58], while the Green’s function it
appears together with is sharply peaked around the Fermi surface. This allows us to
approximate the self-energy with its Fermi surface value, Σ̌(p, . . . ) → Σ̌(pF, . . . ), and
replace Σ̌(pF, . . . ) with its quasiclassical equivalent σ̌.

The unperturbed Green’s function is in Nambu space given by Ǧ−1
0 = ετ̂31̌− ξp. So

we have the Dyson equation
(
ετ̂31̌− ξp − σ̌

)
◦ Ǧ = 1̌.

Now we would like to take the integral over ξp, and replace all the full Ǧ:s with the
quasiclassical ǧ, but there is a problem with the term ξp ◦ Ǧ, since it is not bounded.
Subtracting the equivalent right-hand Dyson equation

Ǧ ◦
(
ετ̂31̌− ξp − σ̌

)
= 1̌,

we can expand
[
ξp, Ǧ

]
◦ to lowest order, canceling all of the inconvenient terms. We are

then left with something that can be integrated.The resulting transport equation is the
so called Eilenberger [56] equation1,

[
ετ̂31̌− σ̌[ǧ], ǧ

]
◦ + ih̄vF · ∇ǧ = 0, (2.2)

where σ̌ contains all self-energies like the superconducting order parameter, impu-
rity potentials and external fields. The Eilenberger equation describes quasi-particles

1Except to be extra clear at certain points, such as here, we will work in units so that h̄ = 1.
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moving with the Fermi velocity, vF, along classical trajectories in space. For the Re-
tarded/Advanced components we have ε → ε± iδ, where δ is an infinitesimal, while
the Matsubara[58] propagator is obtained from the Retarded (Advanced) one for posi-
tive (negative) energies through ε→ iεn, with εn = 2πkBT(n + 1/2).2

In making the “left-right” trick, we lose some information, so that the Eilenberger
equation, eq. (2.2), does not determine the Green’s function uniquely. Since the Eilen-
berger equation is homogeneous and the convolution product associative, it can even
be shown that if ǧ is a solution to eq. (2.2), then so is any multiple of it, ǧ ◦ · · · ◦ ǧ.
To restore this information Eilenberger[56, 61] found that a normalization condition is
needed,

ǧ ◦ ǧ = −π21̌.

Since this is a mean-field theory we will also need selfconsistency equations for the
self-energies, like the gap and impurity scattering.

The bulk solution to the Eilenberger equation looks like

ĝR,A =

(
g f iσy

iσy f̃ σy g̃σy

)R,A

= −π
εR,Aτ̂3 − ∆0iσyτ̂1√

∆2
0 − (εR,A)2

ĝK =(ĝR − ĝA) tanh
ε

2T
,

(2.3)

where ∆0 is the order parameter, and tanh ε/2T = 1− 2 fF(ε) is directly related to the
Fermi function.

2.2 Riccati parametrization

In numerical studies the problem of solving the transport equations is simplified con-
siderably if a certain parametrization is used [62, 63, 64]. If we write ĝ in terms of
two coherence functions γR,A, γ̃R,A and two distribution functions x, x̃ the bound-
ary value problem for ĝ is transformed into an initial value problem along trajecto-
ries in phase space, meaning that if the value of the coherence functions is known at
the start of the trajectory the value of it along the entire trajectory can be calculated.
The coherence functions can be thought of as the local probability amplitude of An-
dreev conversion[65, 64], from a hole-like to a electron-like (γ) quasi-particle and from
electron-like to hole-like (γ̃). This also means that the coherence functions have to van-
ish in the normal state.

With this parametrization, the Eilenberger equations are turned into uncoupled sta-
ble differential equations of Riccati type. Another neat fact is that with this parametriza-
tion the normalization condition is automatically taken care of.

2For equilibrium properties we can choose to either use Keldysh or Matsubara propagators. The
Matsubara route is usually to prefer because of numerical stability. The recipe is then ĝK → ĝM and∫

dε/4πi→ kBT ∑εn
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The Green’s functions are in terms of the coherence functions and the distribution
functions given as

ĝR,A = ∓πi N̂R,A ◦
(

1 + γ ◦ γ̃ 2γ

−2γ̃ −(1 + γ̃ ◦ γ)

)R,A

(2.4)

and

ĝK = −2πi N̂R ◦
(

1 γ

−γ̃ −1

)R

◦
(

x 0
0 x̃

)
◦
(

1 γ

−γ̃ −1

)A

◦ N̂A, (2.5)

where the plus (minus) refers to the Retarded (Advanced) component and

N̂R,A
=

(
(1− γ ◦ γ̃)−1 0

0 (1− γ̃ ◦ γ)−1

)R,A

.

In general γR,A, γ̃R,A, x, and x̃ are 2× 2 spin matrices. The “˜” describe a particle-hole
conjugation defined as ã(ε, pF, R) = a(−ε∗,−pF, R)∗.

The transport equations for the coherence functions are

(ih̄vF · ∇+ 2ε) γR,A =
[
γ ◦ ∆̃ ◦ γ + Σ ◦ γ− γ ◦ Σ̃− ∆

]R,A

(ih̄vF · ∇ − 2ε) γ̃R,A =
[
γ̃ ◦ ∆ ◦ γ̃ + Σ̃ ◦ γ̃− γ̃ ◦ Σ− ∆̃

]R,A (2.6)

and for the distribution functions

ih̄ (vF · ∇+ ∂t) x−
[
γ ◦ ∆̃ + Σ

]R ◦ x− x ◦ [∆ ◦ γ̃− Σ]A =

−γR ◦ Σ̃K ◦ γ̃A + ∆K ◦ γ̃A + γR ◦ ∆̃K − ΣK

ih̄ (vF · ∇ − ∂t) x̃−
[
γ̃ ◦ ∆ + Σ̃

]R ◦ x̃− x̃ ◦
[
∆̃ ◦ γ− Σ̃

]A
=

−γ̃R ◦ ΣK ◦ γA + ∆̃K ◦ γA + γ̃R ◦ ∆K − Σ̃K.

(2.7)

The Retarded and Advanced coherence functions are, of course, related so that it will
always be enough to only solve for one or the other, and then use general symmetries
to obtain the other.

The solution to the transport equations are obtained by solving for them, start-
ing from an initial value, along their characteristics, which is straight trajectories in
space. The trajectories are for any value of pF defined by the Fermi velocity vF(pF).
Parametrizing the trajectories as R = v̂F · s + c, with v̂F being an unit vector parallel
to the Fermi velocity, the transport equations turn into ordinary differential equations
along their trajectories. The coherence functions turn out to fulfill certain stability cri-
teria; the equations for γR, γ̃A and x are bounded when integrating them along a tra-
jectory (with vF · s > 0), while the ones for γ̃R, γA and x̃ are stable in the opposite
direction (with vF · s < 0).
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2.2.1 Bulk solutions

In the bulk we, by definition, have no dependence on the position R. We can then
write, if the self-energies is diagonal is spin space and the order parameter is singlet,
the equilibrium solution for the coherence function in the clean limit as

γR,A =− ∆0

ε± iΩ
, (2.8)

where Ω =
√
|∆0|2 − ε2. The distribution functions in equilibrium look like

x =
(

1− γRγ̃A
)

tanh
(

ε

2kBT

)
.

Remember that the “tilded” versions are obtained through the tilde-operation, ã(ε, pF, R) =
a(−ε∗,−pF, R)∗.

2.3 Boundary conditions

As mentioned above, the quasiclassical theory gets into problems when considering
boundaries and interfaces. The quasiclassical theory is valid as long as all relevant
energy scales are small compared to the Fermi energy and changes happen on a length
scale of the order of the coherence length. At interfaces where different materials are
connected, changes typically happen on an atomic length scale and with an energy
scale comparable to the Fermi energy. This means that the quasiclassical formalism is
not valid close to boundaries and interfaces, while far away from the interfaces it is.
This leads to the necessity to formulate the interface region in a microscopic theory
and then connect it to the ’asymptotic’ quasiclassic region via boundary conditions.
Such boundary conditions were first derived for partially transmitting, spin preserving,
interfaces by Zaitsev [66] and Kieselmann [67] and were later generalized to include
spin-active interfaces by Millis, Rainer and Sauls [68]. In this way, everything going into
the interface region were expressed through a normal state scattering matrix which then
is connected to the quasiclassical propagators. While this in theory solves the interface
problem they are difficult to solve numerically since they contain unphysical solutions
that have to be taken care of. These difficulties are all taken care of if the boundary
conditions are formulated in terms of the Riccati coherence functions introduced above
[63, 69, 70, 64].

As mentioned, an interface region can be connected to the quasiclassical region,
through the normal-state scattering matrix. Let us consider such a scattering matrix[68,
69, 70]

S =

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)
.
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x

ǧ1,−
(
ΓR

1 , γ̃R
1 , γA

1 , Γ̃A
1 , X1, x̃1

)

ǧ1,+
(
γR

1 , Γ̃R
1 , ΓA

1 , γ̃A
1 , x1, X̃1

)

ǧ2,+
(
ΓR

2 , γ̃R
2 , γA

2 , Γ̃A
2 , X2, x̃2

)

ǧ2,−
(
γR

2 , Γ̃R
2 , ΓA

2 , γ̃A
2 , x2, X̃2

)

1 2

Figure 2.1: The incoming and outgoing trajectories in a scattering region and their
respective Green’s function, with the dependence of the Green’s function on scat-
tered/unscattered coherence functions as indicated. The arrows point in the same
direction as the Fermi velocity, vF. The label ± denote if the projection of the Fermi
momentum on the x-axis is positive/negative.

The scattering matrix is here written in the combined particle-hole, spin-, and left-right
space, i.e. the index 1(2) refers to the left (right) side of the interface. Since this is the
normal-state scattering matrix, each of the matrices Ŝij are diagonal in Nambu space,

Ŝij =

(
Sij 0
0 S̃ij

)
,

in which the components, in general, are matrices in spin space. We will only discuss
specular interfaces, meaning that the momentum parallel to the interface, pF||, is con-
served.

In the interface region the coherence and distribution functions can be grouped by
whether they are stable integrating from the bulk towards the interface, or from the
interface towards the bulk. We will call the ones stable towards the interface unscat-
tered, since they only need as input the bulk value at the start of the trajectory and can
be completely determined without any knowledge of the interface region. The ones
stable away from the interface are called scattered, and will need an initial value at the
interface, which has to be determined from the boundary conditions. We will denote
unscattered coherence functions with a small case letter (γR,A

i , γ̃R,A
i , xi, x̃i) and scattered

with a capital (ΓR,A
i , Γ̃R,A

i , Xi, X̃i). The boundary conditions connect the unknown scat-
tered coherence functions with the known unscattered ones. The trajectories involved
in the scattering together with their respective Green’s function is shown in fig. 2.1.
We also indicate how the Green’s functions depend on the scattered and unscattered
coherence functions.

In Paper IV we considered a spin-active interface, and investigated effects of spin-
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Table 2.1: Scattering amplitudes at an interface, for excitations incident from the 1 side,
see fig. 2.1. Amplitudes for excitations incident from the 2 side is obtained through the
substitution 1 ↔ 2 togehter with the interchange of barred and unbarred amplitudes.
For rR

ee, rR
hh, rR

eh and rR
he we also need to take

√
R → −

√
R.

The quantity below is defined as DR
ij = (1−RγR

j γ̃R
j −DγR

i γ̃R
j )
−1.

rR
ee =
√
R
(
1− γR

2 γ̃R
2
)

DR
12 rR

hh =
√
R
(
1− γ̃R

2 γR
2
)

D̃R
12

tR
ee =
√
D
(
1− γR

2 γ̃R
1

)
DR

21 tR
hh =

√
D
(
1− γ̃R

2 γR
1

)
D̃R

21

rR
he =

√
RrR

hhγ̃R
1 +
√
DtR

hhγ̃R
2 rR

eh =
√
RrR

eeγ
R
1 +
√
DtR

eeγ
R
2

tR
he = −

√
DrR

hhγ̃R
2 +
√
RtR

hhγ̃R
1 tR

eh = −
√
DrR

eeγ
R
2 +
√
RtR

eeγ
R
1

mixing. In the present text we will not discuss this case, but refer the reader to the
original paper for details. Here we will consider an interface that preserves spins in
the scattering. This makes the scattering matrix scalar in spin-space, and because of
inversion symmetry we also have that Sij = S̃ij. We can then write the scattering matrix
as

S =

(√
R

√
D√

D −
√
R

)
.

The boundary conditions can be written in a number of equivalent ways, but our
preferred way is how they are written in Ref. [71], which highlight the underlying
processes of the boundary conditions in a nice way. In the following passages we sum-
marize their formulation. The boundary conditions are then written as

ΓR
1 = rR

eh =
√
RrR

eeγ
R
1 +
√
DtR

eeγ
R
2

Γ̃R
1 = rR

he =
√
RrR

hhγ̃R
1 +
√
DtR

hhγ̃R
2

X1 = rR
eex1rA

ee + tR
eex2tA

ee − tR
eh x̃2tA

eh

X̃1 = rR
hh x̃1rA

hh + tR
hh x̃2tA

hh − tR
hex2tA

he.

(2.9)

The boundary conditions for the trajectories on the other side of the interface are ob-
tained by substituting the indices 1↔ 2 and interchanging barred and unbarred prob-
ability amplitude. We have to be a bit careful here. Because of the way we have written
the scattering matrix there will be some minus signs popping up in the expressions for
the boundary conditions on the 2 side. So in the expression for ΓR

2 and Γ̃R
2 we also have

to take
√
R → −

√
R.

The probability amplitudes that the boundary conditions are built of can be un-
derstood in a physical sense, rR,A

αβ (tR,A
αβ ) is the probability amplitude of an incoming β

excitation to be reflected (transmitted) as an α excitation. Amplitudes without (with) a
bar originate on the 1(2) side of the interface.
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In table 2.1 we summarize the possible probability amplitudes at the interface. In
principle, these amplitudes are the only thing we will have to calculate for any kind
of transport we are interested in. Any extra complication will only come from the cal-
culation of the coherence and distribution functions, but once we have them we know
everything about the system.

It is possible to derive relations among the probability amplitudes from considering
probability and charge conservation. At this point the relations are quite lengthy so we
will refrain from writing them here, but we shall see later when we consider the case of
an SN-junction in section 2.6.2 that the relations can be quite insightful.

To simplify numerical calculations when dealing with interfaces we can use general
properties of the Riccati equations, reducing the number of iterations that is needed for
self-consistency. This is described in Appendix A.2.

2.4 Impurities

Materials found in Nature are usually not pure. Rather they are contaminated with
other types of atoms. For that reason it is important to know how our superconductor
behaves when being impure, to be able to compare theory with experiments. Another
reason why one should be interested in studying impurities in superconductor is that
the impurities can induce both other correlations and phases uncommon to find in Na-
ture, but with knowledge of material behavior we can engineer them.

2.4.1 t-matrix equation

For a distribution of impurities dilute enough, we can neglect scattering off multiple
impurities, and only include scattering off a single one. The object describing this is the
single impurity t-matrix equation,

t̂(ε, pF, p′F) = û(pF, p′F) + NF

∫ dΩp′′F
4π

û(pF, p′′F)ĝ(ε, p′′F)t̂(ε, p′′F, p′F), (2.10)

here û is the impurity potential and NF the normal state density of states at the Fermi
surface.

This equation can be described in diagram[58, 72] form as shown in fig. 2.2. We
will be content with studying s-wave, isotropic, impurity scattering, meaning that the
impurity potential is independent of momentum. This simplifies eq. (2.10) to

t̂(ε) = û + NFû〈ĝ(ε)〉pF t̂(ε),

where 〈ĝ(ε)〉pF =
∫ dΩpF

4π ĝ(ε, pF) is a Fermi surface average of the propagator.
The self-energy for the full distribution of impurities is then given from the t-matrix

as
σ̂(ε) = nimp t̂(ε), (2.11)
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t̂(ε, pF, p′
F) =

✁
+

✂
+

✄
+ · · ·

û(pF, p′
F) ≡

☎
ĝ(ε, pF) ≡

✆Figure 2.2: The diagrammatic representation of eq. (2.10), the t-matrix equation.

where nimp is the concentration of impurities. Since the self-energy σ̂ and the Green’s
function ĝ depend on each other, we will have to solve for them together until we
achieve selfconsistency.

2.5 Diffusive limit - the Usadel equation

Before moving on to calculating observables, we should point out that even though
the general transport equation for the quasiclassical Green’s function is the Eilenberger
equation we can in the dirty limit make further simplifications that lead to a diffusion-
like equation called the Usadel equation[73, 74]. In this work we will not use this for-
mulation, since we want to be able to consider both the clean limit and of variable
degree of disorder, but we will sketch the general idea behind the derivation below, for
completeness.

If we are in the dirty limit, where the concentration of impurities is large, the im-
purity scattering will dominate all other energy scales in the Eilenberger equation. The
scattering will randomize the electron trajectories and make the Green’s function close
to isotropic. By then expanding the Green’s function to first order in spherical harmon-
ics, the Eilenberger equation can be shown to reduce to

D
π
∇ (ǧ∇ǧ) +

[
ετ̂31̌− ∆̌, ǧ

]
= 0, (2.12)

where D = vF`/3 is the diffusion constant, which is related to the Fermi velocity, vF,
and the mean free path, `. The dominating energy scale in the diffusive limit is the
Thouless energy, given by Eth = h̄D/L2, where L is the size of the system. The diffusive
coherence length is given by ξD =

√
D/∆0.

The Green’s function ǧ(R, ε) is in this formulation no longer dependent on the Fermi
momentum.

The Usadel equation has successfully been used to, for example, describe prob-
lems such as the phase-dependence of the local density of states in a diffusive SNS
junction[75, 76], the temperature dependence of the Josephson critical current[77], and
the cross-over of the magnetic field-dependence of the critical current from a Fraun-
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hofer pattern to a monotonic decay when the width of the SNS junction decreases[78,
79].

2.6 Charge transport

Now we can compute the Green’s function everywhere, and we know how to connect
it across interfaces. The problem is that the Green’s function is not an observable, in
its own right. For this we need to compute something that we would actually measure
in an experiment. So, for this we turn to transport, and compute both equilibrium and
non-equilibrium currents.

In this section we will go through how the observables that we are interested in are
expressed in the quasiclassical formulation, and we will also go through a couple of
example calculations to show their use.

The charge current is calculated through the Keldysh Green’s function[58]

jc = eNF

∫ dε

8πi

∫ dΩpF

4π
Tr
[
vFτ̂3 ĝK

]
, (2.13)

where the Keldysh Green’s function can here either depend on an applied bias or a
phase difference. In any case the expression for the current looks the same, but the way
we have to compute the Green’s function differs.

2.6.1 Supercurrent in an s-wave point contact

As a first example we consider the equilibrium current in a clean s-wave point contact.
In a point contact the radius of the contact is much smaller than the coherence length
and all effects of the point contact on the superconductors may be neglected. This
means that we can take the amplitude of the superconducting order parameter to be
constant all the way up to the point contact.

Letting the point contact be symmetric so that the magnitude of the order parameter
is the same in both of the superconductors, |∆L| = |∆R| = ∆0, the only thing that differ
between them is their relative phase, so ∆L = ∆0eiφL and ∆R = ∆0eiφR . In equilibrium
the Keldysh Green’s function has the form given by eq. (2.3), while the Retarded and
Advanced are written in terms of the coherence functions according to eq. (2.4). Since
we consider spin-singlet superconductors, with an interface that not is spin-active, we
can write the incoming coherence functions as γR,A = γR,A

0 iσy and γ̃R,A = γ̃R,A
0 iσy

(with the same for the outgoing coherence functions). We neglect the effect of the point
contact on the superconductors, meaning that γR,A

0 and γ̃R,A
0 will have their respective

bulk values, given by eq. (2.8).
An s-wave superconductor is isotropic, so that there is no dependence on direc-

tion, which turns the Fermi surface average in eq. (2.13) into just a difference between
an incoming and outgoing trajectory. This make sense from a physical point of view,
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since the total current is then just the difference between the current going towards the
interface and the current going away from it. The charge current reads

jc = eNFvF

∫ dε

8πi
Tr
[
τ̂3

(
ĝR
+ − ĝA

+ − ĝR
− + ĝA

−
)]

tanh
ε

2T
,

where vF is the magnitude of the Fermi velocity, and the +(−) denote if the Green’s
function is incoming (outgoing). Since there is no spin dependence in the problem the
trace over the spin- and Nambu-space will just give us a factor 4, so that the current in
terms of coherence functions is written as

jc = − eNFvF

2

∫
dε

(
1− γR

0 rR
he,0

1 + γR
0 rR

he,0
−

1− rA
he,0γ̃A

0

1 + rA
he,0γ̃A

0
−

1− rR
eh,0γ̃R

0

1 + rR
eh,0γ̃R

0
+

1− γA
0 rA

eh,0

1 + γA
0 rA

eh,0

)
tanh

ε

2T
.

(2.14)
This is a general expression for the equilibrium current across an interface, for the case
of a spin-independent Green’s function. As long as the coherence functions are deter-
mined in a self-consistent manner, it is even valid for the case of impurities or a spatially
dependent order parameter.

Plugging in the explicit expressions for the bulk coherence functions from eq. (2.8),
and the outgoing coherence functions from eq. (2.9), this simplifies to

jc = −eNFvF

∫
dε Im


 D∆2

0 sin ∆φ

ε2 − ∆2
0

(
1− D sin2 ∆φ

2

)


 tanh

ε

2T
, (2.15)

where ∆φ = φR − φL is the relative phase difference between the superconductors.

The poles in the current, ε±b = ±∆0

√
1− D sin2 ∆φ

2 , define bound states, the so called
Andreev bound states, see fig. 2.3 (a). The Andreev bound states are the states that
carry the supercurrent.

The integral in eq. (2.15) can be evaluated using residue theory, yielding

jc(T) = eπvF NFD∆2
0

sin ∆φ

ε+b
tanh

(
ε+b
2T

)
.

In fig. 2.3 (b) we have plotted the zero temperature supercurrent as a function of phase
difference for different transmission coefficient.

In the tunneling limit, (D � 1), we can expand the expression for the current giving

jc(T) = eNFvFπD∆2
0 sin ∆φ tanh

(
∆0

2T

)
,

to obtain the Ambegaokar-Baratoff[80, 81] result.
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Figure 2.3: (a) The Andreev bound states and (b) the zero temperature supercurrent
as a function of phase for a symmetric s-wave point contact. The supercurrent has
been normalized with the critical current for a completely transparent point contact,
jc0 = 2πevF NF∆0. The different curves correspond to different transmission coefficient
of the point contact. The transmission is D = 1.0, 0.9, 0.7, 0.4, 0.1 from top to bottom in
(b). The curves in (a) with the corresponding line style have the same transparency.

2.6.2 Voltage bias

In general the problem of voltage biasing a superconducting junction is quite involved.
Since applying a voltage across a junction will make the phase time-dependent, as
stated by the second Josephson relation[82],

h̄
∂

∂t
φ = 2eV, (2.16)

we will have to take into account such effects as multiple Andreev reflection (MAR),
where charges at energies below the gap will perform many Andreev reflections in
succession to be able to overcome the gap.

But before we get to that, we will start with discussing the simpler problem of a
voltage biased superconductor-normal metal junction.

SN junction

Let us consider a system without any spin-dependence, consisting of a normal metal
(1) connected to a superconductor (2) via a point contact. This is a problem that has
been extensively studied before, see e.g. the seminal paper by Blonder, Tinkham and
Klapwijk [83]. Just as in the previous section, we can assume that all incoming coher-
ence functions take their respective bulk values, and can be written as γR,A = γR,A

0 iσy

and γ̃R,A = γ̃R,A
0 iσy. We will also assume the incoming distribution functions to take

their bulk value, and will choose the Fermi level in the superconductor as our reference
point, meaning that the distribution functions from the normal side will be shifted by
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the applied voltage. This gives us the incoming distribution functions as

x1 = tanh
ε− eV

2T

x̃1 = − tanh
ε + eV

2T

x2 = (1 + γR
0 γ̃A

0 ) tanh
ε

2T
x̃2 = −(1 + γ̃R

0 γA
0 ) tanh

ε

2T
.

(2.17)

The coherence functions are, in a sense, a measure of how big the superconducting
correlations are. In a bulk normal metal these correlations will by necessity vanish,
which mean that all incoming coherence functions are zero in the normal metal, while
in the superconductor they are given by eq. (2.8).

With a voltage bias the basic calculation follow the same lines as when computing
the equilibrium current, starting with eq. (2.13), but since we no longer are in equilib-
rium we have to consider the full Keldysh Green’s function, see eq. (2.5). It is conve-
nient to compute the current on the normal side. As mentioned, all incoming coherence
functions vanish there and the Keldysh Green’s functions will take a simple form. The
Green’s function on the incoming trajectory is

ĝK
1,+ = −2πi

(
x1 x1rA

he,0
rR

he,0x1 X̃1,0 + rR
he,0x1rA

he,0

)

while on the outgoing one

ĝK
1,− = −2πi

(
X1,0 + rR

eh,0 x̃1rA
eh,0 x̃1rA

eh,0
rR

eh,0 x̃1 x̃1

)
.

The Fermi velocity will only give us a relative minus-sign for the incoming and
outgoing trajectory in the Fermi surface average in the current, see eq. (2.13). The
difference of the Green’s functions is then

ĝK
1,+ − ĝK

1,− = −2πi


x1 −

(
X1,0 + rR

eh,0 x̃1rA
eh,0

)
x1rA

he,0 − x̃1rA
eh,0

rR
he,0x1 − rR

eh,0 x̃1

(
X̃1,0 + rR

he,0x1rA
he,0

)
− x̃1


 . (2.18)

In the present case, without any spin-dependence, the scattered distribution functions
are given by

X1,0 = rR
ee,0x1rA

ee,0 + tR
ee,0x2tA

ee,0 + tR
eh,0 x̃2tA

eh,0

X̃1,0 = rR
hh,0 x̃1rA

hh,0 + tR
hh,0 x̃2tA

hh,0 + tR
he,0x2tA

he,0,
(2.19)

and the components of the probability amplitudes that are needed for the current are
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Figure 2.4: The scattering probabilities at an NS interface for different transparency
of the interface, as indicated in the figure. The full line are for normal reflection, the
long dashed for Andreev reflection, the short dashed for normal transmission and the
dash-dotted for transmission with branch conversion. The scattering probabilities are
even functions around the Fermi surface, ε = 0.

written as

rR
ee,0 =

√
R1 + γR

0 γ̃R
0

DR
0

rR
he,0 = D γ̃R

0

DR
0

rR
hh,0 =

√
R1 + γR

0 γ̃R
0

DR
0

rR
eh,0 = D γR

0

DR
0

tR
ee,0 =

√
D 1

DR
0

tR
he,0 =

√
RD γ̃R

0

DR
0

tR
hh,0 =

√
D 1

DR
0

tR
eh,0 =

√
RD γR

0

DR
0

,

(2.20)

with DR
0 = 1 +RγR

0 γ̃R
0 .

It is also convenient to define scattering probabilities as

Rαβ = εαβrR
αβ,0rA

αβ,0 and Tαβ = εαβtR
αβ,0tA

αβ,0, (2.21)
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Table 2.2: The connection between the A, B, C, D factors in Ref. [83] and the terms in eq.
(2.2). A is the probability of Andreev reflection, B the probability of normal reflection,
C the probability of normal transmission, and D the probability of transmission with
branch conversion.

BTK Here
A Rhe
B Ree

C Tee
(
1− |γ̃R

0 |2
)

D The
(
1− |γR

0 |2
)

where εαβ = ±1 is an extra minus-sign that is needed for the terms with α = β, coming
from when we relate the Advanced scattering amplitude to the complex conjugated
Retarded ones.

If we now consider particle current conservation we can, as mentioned above, de-
rive relations among these amplitudes. We get

1 = rR
ee,0rA

ee,0 − rR
he,0rA

he,0 +
tR
ee,0

1 + rR
eh,0γ̃R

0

tA
ee,0

1 + γA
0 rA

eh,0

(
1 + γ̃R

0 γA
0

)

−
tR
he,0

1 + γR
0 rR

he,0

tA
he,0

1 + rA
he,0γ̃A

0

(
1 + γR

0 γ̃A
0

)
,

which can be shown to be

1 =rR
ee,0rA

ee,0 − rR
he,0rA

he,0 + tR
ee,0tA

ee,0

(
1 + γ̃R

0 γA
0

)
− tR

he,0tA
he,0

(
1 + γR

0 γ̃A
0

)

=Ree + Rhe + Tee

(
1− |γ̃R

0 |2
)
+ The

(
1− |γR

0 |2
)

. (2.22)

The terms in this expression correspond to the A, B, C, D factors in the 1982 BTK[83] pa-
per, see Table 2.2. We can note that while Andreev reflection is a two-particle process,
both normal transmission and transmission with branch conversion are single-particle
processes. These probabilities are plotted in fig. 2.4, for different transmission of the
interface. For a high transparency the dominating process below the gap is Andreev
reflection, with it being the only available subgap process for a completely transparent
interface. With an increased reflection at the interface the probability of Andreev re-
flection is reduced while the normal reflection probability increases. With a non-zero
reflection we also get a finite probability to branch convert in the transmission, meaning
that an incoming electron is transmitted into the superconductor as a hole.

If we now use the Green’s function difference, eq. (2.18), in the equation for the
charge current, eq. (2.13), we get

jc = − eNFvF

2

∫
dε
[
(1− Ree + Rhe)x1 − (Tee + The)x2

+(1− Rhh + Reh)x̃1 − (Thh + Teh)x̃2
]

.
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The symmetry of this expression is a consequence of a redundancy of our formalism,
since we work in the extended 4× 4 Hilbert space of Nambu-spin space. We can indeed,
use particle-hole symmetry to show that the “tilded” terms will only double the un-
tilded ones. To do this we simply take ε → −ε on these terms and obtain that e.g
x̃1/2(−ε) = x1/2(ε) and Rhh(−ε) = Ree(ε).

The current then take the simple form

jc = −eNFvF

∫
dε
[
(1− Ree + Rhe)x1 − (Tee + The)x2

]
.

The second term in this expression is an odd function in energy, so it will vanish under
the integration, giving us

jc = −eNFvF

∫
dε (1− Ree + Rhe) x1. (2.23)

In this expression it can clearly be seen that while normal reflection reduces the current,
Andreev reflection (Rhe) will actually increase it. This is due to the fact that in Andreev
reflection, twice the charge is transferred to the superconductor[19].

At zero temperature a voltage derivative of the distribution function will give us a
delta function centered around ε = V, so that the energy integral easily can be com-
puted, giving us the conductance as

Gc(T = 0) = 2eNFvF (1− Ree(V) + Rhe(V)) . (2.24)

In fig. 2.5 we plot the zero temperature conductance of the point contact as a function
of applied voltage, for varying transparency of the interface. When the transparency
increases the subgap conductance increases, and finally for a completely transparent
interface the conductance below the gap is twice the normal conductance, signaling
that we, indeed, only transfer charges via Andreev reflection at this point. When the
transparency decreases the conductance decreases as well, and in the tunneling limit
(D � 1) we can show by expanding the current in terms of the transparency and only
keeping terms to linear order that the conductance is directly proportional to the den-
sity of states of the superconductor

Gc(T = 0,D � 1) = 2eNFvFDN(V), (2.25)

where N(ε) is said density of states. This we can also see in fig. 2.5, the more the
transparency decreases, the closer the conductance get to the expected shape of the
superconducting density of states. This is why a tunnel contact is very useful, since it
provides a way to directly probe the density of states of the material we are studying
[84, 85].

For increasing voltages above the gap the current approaches a linear behavior with
the same slope as in the normal state, but since Andreev reflection increases the current
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Figure 2.5: The zero temperature conductance as a function of applied volt-
age for an NS interface, for different transparencies. The transparency is D =

1.0, 0.8, 0.6, 0.4, 0.2, 0.01 from top to bottom. The conductance is normalized by the nor-
mal state resistance of the interface, R−1

N = 2e2NFvFD
.

we can define a so called excess current as the difference of the high-voltage current in
the superconducting state and the normal state

jexc = lim
V→∞

(jNS − jNN), (2.26)

where jNS is the current in the superconducting state, and jNN the current for the cor-
responding case in the normal state. The excess current has the limiting values[86] of
eRN jexc = 4∆0/3 in the transparent case, and in the tunneling limit is proportional to
eRN jexc ∝ D. Here R−1

N = 2e2NFvFD is the normal state resistance of the interface.

SS junction

If we voltage bias a system consisting of multiple superconductors we will be in trouble.
This can be seen from the second Josephson relation[82] which says that the applied
voltage is related to the time derivative of the phase

∂

∂t
φ = 2eV. (2.27)

So applying a voltage to a junction between two superconductors, will make the phase
time-dependent. This of course also happened in the SN case considered above, but



24 Quasiclassics

e

n = 1; eV ≥ 2∆0

(a)

2e

n = 2; eV ≥ ∆0

(b)

n = 3; eV ≥ 2∆0/3

(c)

2e

e

Figure 2.6: Schematic representation of the lowest orders of MAR between two s-wave
superconductors in a symmetric point-contact. The n:th order process is allowed as the
voltage is eV = 2∆0/n. By making (at least) n − 1 Andreev reflections an incoming
electron at an energy ε below the gap reaches an empty final state at an energy ε + neV
above the gap. In this process a charge ne is transferred to the other superconductor,
with a probability ∝ Dn for low transparencies. Note that the case sketched in the figure
describe the case of transparent interfaces, for a decreased transparency there is also the
possibility to back-scatter.

with only one superconductor in the game we are safe, since the phase, in itself, not is
an observable. With two or more superconductors involved we all of a sudden have to
consider phase differences varying in time, and phase differences are observables.

With a time dependent phase the convolutions in e.g. eq. (2.6), have to be taken
care of more carefully. That level of detail is outside the scope of this thesis but we
will sketch the basic physical picture behind what happens in this case. For the calcula-
tion of the current-voltage characteristics in Paper II we used the method described by
Cuevas et al. in Ref. [87].

Let us now imagine a junction between two superconductor. All quasi-particle
states below the Fermi level are filled, while the ones above are empty, and around
the Fermi level there is an energy gap of 2∆0. The excitation gap will prevent a cur-
rent from flowing between the superconductors (apart from the equilibrium current, as
discussed in Chapter 2.6.1).

Applying a voltage eV > 2∆0, quasi-electrons from the filled states below the gap
are accelerated and can reach the empty states above. This process will transfer a single
charge between the superconductor. If the voltage is 2∆0 > eV > ∆0, the quasi-electron
cannot reach the empty states, but just as in the NS case described above it can be
Andreev-reflected as a quasi-hole. This quasi-hole traces back the path of the electron,
gaining another eV in energy, and reaches the empty states above the gap. The Andreev
reflection transfers a Cooper pair between the superconductors. If ∆0 > eV > 2∆0/3,
two Andreev reflections have to be made before reaching the empty states, transfer-
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Figure 2.7: (a) the current and (b) the conductance as a function of applied voltage for
a symmetric superconducting point-contact. The transparency of the point-contact is
D = 1.0, 0.8, 0.6, 0.4, 0.2, 0.01 from top to bottom in (a). The curve with the correspond-
ing line-style in (b) has the same transparency. Both the current and the conductance
is given in units of the excess current for a transparent channel, jexc0 = 16evF NF∆0/3.
In (b) the vertical, solid, lines shows the position for the voltage eV = 2∆0/n, with
n = 1 . . . 5.

ring three quasi-electrons between the superconductors, and so on for higher order.
These processes, where multiple charges are transferred between two superconductors
by performing a series of Andreev reflections, are called multiple Andreev reflection
(MAR).

In fig. 2.6 we schematically show the lowest order MAR:s. A new MAR channel
opens as the voltage is eV = 2∆0/n, and the process for the n:th channel transfers a
charge ne. Including the effect of non-ideal interfaces the total current for the process
will decrease, since the current for the n:th process, roughly, will be ∝ Dn for lower
transparencies.

The opening of a new MAR channel will be visible in the current-voltage charac-
teristics as so-called sub-gap-structure (SGS). The SGS will look somewhat like steps in
the current that appears as the voltage reaches the threshold voltages, eV = 2∆0/n. In
fig. 2.7 we plot the current-voltage characteristics of a symmetric, s-wave, supercon-
ducting point-contact. As can be seen the current shows some distinctive SGS, which
is perhaps even better seen in the conductance. In the conductance the SGS is visi-
ble as a series of peaks and dips at the voltages eV = 2∆0/n. The excess current in a
superconductor-superconductor junction turns for the transparent case out to be twice
the excess current for a superconductor-normal metal junction, so eRN jexc = 8∆0/3
with R−1

N = 2e2NFvFD.
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2.7 Spin transport

In systems where we create a difference between the current for spin up and down
excitations we can define a spin current as the difference between the two. In supercon-
ducting systems it has been experimentally shown that these spin-polarized currents
can be long-range[88, 89], exceeding other length-scales, e.g. the superconducting co-
herence length and normal state spin-diffusion length.

In this Chapter we will show a simple example how a spin-polarized current enters
in a superconductor.

2.7.1 SN junction in a Zeeman field

Let us consider the same superconductor-normal metal junction as we considered above,
but with the extra ingredient that we let the superconductor be under the influence of
a constant, in-plane, background Zeeman field.

In a superconductor there is spin-rotational invariance which means that the rea-
sonable choice for quantization axis is along the Zeeman field. So let’s take the Zeeman
field to be along the z-axis, this will make the two spin-bands in the superconductor in-
equivalent since they will be subject to plus or minus a constant shift [90], h = 1

2 gµBH,
set by the Zeeman field. Here µB is the Bohr magneton and g the gyromagnetic factor.
This will give the bulk coherence functions as

γR =

(
γR
↑ 0

0 γR
↓

)
iσy, γ̃R =

(
γ̃R
↑ 0

0 γ̃R
↓

)
iσy, (2.28)

where

γR
↑↓ = −

∆0

ε↑↓ + i
√

∆2
0 − ε2

↑↓
and γ̃R

↓↑ =
∆0

ε↑↓ + i
√

∆2
0 − ε2

↑↓
, (2.29)

with ε↑↓ = ε ∓ h
2 giving the shift to lower (higher) energies for the two different spin

bands. To be able to neglect orbital effects, we will also require that our superconductor
is a thin film, with a thickness much smaller than the magnetic penetration depth.

We then repeat the calculation that we did above, but now we have to keep all
the spin matrices since there is a spin-dependence. In the end we will get the same
scattering probabilities as above in Eq. (2.20), except that they will be different for
the two spin bands, since e.g. γR

↑ 6= γR
↓ , and similarly we can define spin dependent

scattering probabilities. The current will have four different components, reflecting our
extended 4× 4 Hilbert space. These components look like

ĵe,↑ = (1− Ree,↑)x1 + Reh,↑ x̃1 − Tee,↑x2,↑ + Teh,↑ x̃2,↑

ĵe,↓ = (1− Ree,↓)x1 + Reh,↓ x̃1 − Tee,↓x2,↓ + Teh,↓ x̃2,↓

ĵh,↓ = (1− Rhh,↓)x̃1 + Rhe,↓x1 − Thh,↓ x̃2,↓ + The,↓x2,↓

ĵh,↑ = (1− Rhh,↑)x̃1 + Rhe,↑x1 − Thh,↑ x̃2,↑ + The,↑x2,↑,

(2.30)
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Figure 2.8: A simple illustration showing the different components contributing to the
transport, and whether they give a positive or negative contribution to the charge and
spin current. The arrow points in the same direction as the propagation direction of the
quasi-particle. The example is for a positive voltage, for a negative voltage propagation
direction arrows and current signs would all be reversed.

where we have assumed that there is no spin dependence in the normal metal. The
spin dependence in the distribution functions in the superconductor comes from the
spin-dependence in the coherence functions. Even though the terms are at this instance
written for the case of a Zeeman split superconductor, they are in fact general for all
cases where we can define a single quantization axis. In that case we can always rotate
our basis to be in σz, in which case it reduces to what is written above.

From these terms we can define spin up and down currents as

j↑ = ĵe,↑ + ĵh,↓

j↓ = ĵe,↓ + ĵh,↑.
(2.31)

That we pair the terms in this particular way for the different spin parts has to do with
the fact that electrons and holes have the same spin, but propagate in opposite direction
with respect to each other and thereby contribute in opposite way to the spin current.
In fig. 2.8 we show with a small illustration how the different electron and hole terms
contribute to the total current. As seen from the figure the most logical way to pair the
terms is as done above in Eq. (2.31). From this pairing we get the total charge and spin
currents as

jc = −eNFvF

∫ dε

4

∫ dΩpF

4π

[
j↑ + j↓

]

js = −eNFvF

∫ dε

4

∫ dΩpF

4π

[
j↑ − j↓

]
.

(2.32)

Using the same type of symmetries as for the spin-independent case earlier, e.g.
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Figure 2.9: (a) The charge conductance, (b) the spin conductance and (c) the polariza-
tion for the same point contact as in fig. 2.5, but with an external exchange field of
magnitude h = 0.4∆0. The transparency for the different curves are from top to bottom
in (a): D = 1.0, 0.8, 0.6, 0.4, 0.2, 0.01. The curves with the same line styles in the other
plots have the same transparency. The charge conductance is an even function in the
voltage, while both the spin conductance and the polarization are odd.

Reh,σ(ε) = Rhe,−σ(−ε), the spin resolved currents can be written in a quite simple form

j↑ = 2
(
1− Ree,↑ + Rhe,↓

) [
tanh

(
ε + eV

2T

)
− tanh ε/2T

]

j↓ = 2
(
1− Ree,↓ + Rhe,↑

) [
tanh

(
ε + eV

2T

)
− tanh ε/2T

]
.

(2.33)
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At zero temperature we can again write the conductance in closed-form as

Gc(T = 0) = eNFvF
[
2− Ree,↑(V)− Ree,↓(V) + Rhe,↑(V) + Rhe,↓(V)

]

Gs(T = 0) = eNFvF
[
Ree,↓(V)− Ree,↑(V) + Rhe,↓(V)− Rhe,↑(V)

]
,

(2.34)

and in the tunneling limit as

Gc(T = 0,D � 1) = eNFvFD(N↑(V) + N↓(V))

Gs(T = 0,D � 1) = eNFvFD(N↑(V)− N↓(V)),
(2.35)

where N↑↓ are the density of states for the two spin directions. This case was studied
by Meservey and Tedrow[91, 90], and they could observe the splitting of the density of
states for the different spins of the quasi-particles.

A way of quantifying the spin current is to also look at the spin-polarization

P =
Gs

Gc . (2.36)

If the conductance is carried entirely by one of the spins, the polarization takes the value
P = ±1. If spin up dominates the polarization is positive and if spin down dominates
negative.

In fig. 2.9 we plot the charge and spin conductance as well as the polarization for
the same point contact that we previously considered for the case without Zeeman
field. As can be clearly seen the Zeeman field induces a spin conductance due to the
in-equivalent density of states for the different spins. The polarization of the current
approaches unity as the transparency goes towards zero in a region of width h around
the gap edges, which means that a superconductor in a Zeeman field can be used to
produce spins with a certain spin to a high degree of accuracy. This is an effect that has
been studied previously with spintronics in mind[92, 93].

2.8 Current fluctuations

In this section we will see how the current fluctuations can be formulated in the quasi-
classical theory and show in a more extended fashion how we derive the expression for
the spin-dependent fluctuations for a superconductor-normal metal junction that then
was used in Paper IV. This derivation closely follows the one in Ref. [71].

When deriving boundary conditions or observables in the quasiclassical approxi-
mation, it is useful to split the full Green’s function into a sum of slowly varying enve-
lope functions and rapidly oscillating functions. The slowly varying envelope functions
are then related to the quasiclassical propagator, while the rapidly varying functions are
unnecessary at a quasiclassical level. Normally we can just throw these rapidly vary-
ing functions away, but at interfaces they are important and we have to take care of
them explicitly. This is what is done when deriving the boundary conditions that was
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presented in section 2.3. So far so good, but since the current fluctuations is a “second
order” correlator, we will once again have to deal with them.

The current-current correlator has in the quasiclassical approximation been shown
[46, 71] to have the zero frequency form

S = e2NFvF

∫ dε

32π2

dΩpF

4π
Tr
[

ĝ<1,+τ̂3 ĝ>1,+τ̂3 − d̂<1,+−τ̂3d̂>1,−+τ̂3 + (+↔ −)
]

, (2.37)

or equivalently on the other side of the interface. The lesser(greater) Green’s functions
as well as the “drones” are related to the Keldysh ones via

ĝ≶ = ĝK ∓
(

ĝR − ĝA
)

d̂≶ = d̂K ∓
(

d̂R − d̂A
)

.

The drones are related to interference effects of the rapidly varying wave function.
As mentioned above, this information is not relavant at the quasiclassical level, so we
naturally want to get rid of the dependence on the drones. The derivation of the bound-
ary conditions[68] for the quasiclassical Green’s functions ǧ1(2)± on the two sides of the
interface can also be used to give us relations between the drones and the quasiclassical
propagators[71],

ď1s =
1

2
√
R

[(1 +R)ǧ1s −Dǧ2s]

ď2s =
1

2
√
R

[Dǧ1s − (1 +R)ǧ2s]

ď1a =
1

4πi

[
ǧ1sď1s − ǧ2sď2s

]
,

(2.38)

where we have defined symmetric and anti-symmetric Green’s functions and drones
on both sides of the interface according to

ǧ1(2)s = ǧ1(2),+ + ǧ1(2),−

ď1(2)s/a = ď1(2),+− ± ď1(2),−+.
(2.39)

From the relations in eq. (2.38) we can then derive explicit relations for the drones in
terms of quasiclassical propagators by expressing the incoming and outgoing Green’s
function in terms of scattered and unscattered functions. Doing this, we reach that the
Retarded and Advanced components of the symmetric and anti-symmetric drones can
be written as

d̂R
1s = −2πi

(
rR

ee 0
0 −rR

hh

)
d̂R

1a = 2πi
(

rR
ee 0
0 rR

hh

)

d̂A
1s = 2πi

(
rA

ee 0
0 −rA

hh

)
d̂A

1a = 2πi
(

rA
ee 0
0 rA

hh

) (2.40)



2.8 Current fluctuations 31

while the Keldysh parts look like

d̂K
1s =− 2πi

(
(rR

ee + rA
ee)x1 B

B̃ (rR
hh + rA

hh)x̃1

)

d̂K
1a =2πi

(
(rR

ee − rA
ee)x1 B

−B̃ −(rR
hh − rA

hh)x̃1

) (2.41)

where
B = rR

eer
A
hex1 − rR

ehrA
hh x̃1 − tR

eex2tA
he + tR

eh x̃2tA
hh. (2.42)

If we now use these expressions in eq. (2.37), it turns out that we only get a few non-
zero terms. Some that depend on the distribution functions explicitly, and some that do
not. So the noise will be expressed as

S = e2NFvF

∫ dε

32π2

∫ dΩpF

4π
Tr
[
SK + SRA

]
. (2.43)

Both of these terms consists of only four terms each, all other terms have zeroes on the
diagonal and will vanish under the trace. The terms look like
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(2.44)

where the superscript RA just stands for that function being the difference between
a Retarded and an Advanced function, i.e. ARA = AR − AA. After working out the
different terms we arrive at
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[
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for the spectral part, while the Keldysh part is

SK = −(2π)2 [s1 + s2 + s3 + s4 + s5 + s6 + s̃1 + s̃2 + s̃3 + s̃4] , (2.46)
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where {A, B} = AB + BA represents a usual anti-commutator. These different terms
correspond to fluctuations between different channels of quasi-particles injected from
the two sides of the interface. For example, the term s4 describe fluctuations between
a quasi-electron injected from the normal metal and a quasi-hole injected from the su-
perconductor.

This expression for the noise, of course, obeys the fluctuation-dissipation theorem
relating the noise with the conductance when the bias approaches zero

SV→0 = 4kBTG, (2.48)

where G = dI/dV, is the conductance. As mentioned in the Introduction, we do not
learn anything new from the thermal noise, so in this work we will only consider low-
temperature results, where the thermal noise can be neglected.

In the normal state the zero-temperature noise reduces to the result alluded to in
the Introduction

S = 4e3NFvFRDV, (2.49)

showing the vanishing of the noise for the cases D = 1 and D = 0.
Once both the conductance and its fluctuations are known it is very useful to define

their quotient, the so-called differential Fano factor,

F =
1

2eG
dS
dV

. (2.50)

From the differential Fano factor we can, in the tunneling limit, tell what the effective
charge of the current carrier has. The differential Fano factor can either be measured
[94] or be extracted from a noise measurement.

2.8.1 Noise from an SN junction

Let us once again turn to our favorite example, the superconductor-normal metal junc-
tion, without any spin-dependence.

The expression for the noise written out above in eq. (2.47) simplify slightly when
we use that all of the coherence functions are of the form γR = γR

0 iσy and that the
Advanced components are related to the Retarded ones,

SRA = 4(2 + Rhe + Reh − Ree − Rhh)

s1 = 2x2
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2
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∗
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∗
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(2.51)
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Figure 2.10: (a), The zero temperature differential noise, and (b), the differential Fano
factor as a function of applied voltage for an NS interface, for different transparencies.
The transparency is D = 1.0, 0.8, 0.6, 0.4, 0.2, 0.01 from bottom to top at eV > ∆0.
The conductance is normalized by the normal state resistance of the interface, RN =

2e2NFvFD. Both the differential noise and Fano factor is odd functions in the applied
voltage.

.

where the scattering amplitudes that we need is already written down above in eq.
(2.20), and we have suppressed the R index to not overstuff the notation. This agrees
with what was obtained in Ref. [71]. If we write the distribution functions instead in
terms of Fermi functions, the parts of the Keldysh noise without a Fermi function will
cancel the spectral part.

To more clearly show some of the features in the noise we plot the differential noise,
that is dS/dV, in fig. 2.10(a) for the same junction as was previously considered for
the conductance. In 2.10(b) we also plot the differential Fano factor. In the differential
noise we can first of all notice that for perfect transmission and perfect reflection the
subgap noise vanishes. This is to be expected, since for those cases there is only one
open channel meaning that there is no other channels to fluctuate with. This is the
same as in the normal state [45].

Turning instead to the differential Fano factor, and especially focus on the low trans-
parency limit, we can see something interesting. As the transparency decreases the dif-
ferential Fano factor assumes a step function like behavior. Above the gap it is unity,
and below the gap it is twice as much. This is, once again, a sign of the fact that below
the gap the only available way to transfer charge is Andreev reflection, thereby trans-
ferring twice the charge. This makes the noise a really useful tool in experiments when
trying to figure out how charges are transported. For example in the case of MAR,
it could be shown[55] from the noise that multiple charges where transferred in the
process.





3Superconductor-nanowire junctions

In Papers I and II a combined theoretical and experimental study was made on the
proximity effect in InAs nanowires connected to superconductors. In this Chapter we
will outline the model we used to describe the experiments and also show some of the
results and comment on the applicability of the model. The nanowires were grown in
Lund and the experiments were performed by Simon Abay, and are presented in his
PhD thesis[95], while we performed the theoretical modeling.

3.1 Experiment

In order to characterize the nanowires, measurements were made on a broad range of
nanowires. The nanowire junctions could be grouped into three different basic types,
(i) with only two leads, (ii) with multiple leads, and (iii) with suspended nanowires.

These types of devices are useful for different purposes; type (i) could be made
extremely short, type (ii) could be used to measure length-dependent properties on the
same nanowire, and with type (ii) a local gate could be applied underneath the wire to
tune the number of conducting modes.

3.1.1 Normal state characteristics

First, a characterization of normal-state properties was made. From the multiple-lead
devices the length dependence of the nanowire resistance could be measured, which to-
gether with the expression for the Drude conductivity give us an estimate of the mean-
free path of the nanowires. The nanowires with multiple leads also allowed us to take
advantage of the ability to make two- and four-point measurements[96] on the same

35



36 Superconductor-nanowire junctions

S

S

D

L/2

L/2

✷��✁✂

(a) (b)

x

Figure 3.1: (a) An SEM image of a typical device. In the image the nanowire is con-
tacted by three superconducting leads. (b) A theoreticians view of the same junction.
A disordered nanowire of length L is connected to superconducting leads. Crystalline
defects are modeled with a lumped scatterer situated in the middle of wire, having the
effective transparency D.

section of the nanowire, to estimate the number of conducting modes in the wires to
range between 50 and 100.

From the similar behavior of the different nanowires we conclude that the values
obtained from the normal-state measurements can be used for all nanowires. This also
makes sense from the fact that the nanowires were taken from the same growth-batch,
meaning that they were grown in the same environment.

3.2 Theoretical model

The experiments were made on a wide range of nanowires, with lengths ranging from
30 nm all the way up to 600 nm. This spread in lengths would put the shortest in the
ballistic short-junction limit, with a length much shorter than both the superconducting
coherence length and the mean free path, (L� `, ξ0 = h̄vF/2πkBTc), while the longest
were in the diffusive long-junction limit, with a length longer than the mean free path
and the diffusive coherence length, (L > `, ξD =

√
`ξ0). The majority of the wires, on

the other hand, lie somewhere in between, in a cross-over regime. Furthermore, all of
the junctions in the study exhibit the Josephson effect, implying that the transport is
fully coherent and will require treatment in the full coherent MAR theory [97, 98, 99,
100]. To fit all of these observations into a single model, we use a simple theory which
allows us to go from the ballistic to the diffusive regime. In fig. 3.1 we show an SEM
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Figure 3.2: The local density of states going from one side of the nanowire to the other.
The mean free path of the nonowires are obtained from normal state measurements,
and the lengths are (a) L = 0.7` and (b) L = 3.7`. The temperature has been taken to
T = 0.01Tc. The different curves have been vertically offset for clarity.

image of an actual wire and also schematically how we model it. We assume that the
nanowire is connected to the superconducting leads by highly transmissive contacts,
which from the experimental fact that the contact resistance is much smaller than the
total wire resistance may be taken to be perfectly transparent. The strong confinement
in the transverse direction of the nanowire, which results in only a few conducting
modes, allows us to simplify the problem by only considering a single mode. The
current from that mode is then multiplied with the total number of modes to obtain the
total current carried by the nanowire.

All effects of crystal defects are collected into and described by a single transmission
coefficient D that we model as an interface in the center of the nanowire. We also
assume that the nanowire will have some disorder due to simple elastic scattering of
impurities and crystal imperfections, which we model in the Born approximation with
a scattering rate Γ = h̄vF/`, given by the nanowire mean free path, `. The voltage is
assumed to drop at the scattering center, which then is where we compute the currents.

If we neglect the inverse proximity effect, that is the influence of the nanowire on
the superconductors, the superconducting order parameter can be taken to be constant
all the way up to the interface to the nanowire. The equilibrium current is calculated
along the line of the point-contact calculation above, see Chapter 2.6.1, except that the
incoming coherence functions at the scattering center are not the bulk solutions but
rather they are solved for from the superconductor-nanowire interface and along their
trajectory to the scattering center. The solution along the trajectory can efficiently be
done with a “stepping method”, as outlined in Appendix A.3.

The impureness of the nanowire mean that we along the trajectory also have to solve
for the impurity self-energy. The impurities are taken into account by solving the single
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Figure 3.3: The supercurrent across the nanowire as a function of the phase difference
for varying transparency of the middle constriction. The lengths of the nanowires are
(a) L = 0.7` and (b) L = 3.7`. From top to bottom curve the transparencies are D =

1.0, 0.8, 0.6, 0.4, 0.2, 0.01. The current has been normalized by the critical current of a
transparent, clean, point-contact jc0 = 2πevF NF∆0 and once again by the transparency
D. The current is calculated at the temperature T = 0.01Tc.

impurity t-matrix, see eq. (2.4.1), which in the Born approximation, simplifies to the
self-consistency equations

σ̂(ε, x) = Γ〈ĝ(pF, ε, x)〉pF , (3.1)

where 〈·〉pF here stands for an average over the directions ±pF, and Γ is the scattering
rate given by the mean-free path of the nanowires.

Once we have the coherence functions at the scattering center, the equilibrium cur-
rent is given by eq. (2.14), and the maximum of this current is then the critical current.
For the current-voltage characteristics we follow the theory outlined in Ref. [87]. From
the high voltage part of the current-voltage characteristics we can then obtain the excess
current, jexc, as the deviation from the normal transport result.

3.2.1 Results

From the model described above we can compute the critical current and excess current
of the nanowires as a function of length of the nanowire, transparency of the middle
constriction and temperature. These results can then be used to fit the behavior of the
nanowire junctions.

In the rest of this section we will show how our results look like for a pair of typical
junctions. We choose to focus on two different junctions, one in the point-contact limit
and one in the intermediate cross-over regime. As explained above, the normal state
measurements give us a mean-free path, which we then assume is the same for all
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Figure 3.4: The current across the nanowire as a function of the applied voltage for
varying transparency of the middle constriction. The lengths of the nanowires are
(a) L = 0.7` and (b) L = 3.7`. From top to bottom curve the transparencies are
D = 1.0, 0.8, 0.6, 0.4, 0.2, 0.01. The current has been normalized by the excess current
of a transparent, clean, point contact jexc0 = 16evF NF∆0/3 and once again by the trans-
parency D. The current is calculated at the temperature T = 0.01Tc.

nanowires. It is this length-scale compared to the nanowire length and the coherence
length that tell us if we are in the long or short junction regime.

As a start we show the density of states for the two wires in fig. 3.2 when traversing
it from one end to the other. As can be seen, the density of states in the shorter wire
looks like the density of states of the superconductor. This is to be expected from a
junction in the clean, short-junction limit. For the longer nanowire in fig. 3.2(b), on
the other hand, the longer length compared to the mean free path puts it more in the
diffusive limit. This can be seen from the opening of the so called mini-gap, see e.g.
Ref. [101], which is seen as a smaller gap in the normal metal density of states that is
independent of the position, even though the exact shape of the density of states is not.

Next, in fig. 3.3, we show the equilibrium current for these nanowires as a function
of the phase difference between the two superconductors, for varying transparency of
the middle constriction. Comparing the current-phase relation for the two cases we can
see the cross-over between short to long junction, with the change of the current-phase
relation into a more “saw-tooth” like behavior, for the transparent case. The current-
phase relation is known to undergo this change for long junctions[102].

Finally, we can also obtain the current-voltage characteristics, see fig. 3.4. The
shorter wire displays subharmonic-gap-structure similar to the typical BCS point con-
tact result with current steps at voltages eV = 2∆0/n (n is an integer). With increasing
length these steps are shifted to lower voltages, and instead of the gap more corre-
sponds with the mini-gap. Interestingly, the increasing length also leads to areas of
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Figure 3.5: (a) The computed critical current and (b) excess current as a function of
the junction length, for varying transparency of the middle constriction. From top to
bottom curve the transparencies areD = 1.0, 0.8, 0.6, 0.4, 0.2, 0.1. The units of the critical
current and the excess current are on the left axis given in term of the single mode
result and on the right axis in nA assuming the same transparency for all modes. The
nanowire length is given in units of mean free paths on the bottom axis and in nm
on the top. The vertical gray line in both plots indicate the point where the Thouless
energy, Eth = h̄Ddi f f /L2, equals the superconducting gap; this point separates short
junctions (Eth � ∆0) from the long (Eth � ∆0). The pluses (+), crosses (×), and stars
(∗) are experimental data stemming from three different device types. Most of our
experimental data are in the intermediate regime. The experimental points that are
circled, are the two that we show the theoretical fits for.

negative differential conductance, most clearly seen in the low transparency limit as a
peak in the current for voltages close to twice the gap. This has previously been seen
in both experiment[103, 104] and theory[105]. It can be explained by resonant tunnel-
ing through the Andreev states that appear in the density of state of the normal region
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Figure 3.6: The computed temperature dependence of the critical current together with
experimental values. The nanowire length (a) L = 0.65` ≈ 30nm and (b) L = 3.7` ≈
170nm and the transparency isD = 0.64 for (a) andD = 0.065 for (b). The transparency
is chosen from the length dependence fit for the critical current in fig. 3.5.

when the length increases.

3.3 Comparison with experiments

We now turn to comparing the theoretical results with the experimental ones. To do so,
we have computed the critical current and the excess current for a number of different
transparencies as a function of nanowire length. This can be seen in fig. 3.5, where we
also show the experimental data in the same plot.

From this we can see that most of the nanowires lie in the intermediate, cross-over
regime. There is one outlier which can be said to be in the short-junction regime. The
two nanowires that we showed numerical calculations for are the ones that are circled
in fig. 3.5. We can also learn from this that there is a mismatch between the trans-
parency we can fit for the excess current and the critical current. Except for the shortest
nanowire, where the fit is pretty good, there is generally a factor ∼ 4 discrepancy be-
tween the transparency obtained from the excess current and the one obtained from
the critical current. This kind of reduction in the critical current is usually observed
in nanowires, and is also common in 2DEG InAs Josephson junctions[106]. This is a
phenomenon that is not well understood but could be a result of premature switching
or some depairing mechanism such as magnetic scattering.

The transparencies obtained from the length dependence are then used when com-
puting the temperature dependence of the critical current. The theory and experiments
agree well for the shorter device, but the longer device shows a decay for higher tem-
peratures which is not captured by the theory. Diffusive junctions with resistive in-
terfaces have theoretically been shown[107] to exhibit similar features, which was then



42 Superconductor-nanowire junctions

explained by an enhanced electron-hole dephasing in the normal region due to a longer
dwell-time there. Even though the nanowire junctions were shown to have very low in-
terface transmission, such a theory might better capture that feature of the experiments.

Another shortcoming of our model, is that we assumed all conducting modes to
have the same transparency. A more correct description would be to average over
modes with a distribution of transparencies.



4Magnetic impurities

In Papers III and IV we consider a model describing a superconductor with a random
distribution of magnetic impurities on top of it. In Paper III we consider thermodynam-
ical properties of this system, such as the order parameter behavior and the density of
states, and in Paper IV we investigate how the impurities affect the transport when
tunneling into the superconductor.

In this Chapter we will go through the model, and show some of the key results
from both the thermodynamics and transport sides.

4.1 Impurity self-energy

The system we wish to describe consists of an s-wave spin-singlet superconductor with
a distribution of magnetic impurities on top of it. We will take the impurity spins to
be classical, similarly to what was done in the 1960s independently by Yu, Shiba and
Rusinov[27, 28, 29].

The two cases we wish to consider are on one hand completely random impuri-
ties and on the other hand completely aligned impurities. The thickness of the film is
smaller than the London penetration depth, so that screening currents created by the
magnetic field induced by the aligned impurity spins can be neglected. But the Zeeman
shift created by the impurity spins can still be substantial, which is an effect normally
not considered in these types of systems. We will take this into account by not only
considering the local scattering off the impurity but also add an extra term to the impu-
rity self-energy for the case of aligned impurities describing the non-local effect of the
impurity Zeeman field.
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We model the local effect of the impurities with the impurity potential

û =

(
v 0
0 −σyvσy

)
, v = v0 + αvSm · σ, (4.1)

where σ is the quasiparticle spin, and m is a unit vector pointing in the same direction
as the impurity spin. The impurity scattering is parameterized by a scalar part, v0, and
an exchange part. The exchange part consists of a parameter α describing the tunneling
amplitude of a quasi-particle onto the impurity site, and the parameter vS which is
proportional to the magnetic moment of the impurity. The tunneling amplitude |α| < 1
can take both positive and negative values depending on the nature of the impurities.
Negative α describes ferromagnetic coupling while positive antiferromagnetic.

Because of the spin-rotational symmetry of the clean superconductor, we can expect
the aligned impurities to split the solutions for spin up and down into separate bands,
just as in the Zeeman case considered before, see Chapter 2.7.1. We are also free to
choose the impurity spin to point in the, to us, most convenient direction, to which
end we choose m = (0, 0, 1). For the case of random impurities we need to average
over impurity spin direction, that is expressing the impurity spin direction in spherical
coordinates and then averaging over the solid angle.

We include the impurity effects through the self-consistent single impurity t-matrix
approximation, as described in section 2.4.1. Solving the t-matrix for the two cases and
averaging over the impurity spin direction we can notice that all terms in the t-matrix
which are odd in the impurity spin vanish, while the even terms survive. This allows
us to write the impurity self-energy solution for the two cases compactly as a sum of
two terms, one term even in the impurity spin and the other one odd,

σ̂imp = σ̂e
imp + σ̂o

imp, (4.2)

where

σe
imp = Γ

Aeτ̂0 + Be ĝ + Ceτ̂3 ĝτ̂3

Z

σo
imp = Γσz

Aogτ̂3 + Bogτ̂3 ĝ + Coτ̂0

Z
.

(4.3)

Here ĝ is the full Green’s function and g the upper-left 2× 2 component of the Green’s
function, as defined in eq. (2.3). Written like this it is quite clear that averaging over
spin-direction would remove the odd terms, since those are the only ones that depend
on the spin-direction. The other terms are defined according to

Z =
(
1 + u2

0 − α2u2
S
)2 − (2αuSg/π)2

Ae = u0
(
1 + u0 − α2u2

S
)

Be =
[
u2

0 + (u2
0 − α2u2

S)
2] /π

Ce = α2u2
S/π

Ao = 2αu0uS/π
Bo = 2αuS(u2

0 − α2u2
S)/π2

Co = αuS(1 + u2
0 − α2u2

S).

(4.4)
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We have here introduced a set of effective parameters describing the impurity subsys-
tem,

u0,S = πNFv0,S, Γ =
nimp

πNF
, (4.5)

where NF is the normal state density of state and nimp the concentration of impurities.
The random impurity case is obtained by removing the terms odd in impurity spin
while for the aligned impurity case we keep all of them.

To take into account the background Zeeman field created by the aligned impurities
we will add a second term to the self-energy which has the form of a Zeeman term,

σ̂non−loc = ΓAnl σ̂z, (4.6)

with Anl = βuS. The parameter β ∼ 1 is a dimensional fitting parameter depending on
the actual distribution of the impurities.

The total self-energy for the two cases read

σ̂ =

{
σ̂e

imp random

σ̂e
imp + σ̂o

imp + σ̂non−loc aligned.
(4.7)

The zeroes of the denominator in eq. (4.3) define bound states that are bound to the
impurity sites, but if we assume that the impurities fulfill the Mott criterion[108, 109],
n1/3

minξ0 = 1/5, with ξ0 = h̄vF/2πkBTc being the superconducting coherence length,
the impurity states delocalize and form extended bands . Expressing this criterion in
terms of parameters from our model gives us the minimum density for delocalization
as Γmin/2πkBTc = 1/2(kBTc/EF)

2Tc/Tc0. We are working in the quasiclassical approx-
imation, which assumes that kBTc � EF meaning that the impurity states will always
delocalize for the impurity concentration we will consider. The position of the bound
states is given by

εb = ±∆
1 + u2

0 − α2u2
S√

(1 + u2
0 − α2u2

S)
2 + 4α2u2

S

, (4.8)

which we plot in fig. 4.1, for some different cases. As can be seen the bound state can
be located anywhere in gap for all values of both the scalar part and the exchange part
of the potential. It has, in fact, been shown[110] that the scalar part of the impurity
potential only enters through the position of the bound state. By introducing an effec-
tive exchange scattering amplitude, that is a function of both the scalar part and the
exchange part, this is totally taken into account. For this reason we could with good
conscience put u0 = 0 for all results in Paper III and Paper IV.

Once we know the impurity self-energies, let us write it component-wise on the
same form as the Green’s function

σ̂ =

(
σ11 σ12iσy

iσyσ21 −σyσ22σy

)
, (4.9)
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Figure 4.1: The position of the bound states for one of the spin projections as a function
of strength of the exchange part of the impurity potential. From the top to bottom curve
u0 = 10, . . . , 0. The position of the bound state for the other spin projection is mirrored
around the Fermi surface, ε = 0. For random impurity spins, the bound states are spin
degenerate.

where the components, σij, are 2 × 2, diagonal, matrices in spin-space, e.g. σ11 =

diag(σ11,↑, σ11,↓). When the impurity self-energy is inserted in the Eilenberger equation,
eq. (2.2), we can write down the bulk Green’s function solution in terms of renormal-
ized energy and order parameter quantities

ĝ = −π

( 1
2 (ε + ε̃) −∆iσy

−iσy∆̃ − 1
2 σy(ε + ε̃)σy

)
/

√
∆∆̃− 1

4
(ε + ε̃)2, (4.10)

where
ε = ε− σ11

∆ = ∆0 + σ12

∆̃ = ∆0 + σ21

ε̃ = ε− σ22.

(4.11)

Since the Green’s function depends on the self-energies, which in itself depends
on the Green’s function, in such a way that it is impossible to write the solution on a
closed form, we will have to resort to numerics and solve eq. (4.10) together with eq.
(4.11) until we reach self-consistency, but not only this, the order parameter, ∆0, also
depends on the impurity self-energy, which means that we also have to solve for that
together with the previously mentioned equations. To that end, let us now derive a
self-consistency equation for the order parameter.
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4.2 Gap equation

The gap equation can be written as a sum over Matsubara frequencies

∆0 =
λNF

2
kBT ∑

|εn|<εc

∫ dΩpF

4π
Tr[ f (εn, pF)], (4.12)

where λ < 0 is the electron-phonon coupling constant, εc a high-energy cut-off on
the order of the Debye frequency, and f (εn, pF) the off-diagonal part of the Green’s
function, see eq. (2.3). Here we would like to remove the unphysical high-energy cut-off
and the coupling constant, in favor of the clean limit transition temperature, Tc0. This
is done by linearizing the clean case gap equation, which give us a relation between the
coupling constant and the clean transition temperature[58, 111]

1
λNF

= ln
T

Tc0
+ πkBT ∑

|εn|<εc

1
|εn|

. (4.13)

The gap equation then reads

∆0 ln
T

Tc0
= 2πkBT ∑

εn>0


 ∆↑

2
√

∆↑∆̃↑ − 1
4 (ε↑ + ε̃↑)2

+
∆↓

2
√

∆↓∆̃↓ − 1
4 (ε↓ + ε̃↓)2

− ∆0

εn


 .

(4.14)
If we linearize the gap equation, eq. (4.14), for small ∆0, we will obtain an equation

for the transition temperature

ln
Tc

Tc0
= ψ

(
1
2

)
− 1

2
ψ

(
1
2
+

Γ+

2πkBTc

)
− 1

2
ψ

(
1
2
+

Γ−

2πkBTc

)
, (4.15)

where

Γ± = Γ
2πCe

z
± iΓ

(
Co

z
+ Anl

)
, z = (1 + u2

0 − α2u2
S)

2 + 4α2u2
S (4.16)

and ψ(z) is the digamma function for complex values. This looks very much like the
Abrikosov-Gor’kov formula[22], for an superconductor with magnetic impurities in
the Born limit. It looks even more similar for the case of random impurity spins, since
we then have that Γ+ = Γ− = 2πΓCe/z = Γe f f and eq. (4.15) reduces to

ln
Tc

Tc0
= ψ

(
1
2

)
− ψ

(
1
2
+

Γe f f

2πkBTc

)
, (4.17)

which has the exakt same form as the Abrikosov-Gor’kov result, but with an effective
pair-breaking parameter Γe f f .

By assuming a large scattering, we can even derive the point at which the scatter-
ing is big enough to completely kill the superconductivity. For large scattering rates,
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Figure 4.2: Effect of the magnetic impurities on thermodynamic properties. The im-
purities are aligned, α > 0 and uS = 4. In (a) the critical temperature is plotted as a
function of the impurity density. The full line is obtained through solving eq. (4.15),
the dashed-dotted by solving for the temperature when ∆0 = 0 in eq. (4.14), and the
dashed by finding the temperature when the Free energy difference is zero δΩ = 0, see
eq. B.3. The maximum impurity density given by eq. (4.18) gives the point where the
full line hits zero. In (b) the order parameter at the temperature T = 0.01Tc0 is plotted
against the impurity density. The full line is the physical solution, while the dashed is
unphysical. Finally, in (c)-(e) the order parameter is plotted against the temperature for
the impurity densities that are indicated by the vertical dotted lines in (a) and (b), with
a growing impurity density from left to right. The order parameter solutions that are
dotted are unphysical.

Γ� 1, the digamma function can be approximated with logarithms which gives us the
maximum scattering rate as

Γmax =
1

4eγem

z√
(2πCe)2 + (Co + zAnl)2

, (4.18)

where γem = 0.577 . . . is the Euler-Mascheroni constant. Just as before the second term
of the denominator vanishes for the random impurity case.

One should be aware that in linearizing eq. (4.15) we assume that the superconduct-
ing phase transition is second order, with a continuous change of the order parameter as
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the temperature approaches the superconducting transition temperature. If the phase
transition, on the other hand, is first order the transition from the superconducting state
to the normal one is not continuous, but rather an abrupt jump, with a sudden appear-
ance of an order parameter with a finite magnitude as the temperature is lowered to
the superconducting transition temperature. The order parameter is then never small
and we cannot linearize our equations in it. Since we have an effective Zeeman field
induced in our system in the case of aligned impurities, we can expect that the phase
transition may change from second order to first, which is known to happen for the
case of an externally applied Zeeman field[112, 113, 114, 115].

The gap equation is in the aligned impurity case prone to having multiple solu-
tions. For this reason we in Paper III also derive an expression for the difference of the
Gibbs free energies in the normal state and the superconducting state to determine the
physically relevant one. When the free energy difference is positive it is energetically
favorable to be in the normal state instead of in the superconducting one. It turns out
that there is always at most one solution that is energetically favorable, and sometimes
not even that. The expression for the Gibbs free energy difference is quite lengthy, but
for completeness we give a short description on how to derive it and present the result
in Appendix B.

To give a taste of how the order parameter and critical temperature behave we plot
them for the case of aligned impurity spins in fig. 4.2. For small impurity densities
the result is the expected, there is a single solution for the order parameter, slightly
reduced in magnitude but the phase transition to the normal state is still second order.
Then, suddenly, for a bit higher densities, see fig. 4.2(d), a second solution suddenly
appears. This second solution has a Gibbs free energy difference which is larger than
the first one, making the first solution the one that is energetically favorable. It, in fact,
turns out that the second solution even has a free energy difference that is bigger than
zero, making even the normal state more energetically favorable than this solution.
And finally, in fig. 4.2(e), the phase transition changes from second order to first, and
the transition from the superconducting to the normal state is abrupt. Notice that this
happens even before the order parameter drops to zero when solving the gap equation,
eq. (4.14). This point is found from calculating when the free energy difference changes
sign, signaling that the normal state is more energetically favorable.

4.3 Density of states

Now that we can compute the order parameter, we can also compute the density of
state through the Retarded Green’s function

N(ε)

NF
= − 1

2π
Im
{∫ dΩpF

4π
Tr
[
τ̂3 ĝR(ε, pF)

]}
. (4.19)

In fig. 4.3 we plot the density of states for some representative cases to show the
impact of the exchange interaction uS and the impurity density Γ on the density of
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Figure 4.3: The spin-resolved density of states for the case of ferromagnetically ordered
impurities with α > 0 and the temperature T = 0.01Tc0. (a) and (b) are for the case of
growing Γ/2πkBTc0 = 0.01, 0.02, 0.04 with fixed uS = 4. (c) and (d) are for the case of
growing uS = 2, 4, 8 with fixed Γ/2πkBTc0 = 0.02. (a) and (c) show the density of states
for spin up, while (b) and (d) show the density of states for spin down.

states. As can clearly be seen uS sets the position of the impurity band inside the gap,
while Γ sets the width of the band. At the same time both of them contribute to the
Zeeman splitting. For the case of random impurity spins, the Zeeman splitting would
vanish and there would always be two bands mirrored around the Fermi surface inside
the gap for both spins.

4.4 Transport

Let us now turn to what was discussed in Paper IV, current and noise properties when
tunneling into a superconductor with a distribution of magnetic impurities.

Since our problems separate into different spin bands, we can describe the transport
in the exact same way as we described it in the case of just a Zeeman field before, see
Chapter 2.7.1.
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Figure 4.4: The scattering probabilities for a spin up quasi-particle at an NS interface.
The different plots are for different transparency of the interface, as indicated in the
figure. The impurity spins are ferromagnetically aligned with α > 0 and the other
parameters for the system are: Γ/2πkBTc0 = 0.005, uS = 4 and T = 0.01Tc0. The full
line are for normal reflection, the long dashed for Andreev reflection, the short dashed
for normal transmission and the dash-dotted for transmission with branch conversion.
The inset in (d) shows a zoom for energies around the impurity band. The effective
Zeeman shift given by the aligned impurities can clearly be seen in all of the plots, with
the current parameters it is given by ∼ 0.02× 2πkBTc0 ≈ 0.07∆0(Γ = 0).

For comparison with the clean case considered earlier we plot the scattering prob-
abilities for spin up at the interface in fig. 4.4. This should be compared with the cor-
responding fig. 2.4. There are many similarities between the two, but also differences.
One of the major differences between the two is the appearance of the subgap impu-
rity band in the present case. At the position of the impurity band the probability of
Andreev reflection is reduced, while the normal transmission probability is enhanced.
When the transparency is reduced all scattering probabilities decrease, except for nor-
mal reflection (as expected), but as can be noted the probability for Andreev reflection
decreases faster than the transmission probabilities. This is due to the fact that Andreev
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reflection goes as O(D2) while normal transmission goes as O(D). From this we can
expect single particle tunneling to dominate for small transparencies. The other thing
to note is the effective Zeeman field created by the aligned impurities manifesting itself
as a constant energy-shift of all the scattering probabilities. The scattering probabilities
for spin down have the same features, but are mirrored in the Fermi surface ε = 0, since
for the present parameters the impurity band for spin down lies at positive energies.

Since the transport properties in the end are given by the scattering probabilities
we can expect that features seen in the scattering probabilities will also be seen in the
transport. Looking at the fig. 4.5, where we plot the transport properties, we see that
this is exactly what happens. The reduction in the probability for Andreev reflection
can clearly be seen in the charge conductance, see fig. 4.5(a), for the high transparency
case, with a decrease in the conductance at the impurity band as a result. When the
transparency decreases we eventually reach a point when the conductance at the im-
purity band is higher than elsewhere in the subgap region, due to the faster decrease
in the probability for Andreev reflection compared to single-particle transfer. Because
of the aligned impurity spins the impurity bands are spin-polarized, which can clearly
be seen in fig. 4.5(b), with a spin conductance there as a result. The polarization of the
conductance at the impurity band approaches 100% when we reach the extreme tun-
neling regime with D � 1. From the differential noise, see fig. 4.5(d), we can directly
note that the subgap noise does no longer go to zero everywhere for the completely
reflecting and transparent cases, but is enhanced at the position for the impurity band.
This can easily be understood from the fact that the impurity band opens more trans-
port channels, so there is no longer a single one for those cases, and if there is more than
one channel open there will be fluctuations between them. Finally in fig. 4.5(e) we can
see that when we approach the tunneling limit the differential Fano factor gets an even
more peculiar behavior than before. Above the gap edge the differential Fano factor is
unity and below it is twice that except for at the impurity band where it is unity again.
This means that above the gap as well as at the impurity band the dominating process
is single-particle transfer.

The conclusion from all of this is that a superconductor with ferromagnetically
aligned impurities can be used as a source of single quasi-particles with almost ex-
clusively a single spin-orientation, a sought after capability for spintronics use[24]. The
fact that the impurity band can be well separated from the continuum can also be uti-
lized since this means it will be easier to switch the spin production on/off with just a
small voltage adjustment.
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Figure 4.5: Zero temperature transport properties for a system with ferromagnetically
aligned impurities with α > 0. The system properties are Γ/2πkBTc0 = 0.005, uS = 4.
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5Conclusions & Outlook

This thesis has been concerned with transport properties of superconductors connected
to other materials.

Papers I and II was a joint theoretical and experimental work, and concerned junc-
tions made of superconductors using InAs nanowires as weak links. This thesis de-
scribe the theoretical model used to model the experiments, the experimental aspects
of the topic has been written about elsewhere[95]. The theoretical model allowed us
to bridge the crossover from ballistic to diffusive transport. A reasonable good fit was
found between the theory and experiments, but there were also features that the theory
was unable to capture. For example, the reduction in the supercurrent is not completely
understood, but could perhaps be due to some depairing mechanism, such as magnetic
scattering.

In Papers III and IV, a model of a superconductor with a concentration of magnetic
impurities was discussed. Two extreme cases of the impurities were considered; that
the impurity spins were completely random and that the impurity spins were aligned.
In both cases the scattering off the magnetic impurities induce subgap states, that for
certain choices of the model parameters, can be far separated from the gap edges. When
the impurity spins are random the subgap states are spin-degenerate, but they spin
polarize as the impurity spins align.

Aligning the impurity spins has other consequences. The aligned spins will create
a background magnetic field, which acts as a Zeeman field. This is an effect often over-
looked, but which can have drastic effects. In Paper III, thermodynamic properties of
the superconductor were computed, and it could be shown that, as the concentration of
impurities grows, the background Zeeman field will eventually drive the system into a
regime where the superconducting phase transition no longer is 2nd order, but rather
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1st. In this regime the transition between the superconducting and normal state will
not be smooth, but abrupt, with a sudden appearence of an order parameter with a
finite magnitude as the temperature is lowered to the superconducting transition tem-
perature.

Finally, in Paper IV, the signature of the impurity bands in transport was consid-
ered. By studying both the conductance and the differential noise and computing the
so-called differential Fano factor, the relative role of single- and two-particle processes
could be dechiffered. From this we could show that in the tunneling limit the dominat-
ing process in the impurity band is single particle transfer. We could also show that,
in the aligned impurity case, the current in the impurity band is highly polarized, with
a spin polarization approaching 100% in the tunneling case. Since the impurity bands
can be well separated from the continuum states, these spin-polarized currents can be
switched on/off or from spin up to down by simply tuning the applied bias. This makes
these type of systems suitable for spintronics applications, where the ability to produce
spins with a predetermined orientation is a prerequisite for their operation.

5.1 Outlook

The two different parts of this thesis offer rich possibilities of future directions.
For the nanowire part it would be interesting to see what current fluctuations could

reveal, a calculation that would then tie directly to the second part. The nanowires
used in the experiments are made of InAs, which is known to have a strong spin-orbit
interaction. If also this was included in the model, perhaps the correspondence with the
experiments would increase. With the ongoing push to use semiconducting nanowires
in proximity to superconductors to induce topologically protected states, a possibility
would be to extend our model to capture this kind of physics.

A first possible extension to the second part of the thesis is to investigate the finite
frequency noise. Finite frequency noise has previously been shown to be able to reveal
information about internal dynamics of systems[116], and also as a help to character-
ize the system[117]. Since the system depends on many parameters, which can not
always be resolved from simple conductance and shot noise measurements, the finite
frequency noise can help with this.

Since the existence of impurity bands is a bulk properties the spin currents they
generate should be long-range, which would make it interesting to compute how these
currents evolve spatially, in e.g. an NSN setup. In principle an incoming, unpolarized,
current in one of the normal metals, should in the impurity band in the superconductor
be converted to a completely polarized current, making the current in the other normal
metal of a single desired spin direction.

Another thing to consider impurity spins create an electron-hole asymmetry. This
asymmetry drops out of equilibrium properties, but it will matter if we consider the
linear response of the superconductor to an external temperature gradient. Then the
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asymmetry would give rise to an enhanced thermo-electric effect. This effect has al-
ready been studied in bulk by Kalenkov et al. in Ref. [118], but a possible extension to
their work is to consider an NS-junction. They also only consider the case of random
impurity spins, so another possibility is to align the impurity spins.

Finally, one could consider extending this work by also studying, for example, su-
perconducting point contact junctions, with one, or both, of the superconductors with
a concentration of magnetic impurities. Since both the equilibrium, phase-dependent,
and the non-equilibrium, voltage-biased, currents depend on the subgap structure of
the superconductors, we expect them to be heavily modified by the subgap states in-
duced by the magnetic impurities.
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ATechnichal Details

A.1 Convolution Product

The noncommutative Convolution product between two functions a(t, t′) and b(t, t′) is
in the time domain defined as

a ◦ b(t, t′) =
∫

dt′′a(t, t′′)b(t′′, t′). (A.1)

Fourier transforming to the energy domain the product reads

a ◦ b(ε, ε′) =
∫ dε′′

2π
a(ε, ε′′)b(ε′′, ε′). (A.2)

The product can in the mixed representation be written as

a ◦ b(ε, t) = e
i
2 (∂a

ε ∂b
t−∂a

t ∂b
ε)a(ε, t)b(ε, t). (A.3)

A.2 Properties of the Riccati Equations

The Retarded component of the first Riccati equation, as given by eq. 2.6, can be written
as

ih̄vF · ∇+ E ◦ γ− γ ◦ Ẽ− γ ◦ ∆̃ ◦ γ + ∆ = 0,

with E ≡ ε− Σ and Ẽ ≡ −ε− Σ̃ and initial condition γ(0) = γi.
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It has been shown [119] that associated with any solution to a Riccati differential
equation are three functions g, h and f obeying the equations

ih̄vF · ∇g +
(
E− γ ◦ ∆̃

)
◦ g = 0 g(0) =1

ih̄vF · ∇h +
(
−Ẽ− ∆̃ ◦ γ

)
◦ h = 0 h(0) =1

ih̄vF · ∇ f + h ◦ ∆̃ ◦ f = 0 f (0) =0.

Now if we know the solution γ0 for a particular initial condition γ0(0) = γi0, with the
associated functions g0, h0 and f0, any other solution with a different initial condition
γi = γi0 + δ can be obtained along the entire trajectory through

γ(x) = γ0(x) + g0(x) ◦ (1 + δ ◦ f0(x))−1 ◦ h0(x).

This is very useful, for example when you have a periodicity condition in your system.

A.3 Numerics

In systems with high a concentration of scatterers we can no longer solve the problem
analytically, since the self-energies now will be spatially dependent.

An efficient way of dealing with this problem is to utilize that we can solve the prob-
lem for constant self-energies. So to approximate the solution we divide our problem
area into a number of subsections, where we in each subsection let the self-energies be
constant. Given a starting value for the coherence functions at the start of their respec-
tive trajectories, and starting values for the self-energies in each of the subsections, we
can propagate the coherence functions along the trajectories. These coherence functions
are then used to update the self-energies. This scheme is then repeated until we achieve
self-consistency, or a maximum number of iterations.

The algorithm is described below.

1: Choose starting values for the coherence functions and the self-energies. In a normal
region we can use Σ̂imp = 0 for the self-energies.

2: Calculate the outgoing γ:s at the right and left border of the subsections. γ+ and
γ̃− are calculated from left to right, and γ− and γ̃+ the other way, from right to left.
The ± superscript on the coherence functions denote if the projection of the Fermi
velocity on the x-axis is positive (negative). Given a section i the equation for the γ:s
look like:

I. γ+
i (x) = − ∆

ε+iΩ + 2iΩCexp(−2Ωx)
1−∆̃Cexp(−2Ωx) , with C obtained from γ+

i (xi−1) = γ+
i−1(xi−1)

II. γ̃−i (x) = ∆̃
ε+iΩ + 2iΩCexp(−2Ωx)

1+∆Cexp(−2Ωx) , with C obtained from γ̃−i (xi−1) = γ̃−i−1(xi−1)

III. γ−i (x) = − ∆
ε+iΩ + 2iΩCexp(2Ωx)

1−∆̃Cexp(2Ωx) , with C obtained from γ−i (xi+1) = γ−i+1(xi+1)
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IV. γ̃+
i (x) = ∆̃

ε+iΩ + 2iΩCexp(2Ωx)
1+∆Cexp(2Ωx) , with C obtained from γ̃+

i (xi+1) = γ̃+
i+1(xi+1)

3: New self-energies are calculated from these outgoing γ:s. The self-energy in the
i:th subsection is approximated to be its value in the middle of the subsection, so at
position (xi + xi−1)/2.

4: Steps 2 and 3 are repeated until we have reached a desired accuracy or a maximum
number of iterations.





BGibbs free energy

The derivation of the free energy difference is quite an involved task, but below we
give a brief outline of the process. To see more detailed explanations on how to do it,
we refer the reader to the references that are given below.

The free energy is a functional of the quasiclassical Green’s function, and the self-
ernergies

δΩ[ĝ, σ̂, ∆̂, T] = ΩS[ĝ, σ̂, T]−ΩN [ĝ, σ̂, T], (B.1)

which means that the superconducting state is more energetically favorable when δΩ <

0 (since we want to minimize the free energy).
Following Refs. [56, 58, 120, 121] we write

ΩS[ĝ, σ, T] = ΩN [ĝ, σ, T = 0]− 1
2

NF

∫ dΩpF

4π
kBT ∑

|εn|<εc

Tr
{

σ̂(pF, εn)ĝ(pF, εn)+

∫ εc

−εc

dξk ln
[
−Ĝ−1(k, εn) + σ̂(pF, εn)

] }
+ δΦ(ĝ), (B.2)

where Ĝ−1(k, εn) = iεnτ̂3− ξk, with ξk being the single-particle spectrum in the normal
state. The last term is given by δΦ[ĝ] = ΦS[ĝ] − ΦN [ĝ], with Φ[ĝ] being a funtional
generating the pertubation expansion of the skeleton self-energy diagrams. Using the
impurity self-energy of our models, and assuming a quadratic energy spectrum in the
normal state, we obtain the free energy difference as a sum of five different terms

δΩ = δΩ1 + δΩ2 + δΩ3 + δΩ4 + δΩ5, (B.3)
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where the different terms are given by

δΩ1 = −2πkBNFT ∑
εn>0

(√
∆↑∆̃↑ −

1
4
(ε↑ + ε̃↑)2 +

√
∆↓∆̃↓ −

1
4
(ε↓ + ε̃↓)2−

√
−1

4
(εN
↑ + ε̃N

↑ )
2 −

√
−1

4
(εN
↓ + ε̃N

↓ )
2

)

δΩ2 =
1
2

πkBNFT ∑
εn>0

{
(σ11,↑ + σ22,↑)(ε↑ + ε̃↑) + σ12,↑∆̃↑ + σ21,↑∆↑√

∆↑∆̃↑ − 1
4 (ε↑ + ε̃↑)2

+

(σ11,↓ + σ22,↓)(ε↓ + ε̃↓) + σ12,↓∆̃↓ + σ21,↓∆↓√
∆↓∆̃↓ − 1

4 (ε↓ + ε̃↓)2
−

(σN
11,↑ + σN

22,↑)(ε
N
↑ + ε̃N

↑ )√
− 1

4 (ε↑ + ε̃↑)2
−

(σN
11,↓ + σN

22,↓)(ε
N
↓ + ε̃N

↓ )√
− 1

4 (ε
N
↓ + ε̃N

↓ )
2

}

δΩ3 =
1
2

πkBNF∆0T ∑
εn>0

[
∆↑ + ∆̃↑√

∆↑∆̃↑ − 1
4 (ε↑ + ε̃↑)2

+
∆↓ + ∆̃↓√

∆↓∆̃↓ − 1
4 (ε↓ + ε̃↓)2

]

δΩ4 = −2πkBNFΓβuST ∑
εn>0

[
ε↑ + ε̃↑√

∆↑∆̃↑ − 1
4 (ε↑ + ε̃↑)2

− ε↓ + ε̃↓√
∆↓∆̃↓ − 1

4 (ε↓ + ε̃↓)2

]

δΩ4 = −2πkBNFΓT ∑
εn>0

{
ln


1 + u2

0 − α2u2
S + 2αuS

ε↑ + ε̃↑√
∆↑∆̃↑ − 1

4 (ε↑ + ε̃↑)2


+

ln


1 + u2

0 − α2u2
S − 2αuS

ε↓ + ε̃↓√
∆↓∆̃↓ − 1

4 (ε↓ + ε̃↓)2


−

ln
[
(1 + u2

0 − α2u2
S)

2 + 4α2u2
S
] }

.

(B.4)
Here the quantities with the superscript “N” stand for the normal state (i.e. taking the
limit ∆0 → 0) value of that particular quantity.

Some of the terms in this expression are not zero in the normal state, which mean
that they contribute to the normal state free energy. We want to find the free energy
difference between the superconducting state and the normal state, which is why we
have to subtract their normal state value.
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