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A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes

both the resistive layer damping physics and the toroidal precession drift resonance damping from

energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model

plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional

plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as

well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the

resistive layer contributes a significant stabilization of the RWM. This stabilization is further

enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two tradition-

ally assumed inner layer models are considered and compared in the dispersion relation, resulting

in different predictions for the stability of the RWM. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939806]

I. INTRODUCTION

It is well known that the external kink mode and the

tearing mode are dangerous macroscopic magnetohydrody-

namic (MHD) instabilities in a tokamak device, such as the

International Thermonuclear Experimental Reactor (ITER).1

In order for a tokamak device to achieve high b (ratio of the

plasma to the magnetic pressures) plasmas and at the same

time maintaining a long time or steady state discharge, stabi-

lization of these MHD instabilities is one of the crucial

issues. In this work, we shall focus on investigating the sta-

bility of the external kink mode, which often causes the so-

called “hard” beta limit for the tokamak plasma discharges,

compared to the “soft” beta limit imposed by the onset of the

(neoclassical) tearing mode.

The external kink modes can fortunately be completely

stabilized by a perfectly conducing wall which surrounds the

plasma and is located sufficiently close to the plasma sur-

face, up to a certain beta limit.2 In reality, the wall almost

always has a finite conductivity, allowing the leakage of the

radial magnetic flux perturbation at a longer time scale, and

thus an instability will eventually grow. In this situation, the

fast growing external kink mode becomes a slowly growing

instability called the resistive wall mode (RWM).2 The

growth time of the RWM is in the same order as the eddy

current diffusion time, while the magnetic field perturbation

penetrates through the resistive wall. For the concept of

advanced tokamaks, which aims at a steady state operation,

the RWM is the most dangerous instability, which needs to

be either stable or stabilized.

The mode can be described by different plasma models.

In many numerical and analytical studies,3–10 the plasma is

generally assumed to be ideal, i.e., with vanishing plasma re-

sistivity. Early work has shown that the plasma toroidal flow,

with certain energy dissipation channel(s) being present

inside the plasma, can help to open up a stability window by

varying the radial location of the resistive wall.11–13 For

example, the shear Alfven or sound wave resonance damping

model yields a critical plasma rotation frequency of typically

a few percent of the Alfven frequency.7,11,13 Recent work

mainly focuses on the drift kinetic damping on the

RWM.14–21 The drift kinetic theory seems to produce a better

agreement with experiments on the RWM stability, in terms

of both the threshold value of the plasma rotation frequency

for the RWM stabilization and the resonant field amplifica-

tion (RFA) observed in high beta plasmas.22–25

One key element in the drift kinetic model is the resonance

between the mode and the toroidal precession drift motion of

trapped thermal particles. It was found that this resonant damp-

ing can fully stabilize the RWM in a slowly rotating

plasma.14–16,18 The presence of the precessional drift resonance

of energetic ions, again with the assumption of ideal plasma, on

the other hand, can either enhance the stability of the RWM26

or trigger a new branch of instability termed as the fishbone-

like bursting mode (FLM). Such an instability, with the eigen-

mode structure of an external kink mode, can occur when the

energetic particles’ (EPs’) beta exceeded a critical value.

The role of the plasma resistivity on the RWM stability

has been less well exploited. In the early work,27,28 Finn
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showed that a slow plasma rotation, combined with a resis-

tive layer near the mode’s rational surface, can lead to the

wall mode stabilization. Subsequently, the beta limit for

the n¼ 1 mode is set by the resistive-wall-tearing mode

(RWTM).13 Reference 29 showed that the toroidal curvature

effect associated the resistive layer may stabilize the RWM,

but the stability window is narrow. All the aforementioned

work assumes a fluid model for the mode. In this work, we

perform a systematic investigation of the RWM stability, by

considering both the resistive layer physics and the drift

kinetic damping from energetic ions. This expands the inves-

tigation reported in a recent work,30 in terms of both the dis-

persion relation for the mode and the numerical results.

Section II presents the details of our models, for both

the RWM and the plasma equilibrium that we use in this

work. Section III reports key results obtained from numerical

solution of the proposed dispersion relations for the RWM.

Section IV draws conclusion.

II. MODELS

A. Plasma equilibrium model

We choose an equilibrium model as shown in Fig. 1, for

a large aspect ratio plasma with circular poloidal cross sec-

tion. The plasma is in the region 0 < r < a, in terms of the

minor radius r. A conducting wall is located at rw in the vac-

uum region. We introduce the inverse aspect ratio e ¼ r=R,

with R being the major radius. The plasma equilibrium pres-

sure is a constant P0. The plasma toroidal current density

and the safety factor are also largely constants, J0 and q0,

respectively, except within a narrow resistive layer near the

plasma boundary. Within this narrow layer, we assume that

the equilibrium current vanishes, and thus, the q-profile

increases, allowing the existence of a rational surface (q ¼ 2

in this work) inside the plasma. Here, we considered only

one rational surface. Thus, the coupling effect between dif-

ferent rational surfaces is neglected. Such a coupling may

not be strong if two rational surfaces are located far from

each other. However, in certain conditions, particularly near

the plasma edge region, the interaction between closely

located multiple rational surfaces may be indeed significant.

Such a coupling effect, combined with the drift kinetic effect

from the trapped EPs, will be numerically investigated using

the MARS-K code15 in the future. We consider a plasma

with finite resistivity in a layer, of width DL which is much

smaller than the plasma minor radius a, near the rational sur-

face (r ¼ rs). Outside the resistive layer, the plasma is still

described by the ideal MHD equations.

B. Dispersion relation for the RWM

There are typically two ways to construct a dispersion

relation for the RWM. One way is to rely on the matching

condition for the tearing index D0 between the external ideal

region and the internal resistive-inertial region.29,31 The

other is based on the extended energy principle.12,14,32,33

Within the fluid approximation, it can be shown that these

two approaches are equivalent. However, with the inclusion

of the drift kinetic effects, it is more convenient to follow

the energy principle approach, since the drift kinetic energy

perturbation can often be readily evaluated (either analyti-

cally or computationally). This approach, on the other hand,

requires evaluation of the fluid energy dissipation in the

resistive-inertial layer.

In the following, we show one simple example of deri-

vation of the layer energy dissipation, mainly to demonstrate

the linear relation between the perturbed energy and the

inner tearing index. We consider the equilibrium with van-

ishing pressure gradient; thus, the so-called constant-w
approximation is valid.

We define x ¼ r � rs as our independent radial variable,

and the safety factor is qðrsÞ ¼ m=n at the location of the

rational surface, where m and n are the poloidal and the

toroidal mode numbers, respectively (m ¼ 2 and n ¼ 1

throughout this work). All perturbed quantities are taken to

vary as f1 ¼ f ðxÞ exp½iðmh� n/Þ þ ct�. The linearized equa-

tions of the momentum equation and Faraday’s law in the

resistive layer can be expressed as34

w1ðxÞ þ ŝnxnðxÞ=m ¼ r2
s w
00
1ðxÞ=ðcsRÞ; (1)

ðcsAÞ2n00ðxÞ ¼ ŝxw001ðxÞnm=r2
s ; (2)

where the perturbed poloidal flux function w1 is simply

related to the plasma displacement~n via Eq. (2). c ¼ ĉ � ixr

is the eigenvalue of the mode, ŝ ¼ rsq
0=q is the magnetic

shear at the rational surface, sA ¼ R
ffiffiffi
q
p

=B0 is the characteris-

tic Alfven time, and sR ¼ r2
s l0=g is the resistive diffusion

time. S ¼ sR=sA is the magnetic Lundquist number. For

m> 1 mode, it is known that the energy perturbation associ-

ated with the layer is proportional to D0,34 which is defined

as the logarithmic jump of the radial derivative of w1 across

the rational surface, for the case described above. In a more

general case, it can be rigorously shown that30

dWm>1
RL ¼ 4p

m

m� nq0ð Þ2

q0
2

rs

2m
D0 cþ ix0ð Þ; (3)

FIG. 1. The equilibrium profiles of the plasma pressure PðrÞ, the current

density JzðrÞ, and the safety factor qðrÞ as assumed in the cylindrical model.

One rational surface (r ¼ rs), with q¼m/n¼ 2/1, is located just inside the

plasma boundary (r ¼ a). The width of the resistive layer is assumed to be

much smaller than the plasma minor radius, DL� a. A resistive wall is

located at r ¼ rw ¼ b.

012506-2 He et al. Phys. Plasmas 23, 012506 (2016)



where a uniform radial profile for the safety factor q, q¼ q0,

has been assumed, and x0 is the toroidal rotation frequency

of the plasma which Doppler shifts the mode frequency.

Unlike Ref. 30, here we shall consider two layer models

for D0, which have been conventionally assumed in literatures

for the RWM study.13,27–29,31 The first is the tearing mode dis-

persion relation including the toroidal favorable curvature

effect.35 For the large aspect ratio circular plasma, as consid-

ered in this work, the D0 is conveniently written as36

D01 ¼ 2:12A
cþ ix0

xA

� �5=4

1� p
4

DRB
cþ ix0

xA

� ��3=2
" #

;

(4a)

where the coefficients A � 2pCð3=4Þ=Cð1=4ÞðnŝÞ�1=2

ð1þ 2qrs
2Þ1=4S3=4 and B � ðnŝÞð1þ 2qrs

2Þ�1=2S�1=2 are all

evaluated at the mode rational surface. xA and DR are the

Aflven frequency and the resistive interchange index, respec-

tively. The last term from Eq. (4a), p
4

DRB cþix0

xA

� ��3=2

, origi-

nates from the favorable average magnetic curvature in the

layer region,35 often referred to as the GGJ effect. In the

limit of a vanishing DR value, Eq. (4a) recovers the tearing

mode dispersion relation at the constant-w approximation

(apart from the inertial enhancement factor 1þ 2q2
rs

). The

addition of the GGJ correction in the inner D0 model is ad-
hoc with respect to our equilibrium model. However, this

approach is not completely unreasonable, since the inner

layer D0, in theory, is determined by the local equilibrium

pressure gradient exactly at the rational surface, thus allow-

ing flexibility in the choice of the radial profile for the equi-

librium pressure outside the rational surface. This is largely

why the same ad-hoc approach was taken in literatures such

as Ref. 29. In further numerical investigations in this work,

we shall vary the value of DR, in order to switch on/off the

GGJ effect, as well as to change the strength of the GGJ sta-

bilization. This is despite the fact that our equilibrium model,

which is designed to allow accurate derivation of the plasma

fluid potential energy perturbations, corresponds to the case

of DR¼ 0.

The second model for D0 follows the resistive kink dis-

persion relation37

D02 ¼�
p
8

cþ ix0

xA

� �5=4

S3=4

C 1=4
cþ ix0

xA

� �3=2

S1=2� 1

!" #

C 1=4
cþ ix0

xA

� �3=2

S1=2þ 5

!" # :

(4b)

The resistive kink dispersion relation has been used in

the RWM study in Refs. 13 and 31. We point out that this D0

does not include the favorable toroidal curvature stabiliza-

tion effect. This will have consequences on the eventual

RWM stability prediction, compared to that by the tearing

layer model (4a).

The energy dissipation associated with the resistive

layer, Eqs. (3) and (4), allows us to construct a dispersion

relation for the RWM including all relevant effects, based on

the energy balance principle

D ¼ �i Xþ X0ð Þxdss
�
w þ

dW1 þ dWK0 þ dWRL

dWb þ dWK0 þ dWRL

¼ 0: (5)

Here, a re-normalization has been adopted for the mode’s

eigenvalue, cþix0

xA
� �i xds

xA
X, mainly for the convenience in

evaluating the drift kinetic energy perturbation dWK0 due to

trapped fast ions. The new normalization factor, xds, is the

toroidal precession frequency of these fast ions at the birth

energy, X0 ¼ x0=xds. s�w ¼ l0rbd½1� ðb=aÞ�2m�=ð2mÞ is

the wall eddy current decay time, with d, r, and l0 being the

wall thickness, the wall conductivity, and the permeability of

free space, respectively. dW1 and dWb are the perturbed fluid

potential energies (includes both the plasma and vacuum con-

tributions) with an ideal wall at infinity and at r ¼ b,

respectively.

The dispersion relation (5) follows the approach of

Ref. 12, where the (generic) dissipation term is now replaced

by the combined energy term associated with the drift kinetic

energy and the resistive layer damping energy. In the pres-

ence of the drift kinetic effects but without the resistive layer

damping physics, the energy principle has been derived in

literatures, e.g., Ref. 38. Vice versa, in the presence of the

resistive layer damping but without the drift kinetic effects, a

matching procedure between the outer and the inner layer

solutions is often applied to construct the resistive plasma

RWM dispersion relation,29 which is shown to be equivalent

to the energy perturbation based form.30 However, no rigor-

ous derivation is available for Eq. (5), when both the kinetic

effects and the resistive layer damping physics are present in

the model, though similar approach has also been used in

studying the resistive fishbone mode.39

For the equilibrium model defined in this work, the fluid

and drift kinetic energy can be analytically evaluated20,40

dW1 ¼ �4p
m

m� nqð Þ2

q2

1

m� nq
� 1

� �
; (6)

dWb ¼ �4p
m

m� nqð Þ2

q2

1

m� nq
� 1

1� b�2m

� �
; (7)

dWK0 ¼ 12p 1� a0B0

2

� �2
bhR

Ka

(
Â � B̂ð Þ 2

7
Xln 1� 1

X

� �

� 2

7
Â þ 2

5
B̂

� �
X

"
2

1

5X
þ 1

3X2
þ 1

X3

� �

� 1

X3

1ffiffiffiffi
X
p ln

1þ
ffiffiffiffi
X
p

1�
ffiffiffiffi
X
p

 !#)
þM; (8)

where xds ¼ ð2E� KÞEmq0=½KaxcR� is, as mentioned before,

the precession drift frequency of the trapped EPs at birth

energy. E and K are the complete elliptic integrals of the first

and second kinds, respectively, mhEm(� Eb) and xc are the

birth energy and the cyclotron frequency of the trapped EPs,

respectively. bh¼ cb
Ð

rdrdadEKbEf (a¼lmh=Ek, l¼ v2
?=2B,

Ek¼mhE, and Kb¼
Ð hb

�hb
ð1�aBÞ�1=2dh=p, with hb being the
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turning point of the trapped EPs) is the perpendicular beta of

the trapped EPs with cb¼pNpl0mh=ðRB0r2
1Þ, Np being the

total number of EPs, with a slowing-down equilibrium distribu-

tion in the particle energy space and a mono-pitch angle in ve-

locity distribution, i.e., f /n0E�1dða�a0Þ. Such distribution is

normally a reasonable description of EPs induced by neutral

beam injections. The coefficients Â, B̂, and M are derived and

listed in Ref. 40. All of the perturbed energy terms, including

the layer dissipation (3), are normalized by a factor

pB2r4
1m2=2Rl0F2

0, where F0¼ðm�nq0Þr1=ðRq0Þ.
Note that the drift kinetic energy dWK0 covers the non-

adiabatic contribution only. The adiabatic contribution is

absorbed into the fluid potential energy terms following the

conventional approach, which is based on the understanding

that the total plasma equilibrium pressure is contributed by

both the thermal particle pressure and the EPs pressure.

The fluid rotation enters into the internal D0 (for both the

GGJ model and the resistive kink model) via the Doppler

shift. This procedure is well justified and accepted in litera-

tures (e.g., Ref. 29), by assuming that the inner solution

(effectively the magnetic island) is rotating together with the

plasma, whilst the outer ideal solution is not affected by the

plasma flow. The latter is an approximation but is normally

well satisfied as long as the flow is well sub-sonic.

III. NUMERICAL RESULTS

We numerically solve the dispersion relation (5) with the

following choices of the basic plasma parameters: a ¼ 1 m,

R ¼ 3 m, r1 ¼ 0:98 m, B0 ¼ 2:3 T, q0 ¼ 1:42, and b ¼ 0:055.

The pitch angle of the trapped EPs is a0B0 ¼ 0:98. The EPs’

birth energy is Eb ¼ 85 keV. The wall (surface) conductivity is

assumed to be r ¼ 106 X�1 m�1, and the wall thickness is

d ¼ 0:01 m. The plasma density is n0 ¼ 1020 m�3. These pa-

rameters are chosen mainly to ensure a typical RWM regime

(e.g., dW1 < 0 and dWb > 0). With these parameters, we

calculate the precessional drift frequency of fast ions as xds

¼ 7:5� 103 rad=s ¼ 4:41� 10�3xA. Note that we assume an

aspect ratio of 3 here, for the purpose of representing a typical

conventional tokamak case, even though the theory is derived

at the large aspect ratio approximation.

This work aims at a systematic investigation of various

physics effects entering into the dispersion relation (5). The

key physics are the GGJ stabilization due to the resistive

layer, the drift kinetic damping due to EPs, and the compari-

son of predictions of the RWM stability while following two

different models (4a) and (4b) for the resistive layer. These

effects will be studied in Subsections III A–III D, beginning

with a purely fluid case without the GGJ effect.

The parameter space, which we explore while investi-

gating the above physics effects, includes the plasma resis-

tivity (the Lundquist number S), the radial location of the

resistive wall (b/a) as well as the toroidal rotation frequency

of the plasma (X0).

FIG. 2. The growth rate of the n¼ 1 fluid RWM versus the Lundquist num-

ber S. The resistive wall is assumed to be located at b=a ¼ 1:1. Neither the

kinetic damping from trapped EPs nor the favorable average curvature

(GGJ) stabilization is included here.

FIG. 3. The (a) growth rate and (b) real frequency of the n¼ 1 RWM versus

the radial position of the resistive wall, for various choices of the plasma

rotation frequency (0 < jx0=xdsj � 0:3). Here xds ¼ 4:41� 10�3xA is a

normalization factor. The Lundquist number is chosen to be S ¼ 2:07� 106.

Neither the kinetic damping from trapped EPs nor the favorable average cur-

vature (GGJ) stabilization is included.

012506-4 He et al. Phys. Plasmas 23, 012506 (2016)



A. Resistive tearing model without the GGJ effect

In this subsection, we use the tearing layer model (4a) for

D0 neglecting the GGJ effect (DR¼ 0). The drift kinetic con-

tribution from EPs is also neglected. This leads to a classical

situation where the RWM is destabilized by the plasma resis-

tivity, in the absence of the plasma flow. This is demonstrated

in Fig. 2, where we plot the growth rate of the RWM, normal-

ized by the Alfven frequency, versus the Lundquist number S.

The mode is a purely growing instability in this case.

The presence of a finite toroidal flow generally tends to

stabilize the mode, as shown in Fig. 3. Here, the eigen-

value—both (a) real and (b) imaginary parts—are traced

with varying wall distance while fixing the Lundquist num-

ber at S ¼ 2:07� 106, for a set of toroidal rotation frequen-

cies 0 < jx0=xdsj < 0:3. Note that the plasma rotation is

chosen in the counter-current direction here, following the

same convention as in Ref. 40. The stability (a) of the fluid

RWM is not affected by the sign of the rotation frequency—

only the real frequency of the mode (b) switches sign with

the change of the flow direction.

A full stabilization of the mode is achieved at sufficiently

fast flow, and within a window in b/a. This opening of the sta-

bility window is similar to that observed, assuming the ideal

MHD model.11 A minimal flow speed is needed in order to

open the stability window, whose size then increases with the

flow speed. At a sufficiently fast flow, x0=xds ¼ �0:3 (equiv-

alent to jx0j=xA 	 0:13%, the mode is completely stable at a

large variation of the wall minor radius. The mode rotates

slowly with respect to the resistive wall, when the wall is

close to the plasma surface, as shown in Fig. 3(b). However,

when the wall is sufficiently far away from the plasma, the

mode’s frequency tracks well the plasma rotation frequency.

In other words, the mode is locked to the plasma in these

cases, similar to the prediction of the ideal fluid theory3,12

In order to better understand the interplay between the

plasma flow and the plasma resistivity on the stability of the

FIG. 4. The (a) growth rate and (b) real frequency of the n¼ 1 RWM plotted

on 2D parameter space of the plasma rotation frequency and the Lundquist

number S, with a fixed wall radius at b=a ¼ 1:2. Neither the kinetic damping

from trapped EPs nor the favorable average curvature (GGJ) stabilization is

included here.

FIG. 5. The (a) growth rate and (b) real frequency of the n¼ 1 RWM versus

the minor radius (b=a) of the resistive wall. The favorable curvature stabili-

zation effect is included by assuming a finite value for the resistive inter-

change index DR. The plasma rotation frequency is fixed at x0=xds ¼ �0:1,

and the Lundquist number fixed at S ¼ 2:07� 106. No drift kinetic damping

from trapped EPs is included.

012506-5 He et al. Phys. Plasmas 23, 012506 (2016)



RWM, we carry out a 2D scan of the mode’s eigenvalue by

varying both x0 and the Lundquist number S, while fixing

the wall radius at b ¼ 1:2a. The growth rate of the mode,

calculated as the solution of the dispersion relation (5) and

shown in Fig. 4(a), decreases with increasing the Lundquist

number increasing, as well as increasing the flow speed,

showing a synergistic effect of small plasma resistivity and

fast flow on the stabilization of the RWM, within the fluid

assumptions (no GGJ effect). Note that no full stabilization

of the mode is achieved with the rotation frequency range

shown in the figure. The mode rotating frequency, shown in

Fig. 4(b), is generally not a strong function of the plasma re-

sistivity, but is sensitive to the flow velocity.

B. Resistive tearing model with the GGJ effect

As the next step of investigation, we include the GGJ

term in the tearing mode D0 model (4a), by assuming a finite

negative value for DR. The resistive interchange index, which

is roughly proportional to the plasma pressure at the rational

surface, is normally negative for tokamak equilibria. Figure 5

compares the eigenvalues of the RWM, assuming various val-

ues for DR. Whilst the mode frequency does not exercise a

substantial modification by the GGJ effect, the stability of the

mode does qualitatively change. The GGJ term tends to stabi-

lize the RWM, a conclusion also reached in Ref. 30.

The results reported in Fig. 5 are obtained at a relatively

small Lundquist number S¼ 106. The stability window in the

b/a space is significantly wider with increasing S value and

in the presence of finite GGJ term, as shown in Fig. 6, where

a 2D parameter scan is performed, varying both the wall dis-

tance and the Lundquist number. Note that the mode stabili-

zation, shown in Fig. 6(a), is achieved solely by the GGJ

FIG. 6. The (a) growth rate and (b) real frequency of the n¼ 1 RWM plotted

in 2D parameter space of the wall position b=a and the Lundquist number S.

The favorable curvature stabilization effect is included by assuming a finite

value for the resistive interchange index DR ¼ �0:003. The plasma rotation

frequency is assumed to be zero. No drift kinetic damping from trapped EPs

is included.

FIG. 7. The (a) growth rate and (b) real frequency of the n¼ 1 RWM plotted

in 2D parameter space of the plasma rotation frequency and the Lundquist

number S. The resistive wall position is fixed at b=a ¼ 1:2. The favorable

curvature stabilization effect is included by assuming a finite value for the

resistive interchange index DR ¼ �0:003. No drift kinetic damping from

trapped EPs is included.

012506-6 He et al. Phys. Plasmas 23, 012506 (2016)



stabilization, since the plasma flow velocity is assumed to be

zero in this 2D scan. This also means that the finite mode fre-

quency, shown in Fig. 6(b), is obtained in a static plasma.

These two observations (full stabilization and a rotating

mode in the absence of the plasma flow) are similar to that

occurring to a tearing mode in a toroidal finite beta plasma,

when the GGJ effect becomes important. Another interesting

observation for Fig. 6 is that at sufficiently large S value, the

wall position plays a minor role on the eigenvalue of the

RWM.

By fixing the wall position, we make another 2D scan in

the parameter space of plasma rotation frequency versus the

Lundquist number. The results are shown in Fig. 7. The

range of the scanned parameter values as well as all the other

plasma parameters are the same as that for Fig. 4, except the

additional inclusion of the GGJ in Fig. 7. The key effect is

again in the expansion of the stable domain in this 2D pa-

rameter space, introduced by the GGJ stabilization of the

RWM.

C. Resistive tearing model and drift kinetic model of
trapped EPs

Now we add one more physics into our systematic

investigation, namely, the drift kinetic effect from the EPs.

In this case, we solve the full dispersion relation (5), where

all the perturbed energy terms are finite. We consider only

the precessional drift resonance of trapped EPs. The amount

of this drift kinetic contribution is measured by the ratio of

the energetic ion pressure to the thermal particle pressure,

defined as b� here. Figure 8 compares the results from four

possible combinations: with (b� ¼ 0.7) and without (b� ¼ 0)

EPs kinetic contribution, with (DR ¼ �0:001), and without

(DR¼ 0) the GGJ effect. Evidently, the GGJ effect and the

drift kinetic effect can act in a synergistic manner to reduce

the growth rate of the RWM. For the case shown here, the

drift kinetic damping, in combination with the GGJ stabiliza-

tion, helps to open a reasonably large stability window in the

b/a space. The real frequency of the mode, however, is not

FIG. 8. The (a) growth rate and (b) real frequency of the n¼ 1 RWM versus

the minor radius (b=a) of the resistive wall, for four combinations of the

energetic particle pressure (normalized by the thermal particle pressure) and

the resistive interchange index DR. The plasma rotation frequency is fixed at

x0=xds ¼ �0:1, and the Lundquist number fixed at S ¼ 2:07� 106.

FIG. 9. The (a) growth rate and (b) real frequency of the n¼ 1 RWM plotted

in 2D parameter space of the plasma rotation frequency and the Lundquist

number S. The resistive wall position is fixed at b=a ¼ 1:2. The favorable

curvature stabilization effect is included by assuming a finite value for the

resistive interchange index DR ¼ �0:003. The drift kinetic damping from

trapped EPs is included, with the normalized EPs pressure b� ¼ 0:7.
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significantly modified by the aforementioned two effects, as

shown in Fig. 8(b).

Figure 8 is obtained by assuming a finite plasma rotation

frequency x0=xds ¼ �0:1. Again, a 2D scan in the parameter

space of both the rotation frequency and the Lundquist num-

ber has been performed, but this time in the presence of both

the GGJ and the drift kinetic damping. The results are shown

in Fig. 9, where all the other plasma parameters are the same

in Fig. 7. The stable domain now becomes even wider com-

pared to Fig. 7. Thus, by choosing the same parameter space

and by successively adding more physics terms into the

model, Figs. 4, 7, and 9 show clear stabilization effects of the

(local) favorable average curvature and the (global) drift ki-

netic damping on the RWM.

FIG. 10. The growth rate of the n ¼ 1 RWM versus the minor radius (b=a)

of the resistive wall, using different models (inner D0) for the resistive layer.

The Lundquist number is fixed at S ¼ 2:07� 106. The plasma rotation fre-

quency assumed to be zero. No drift kinetic effect is included. The fre-

quency of the mode is zero under these conditions.

FIG. 11. The real part of the inner D0, evaluated using the self-consistently

determined eigenvalues of the n ¼ 1 RWM, as shown in Fig. 10, versus the

minor radius (b=a) of the resistive wall. The other plasma parameters are

the same as in Fig. 10. The imaginary part of D0 vanishes under these

conditions.

FIG. 12. The (a) real and (b) imaginary parts of the inner D0, evaluated using

the self-consistently determined eigenvalues of the n ¼ 1 RWM, as shown

in Fig. 12, versus the minor radius (b=a) of the resistive wall. The other

plasma parameters are the same as in Fig. 12.

FIG. 13. The absolute value of ðcþix0

xA
Þ3=2S1=2 in the D02 versus the radial posi-

tion of the resistive wall for various choices of the plasma rotation fre-

quency. The Lundquist number is fixed at S ¼ 2:07� 106. No drift kinetic

effect is included.
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D. Comparison of resistive tearing model and resistive
kink model

As a final part of this investigation, in what follows, we

compare the predictions on the RWM stability by two differ-

ent layer models, described by Eqs. (4a) and (4b), respec-

tively. For simplicity, we shall neglect the drift kinetic energy

contribution in the dispersion relation (5). We first consider a

case with vanishing plasma flow. Figure 10 shows the growth

rate of the RWM as function of the wall position, with the

resistive tearing mode model D01(DR ¼ 0;�0:001) and with

the resistive kink model D02. The real frequency of the mode

vanishes for the plasma parameters considered in this case.

The resistive kink model results in a more unstable RWM,

even when compared with the tearing model without the GGJ

stabilization. Associated with this difference are the values of

D01 and D02, shown in Fig. 11 and calculated by inserting the

self-constantly obtained RWM eigenvalues from the disper-

sion (5) back into Eqs. (4a) and (4b), respectively. The real

value of D02 is smaller than D01 (with or without the GGJ

effect). Since the strength of the layer energy dissipation is

proportional to D0, less value of D0 leads to less stability of

the RWM, agreeing with the results shown in Fig. 10.

For the next case, we assume a finite plasma flow. The

results are shown in Figs. 12 and 13, for the eigenvalue of

the mode and the values of D0, respectively. In this case,

both the mode’s eigenvalue and the value of D0 are complex

numbers. Again, a general observation is that the resistive

kink layer model predicts less stability of the RWM. In

order to achieve a better understanding about the reason

behind this comparison, we plot the amplitude of the term

ðcþix0

xA
Þ3=2S1=2 that enters into the Gamma-function of expres-

sion (4b), again using the self-consistently obtained eigen-

values of the mode. The results are reported in Fig. 13.

Relatively small values of this term correspond to the pri-

marily tearing mode regime. The lack of the GGJ term in

the (4b) model is, thus, the primary reason for the larger

growth rates of the mode shown in Fig. 14.

IV. CONCLUSION

We have carried out a systematic investigation of the

stability of the RWM, in the presence of both the resistive

layer damping, including the toroidal favorable average cur-

vature effect (the GGJ effect), and the drift kinetic damping

from trapped energetic ions. The eigenvalue of the mode is

obtained by numerically solving the dispersion relation (5),

derived for a large aspect ratio circular plasma with simpli-

fied equilibrium radial profiles. The stability of the RWM is

mapped out in either 1D or 2D parameter spaces involving

the plasma resistive (the Lundquist number), the toroidal

flow speed, and the distance b/a of the resistive wall to the

plasma.

We find that without GGJ effect, a finite plasma resistiv-

ity destabilizes the RWM. On the other hand, plasma flow

can stabilize the mode in the presence of a finite resistivity,

thus opening stability windows in the b/a parameter space, in

a similar way as the ideal MHD prediction. The flow stabili-

zation is more effective at large Lundquist number.

The GGJ stabilization, from inside the resistive layer,

greatly enhances the RWM stability. In fact, this damping

physics alone, without plasma flow and without drift kinetic

damping, can result in the full mode stability at large

Lundquist number. In the presence of the flow, the stability

domain is further widened compared to the cases without the

GGJ effect. On the other hand, the GGJ effect generally does

not introduce a substantial modification to the real frequency

of the mode.

The precessional drift resonance damping of trapped

energetic ions acts synergistically with the GGJ effect for the

mode stabilization, further widening the stable domain in the

2D parameter space of the plasma flow speed versus the

Lundquist number.

We find that the choice of the layer models also affects

the prediction for the RWM stability. Generally, the resistive

kink layer model, which has previously been assumed in lit-

eratures for studying the flow stabilization of the RWM, pre-

dicts less stability compared to the resistive tearing mode

FIG. 14. The (a) growth rate and (b) real frequency of the n ¼ 1 RWM ver-

sus the minor radius (b=a) of the resistive wall, using different models (inner

D0) for the resistive layer. The Lundquist number is fixed at S ¼ 2:07� 106.

The plasma rotation frequency assumed to be x0=xds ¼ �0:1. No drift ki-

netic effect is included.
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model. This holds even when the GGJ term is excluded from

the tearing layer model.

We emphasize that, in this study, the overlap between

the drift kinetic effects of EPs and the resistive layer damp-

ing physics is excluded. In other words, we assume that the

trapped EPs banana orbit width is much greater than the typi-

cal resistive layer width. Therefore, the EPs spend little time

within the layer, and thus have no significant effect on the

inner layer damping.41 This situation may be different if

thermal particle kinetic effects are included. In such a case,

more advanced kinetic models42 are needed, in order to bet-

ter describe the inner layer physics.
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