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Mapping phenolics metabolism and metabolic engineering of Saccharomyces cerevisiae 

for increased endogenous catabolism of phenolic compounds 

 

ADEBOYE PETER TEMITOPE 

 

Division of Industrial Biotechnology  

Department of Biology and Biological Engineering  

Chalmers University of Technology 

Abstract 

Sustainable, biotechnological utilization of non-food, plant biomass has been demonstrated to 

be a viable means of producing energy, fuels, materials and chemicals, representing a paradigm 

shift from fossil-derived sources. However, the presence of chemicals that inhibit fermentation 

by microorganisms such as Saccharomyces cerevisiae, commonly used for bioconversion, 

causes a bottleneck in such processes. Phenolic compounds are aromatic compounds that serve 

as building blocks of lignin in plants. During the deconstruction of plant biomass, phenolic 

compounds are released as degradation products from the lignin component of wood into the 

hydrolysates, inhibiting fermentation. The aim of the work presented in this thesis was to 

explore approaches for the development of strains of Saccharomyces cerevisiae that have 

improved tolerance to phenolic compounds, and to better understand its endogenous 

metabolism of phenolic compounds. A study was performed on the interaction between the 

yeast and phenolic compounds using single phenolic compounds in defined growth medium. 

The toxicity of thirteen phenolic compounds was determined. The concentrations at which each 

compound completely inhibited the growth of S. cerevisiae was found to differ among the 

compounds, and three distinct physiological responses were observed. The influence of the 

structure and the presence of the methyl, aldehyde, carboxylic acid and hydroxyl functional 

side groups that often decorate phenolic compounds were studied in coniferyl aldehyde, ferulic 

acid and p-coumaric acid. The conversion of these compounds into less toxic phenolic 

compounds was observed. Based on the product profile, a conversion route was hypothesized 

for the catabolism of phenolic compounds in S. cerevisiae. Finally, two strains of S. cerevisiae, 

B_CALD and APT_1, were engineered. B_CALD was metabolically engineered to exhibit 

increased endogenous conversion of coniferyl aldehyde, while APT_1 was metabolically 

engineered to exhibit increased endogenous conversion of coniferyl aldehyde, ferulic acid and 

p-coumaric acid, and to test the hypothesized conversion pathway. The engineering of both 

B_CALD and APT_1 was successful. 

Keywords: Phenolic compounds, inhibitor, toxicity, conversion, Saccharomyces cerevisiae 



iv 
 

List of publications 

 

The following papers are included in this thesis are referred to in the text by their Roman 

numerals 

I. Adeboye PT, Bettiga M, Olsson L. The chemical nature of phenolic compounds 

determines their toxicity and induces distinct physiological responses in 

Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express. 

2014;4:46. 

II. Adeboye PT, Bettiga M, Aldaeus F, Larsson P, Olsson L. Catabolism of coniferyl 

aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields 

less toxic products. Microbial cell factories. 2015;14(1):149. 

III. Adeboye PT, Olsson L, Bettiga M: A coniferyl aldehyde dehydrogenase gene 

from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl 

aldehyde by Saccharomyces cerevisiae. Bioresource Technol 2016, 212:11-19. 

IV. Adeboye PT, Bettiga M, Olsson L. ALD5, PAD1, ATF1 and ATF2 facilitate the 

catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in 

Saccharomyces cerevisiae. Submitted for publication. 

 

I designed and performed the experiments, analysed the data and wrote the Papers I-IV 

in this thesis. 

  



 
v 

 

Preface 

 

The work described in this PhD thesis was carried out according to the requirements for 

a Doctoral Degree at the Department of Biology and Biological Engineering, Chalmers 

University of Technology, Sweden. The work is primarily focused on the development 

of Saccharomyces cerevisiae with improved conversion of, and tolerance to, phenolic 

compounds. The work was carried out under the supervision of Professor Lisbeth Olsson 

and Associate professor Maurizio Bettiga. 

This PhD project was initiated in June 2011 as part of a collaboration between Innventia 

AB, Stockholm and the Industrial Biotechnology Group at Chalmers. Some GC-MS 

analyses were performed in collaboration with staff at Innventia AB. This project work 

was funded by the Swedish Research Council (Vetenskapsrådet) under grant no. 621-

2010-3788, under the Programme for Strategic Energy Research. 

 

Adeboye Peter Temitope 

June, 2016 

 

  



 
vi 

 

List of figures and tables  

 

Figures 

Figure 1: A schematic description of the work described in this thesis. ......................... 3 

Figure 2: Schematic illustration of the conversion of lignocellulosic biomass for second 

generation biofuel and chemical production. ............................................................ 6 

Figure 3: Wood pulping process generating lignocellulosic side streams at Innventia. .. 9 

Figure 4: Fermentability of prehydrolysate, black liquor and oxygen delignification 

streams from pulping process using S. cerevisiae strain ethanol red®. ................... 12 

Figure 5: Phenol, the simplest member of the group of phenolic compound. ............... 15 

Figure 6: The structures of the 13 phenolic compounds screened for toxicity and 

showing the different side groups and their locations on the compound. ............... 18 

Figure 7: Scheme of environmental and molecular processes behind stress response in 

Saccharomyces cerevisiae. ...................................................................................... 23 

Figure 8: Proposed conversion pathway for phenolic compounds using the conversion 

of coniferyl aldehyde, ferulic acid and p-coumaric acid as template compounds. 

(from Paper IV) ....................................................................................................... 26 

Figure 9: A simplified conversion sequence for coniferyl aldehyde by S. cerevisiae. 

(from Paper II) ......................................................................................................... 27 

 

Tables 

Table 1: Composition of the prehydrolysate, black liquor, and oxygen delignification 

side stream obtained from soda pulping, at the initial pH, and when the pH was 

adjusted to 5 ............................................................................................................. 10 

Table 2: The thirteen spruce-derived phenolic compounds screened for their toxicity to 

S. cerevisiae and their toxicity limits ...................................................................... 17 

adapted from Paper I. ...................................................................................................... 17 

Table 3: Some demonstrated metabolic engineering strategies for developing S. 

cerevisiae strains with improved tolerance and metabolism of phenolic compounds.

 ................................................................................................................................. 37 

 

  

file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974126
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974127
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974127
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974128
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974132
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974132
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974133
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974133
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974133
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974134
file:///D:/BoxSync/adeboye/sync/sync/USB%20stick/PhD%20Thesis/Helen/Thesis-Mapping%20phenolics%20metabolism%20and%20metabolic%20engineering%20of%20S%20%20cerevisiae%20for%20increased%20endogenous%20catabolism%20of%20phenolic%20compounds.docx%23_Toc449974134


 
vii 

 

ABBREVIATIONS AND SYMBOLS 

 

GC-MS Gas chromatography mass spectrometry 

CALDH  Coniferyl aldehyde dehydrogenase 

YMMM  Yeast minimal mineral medium 

ALD5 Aldehyde dehydrogenase 5 

PAD1 Phenylacrylic acid decarboxylase 

ATF1 Alcohol acetyltransferase 1 

ATF2 Alcohol acetyltransferase 2 

HPLC High pressure liquid chromatography 

 

  



 
viii 

 

Table of contents 

 

Abstract ........................................................................................................................... iii 

List of publications ......................................................................................................... iv 

Preface .............................................................................................................................. v 

List of figures and tables ............................................................................................... vi 

ABBREVIATIONS AND SYMBOLS ......................................................................... vii 

Introduction ..................................................................................................................... 1 

CHAPTER 2: Second generation ethanol: The role of substrates and 

Saccharomyces cerevisiae ................................................................................................ 5 

2.1 Substrate pre-treatment .................................................................................. 7 

2.2 The pulping process ......................................................................................... 8 

2.3 Substrate composition ...................................................................................... 9 

2.4 Fermentability of substrates, prehydrolysate, black liquor and oxygen 

delignification streams as case studies ..................................................................... 11 

2.5 S. cerevisiae as a microbial workhorse for science and industry. .............. 13 

CHAPTER 3: Phenolic compounds: Toxicity, stress and response of 

Saccharomyces cerevisiae .............................................................................................. 15 

3.1 Phenolic compounds ................................................................................... 15 

3.2 Toxicity of phenolic compounds ................................................................ 16 

3.3 Relationship between structure and toxicity of phenolic compounds ... 17 

3.4 Stress and physiological changes elicited in S. cerevisiae by the presence 

of phenolic compounds. ......................................................................................... 19 

CHAPTER 4: Phenolic bioconversion and detoxification in Saccharomyces 

cerevisiae ........................................................................................................................ 21 

4.1 Response to phenolic stress in S. cerevisiae .............................................. 21 

4.2 Catabolism and detoxification of aromatic and phenolic compounds in S. 

cerevisiae ..................................................................................................................... 24 

4.3 Enzymes, genes and pathways for phenolic catabolism in S. cerevisiae .... 25 

4.4 Products of phenolic catabolism in S. cerevisiae ......................................... 28 

CHAPTER 5: Improvement of phenolic tolerance in Saccharomyces cerevisiae by 

metabolic engineering. .................................................................................................. 31 

5.1 Metabolic engineering as a tool for conferring tolerance to inhibitors ..... 32 

5.2 Metabolic engineering approaches to developing phenolic resistance or 

catabolism in S. cerevisiae ......................................................................................... 32 

CHAPTER 6: Conclusions ........................................................................................... 39 



 
ix 

 

CHAPTER 7: Future perspectives .............................................................................. 43 

ACKNOWLEDGEMENTS ......................................................................................... 47 

References ...................................................................................................................... 49 

 

 

  



 
x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Introduction 

 

Humans have always been dependent on nature for survival, and plants have always been 

an integral part of our existence, from building shelters to making fires, food and elixirs. 

Microorganisms have also played a vital role in our history. One of these microorganisms 

is baker’s yeast, Saccharomyces cerevisiae, which is commonly cited as being the first 

microorganism used by man [1]. S. cerevisiae is a natural agent in microbial decay and 

fermentative activity that take place widely in nature, producing ethanol and carbon 

dioxide [2]. It has therefore been used for several millennia to make fermented beverages 

and bread [3, 4]. Indeed, the name cerevisiae originates from the Gaelic word kerevigia 

and the old French word cervoise which both mean “beer” [5]. Being eukaryotic, yeast 

has also served as a cellular model in many scientific studies [6]. In this thesis, the terms 

yeast and S. cerevisiae are used interchangeably. 

 

The use of liquid biofuels such as bioethanol in which yeast is very relevant, predates the 

use of fossil fuels such as petrol and diesel [7]. The early 20th century saw the use of cars 

powered by ethanol derived from hemp, and the famous inventor Henry Ford was quoted 

as saying, “The fuel of the future…is going to come from fruit like that sumac out by the 

road, or from apples, weeds, sawdust – almost anything. There is fuel in every bit of 

vegetable matter that can be fermented” [8]. However, cheap fossil fuel reduced the 

demand for bioethanol [9]. Environmental concerns and dwindling resources have led to 

increased demands for bioethanol once again, but from more sustainable sources. First 

generation bioethanol was derived from edible agricultural biomass such as cassava, 

soybean, sugarcane, sugar beet, and food grains such as wheat, barley, rye, or sweet 

sorghum [10, 11]. However, this was deemed unsustainable due to scarce resources, 

resulting from drought and the limited availability of arable land. Therefore, second 

generation ethanol is based on lignocellulosic materials that do not compete with food 

supplies [12]. The desire for cost-effective, cleaner processes and reduced waste in the 

forest industry has also driven the biorefinery concept, in which forest industries make 

use of residues and side streams for conversion into useful resources [13-15].  

 

Although bioethanol derived from lignocellulosic biomass has great potential for 

sustainable industrial biofuel production, the recalcitrance of the biomass is a significant 
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problem. Harsh pretreatment processes are needed to deconstruct the biomass and make 

it accessible for bioconversion. A major consequence to this pretreatment is the release 

of degradation products such as organic acids, furaldehydes and phenolic compounds, 

which are inhibitory to the microorganisms and enzymes used for bioconversion. Also, 

forest-dependent industries, such as the pulp and paper industry, are primarily interested 

in the cellulosic part of wood, and their pretreatment processes are tailored towards 

retaining the bulk of the cellulose while removing the hemicellulose and lignin fractions 

in side streams. This means that the side streams are poor in fermentable sugars, while 

having a high concentration of phenolic compounds from the depolymerized lignin. 

 

The aim of this work was to investigate the possibility to utilize side streams derived from 

softwood (spruce) in the pulping industry for the production of second generation biofuel 

and biochemicals. The fermentability of spruce pulping side streams, was therefore 

investigated, they were found to be poorly fermentable as they are rich in phenolic 

compounds. Attention was subsequently focused on understanding the influence of 

phenolic compounds on yeast, and how yeast performs in the presence of phenolic 

compounds (Paper I). It was found that the endogenous catabolism of phenolic 

compounds led to in situ detoxification of phenolic compounds through a process in 

which the phenolic compounds are converted into less inhibitory compounds by the yeast 

(Paper II). Finally, yeast strains with increased capability for the bioconversion of 

phenolic compounds were developed (Paper III and Paper IV). An illustration of the work 

described in this thesis is shown in Figure 1 below. 
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Four peer-reviewed articles and a patent application resulted from the work presented in 

this thesis. Paper I reports on the physiological influence of thirteen phenolic compounds 

on yeast. The compounds were selected based on the phenolics profile in spruce-derived 

hydrolysates and side streams. This study also revealed that different phenolic compounds 

have different concentration thresholds at which they affect yeast, and that their functional 

side groups tend to influence their degree of inhibition. The second study reported in 

Paper II, focused on the investigation of the catabolism of coniferyl aldehyde, ferulic acid 

and p-coumaric acid by yeast. Based on the results, a conversion route for these three and 

it was also hypothesized that this route is similar for other phenolics. In the third study, a 

yeast strain called B_CALD, exhibiting improved endogenous conversion of coniferyl 

aldehyde, was engineered by heterologous expression of coniferyl aldehyde 

Figure 1: A schematic description of the outline and strategies of work described in this 

thesis.  

Engineering of a 

Saccharomyces cerevisiae 

strain with improved 

tolerance to phenolic 

compounds and suitable 

for lignocellulosic 

fermentation. 

(Papers III, IV) 

 

Combination 

of data for the 

purpose of 

metabolic 

engineering 

Interaction 

between 

phenolics and 

S. cerevisiae 

(Papers 1& 

II) 

Side stream 

analysis 
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dehydrogenase (CALDH) from Pseudomonas and is presented as a proof of concept. The 

third study in reported in Paper III. In the fourth and final study, it was hypothesized that 

ALD5, PAD1, ATF1 and ATF2 played significant roles in the catabolism of phenolic 

compounds in yeast. The proposed conversion pathway with the four suggested enzymes 

was engineered in a new yeast strain, APT_1, which exhibited an improved ability to 

convert coniferyl aldehyde, ferulic acid and p-coumaric acid. The conversion of coniferyl 

aldehyde, ferulic acid and p-coumaric acid by the recombinant strain and a control strain 

was monitored over time. The conversion products (metabolites) were identified and 

quantified using GC-MS, and most of them were found to be transient. Paper IV provides 

extensive results on the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric 

acid. An elaborate metabolic route for the three compounds in yeast is also proposed, 

based on the quantification of the metabolites. The study reported in paper IV is also the 

subject of the patent application. 

 

The challenges facing second generation biofuel and biochemical production, including 

the problems associated with using pulping side streams, the inhibitory effect of phenolic 

compounds, the bioconversion of phenolic compounds and their potentials are discussed 

in this thesis. Modern trends and strategies in metabolic engineering to increase the 

tolerance of yeast to phenolic compounds are also discussed. The engineering strategies 

used in the present work to develop two recombinant strains are then described, and the 

challenges and prospects of developing a S. cerevisiae strain that can catabolize 

compounds and tolerate phenolic compounds better than the presently available S. 

cerevisiae strains are discussed. 
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CHAPTER 2: Second generation ethanol: The role of substrates and 

Saccharomyces cerevisiae 

 

Second generation biofuels and biochemicals are derived from lignocellulosic, non-food, 

forest and agricultural crop residues [16]. The production of biofuel started more than a 

century ago with the bioconversion of starchy substrates such as corn, potatoes and sugar 

beet to ethanol. However, this competed with food supplies and was generally considered 

unsustainable [16]. Several problems undermined the production of first generation 

biofuels, such as a reduction in oil prices, competition for land and water for food 

production, and changes in government policies [16-18]. Lignocellulosic biofuels have 

economic, strategic and environmental advantages over food-based bioethanol, and have 

therefore become increasingly favoured over first generation biofuels [19, 20].  

 

The conversion of lignocellulosic biomass into the desired end products is a technically 

demanding process [21, 22]. The woody nature and generally, the physical composition 

of lignocellulosic biomass require a series of processes, starting with pretreatment to 

deconstruct the biomass [23, 24], followed by other processes to obtain the desired 

products. The process technology for the conversion of lignocellulosic biomass to 

bioethanol and other chemicals has advanced over the decades, and an increasing number 

of products are being derived from lignocellulose [25] (Figure 2). The processes involved 

in the microbial conversion of lignocellulosic biomass rely heavily on the use of 

mechanical and chemical energy to make the lignocellulosic biomass accessible to the 

microorganisms employed as biocatalysts for conversion into the desired products.
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2.1 Substrate pre-treatment 

The pretreatment of lignocellulosic biomass is the first step involved in deriving the 

desired products from lignocellulosic biomass (Figure 2). Plant cell walls are structurally 

made up of microfibrils of crystalline cellulose, hemicelluloses and lignin sheath in a 

lignin carbohydrate complex, all tightly bound in a network of intra- and inter-molecular 

hydrogen bonds [26, 27]. The physicochemical structure makes it difficult for enzymes 

such as cellulases to bind onto the surface of cellulose molecules, and to act on the specific 

chemical bonds they target. Mechanical force is usually first applied to reduce the 

biomass into 10-30 mm particles, after which pretreatment is applied to deconstruct the 

lignin–carbohydrate complex for subsequent enzymatic hydrolysis of cellulose [28, 29]. 

In general, the main goal of pretreatment is to increase the accessibility and digestibility 

of biomass in order to facilitate the release of the maximum amount of fermentable sugars. 

The method of pretreatment therefore often depends on the nature of the biomass and the 

type of products desired [29, 30]. Pretreatment may be physical [31], chemical, e.g., ionic 

liquids and acids [29, 32-34], biological [35-37] or thermochemical [38, 39]. 

Thermochemical biomass pretreatment in which heat is combined with either an acid or 

an alkaline is the most common of the pretreatment methods. 

 

In a biorefinery concept in which the cellulose in the biomass is intended for a different 

purpose other than fuel production, for example, in a pulping mill, a different method of 

pretreatment is usually applied [40]. The tons of lignocellulosic waste produced by 

agricultural and forest-dependent industries are potential sources of energy that can 

replace fossil-based fuels and chemicals [35, 41, 42]. After the biomass has been 

subjected to pulping, the pulping side streams are sometimes channelled towards 

bioconversion to bioethanol or other chemicals [43]. The use of pulping streams for the 

production of bioethanol or other chemicals is beneficial in a biorefinery concept, where 

environmental concerns and waste reduction are important [44, 45]. Innventia AB our 

project partner in this work, is involved in research in the field of biorefineries and has 

detailed knowledge in pulping and the production of cellulose for various industrial 

applications. Three side streams, prehydrolysate, black liquor and the oxygen 

delignification stream, which will be discussed in later chapters, were supplied by 

Innventia AB. Since pulping technologies on pilot scale constitute part of the core 
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competence at Innventia AB, and the three side streams used in this project were derived 

from a pulping process, it is worthwhile to briefly discuss the methodology of pulping. 

 

2.2 The pulping process 

Pulping is the process of physically and or chemically breaking down wood into discrete 

fibres known as pulp [46, 47]. The aim of pulping is to liberate cellulose fibres from the 

lignin and hemicellulose components of wood or other raw material, leaving the cellulose 

mostly intact for further usage such as paper manufacture [48]. Pulping is a well-

established and popular technology for biomass disintegration to make wood pulps [49]. 

There are different types of pulping processes, and the choice of method is dependent on 

the type of raw material and the kind of pulp required for paper making [48]. Chemical 

pulping is a widespread process. The four classical methods used in chemical pulping are 

the kraft, sulphite, soda and neutral sulphite semi-chemical pulping processes [50]. 

Pulping involves cooking wood biomass to obtain cellulose fibres, during which 

delignification takes place and monomeric sugars are released from the hemicellulose 

fraction into the cooking liquor [48]. The cooking liquor is then released as the process 

streams. Cooking liquor such as spent sulphite liquor, black liquor, the delignification 

stream and pulp residues, are useful sources of energy and lignin, as well as having the 

potential for several applications, including bioethanol and chemical production [51]. The 

main component of wood that needs to be removed before the wood can be processed 

into paper and other cellulosic products is lignin. Lignin itself is a natural, heterogeneous 

polymer responsible for the structural rigidity of cells and tissues, and is essential to the 

vascular development in plants [52, 53]. It is mainly made up of phenylpropane units 

derived from guaiacol, p-hydroxyphenol and syringol, all interconnected in a C-C bond 

[54, 55] 

 

The pulping streams used in the present work were produced by Innventia AB employing 

an alkaline-based process called soda pulping. This is a seven-step process, illustrated in 

Figure 3. Wood is first debarked and cut into small chips. The chips are then treated with 

superheated steam, leading to autohydrolysis, which also opens up the wood matrix [56]. 

The prehydrolysate side stream is derived from this process. Delignification is achieved 

during soda cooking, where the hydroxide plays the most important role in the 

delignification process. After this stage, the cooking liquor, commonly known as black 
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liquor [57, 58], is removed. The pulp is thoroughly washed and defibrillated, and the 

lignin residue remaining in the pulp is removed by oxygen delignification [58]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Substrate composition 

The microbes used to ferment a substrate or side stream utilize monosaccharides as a 

source of carbon and energy. Other components in the substrate stream may be used as a 

source of nutrition, or may interfere with the microbial conversion. In order to determine 

the fermentability of a stream it is necessary to investigate its composition. Compositional 

analysis was therefore carried out on the three streams used in this work. Lignocellulosic 

substrates are often rich in inhibitory compounds such as furans, organic acids and 

phenolic compounds, which are derived from the depolymerization of wood cellulose, 

hemicellulose and lignin polymers. During pretreatment, the hemi-cellulose, which is a 

heterogeneous polymer, is usually degraded into products such as pentose and hexose 

sugars, and sugar acids [59]. Aliphatic acids consisting mainly of acetic acid, formic acid 

Wood chips (softwood) 

Pre-hydrolysis 

Soda cooking 

(NaOH, Na2CO3, H2O) 

Washing & Defibration 

Oxygen delignification 

Pre-hydrolysis 

liquor 

Black liquor 

Delignified wood chips 

Pulp (95% cellulose, 2% hemicellulose, 3% lignin) 

O2 Pulp (97% cellulose, 2% hemicellulose, 1% lignin) 

Oxygen delignification stream 

Figure 3: wood pulping process generating lignocellulosic side streams at Innventia. 
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and levulinic acid, as well as 5-hydroxymethylfurfural (HMF) and furfural are also 

formed [59, 60]. Phenolic compounds are usually derived from lignin [60]. As the three 

pulping side streams used in this study were products of a process designed to remove 

lignin from wood, they were very rich in depolymerized hemicellulose and lignin 

residues. The most abundant compounds were phenolic compounds derived from lignin 

(Table 1). Lignin consists mainly of aromatic compounds, and the structure varies with 

the structure of the plant [52, 61, 62], explaining why the streams were very rich in 

phenolic compounds. 

 

Table 1: Composition of the prehydrolysate, black liquor, and oxygen delignification side 

stream obtained from soda pulping, at the initial pH, and when the pH was adjusted to 5 

 Prehydrolysate Black liquor Oxygen delignification 

 Initial pH 3.0 pH 5.0 Initial pH 12.4 pH 5.0 Initial pH 11.8 pH 5.0 

  (g/l) (g/l) (g/l) (g/l) (g/l) (g/l) 

Arabinose 0.69 0.57 0.73 0.32 0.41 0.43 

Galactose 0.92 0.74 0.62    

Glucose 0.46 0.37 0.26 0.62  0.30 

Xylose 1.22 1.02    0.26 

Mannose 0.99 0.83 0.00    

Formic acid 0.05 0.05 0.17 0.42 0.04 0.05 

Acetate 0.72 0.62 0.47 1.41 0.07 0.05 

HMF 0.75 0.36 0.04    

Furfural 1.50 0.66     

Total 

phenols 2.25 1.21 20.17 3.68 0.56 0.52 
The sugars, acids and furans were measure using HPLC, phenolic compounds were measure using GC-MS 

and Folin–Denis reagent [63] 

 

Apart from being rich in phenolics and low in fermentable sugars, the side streams were 

not suitable for fermentative microorganisms such as S. cerevisiae due to their pH values. 

The black liquor and oxygen delignification stream were derived from the alkaline 

pulping process, while the prehydrolysate was obtained after autohydrolysis. The pH 
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values for the prehydrolysate, black liquor and oxygen delignification stream were 3.0, 

12.4 and 11.8, respectively. The pH was adjusted to pH 5.0, in order to reduce the 

phenolic compounds in the side streams and to make the liquor more suitable for the 

growth of S. cerevisiae. After pH adjustment, the total phenolic contents of the side 

streams were significantly reduced. In black liquor in particular, the total phenolic content 

was reduced to 18% of its original concentration (Table 1). The phenolic contents were 

significantly reduced as the phenolic compounds were derived from dissolved lignin, 

which was mostly alkali-soluble lignin. Upon decreasing the pH, repolymerization 

occurs, and the lignin is precipitated as soda lignin together with a high amount of NaCl, 

as the pH was adjusted with 2M HCl. 

 

2.4 Fermentability of substrates, prehydrolysate, black liquor and oxygen 

delignification streams as case studies 

The usefulness of a lignocellulosic substrate for bioconversion into second generation 

biofuel and biochemicals depends largely on its fermentability, and the aim of biomass 

pretreatment is thus to make the biomass more accessible to enzymes and micro-

organisms for bioconversion. One of the challenges of pretreatment has been finding a 

balance between a substrate that is sufficiently pretreated, while releasing the minimum 

amount of inhibitors [30, 64, 65]. For this reason, the fermentability of the three side 

streams from the soda cooking process was determined by cultivating S. cerevisiae in 

them. The streams were supplemented with 20 g/L glucose. A reference cultivation was 

performed in yeast minimal mineral medium (YMMM) [66], and a second reference 

cultivation? was performed in an inhibitor cocktail composed of known inhibitors in 

softwood hydrolysates [67]. The industrial S. cerevisiae strain Ethanol Red® was used. 

The screening cultivation was performed in Erlenmeyer flasks, and the results are 

illustrated in Figure 4. Normal growth, and a maximum specific growth rate of 0.22 ± 

0.02 h-1 was observed in S. cerevisiae Ethanol Red® in YMMM and 0.16 ± 0.11 h-1 in 

cultivations in the inhibitor cocktail, while specific growth rates of 0.05 ± 0.02 h-1, 0.04 

± 0.01 h-1 and 0.07 ± 0.02 h-1 were observed in the cultivations in prehydrolysate, black 

liquor and the oxygen delignification stream, respectively. This screening experiment 

demonstrated the inhibitory capacity and non-fermentability of the three side streams.  
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Figure 4: Fermentability of prehydrolysate, black liquor and oxygen delignification 

streams from pulping process using S. cerevisiae strain Ethanol Red®.  

S. cerevisiae in: YMMM medium ( ), inhibitor cocktail ( ), black liquor ( ), prehydrolysate 

stream ( ) and oxygen delignification stream ( ) 

 

The non-fermentability of the substrates strongly correlated with the presence of a 

significant amount of phenolic compounds in the side streams. This gave rise to the 

conclusion that the non-fermentability of the streams is due to the presence of phenolic 

compounds.  

 

During pretreatment, a diverse array of phenolic compounds are released into the 

hydrolysates from the depolymerization of lignin [68, 69]. The phenolic profiles of 

hydrolysates vary, depending on the pretreatment method and the nature of the biomass 

[60]. The phenolic compounds act together with other inhibitors present in the 

hydrolysates to hinder the bioconversion of the hydrolysates [70-72]. Due to the variety 

of phenolic compounds present in hydrolysates, it is impossible to delineate the inhibitory 

activity of individual phenolic compounds from that of other phenolic and inhibitory 

compounds in the liquid. Therefore, single phenolic compounds were used in a defined 

0.1

1

10

0 10 20 30 40 50 60 70 80

Lo
g 

1
0

 O
D

 A
6

0
0

n
m

Time (h)

 

 

 



CHAPTER 2: Second generation ethanol: The role of substrates and Saccharomyces cerevisiae 

13 
 

medium to study the inhibitory role of individual phenolic compounds on S. cerevisiae. 

The effect of individual phenolic compounds on the physiology of S. cerevisiae, the effect 

of the concentration of the compound, possible effects of the structure of the compound 

on its activity, and the effects of phenolic stress on S. cerevisiae were deemed to be of 

paramount importance, and were therefore studied further. In addition, the fascinating 

question of whether substrates that contain poorly fermentable sugars but are rich in other 

compounds, such as phenolics, could be useful in the production of other chemicals by 

microbial conversion was also investigated.   

 

2.5 S. cerevisiae as a microbial workhorse for science and industry 

Until now, substrates have been discussed, however, the most suitable substrate requires 

the right biocatalyst to convert it into the desired product. In this work, S. cerevisiae was 

the biocatalyst of interest. S. cerevisiae, known more commonly as baker’s yeast, and is 

the most widely studied of the eukaryotic microorganisms [73]. Yeast has been a 

workhorse for the production of various products in the food, pharmaceutical, chemical 

and energy industries [74]. Although it has been widely used for the production of ethanol 

for more than a century, and is known to be tolerant to harsh growth conditions [74], it 

has been shown that performance varies between strains in lignocellulosic fermentation 

[75]. It is therefore important to select a strain of S. cerevisiae that is well suited for 

lignocellulosic fermentation. One of the advantages of S. cerevisiae is the vast amount of 

knowledge available from decades of research on its physiology, genetics and 

biochemistry [74]. Techniques and tools for genetic engineering and fermentation 

technologies for S. cerevisiae have also been extensively developed [74, 76-78], this has 

aided the genetic engineering S. cerevisiae for various purposes. As it occurs widely in 

nature, S. cerevisiae has acquired the ability to tolerate various inhibitors. This ability can 

be exploited, studied and enhanced to improve the efficiency of S. cerevisiae as a 

biocatalyst in various processes. The ability of S. cerevisiae to cope with inhibitory 

phenolic compounds was of interest in these studies, and in the remaining part of this 

thesis, the influence of phenolic compounds on S. cerevisiae, and the engineering 

methods used to enhance the natural ability of S. cerevisiae to better cope with and 

metabolize phenolic compounds will be discussed. 
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CHAPTER 3: Phenolic compounds: Toxicity, stress and response of 

Saccharomyces cerevisiae 

 

3.1 Phenolic compounds  

Phenolic compounds have one or more hydroxyl groups attached directly to an aromatic 

ring [79]. They are a large group of molecules occurring naturally in plants [79, 80]. They 

are involved in plant growth, development, and defence, and serve as the building blocks 

of lignin [79, 81]. In addition, they function as signalling molecules, pigments and aromas 

that can attract or repel insects and offer protection to plants against, fungi, bacteria, and 

viruses [82]. Phenolic compounds are secondary metabolites in plants [83] and are mostly 

present as esters or glycosides rather than as free compounds. They also exhibit 

considerable diversity in structure, ranging from simple molecules such as phenol, 

vanillin and ferulic acid, to polyphenols such as flavonoids, and polymers such as lignin 

and tannins [79, 82-84]. The phenolic compounds group comprises of several thousands 

of compounds, all possessing a core aryl ring to which different functional groups are 

attached [79], more than 8,000 molecules have been reported in the increasingly growing 

list of flavonoid family alone [83]. Phenol (Figure 5) is the most basic member of the 

phenolic group, it is the structure upon which the entire group is based. The aromatic ring 

in this case is benzene.  

 

 

Figure 5: Phenol, the simplest member of the group of phenolic compound. 

 

Small phenolic compounds are biologically active molecules, and are therefore used in 

various applications in the food, chemical and pharmaceutical industries, often as food 

preservatives, antioxidant fortifiers and drug molecules [83, 85-90]. Phenolic polymers 

such as tannins are used commercially as dyes and astringents, and lignin in various 

industrial applications, commonly as a binder (for example, in the manufacture of 

ceramics and animal feed pellets), a dispersant (e.g. in cement), an emulsifier (e.g. in 

pesticides), and as a sequestrant (e.g. in industrial cleaners) [91-94].  
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3.2 Toxicity of phenolic compounds 

While it is beneficial in plant, the antimicrobial activity of phenolic compounds present a 

significant challenge to bioconversion of lignocellulosic substrates [95]. Although 

phenolic compounds have been known to be toxic to S. cerevisiae [69, 96], the question 

of difference in toxicity among phenolic compounds towards S. cerevisiae was not clearly 

answered. In this thesis work, the phenolic compounds found in the black liquor, 

prehydrolysate and oxygen delignification streams supplied by Innventia AB were 

profiled. Other phenolic compounds commonly found in spruce hydrolysates were 

compiled from literature and in total, thirteen phenolic compounds were selected based 

on their persistent presence in spruce derived pulping side streams and hydrolysates 

(Paper I).  A toxicity screening of the thirteen phenolic compounds was done, toxicity 

limit was defined as the concentration beyond which growth of S. cerevisiae was 

completely inhibited in the presence of the phenolic compound (Paper 1 if the thesis). 

The first observation was the vast difference in toxicity among the phenolic compounds 

(Paper I). A typical characteristics observed at this concentration is that the maximum 

specific growth rate and or the final OD has reduced to about 20% of that of the control 

cultivation in which there was no phenolic compound. An adaptation of the screening is 

presented in Table 3. From these results it is clear that the toxicity of phenolic compounds 

depends on several factors, such as the type and combination of functional side groups 

present on the compound. 
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Table 2: The thirteen spruce-derived phenolic compounds screened for their toxicity to 

S. cerevisiae and their toxicity limits 

Phenolic Compound 

  

Type Concentration range tested 

(mM) 

Toxicity limit 

(mM) 

Coniferyl aldehyde Aldehyde 0.1-2 1.1 

Ferulic acid Acid 0.1- 2.5 1.8 

Vanillideneacetone ketone 0.1- 11 4.2 

Homovanillic acid Acid 0.1 - 11 8.8 

Vanillin Aldehyde 0.1 - 11 9.2 

Hydroquinone Alcohol 0.1 - 11 9.4 

Gallic acid Acid 0.1 - 11 9.4 

p-Coumaric acid Acid 0.1 - 11 9.7 

4-Hydroxybenzoic acid Acid 0.1 - 13 11.6 

Homovanillyl alcohol Alcohol 0.1 - 16 14 

Hydroferulic acid Acid 0.1 - 11 14 

Vanillic acid Acid 0.1 - 16 14.5 

Syringic acid Acid 0.1 - 22 >21 

Adapted from paper I. 

 

 

3.3 Relationship between structure and toxicity of phenolic compounds  

From the results of the present work (Paper I) and information obtained from the 

literature, it could be concluded that the inhibitory influence of phenolic compounds on 

microbial growth and product yield varies considerably, and is dependent on specific 

functional groups [59, 69, 97, 98]. However, it is still not clear how these factors combine 

to make phenolic compounds inhibitory to S. cerevisiae. It was, however, observed in this 

work that the structural features of methoxycinnamaldehydes, in which a combination of 

a methoxy group, long carbon chain with unsaturated bond and an aldehyde group are 

together present on an aromatic ring (an example of which is coniferyl aldehyde in Figure 

6 below) makes a phenolic compound more inhibitory than a combination of a methoxy 

group and a long carbon chain with unsaturated bond together with a carboxylic acid on 

the aromatic ring such as seen in methoxycinnamic acids, a typical example of which is 

ferulic acid. Structures such as methoxybenzaldehydes (an example of which is vanillin) 
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that do not have as many unsaturated bonds like in methoxycinnamaldehydes are less 

inhibitory. Meanwhile, the hydroxyl group seems to contribute the least to toxicity, 

among the functional side groups on phenolic compounds. Actually, the presence of 

hydroxyl group on the ortho, meta and para position of an aromatic compounds has been 

observed to make the aryl ring susceptible to microbial cleavage, thus facilitating the 

metabolism of such compounds. A typical example of this is the metabolism of catechol 

and protocatechuate in S. cerevisiae, which was facilitated by the position of the hydroxyl 

groups on the meta and para carbon atoms on the aryl ring [99]. As discussed in Paper 

IV, one of the routes through which the conversion of coniferyl aldehyde, ferulic and p-

coumaric acids has occurred is via guaiacol, subsequent conversion through guaiacol has 

also been favoured by the location of hydroxyl and methoxy side groups on the aryl rings 

of the compounds (Paper IV). 

 

 

 

Figure 6: The structures of the 13 phenolic compounds screened for toxicity and showing 

the different side groups and their locations on the compound.  
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3.4 Stress and physiological changes elicited in S. cerevisiae by the presence 

of phenolic compounds  

Microbial stress can be defined as processes that damage the cell, causing impaired 

growth or physiological function, or even death unless measures are taken to alleviate it 

[100, 101]. Stress factors include conditions such as osmosis, pH, temperature, oxidation 

by reactive oxygen species, nutrient starvation and several other functions that bioactive 

molecules may induce in a cell [102-105]. The cell is damaged in different ways 

depending on the chemical and physical properties of the stress factor [106-109]. In the 

case of phenolic compounds, the mechanisms inducing stress do not appear to be 

universal, and have not yet been clearly elucidated [110]. Due to the heterogeneity and 

size of the phenolic compounds, it is difficult to find accurate qualitative and quantitative 

data to determine the mechanisms of inhibition among these compounds. It has been 

proposed that phenolic compounds may interfere with the cell membrane of S. cerevisiae 

by influencing its function and changing its protein-to-lipid ratio, as has been demon-

strated in bacteria [59, 111]. This suggestion may be supported by the demonstrated 

ability of polyphenols to adhere to membrane lipids of S. cerevisiae [112, 113]. It has also 

been proposed that phenolic compounds may induce loss of integrity of biological 

membranes, thereby affecting their ability to be selectively permeable barriers and 

enzyme matrices [114]. Phenolic compounds such as nonylphenol have been shown to 

inhibit fungi by uncoupling respiration [115], while phenolic acids have been speculated 

to cause the destruction of electrochemical gradient by transporting protons back across 

mitochondrial membranes [114]. Phenolic acids such as benzoic acid are lipophilic and 

has been reported to tend to accumulate as poorly membrane permeable charged anions, 

intracellularly in the cell [116]. As a result of the membrane impermeability, the anion is 

unable to readily diffuse out of the cell [116]. The proton released from the intracellular 

dissociation of the acid and the intracellular pool of the acid anion is proposed to be a 

major trigger of stress responses that are elicited in the presence of weak organic acids. 

Furthermore, H+-ATPase, War1p and Pdr12p have been reported to be activated by the 

cells in order to remove the protons and acid anions [116-119]. The process of removal 

may come at an energy cost to the cells and could partly explain the reduced biomass in 

the presence of benzoic acid [66, 116]. 
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CHAPTER 4: Phenolic bioconversion and detoxification in 

Saccharomyces cerevisiae 

 

The bioconversion of phenolic compounds is well-known in S. cerevisiae. It is also known 

that glucose is the preferred carbon source for S. cerevisiae [120-122]. In the light of this, 

the question of why S. cerevisiae would chose to catabolise and convert phenolic 

compounds, which are inhibitory and non-preferred carbon sources, in the presence of 

glucose is interesting. It could be speculated that this is primarily the response of S. 

cerevisiae to a stressor in its environment. In this chapter, the bioconversion of phenolic 

compounds as a stress response is discussed, based on the evolutionary capability for 

survival naturally acquired by S. cerevisiae. 

  

4.1 Response to phenolic stress in S. cerevisiae 

The bioconversion of lignocellulosic biomass is a stressful process for the micro-

organisms employed in this process due to the unavoidable presence of inhibitory com-

pounds such as phenolic compounds. Stress resistance is therefore a highly desirable 

phenotype among the microorganisms used in lignocellulosic bioconversion S. cerevisiae 

is confronted with a stressful environment, it will respond to it by attempting to counteract 

the detrimental effects of the stressor in order to avoid reduced growth disadvantage or 

even death [123]. S. cerevisiae is naturally found in environments such as decaying fruit 

and fermented plant residues that are rich in ethanol. It is also found naturally in flowers 

and tree sap. Stress can be induced by the presence of ethanol, and variability in the 

availability of water, pH, temperature and nutrients, among others [124, 125]. Such 

natural environments and applied conditions in which S. cerevisiae is being used exert 

various types of stress on the S. cerevisiae, pushing the cells to evolve and develop a 

robust and extensive stress response machinery consisting of various repair and protection 

mechanisms against different types of stress as it is known in S. cerevisiae today. [101, 

102, 104, 108, 109, 123, 126-135]. The cellular response of S. cerevisiae can often be 

followed by measuring parameters such as growth, metabolic activity, cell morphology, 

metabolite abundances, transcript and protein in the cell [136]. While physiological 

parameters such as growth and cellular morphology can be easily monitored, it is the 

various molecular mechanisms such as gene regulation, protein synthesis, transcription 

regulation in the cells that account for the stress response monitored in those parameters 
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[109, 137, 138]. It has been said that S. cerevisiae responds by changing the expression 

of approximately 1500 genes when exposed to a stressful environment [123]. Of these 

1500 genes, about 900 change irrespective of the nature of the stress, and are therefore 

often referred to as genes of the environmental stress response, and are either repressed 

or induced [123, 139, 140]. Although the genes that are altered during the exposure of S. 

cerevisiae to phenolic compounds are not completely known, the exposure of S. 

cerevisiae mutants to vanillin, for example, has been reported to result in mutants of up 

to 76 genes involved in chromatin remodelling, vesicle transport and ergosterol 

biosynthesis [141]. This suggests that under vanillin stress, cells of S. cerevisiae will 

probably respond by increasing their production of ergosterol, while also upregulating 

genes to protect and repair chromatin proteins and DNA that are probably damaged by 

vanillin. Under phenolic stress, apparent signs usually include prolongation of the lag 

phase, growth inhibition and changes in cell morphology, growth rate, metabolite 

productivity, substrate consumption and biomass yield [142], these are also shown in 

Paper I and Paper II of this thesis.  

 

The response of S. cerevisiae to stress follows a particular sequence of events. When 

exposed to a stressor, S. cerevisiae initially exhibits a transient change or response that is 

often epigenetic in nature, and takes place at the transcript level of several genes in the 

cell [143]. If the stressor is persistent, this will lead to an increase in the rate of mutation 

and genetic changes that specifically fit the needs of the cell to survive in the environment 

and overcome the stressor [144, 145]. This process of genetic change or response is more 

commonly known as adaptive evolution. The response is often manifested phenotypically 

in the cells. The phenotypic signs are often changes in growth rate, changes in cell 

morphology or changes in the levels of metabolites produced by the cells. S. cerevisiae 

has been reported to exhibit different physiological changes in the presence of phenolic 

compounds. For example, phenolic compounds have been shown to reduce the growth 

rate of S. cerevisiae and the yields of ethanol and biomass [69, 146]. In the present work, 

both increased and reduced production of acetate and glycerol and yields were observed 

in S. cerevisiae, depending on the phenolic compounds involved (Papers I and II). The 

relationship between the stressor and response in S. cerevisiae can be schematically 

summed up as illustrated in Figure 7 below.  
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Apart from the variation in the inhibitory capacity of the 13 phenolic compounds listed 

in Table 2, the physiological responses of S. cerevisiae to these phenolic compounds were 

also studied (Paper I). Three distinct growth patterns were observed among the 13 

phenolic compounds, enabling them to be categorized into three clusters. The first cluster 

consisted of coniferyl aldehyde (4-hydroxy-3-methoxycinnamaldehyde), homovanillyl 

alcohol, vanillin, syringic acid and dihydroferulic acid. This cluster caused S. cerevisiae 

to exhibit prolongation of the lag phase as well as a reduction in both the maximum 

specific growth rate and the final biomass concentration which corresponded to the 

concentration of phenolic compounds in the medium until a concentration of compound 

is attained at which a cessation of growth occurred. The second cluster of compounds 

comprised of p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid and 4-

hydroxybenzoic acid while the third cluster was made up of vanillic acid, gallic acid and 

vanillylidenacetone. The second and third clusters of phenolic compounds had no 

influence on the lag phase, rather, cluster 2 compounds induced a reduction in the 

maximum specific growth rate and both cluster 2 and cluster 3 compounds caused a 

reduction in biomass with increasing concentration of the compounds until the 

concentration at which growth ceased was reached. An intra-cluster comparison of the 

phenolic compounds with the physiology of S. cerevisiae, using metabolite indicators 
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Figure 7: Scheme of environmental and molecular processes behind stress response 

in Saccharomyces cerevisiae. 
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such as ethanol, glycerol, biomass and acetate yields, suggested that phenolic compounds 

belonging to the same cluster have similar inhibitory activity on yeast (Paper I). One of 

the interesting factors concerning the clusters was that the phenolic compounds making 

up each cluster were quite diverse in structure and toxicity, although they induced the 

same physiological influence on S. cerevisiae. The question remained, however, as to 

whether the physiological changes observed in the S. cerevisiae in the presence of the 

phenolic compounds in the different clusters is predicated on similar molecular 

mechanisms in the cells. 

 

4.2 Catabolism and detoxification of aromatic and phenolic compounds 

in S. cerevisiae 

S. cerevisiae has been reported to be able to convert some inhibitory phenolics to less 

toxic compounds (Paper II). Early attempts have also been made to investigate this 

conversion, especially the breakage of the aromatic ring, using catechol as a model 

compound and using several species of yeasts [147]. The conversion of phenolic 

compounds and the breakage of the aryl ring by S. cerevisiae has long been of great 

interest to scientists because is seen as an essential step in nature’s carbon cycle [99]. 

Coniferyl aldehyde is known to be reduced to coniferyl alcohol and dihydroconiferyl 

alcohol under fermentative conditions [69] while it is converted to cinnamic acids under 

aerobic conditions (Paper II). Ferulic acid and other cinnamic acids have also been 

reported to be catabolised by S. cerevisiae [148-150]. The bioconversion of phenolic 

compounds in the presence of glucose was also observed in this work (Paper 2), although 

phenolic compounds are not the preferred carbon source for S. cerevisiae. It is therefore 

debatable whether the bioconversion of the otherwise toxic phenolic compounds is a 

response to the stress on the cells resulting from these compounds. The cells are 

challenged by a stressor, and respond by altering their gene regulation, such that enzymes 

promoting the survival of the cells in the presence of the phenolic compounds are 

increasingly produced. These enzymes enable the cells to catabolize the stressor when 

possible, and make the environment more conducive to cell growth. It is thus plausible to 

interpret the bioconversion process of phenolic compounds in the presence of glucose as 

a survival strategy, rather than a nutritional preference of the cell. It has been suggested 

that the conversion of phenolic compounds takes place via the β-ketoadipate pathway, 

which is common in many microorganisms including S. cerevisiae [99, 151-153]. The β-
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ketoadipate pathway is employed by microorganisms to degrade aromatic compound via 

ortho-cleavage. While one branch converts protocatechuate, derived from phenolic 

compounds, to beta-ketoadipate, while the other branch converts catechol, generated from 

various aromatic hydrocarbons, amino aromatics, and lignin monomers, also to beta-

ketoadipate which is then converted to tricarboxylic acid cycle intermediates  [151]. This 

gives microorganisms a two way option to metabolise otherwise complex and recalcitrant 

aromatic compounds.  

 

While S. cerevisiae cannot degrade the aryl ring in certain aromatic compounds such as 

benzoic acid, it can degrade catechol [99, 154]. In Paper IV, in which the conversion of 

coniferyl aldehyde, ferulic acid and p-coumaric acid is reported it was evident from the 

conversion products that S. cerevisiae converts coniferyl aldehyde, ferulic acid and p-

coumaric acid into guaiacol via several intermediates. It was thus hypothesized that 

guaiacol is converted into catechol via hydrolysis of the methoxy group on the ortho 

carbon atom of guaiacol. The catechol is then converted through the β-ketoadipate 

pathway. This presents at least one catabolic route through which coniferyl aldehyde, 

ferulic acid and p-coumaric acids are converted. Several phenolic intermediates that are 

formed during the catabolism of the three phenolic compounds, are also converted by S. 

cerevisiae via the same route. This strongly indicates therefore that this conversion route 

in S. cerevisiae is valid for the conversion of several other phenolic compounds. The 

bioconversion of phenolic compounds, either to less toxic derivatives or complete 

degradation through the breakdown of the aryl ring, can thus be described as a 

detoxification response in the cells that have survived the stress of the compounds, by 

inducing the genes needed for survival and producing the enzymes required for 

bioconversion. 

 

4.3 Enzymes, genes and pathways for phenolic catabolism in S. cerevisiae 

A stepwise conversion process involving several enzymatic steps was observed in the 

conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid (Papers II and III). For 

instance, the conversion of coniferyl aldehyde to ferulic and other cinnamic acids is an 

oxidation reaction. In the cell, in the presence of oxygen an oxidoreductase is required to 

catalyse such a reaction. Later in the conversion of the products from coniferyl aldehyde, 

ferulic acid and p-coumaric acid, other phenolic acids and phenolic alcohols are formed.  
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A fascinating observation in the conversion of coniferyl aldehyde, ferulic acid and p-

coumaric acid is that the conversion products were very similar for all three phenolic 

compounds. As presented in Paper II and Paper IV, and illustrated in Figure 8, coniferyl 

aldehyde was converted to phenolic acids, including ferulic and p-coumaric acids, which 

were then subsequently converted to phenolic alcohols. This suggests that the conversion 

routes for these three compounds is the same in S. cerevisiae, and that conversion involves 

the activity of several enzymes, some of which are proposed in the scheme below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coniferyl Aldehyde 

Carboxylic Acids 
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Hydroferulic acid 
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4-Vinylguiaicol 
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5-Allyl-1-methoxy-2,3-

dihydroxybenzene 
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PAD1 

ALD5 

ATF1, ATF2 

Figure 8: Proposed conversion pathway for phenolic compounds using the conversion 

of coniferyl aldehyde, ferulic acid and p-coumaric acid as template compounds. (From 

Paper IV) 
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Another observation made regarding the conversion of coniferyl aldehyde, ferulic acid 

and p-coumaric acid is that the conversion products are not formed at the same time, but 

in a sequential manner, which suggests the conversion of one intermediate compound into 

another. As illustrated in Figure 9, a conversion sequence starts with the conversion of 

the alkanal group into a carboxylic acid group. This is followed by decarboxylation and 

a series of oxidation steps that yield successively less toxic compounds. This conversion 

sequence further supports the suggestion that several enzymes play different roles in the 

conversion process.  

 

 

 

 

 

It has been confirmed that various enzymes are involved in the conversion of phenolic 

compounds by S. cerevisiae. Phenylacrylic acid decarboxylase (Pad1) which confers 

resistance to cinnamic acids in S. cerevisiae S. cerevisiae, is known to be involved in the 

conversion of cinnamic acid via decarboxylation [155, 156]. Also, Fdc1p, a ferulic acid 

decarboxylase, has also been reported to be essential for the decarboxylation of 

phenylacrylic acids in S. cerevisiae [157, 158]. Many more enzymes are expected to be 

involved in the catabolism of phenolic compounds in S. cerevisiae, either by directly 

catalysing a single step or a series of steps in the conversion, or by signalling other 

proteins that are directly involved in the conversion of phenolic compounds. It has been 

reported that. Yap1p, Atr1p and Flr1p are reported to be involved in conferring resistance 

to phenolic compounds [159], Yap1 is a transcription factor that reduces oxidative stress, 

and is involved in general stress response, while both Atr1p and Flr1p act as efflux pumps 

Figure 9: A simplified conversion sequence for coniferyl aldehyde by S. cerevisiae. 

(From Paper II) 

.  
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against drugs and toxins that enter the cell [160-164]. Thus, while proteins such as 

cytochrome p450 are known to exhibit peroxidase activity in S. cerevisiae by oxidation 

of guaiacol [165], or Pad1p and Fdc1p perform decarboxylation, the roles of other 

proteins such as Yap1, Atr1p and Flr1p have been less direct in conferring resistance on 

S. cerevisiae against phenolic compounds. Yap1p, a member of the AP-1 family of 

transcription factors is involved in oxidative stress response by activating the 

transcription of anti-oxidant genes as a response to oxidative stress [166]. It is also known 

to be involved in resistance to hydrogen peroxide and compounds that alter the redox 

status in the cell [160, 167]. Yap1p has been reported to regulate several anti-oxidant 

genes including TRX2, TRR1, GLR1 and GSH [129, 168, 169]. Therefore, while yap1, 

Atr1p and Flr1p have not been directly reported to be involved in conversion of phenolic 

compounds, their involvement in conferring resistance to S. cerevisiae against phenolic 

compounds via activation of other genes (done by Yap1p) to ease oxidative stress induced 

by the phenolic compounds or by facilitating the removal of the compounds from inside 

the cells as characteristic of Atr1p and Flr1p, qualifies them to be recognized as belonging 

to a group of proteins involved in phenolic resistance and catabolism in S. cerevisiae. In 

all, evidences point to the fact that S. cerevisiae use a combination of several enzymes, 

proteins and genes to catabolise phenolic compounds.  

 

4.4 Products of phenolic catabolism in S. cerevisiae 

The catabolism of phenolic compounds by S. cerevisiae has long been of interest, and 

extensive efforts have been devoted to metabolically engineering S. cerevisiae to obtain 

strains with the ability to produce specific phenolic compounds such as resveratrol and p-

coumaric acid [158, 170, 171]. As reported in Papers II to IV, the conversion of certain 

phenolic compounds such as coniferyl aldehyde, ferulic acid and p-coumaric acid by S. 

cerevisiae yields several products. Since the catabolic process is a series of cleaving steps 

and steps that alter the nature of the side groups decorating the compounds, the 

intermediates are mostly phenolic compounds, and the aromatic rings are retained until 

very late in the conversion process, when they are also cleaved. The product profiles of 

the conversion reveal several intermediate compounds that have pharmaceutical, 

nutritional and chemical importance (Paper II). Thus, the capability of S. cerevisiae to 

produce these compounds of interest can be enhanced and exploited for industrial 

purposes by producing value-added chemicals from lignocellulosic side streams that are 
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rich in phenolics but poor in fermentable sugars, for example, prehydrolysate, black 

liquor and the oxygen delignification side stream. While the phenylpropanoid pathway is 

clearly understood in plants, the bioconversion of phenolic compounds is still a grey area 

in S. cerevisiae. A route for the catabolization of specific phenolic compounds such as 

coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae was suggested in 

Paper II, but this remains to be confirmed. 
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CHAPTER 5: Improvement of phenolic tolerance in Saccharomyces 

cerevisiae by metabolic engineering. 

 

Metabolic engineering involves the application of recombinant DNA methodologies to 

alter the genetic and regulatory functions within cells in order to confer new traits on them 

or to optimize the production of metabolites of interest [172-174]. They can also be used 

to incorporate biochemical pathways or components of existing pathways in one 

organism into another where it is lacking [173]. The metabolic activities of cells are 

employed in a large variety of processes, ranging from the production of chemicals and 

pharmaceuticals, to waste treatment, and various processes in the food industry. As the 

tools for metabolic engineering gets better, and biological and biochemical processes in 

cells are better understood, the use of metabolic engineering as a tool for conferring new 

traits on different species of organisms has increased [74]. The metabolism of the native 

organism is often not optimal for its application. Therefore, the primary aim of metabolic 

engineering is to develop new strains of organisms that meet defined requirements for 

specific production processes, either to develop tolerance against stress inducing elements 

in a production process or facilitate the production of valuable microbial products on a 

profitable and sustainable scale in a cost effective manner [173, 175-177].  

 

The goal of metabolic engineering in medicine or biotechnology is often to obtain a high 

yield of the specific metabolites produced by the engineered organism, a typical example 

of which is the industrial production of L-amino acids for various purposes [178, 179]. 

Although chemical synthesis still dominates production in the chemical industry, 

metabolic engineering has a significant advantage over synthetic organic chemistry as it 

employs biological mechanisms in living systems for the production of natural products 

such as active pharmaceutical ingredients, many of which are still too complex to be 

chemically synthesized, yet highly sought after [173, 180]. 

 

Various strains of yeasts, including S. cerevisiae, as well as different strains of bacteria, 

have been engineered to produce or metabolize phenolic compounds of interest such as 

eugenol and p-coumaric acid [158, 181-183]. Although there are many benefits of 

metabolic engineering, and the fermentation of substrates such as lignocellulosic 

substrates by microorganisms represents an attractive route for the manufacture of 
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industrial chemicals from renewable resources, the approach is not without problems as 

product yields are not always as high as desired [184]. Metabolic engineering approaches 

have been used to develop strains of microorganisms that can utilize components of 

lignocellulosic substrates that are not naturally utilized by such microorganisms; typical 

examples are the metabolic engineering of S. cerevisiae for the utilization of xylan and 

xylose [185-187]. Another area in which metabolic engineering has been useful is in 

conferring tolerance on microorganisms [74, 188]. The use of metabolic engineering to 

confer tolerance on microorganisms is discussed in this chapter, specifically strategies 

that increase the tolerance of S. cerevisiae strains to higher concentrations of the phenolic 

compounds studied in this work. Increasing catabolism has the potential not to only 

provide strains with increased tolerance to inhibitors, but also to produce conversion 

products that are of interest for various biotechnological applications. 

 

5.1 Metabolic engineering as a tool for conferring tolerance to inhibitors 

It is sometimes necessary to induce or improve the tolerance of microorganisms in 

biotechnological applications. For instance, in the case of fermentative microorganisms 

used for the bioconversion of lignocellulosic substrates, the microorganism of interest 

should be tolerant to the inhibitors present in the substrates. Metabolic engineering has 

therefore been a vital tool in conferring tolerance against inhibitors on microorganisms 

[189, 190]. The effects of many lignocellulosic inhibitors such as acetic acid, formic acid, 

furfural, HMF and several phenolic compounds on S. cerevisiae have been individually 

and comprehensively studied at molecular levels using various omics tools and cell 

physiology [70, 102, 109, 159, 190-192]. With the knowledge, resistance to such 

inhibitors have been selectively attempted and often achieved through metabolic 

engineering approaches for the development of strains [190, 193-195]. Metabolic 

engineering is therefore a useful platform for the development of tolerance in 

microorganisms. 

 

5.2 Metabolic engineering approaches to developing phenolic resistance or 

catabolism in S. cerevisiae 

At the beginning of these studies, it was hypothesized that there was a relationship 

between the catabolism of phenolic compounds and tolerance, in other words, that 
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increased catabolism of phenolic compounds by S. cerevisiae also confers increased 

tolerance to phenolic compounds. Two strategies for the development of S. cerevisiae 

strains with increased catabolism of phenolic compounds were employed to test this 

hypothesis. These strategies are discussed below, together with other metabolic 

engineering strategies reported in the literature.   

 

Since bioprocesses often require that cells undergo genetic modifications, which alter the 

original metabolic balance in the cell, manipulation of the metabolism of cells must be 

done in a way that increases the chances of obtaining a feasible, and eventually a superior, 

bioprocess. Several strategies are used in metabolic engineering of S. cerevisiae against 

phenolic compounds, the approach chosen in specific cases depend mostly on the 

eventual application of the strain. Some of the most common strategies in metabolic 

engineering are as below and a summary is presented in table 3.  

 

5.2.1 Heterologous expression of genes of interest 

The heterologous expression of genes of interest present from other organisms in the S. 

cerevisiae has been used to develop desirable traits in S. cerevisiae. As a typical example 

of application of heterologous expression in developing increased tolerance in S. 

cerevisiae against phenolic compounds, laccase has been heterologously expressed in S. 

cerevisiae leading to an improved resistance of S. cerevisiae against phenolic compounds 

[195]. Laccase, is a copper enzyme common in nature and among several species of fungi, 

it causes oxidative polymerization of phenolic compounds such as hydroquinones and 

catechol [196, 197].  

 

The first strategy used in this thesis work, to develop a S. cerevisiae strain named 

B_CALD was the heterologous expression of a coniferyl aldehyde dehydrogenase 

CALDH from Pseudomonas sp HR199, this was described in Paper III. B_CALD was 

engineered for improved catabolism of coniferyl aldehyde, one of the phenolic 

compounds of interest to the thesis. CALDH gene codes for the similarly named Caldh 

enzyme which is known to facilitate the conversion of coniferyl aldehyde in the host 

Pseudomonas. The expression of CALDH in S. cerevisiae enhanced the specific 

conversion of coniferyl aldehyde up to 27 times in comparison to the control strain. 

Heterologous expression of enzymes has also been used to express the phenyl propaniod 
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pathway in S. cerevisiae, many phenolic compounds of interest have been synthesised in 

S. cerevisiae as a result of this [158, 171, 198-200]. 

5.2.2 Overexpression of genes encoding relevant enzymes of a relevant 

biosynthetic pathway 

The overexpression of genes encoding relevant enzymes relevant in a particular 

biosynthetic pathway that are native to S. cerevisiae is another strategy employed in the 

development of S. cerevisiae strains with increased tolerance to and bioconversion of 

phenolic compounds. PAD1 and FDC1 have both been known to code for enzymes that 

facilitate the decarboxylation of cinnamic acids, and overexpression of these genes have 

been shown to improve the resistance of S. cerevisiae to phenolic compounds [156, 201].  

 

The second approach that was used in developing a S. cerevisiae strain named APT_1, 

with increased catabolism and resistance to phenolic compounds is the overexpression of 

ALD5, PAD1, ATF1 and ATF2, all native to S. cerevisiae, I have reported this approach 

in paper IV which is focused on the aspect of my thesis work in which I have worked on 

developing a S. cerevisiae strain with increased catabolism of coniferyl aldehyde, ferulic 

and p-coumaric acids. I hypothesised the enzymes Ald5, Pad1, Atf1 and Atf2 from the 

four genes are involved in the conversion of phenolic compounds in S. cerevisiae. I have 

hypothesised that Ald5 is the oxidoreductase involved in the conversion of coniferyl 

aldehyde to cinnamic acids, Pad1 is responsible for the conversion of the cinnamic acids 

via decarboxylation to phenolic alcohols while the Atf1 and Atf2 are responsible for the 

formation of various other phenolic alcohols from the immediate products of the 

decarboxylation of the cinnamic acids.   

 

5.2.3 Deletion of genes vital to competing metabolic pathways 

The deletion of genes vital to competing metabolic pathways is another strategy that has 

been used to facilitate the catabolism of phenolic compounds. This has been demonstrated 

in the production of specific phenolic metabolites via biotransformation of other phenolic 

compounds in S. cerevisiae. For example, in the production of resveratrol from p-

coumaric acid or the bioconversion of aromatic amino acids into p-coumaric acid, genes 

that could either facilitate further conversion of the product of interest or divert 

intermediate products into undesirable side products were deleted [158, 171]. 
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5.2.4 Expression of genes that serve other functions that is associated with is 

associated with the biochemical process of interest in the cells  

The expression of genes that are not directly involved with the biochemical process of 

interest but are involved in other processes that influence the biochemical process of 

interest, is a strategy that has been used extensively in metabolic engineering. For 

instance, spermidine have been reported to possess different functions in the protection 

of DNA from reactive oxygen species [202], overexpression of spermidine synthase, 

SPE3 was shown to increase the tolerance of S. cerevisiae in corn stover hydrolysate that 

was not said to have been detoxified [189]. Since corn contains several phenolic 

compounds alongside other inhibitors, overexpression of SPE3 therefore can be said to 

increase the tolerance of S. cerevisiae against phenolic compounds and other 

lignocellulosic inhibitors [189]. 

 

5.2.5 Enzyme engineering 

Enzyme engineering is another strategy that has long been in use in metabolic 

engineering. Although this strategy has been very rarely demonstrated in developing S. 

cerevisiae strains with increased tolerance to phenolic compounds, it holds great potential 

in developing S. cerevisiae strains with enzymes that are highly specific for certain 

phenolic substrates and can more effectively convert them. The closest approach to 

rational enzyme engineering has been directed molecular evolution. In a very successful 

example, the enzyme Cytochrome c peroxidase, a peroxidases that aid the conversion of 

guaiacol in S. cerevisiae has been engineered with the resulting mutants possessing a 300-

fold increased activity against guaiacol and an up to 1000-fold increased specificity for 

guaiacol, relative to that for the natural substrate [165]. 

 

Application of the strategies described above has resulted in a number of strains of S. 

cerevisiae with increased bioconversion or tolerance to phenolic compounds. With each 

successful case of heterologous expression of an enzyme, part of a pathway, or 

overexpression of an endogenous gene, the success of the strategy has been closely 

associated with the availability of detailed knowledge. Furthermore, each successful 

result involved engineering directed towards a specific phenolic compound, such as 

guaiacol, or a small group of phenolic compounds sharing similar structures, such as the 
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cinnamic acids. Although successful attempts to engineer S. cerevisiae with increased 

tolerance to phenolic compounds have been reported, the approach is not without 

problems. This could explain the relatively small number of research articles reporting 

success in this field. The development of tolerance to phenolic compounds face some 

significant challenges; one is the limited understanding of specific cellular target of 

phenolic compounds in S. cerevisiae, corresponding cellular responses and molecular 

processes that are triggered in S. cerevisiae  when confronted with phenolic compounds. 

It is not certain whether phenolic targets and cellular response are similar among many 

phenolic compounds, this is mainly due to the diversity among the large family of 

phenolic compounds. Another challenge is that the attending consequences of 

metabolically engineering cells with new functions or enzymes is not usually known 

ahead of an engineering strategy. A well designed metabolic engineering strategy may 

not yield the desired result because the whole cellular machinery has to adjust for and 

cope with the newly introduced metabolic process. Several consequences such as slower 

growth, reduced biomass yield, accumulation of undesired metabolite, to mention a few 

of such phenomenon that are usually placed under the umbrella of “metabolic burden”, 

often result from metabolic engineering. In the first strategy used in this thesis (Paper III), 

despite the significant increase in specific conversion of coniferyl aldehyde by the 

engineered strain B_CALD, a cessation of growth during the coniferyl aldehyde 

conversion phase in the strain was observed. It was speculated that this may have been 

due to the demand for NAD+ required by the enzyme to convert coniferyl aldehyde. The 

expression of CALDH altered the physiology of S. cerevisiae. 
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CHAPTER 6: Conclusions 

 

The challenges of converting lignocellulosic substrates into fuels and chemicals are 

numerous, and tackling the effects of phenolic inhibitors on the classical fermenting 

organism S. cerevisiae is one of the challenges that remains to be solved. Furthermore, 

the use of phenolic-rich substrates for the production of specific phenolic metabolites will 

only be a viable prospect provided we have an adequate understanding of the catabolism 

of phenolic compounds by S. cerevisiae. The work described in this thesis was therefore 

focused on the study of the metabolism of phenolics in S. cerevisiae.  

 

The complexity associated with phenolic compounds arises mainly from the diversity of 

the compounds in the phenolic family. Each compound is unique and may have its own 

influence on S. cerevisiae. The functional groups attached to each compound are 

responsible for the uniqueness of each phenolic compound, and determine the toxicity of 

the phenolic compounds. From the results of the studies presented in this thesis it could 

be concluded that the nature, a combination of the functional side groups and the 

saturation of the bonds on the phenolic compounds determine how toxic the compounds 

are. This is responsible for the significantly higher toxicity in coniferyl aldehyde that 

possess a methoxy group, an hydroxyl group and an aldehyde group anchored via a longer 

alkyl chain with unsaturated bond compared to vanillin, which also possess a methoxy 

group, an hydroxyl group and an aldehyde group but on a short, saturated anchorage. 

 

The mechanisms of action also seem to vary among the phenolic compounds, and our 

knowledge concerning the mechanisms of action of individual phenolic compounds and 

their effects on S. cerevisiae is still limited. However, the physiological effects of some 

of the phenolic compounds are similar. In the study reported in Paper I, the physiological 

response of S. cerevisiae to thirteen phenolic compounds with regard to their toxicity 

helped to distinguish three clusters of compounds. However, it still remains to be 

elucidated whether the physiological changes observed in S. cerevisiae that determined 

the clustering of the compounds were the result of a common molecular influence of the 

compounds in each cluster on S. cerevisiae, or not. 
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An important but often overlooked aspect is the ability of S. cerevisiae to initiate survival 

mechanisms when challenged by a hostile environment. One such mechanism is the 

transformation of inhibitors; in this work, phenolic compounds. In the study on coniferyl 

aldehyde, ferulic acid and p-coumaric acid (Paper II), the conversion of the three phenolic 

compounds by S. cerevisiae was observed. The conversion of phenolic compounds by S. 

cerevisiae is an interesting phenomenon that has also been reported previously in the 

literature. Surprisingly, coniferyl aldehyde, which is the most inhibitory compound, was 

the most rapidly converted, and the highest number of conversion products was derived 

from coniferyl aldehyde Furthermore, ferulic acid and p-coumaric acid share a conversion 

product profile with coniferyl aldehyde. The rate of conversion varies among the 

compounds, but similarities in the conversion product profiles led to the conclusion that 

the conversion route for these three phenolic compounds is the same, as was reported in 

Paper II.  

 

The ability of S. cerevisiae to catabolize phenolic compounds can be exploited to improve 

our understanding of the chemical processes taking place in the cells in order to develop 

strains of S. cerevisiae that are not only tolerant to phenolic compounds, but can produce 

specific phenolic metabolites through catabolism. The chemistry of the reactions taking 

place in the cells can also provide valuable insight into the enzymes and genes involved 

in the catabolic process, providing valuable information on which genes and enzymes 

should be targeted in metabolic engineering. The diversity of phenolic compounds 

prevents the use of an all-encompassing strategy in engineering phenolic metabolism or 

tolerance in S. cerevisiae. However, strains can be developed by engineering several 

genes and enzymes simultaneously. A combinatorial strategy in which all the enzymes 

involved in the bioconversion of a small group of compounds are targeted appears to be 

more promising, as evident from the results presented in Paper IV. 

 

Two strategies were employed in an attempt to improve the catabolism of phenolic 

compounds by S. cerevisiae. The first involved the heterologous expression of an enzyme 

known to catabolize phenolic compounds (CALDH in the B_CALD strain) and the other, 

multiple overexpression of four endogenous genes hypothesized to play active roles in 

the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid (ALD5, PAD1, 

ATF1 and ATF2 in the strain APT_1). Although the heterologous expression of CALDH 

did not lead to increased tolerance, and a temporary cessation of growth was observed 
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during the conversion of coniferyl aldehyde, both strategies yielded strains of S. 

cerevisiae with increased catabolism of coniferyl aldehyde, ferulic acid and p-coumaric 

acid. Improving the catabolism of phenolic compounds and developing strains that can 

utilize substrates rich in phenolic compounds more efficiently, could thus be effective 

approaches in developing phenolic-tolerant strains of S. cerevisiae. 
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CHAPTER 7: Future perspectives 

 

This thesis describes the studied carried out to obtain new knowledge and improve our 

understanding of how S. cerevisiae catabolizes phenolic compounds. Efforts have also 

been devoted to developing new strains of S. cerevisiae with improved catabolism of, and 

tolerance to, phenolic compounds. While significant challenges remain, I am optimistic 

that the small steps taken in this work have moved us closer to the development of a 

“super yeast” with all the safety characteristics required for the industrial production of 

second generation fuels and chemicals using lignocellulosic biomass as the raw material. 

In particular, I believe that the work contained in this thesis has taken us a little farther in 

the development and use of S. cerevisiae as a biocatalyst for production of chemicals from 

lignin residues, this is of currently of significant interest. This work is also complimentary 

to the knowledge pool available on the tolerance of S. cerevisiae to organic acids and 

furaldehydes and utilization of C5 sugars. 

 

The catabolism of phenolic compounds by S. cerevisiae is of considerable interest and 

relevance in several industries and applications. However, several challenges remain to 

be overcome before a strain of S. cerevisiae can be developed which can catabolize 

phenolic compounds to at the concentrations necessary in commercial applications. It is 

also important to be able to direct the catabolic process towards specific products of 

interest. The immediate challenges are the development of a more robust S. cerevisiae 

strain and the manipulation of the catabolic process in S. cerevisiae to achieve the desired 

products. In order to develop a strain of S. cerevisiae that is more tolerant to phenolic 

compounds, more detailed studies must be carried out on cellular targets in S. cerevisiae. 

Also, the mechanism behind the tolerance of S. cerevisiae, or at least the most important 

genes and cellular processes involved in its resistance, to phenolic compounds must be 

elucidated in order to develop a S. cerevisiae strain that is more robust to phenolics 

inhibition. Bearing in mind the fact that the mechanisms governing inhibition probably 

vary between different phenolic compounds, this is a serious challenge. 

 

Although a catabolic route for phenolic compounds has been proposed in this thesis, it is 

evident that other enzymes may be involved in the conversion of phenolics. In order to 
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be able to engineer the catabolism of phenolic compounds by S. cerevisiae effectively, 

the entire catabolic route must be elucidated, and the products of the catabolism of each 

phenolic compound must also be known. Once this has been achieved, strains of S. 

cerevisiae can then be tailored for the production of specific catabolites from substrates 

containing specific phenolic compounds. Regulation of the catabolic process is vital in 

developing strains incorporating mechanisms that allow the catabolism of specific 

phenolic compounds to be controlled, including termination at the desired catabolite. This 

emphasizes the need to understand steps in the catabolic process that are not yet clearly 

understood. In our quest to understand the catabolic process in detail, all the enzymes 

involved in the conversion process must be identified. Since the metabolism of S. 

cerevisiae is not optimized for the catabolism of phenolic compounds, it will have to be 

metabolically engineered to improve the conversion of phenolics. This could mean 

overexpressing or deleting genes for specific enzymes, targeted mutagenesis or using 

different types of promoter genes to induce the expression of the enzymes. Many of the 

intermediate compounds are of interest, but due to their transient nature, they are soon 

converted into other compounds. In order to be able to extract these compounds, the 

conversion pathway must be further engineered so that conversion ceases when the 

phenolic metabolite of interest has been reached. 

 

Understanding the metabolism of phenolic compounds in S. cerevisiae is crucial to 

bioeconomy. The concept of a biorefinery in which every component of the feedstock is 

maximally utilized is enhanced when feedstocks such as soda pulping side streams, which 

are rich in aromatic lignin residues and low in fermentable sugars, can be utilized for the 

production of chemicals. Furthermore, the range of products that could be derived from 

the conversion of one phenolic compound into another has been demonstrated in this 

work, by studying the conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. 

A wide range of products are already being chemically synthesised from lignin on an 

industrial scale, however a large amount of lignin is still being combusted for energy 

production. There is thus a room and a need to expand the application of lignin, especially 

in the biochemical industry. 

 

Plants synthesize a broad range of secondary metabolites, including phenolics, which 

constitute a natural source of diverse bioactive molecules of relevance in the food, 

chemical and pharmaceutical industries. The bulk of secondary metabolites from plants 
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are still not being utilized effectively due to the cost of processing. The chemical synthesis 

of many of these plant-derived high-value chemicals, such as phenolics used as flavouring 

and colourants in foods, and as cosmetic and pharmaceutical additives, is often expensive 

and not environmentally friendly. I hope that the work presented in this thesis has 

provided a basis for the microbial production of such high-value phenolics in fermentative 

bioprocesses that are scalable and sustainable, ultimately serving as alternative 

production platforms to commercial chemical synthesis. This would add value to forest-

based industries where waste production and management is a constant challenge. 

Approximately 20-100 litres of waste water is produced for every ton of wood processed. 

This waste water is generally low in fermentable sugars but rich in tannin, derivatives of 

lignin and other chemicals. The development of strains of S. cerevisiae that can efficiently 

transform the phenolic residues in such waste water will bring us closer to the realization 

of an integrated biorefinery, in which all the components of lignocellulosic biomass are 

converted into value-added products and waste is reduced. 

 

I hope the work presented in this thesis has increased awareness of the opportunities 

offered by the bioconversion of aromatic residues into specific high value chemicals from 

depolymerized lignin, using metabolically engineered strains of S. cerevisiae.  
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The chemical nature of phenolic compounds
determines their toxicity and induces distinct
physiological responses in Saccharomyces
cerevisiae in lignocellulose hydrolysates
Peter Temitope Adeboye, Maurizio Bettiga and Lisbeth Olsson*
Abstract

We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates
(4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic
acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone).
The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the
toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain
of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which
inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based
on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties
such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth
patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that
the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets
and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar
inhibitory effect and mechanisms of inhibition.

Keywords: Phenolics; Toxicity; Inhibition; Tolerance; Conversion; Saccharomyces cerevisiae
Introduction
Lignocellulose, primarily made up of carbohydrates and
lignin, has been billed as the most abundant material on
earth (Chandel et al. 2011). Next to carbohydrates, aro-
matic compounds are the second most abundant class of
organic compounds in nature (Boll et al. 2002). It has
been claimed that aromatic compounds, including phe-
nolics make up about 25% of the earth’s biomass (Gibson
and Harwood 2002). This abundance is significant to the
usage of plants and plant residues as important resources
in second generation biofuel and chemicals production.
Phenolic compounds are secondary metabolites that are

synthesized by plants via the pentose phosphate, shikimate
and phenylpropanoid pathways (Randhir et al. 2004).
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Engineering, Chalmers University of Technology, Gothenburg SE-412 96,
Sweden

© 2014 Adeboye et al.; licensee Springer. This i
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
They form the building blocks of lignin and they play cru-
cial role in plants resistance to diseases and infections
(Hutzler et al. 1998, Nicholson and Hammerschmidt
1992, Vance et al. 1980, Vanholme et al. 2010). Lignin
in itself is a natural polymer that is primarily made up of
phenylpropane units derived from guaiacol, p-hydroxyphenol
and syringol, all interconnected in a C-C bond (Dorrestijn
et al. 2000, Mcdonough 1983, Nenkova et al. 2011). Phen-
olic compounds are directly involved in various plant
physiological processes and plant defense mechanisms
against microbial infections (Bhattacharya et al. 2010,
Blum et al. 1999, Bravo 1998, Hutzler et al. 1998, Muller
et al. 1964). In addition, their antimicrobial, antioxidant
activity, and their various other dietary and pharmaceut-
ical properties make them highly relevant to food and
pharmaceutical industries (Balasundram et al. 2006,
Benavente-Garcia et al. 1997, Hertog et al. 1993,
Puupponen-Pimia et al. 2001, Scalbert and Mazur 2002).
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On the other hand, the beneficial effect of the antimicro-
bial activities of phenolic compounds which is beneficial
to plants present a significant challenge to the production
of second generation bioethanol and other chemicals from
plant residues and lignocellulosic materials (Klinke et al.
2004). During biofuel production, plant biomasses are first
subjected to pre-treatment processes and hydrolysis in
order to breakdown their structures and adapt them to
forms accessible by enzymes for fermentation and biocon-
version. Diverse phenolic compounds are formed as resi-
dues of lignin degradation during these wood and plant
residue pre-treatment processes for hydrolysate produc-
tion and wood pulping (Guss 1945, Klinke et al. 2004,
Larsson et al. 2000, Larsson et al. 1999b, Taherzadeh and
Karimi 2007). The composition of the different phenolic
compounds formed during pre-treatment varies and de-
pend on both the plant source and the pre-treatment
method (Larsson et al. 1999b). In general, the resulting
mix is usually made up of phenolic acids, phenolic alde-
hydes, phenolic alcohols and phenolic ketones all of which
are inhibitory to cells. A typical spruce hydrolysate will
often consist of the phenolic compounds listed in Table 1.
The occurrence of phenolic compounds with various

functional groups like aldehydes, acids, ketone and al-
coholic, and the abundance of phenolic compounds in
Table 1 Table of phenolic compounds and the concentration
range commonly found in spruce hydrolysates

Phenolic compounds Amount (mg/L)

Gallic acid 7.1–10.2

Catechine 61–71.9

Vanillic acid 3.93–71.2

Syringic acid 42.3–42.87

Ferulic acid 42.91–45.08

Picein [3-(β-d-glucosyloxy)-hydroxy-acetophenone] 0.2–1.4

Pungenin[3-(β-d-glucosyloxy)-4-hydroxy-acetophenone] 0.2

Taxifoloin 2–33

Coniferyl aldehyde 35–301

Vanillic acid 0.01–35

Vanillin 36

4-hydroxybenzoic acid 39–81

Catechol 2

Acetoguaiacone 146

Trans cinnamic acid 10

Syringaldehyde 107

(Almeida et al. 2007b, Deflorio et al. 2011, Delvas et al. 2011, Evensen et al.
2000, Hutzler et al. 1998, Miyafuji et al. 2003).
Also, Pungenol (3′,4′-hydroxy-acetophenone), Piceol (4′-hydroxyacetophenone),
Trans-resveratrol, P-Coumaric acid, Coumarins, Stilbenes, Styryl pyrones,
Dihydroconiferyl alcohol, Hydroquinone, Homovanillic acid have all been found
in various concentrations in spruce hydrolysates (Almeida et al. 2007b, Deflorio et al.
2011, Delvas et al. 2011, Evensen et al. 2000, Hutzler et al. 1998, Miyafuji et al. 2003).
wood hydrolysates present major challenges to studying
them in detail. In some studies aimed at understanding
phenolic compounds, compounds having similar functional
groups have been grouped together while representative
compounds of each group were studied (Larsson et al.
2000), presumably under the assumption that compounds
having the same functional group are similar in their in-
hibitory activities. It has been shown that the presence of
phenolic compounds in hydrolysates may determine the
fermentability of hydrolysates and directly impacts on
ethanol productivity of S. cerevisiae (Larsson et al. 1999a,
Larsson et al. 2000). The effects of many selected phenolic
compounds and other inhibitors on yeast fermentative
conditions have been screened, and strains of S. cerevisiae
engineered for phenolic tolerance have been constructed
and evaluated (Delgenes et al. 1996, Gregg and Saddler
1996, Larsson et al. 2000). It is known that certain phen-
olic compounds such as ferulic acid and vanillin can be as-
similated and converted by S. cerevisiae (Clausen et al.
1994, Huang et al. 1993, Vanbeneden et al. 2008) however
there are concentrations at which S. cerevisiae cannot
survive the inhibition of such compounds, the various
concentrations have not been defined for phenolic
compounds.
Basing our experimental work on the hypotheses that

(i) different phenolic compounds have different limits of
toxicity on S. cerevisiae and (ii) mechanisms and activ-
ities of inhibition among phenolic compounds may be
compound-specific, we have defined the toxicity limits
of 13 different phenolic compounds selected from all
classes of phenolic compounds commonly found in but
not limited to spruce hydrolysates. We also studied the
effects of the various phenolic compounds on the growth
of S. cerevisiae and categorised the phenolic compounds
into clusters based on their effects on growth. The influ-
ence of each cluster of phenolic compounds on metabolite
yields were investigated in order to draw parallels and
similarities between the phenolic compounds within each
cluster and to explore whether compounds within each
cluster have similar influence on the physiology of S. cere-
visiae, all in order to better understand phenolic inhibition
in lignocellulosic fermentation.

Materials and methods
Yeast strain
The industrial yeast strain S. cerevisiae Ethanol Red was
used for this study. The yeast strain was obtained from
the local wine-making and brewery shop in Gothenburg,
Sweden.

Reagents
4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol,
vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic
acid, p-coumaric acid, hydroquinone, ferulic acid,
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homovanillic acid, 4-hydroxybenzoic acid and vanillylidena-
cetone and other reagents used for growth media prepar-
ation in the studies were procured from Sigma-Aldrich.

Preparation of culture media
The medium used for all the cultivations was Yeast Min-
imal Mineral Medium (YMMM) (Verduyn et al. 1992).
YMMM containing single phenolic substrates was pre-
pared for each phenolic compound using the concentra-
tions reported under “Results”.

High throughput toxicity screening of phenolic
compounds on S. cerevisiae
To define the range of values within which the toxicity
limits of the compounds lie, high throughput toxicity
screenings were done using Bioscreen C MBR (Oy Growth
Curves Ab Ltd, Finland). Several concentrations of each
phenolic compound were tested. Five replicates of each
concentration step were run in parallel in the following
conditions: T = 30°C ± 0.1; time = 96 hours; shaking
speed setting = “maximum” optical density (OD) reading
period = 15 min; wavelength filter =wideband 450 – 580 nm;
initial OD = 0.1.
To facilitate data comparison, the readings obtained

from the bioscreen were calculated back to standard
spectrophotometric measurements at 600 nm via the
formula:

ODspectro ¼ ODBioscreen

Path Length cmð Þ � 1:32
ð1Þ

Where

ODspectro = equivalent OD on spectrophotometer at 600 nm
ODBioscreen = measured OD on the bioscreen

PathLength ¼ volume mlð Þ
r2 X π

ð2Þ

Where: volume = culture volume in a well in the biosc-
reen plate; r = radius of the well.
Non-linearity at higher cell densities was corrected as

described by Warringer et al., (Warringer and Blomberg
2003) using the formula:

ODcor ¼ ODobsþ OD2obs � 0:449� �

þ OD3obs � 0:191� � ð3Þ

Where: ODcor = the corrected OD and ODobs = the
observed OD values, from which the average blank has
been subtracted.
Aerobic batch cultivations were carried out in 100 ml or

250 ml baffled Erlenmeyer flasks (SIMAX, Czech Republic),
containing 20 ml and 50 ml medium, respectively.
OD measurement of culture
Growth measurement for shake flask cultivations was done
by measuring the turbidity of the culture at A600nm using a
Thermo Scientific GENESYS 20 Visible Spectrophotometer.

Determination of dry cell weight
Determination of Dry Cell Weight (DCW) was done in
duplicates. Cells were harvested by filtration using pre-
dried and weighed filter paper discs of 0.45 μm pore size
(Sartorius Stedim Biotech, Goettingen, Germany) on a
water tap vacuum filter unit (Sartorius Stedim Biotech,
Goettingen, Germany). The filter paper discs were dried
in a microwave at 120 W for 15 minutes, weighed again
and the biomass concentrated was calculated from the
difference. DCW data were used for the calculation of
biomass yield.

Analysis of metabolites
Analysis of ethanol, glycerol and acetate from the cultiva-
tion was performed by high performance liquid chroma-
tography (HPLC) using a Dionex Ultimate 3000 HPLC
unit (Thermo scientific, Dionex Corporation, Sunnyvale,
USA) equipped with an Aminex HPX-87H (Biorad, USA)
column of length 300 mm and diameter 7.8 mm, which
was packed with 9 μm particles. A column temperature of
45°C was used for analysis and 5 mM H2SO4 was used as
the mobile phase with a flow rate of 0.6 ml/min through-
out the analysis. A Shodex RI-101 RI detector and an Ul-
timate 3000 VWD 3100 variable wavelength ultraviolet
detector coupled to the HPLC unit were used to quantify
the metabolites.

Determination yields
Yields (Yi/s) of ethanol, glycerol, acetate and biomass
from the total consumed substrate (glucose) were calcu-
lated during the exponential growth phase by plotting
each of the products against the total consumed glucose.
The yield for each product was then obtained as the
slope of the plot. Average values of biological replicates
were used as the final yield for each culture condition.

Establishing concentration ladder of compounds
A concentration series was set up in increasing order for
each compound to be screened for effect on S. cerevisiae.
Since toxicity varies widely and using a universal concen-
tration series for all of the compounds was not feasible,
we determined consistent ratios of increase between con-
secutive points in the concentration series for all com-
pounds to allow comparison of toxicity among the various
compounds.

Determination of toxicity limits
The toxicity limits of the different phenolic compounds
were determined based on the aspect (maximum specific
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growth rates or final OD or elongation of lag phase) at
which the yeast cultivations were most affected. The
maximum specific growth rate of the S. cerevisiae in the
presence of increasing concentrations of phenolic com-
pounds were determined with increasing concentration
of the compounds until cell growth stopped.

Statistical validation of data
All experimental data were subjected to Student t-test to
determine the significance level with respect to the
control. The number of replicates varied from 3 to 7, de-
pending on the experiment. Therefore, t-tests for two-
samples assuming unequal variances were performed
with a significance level of probability set at p < 0.05. All
error bars were standard deviations of multiple measure-
ments of each parameter, all derived from biological
replicates.

Results
Effect of compounds on S. cerevisiae growth pattern
We hypothesized that the physiological effect of each
phenolic compound on S. cerevisiae would be unique
and have phenotypic traits demonstrated in the growth
pattern of S. cerevisiae. Yeast was grown in the presence
of 4-hydroxy-3-methoxycinnamaldehyde, homovanilyl
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(Additional file 1: Figure S1b). In cultures contaning the
third cluster of compounds however (as illustrated in
Additional file 1: Figure S1c), the maximum specific growth
rate remained constant until the concentration was attained
at which growth was no longer possible.
The determination of biomass formation in the cultiva-

tions was limited to OD measurements on the bioscreen.
In cultivations containing cluster 1 compounds, the OD of
the yeast cultivations decreased with increasing concen-
tration of phenolic compound until a concentration is
attained at which growth stopped. As illustrated in
Additional file 2: Figures S2a and S2, the reduction in OD
was observed to be valid for the first and second clusters
of compounds. In the third cluster however, although a re-
duction in the final OD was observed (Additional file 2:
Figure S2c), the observed reduction was not as strong as
in the first two compound clusters.
This categorization growth profile groups the thirteen

phenolic compounds as;

� Cluster1: 4-hydroxy-3-methoxycinnamaldehyde,
Homovanilyl alcohol, Vanillin, Syringic acid and
Dihydroferulic acid.

� Cluster 2: p-Coumaric acid, hydroquinone, Ferulic
acid, Homovanillic acid and 4-hydroxybenzoic
acid and

� Cluster 3: Vanillic acid, Gallic acid and
Vanillylidenacetone.

Different phenolic compounds have different limits
of toxicity
In experimentally defining the concentration threshold at
which the selected phenolic compounds completely in-
hibit yeast growth, we conducted toxicity screening on the
phenolic compounds. During the screening, the maximum
specific growth rates of the cultures when growth was last
observed ranged between 0.07 h−1 and 0.09 h−1, this was
about 20% of the maximum specific growth rate of the
control. In the presence of another set of phenolic com-
pounds in which the cells experienced increased lag phase
and reduced biomass with increasing concentration of the
phenolic compounds, the concentration at which the cells
last showed observable growth had an elongated the lag
phase of about 5 times that of the control, the cells
stopped growing in higher concentrations. In the third
category, the cells suddenly stopped growing after a cer-
tain concentration and this concentration was noted. The
toxicity screening revealed a wide range of toxicity among
the compounds (Figure 2). The screening also revealed
that each compound has a toxicity limit that is not neces-
sarily based on its classification as an acid, alcohol, alde-
hyde or a ketone. Coniferyl aldehyde had the highest
toxicity, becoming extremely toxic at 1.4 mM for cells to
grow while syringic acid is the least toxic with cell growth
continuing to be recorded at 22 mM. Further concen-
tration increase in syringic acid was limited by strong
interference in measurements as a result of the deep
colouration of the medium (Figure 2).

Effects of toxic concentrations of phenolic compounds on
ethanol and biomass titres and yields
In the next step we investigated whether compounds
clustered together by order of growth pattern would also
have similar effect on the yeast cell physiology. A pair of
compounds was selected from each cluster and their ef-
fects on ethanol, acetate, glycerol and biomass yields
were determined. Syringic and dihydroferulic acids were
selected from the first cluster, homovanillic and 4-
hydroxybenzoic acids were selected from the second
cluster and vanillylidenacetone and gallic acid were se-
lected from the third cluster. The compounds were
added to the cultivation medium at their respective tox-
icity limit concentrations of 18.0 mM syringic acid,
18.0 mM dihydroferulic acid, 9.0 mM homovanillic acid,
11.0 mM 4 hydroxybenzoic acid, 4.2 mM vanillylidena-
cetone and 9.4 mM gallic acid.
Glucose consumption was particularly delayed in dihy-

droferulic acid cultivations (Figure 3). No significant dif-
ference in glucose consumption was observed between
any of the cultures containing syringic, homovanillic, 4-
hydroxybenzoic, gallic acid or vanillylidenacetone, and
the control (Figure 3). Ethanol assimilation after glucose
depletion during the respiratory growth phase was slo-
wed down for all cultures with the phenolic compounds
except for cultures containing syringic acid.
Further comparison within each cluster was done based

on the yields of ethanol, glycerol, acetate and biomass.
Ethanol yield in dihydroferulic acid and syringic acid cul-
tures were similar at 0.43 ± 0.01 (g/g) and 0.38 ± 0.03 (g/g)
respectively (Figure 4). The yield of glycerol in dihydroferulic
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acid containing cultures was higher than in syringic acid
containing cultures with yields of 0.081 ± 0.006 (g/g) and
0.045 ± 0.001 (g/g) respectively. The most outstanding
difference between this pair however was that acetate was
not found in dihydroferulic acid cultivations while acetate
yield was 0.003 (g/g) in syringic acid cultures which was
the same as that of the control (Figure 4).
Ethanol, acetate and biomass yields in homovanillic acid

cultures were significantly different to 4-hydroxybenzoic
acid cultures. Ethanol yield at 0.39 ± 0.03 (g/g) and bio-
mass at 0.14 ± 0.03 (g/g) were higher in homovanillic acid
containing cultures compared with 0.3 ± 0.01 (g/g) and
0.096 ± 0.007 (g/g) respectively for ethanol and biomass
yields in 4-hydroxybenzoic acid. Acetate yield was lower
in homovanillic acid cultures at 0.003 ± 0.0005 (g/g)
compared to 0.005 ± 0.001 (g/g) in 4-hydroxybenzoic
acid. However, glycerol yields of homovanillic and 4-
hydroxybenzoic acids were similar at 0.057 ± 0.004 (g/g)
and 0.051 ± 0.002 (g/g) respectively. Results for vanillyli-
denacetone and gallic acid (cluster 3) proved very con-
sistent for ethanol, biomass, acetate and glycerol yields
(Figure 4). A significant difference was observed between
glycerol and acetate yields in the third cluster (vanillylide-
nacetone and gallic acid) and those in the other two clus-
ters and the control. Glycerol yield in cluster 3 was 10
times lower at 0.002 ± 0.0002 (g/g) for vanillylidenacetone
and 0.004 ± 0.0006 (g/g) for gallic acid cultures, and acet-
ate yield was higher by 10 times at 0.051 ± 0.002 (g/g) for
vanillylidenacetone and 0.05 ± 0.001 (g/g) for gallic acid
than in both YMMM and the other two clusters (Figure 4).
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Overall ethanol yield in dihydroferulic acid was the high-
est at 0.43 (g/g) while 4-hydroxybenzoic acid had the low-
est ethanol yield and the highest acetate yields of all
cultures. The similarities in effect of each clustered pair of
phenolic compounds on yeast metabolism indicate that
compounds in the same cluster have similar inhibitory ef-
fects on yeast.

Discussion
In this study, we classified 13 different phenolic com-
pounds commonly found in lignocellulosic hydrolysates
according to their effect on S. cerevisiae growth. In par-
ticular, we showed that (i) the concentration that induces
inhibitory effects is highly variable among phenolic com-
pounds and it does not follow the order of phenolic alde-
hydes and ketones of being the most toxic, followed by
acids and alcohols, respectively (Almeida et al. 2007a,
Klinke et al. 2003) (ii) the influence of phenolic com-
pounds on S. cerevisiae growth follows three major pat-
terns; (iii) different compounds have distinct effect not
only on biomass formation but also on the production of
ethanol, acetate and glycerol.
Phenolic compounds have often been grouped and or-

dered as aldehydes, phenolic ketones, phenolic acids and
phenolic alcohols, and their potency as inhibitors has
largely been believed to reflect the same order. Phenolic
aldehydes have generally been regarded as the most in-
hibitory while phenolic acids and alcohols tend to be
seen as the least toxic (Almeida et al. 2007a, Klinke et
al. 2003). In this study however, we demonstrated that
the toxicity of phenolic compounds does not follow the
assumed order in the subset of compounds we selected
and is not dependent only on the recognised aldehyde,
carboxylic acid, alcohol and ketone functional groups.
Based on our results, we speculate that the inhibitory ef-
fects of phenolic compounds is a function of the com-
bination of the occurrence of functional side groups
(such as the methoxy and hydroxyl groups) and occur-
rence of unsaturated bonds in the structure of the com-
pounds regardless of the categorization of the compounds
as aldehydes, acid, alcohols or ketones. An example that
supports this speculation is the different toxicities of coni-
feryl aldehyde (1.1 mM), ferulic acid (1.8 mM), and vanil-
lin (9.7 mM) see Figure 5. Our results thus show that
although coniferyl aldehyde is the most toxic at 1.1 mM,
ferulic acid is more toxic at a toxicity limit of 1.8 mM than
vanillin which is an aldehyde with a toxicity limit of
9.2 mM. The major difference between vanillin and coni-
feryl aldehyde is the occurrence of 2 extra carbon atoms
sharing a double bond and linking the aldehyde group to
the aromatic ring in coniferyl aldehyde. Ferulic acid also
possesses 2 extra carbon atoms sharing a double bond and
linking the carboxylic acid group to the aromatic ring.
We speculate that these chemical features significantly
contribute to the toxicity of coniferyl aldehyde and ferulic
acid, in line with earlier findings that the occurrence and
positions of functional side groups as well as the presence
of unsaturated carbon to carbon bonds influence the bio-
logical reactions and inhibitory activities of phenolic com-
pounds in bacteria as well as their antioxidant activity in
human (Ramaswam et al. 1972, Rice-Evans et al. 1996).
Three distinct growth patterns among the thirteen differ-

ent phenolic compounds screened was observed, suggest-
ing that compounds belonging to the same cluster display
similarity in mechanisms of inhibition mechanisms. The
similarity of ethanol yields between compounds represent-
ing cluster 1, acetate and glycerol yields in cluster 2 and
the strong correlation of effects of vanillylidenacetone and
Gallic acid (cluster 3) on ethanol, glycerol, acetate and bio-
mass yields suggest that compounds belonging to the same
cluster have similar inhibitory activity on yeast.
Phenolic compounds have been shown to reduce yields

of ethanol and alter glycerol and acetate yields from S.
cerevisiae fermentations. Studies by Ando et al., (1986),
revealed that syringaldehyde, m-hydroxybenzoic acid
and vanillic acid did not inhibit ethanolic fermentation
while coniferyl aldehyde led to poor fermentation and
drastically reduced ethanol yield. Larsson et al. (2000)
also corroborated the severely inhibitory effect of coniferyl
aldehyde in their study. Our results aligned with previous
studies which strengthens our confidence in the toxicity
ranking of all our tested phenolic compounds in which we
found coniferyl aldehyde to be the most toxic phenolic
compound. The influence of the phenolic compounds on
yeast physiology was mostly visible through their impacts
on glycerol, biomass and acetate yields among the com-
pound clusters. Absence of quantifiable acetate production,
poor growth and delayed glucose utilisation characterized
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the dihydroferulic acid cultivations. Known conditions that
may prevent the accumulation of acetate in cultures in-
clude, disruption of acetaldehyde dehydrogenases, low for-
mation of acetaldehyde coupled with effective oxidation of
acetate by acetyl-coA-synthetase or the presence of low
amount of glucose in cultures such that respirofermentative
growth cannot take place (Postma et al. 1989). The pres-
ence of ethanol (0.43 g/g) and glycerol did confirm a respir-
ofermentative growth for the yeast under these cultivation
conditions. Speculatively, the apparent absence of acetate in
the cultivation may resemble a situation where low activity
of Cytosolic Mg2+ and Mitochondrial K+ acetaldehyde
dehydrogenases Ald6p and Ald4p is present. Mutants of
ALD6 have been shown to substantially reduce acetate pro-
duction while significantly increasing glycerol production.
Double mutants of Ald6p and Ald4p have been shown to
have delayed growth, and delayed glucose consumption
(Remize et al. 2000), as observed in our dihydroferulic acid
cultivation. It is therefore tempting to speculate that these
two enzymes might be a direct or indirect target of ferulic
acid, although this goes beyond the purpose of this article
and deserves further investigation. Glycerol being a metab-
olite strongly associated with different types of stress in
cells, the particularly high glycerol titre and yield in the cul-
tivation of dihydroferulic acid is indicative of the cells being
under significant stress from dihydroferulic acid although
we have not defined the type of stress imposed at this stage
of the study.
Although glucose consumption was delayed in dihy-

droferulic acid cultivations, ethanol yield was high and
slightly superior to the ethanol yield in the control. Etha-
nol yields recorded in this study were high, ranging from
0.3 ± 0.01 (g/g) in 4-hydroxybenzoic acid cultures to
0.43 (g/g) in dihydroferulic acid cultures, we attribute
this to the ability of the cells to adapt to the com-
pounds and in certain cases convert some of them such
as 4-hydroxybenzoic acid and dihydroferulic acid and
eventually recover, thus bringing to attention and support-
ing findings of the natural ability of Saccharomyces cerevi-
siae to tolerate phenolic compounds (Stratford et al. 2007).
In conclusion, different phenolic compounds often present

in lignocellulosic hydrolysates have toxicity limits that are
not necessarily similar even between phenolic compounds
sharing the same functional groups. An example of this
would be the significant difference between ferulic acid
and p-coumaric acid which we discovered in this study to
respectively possess toxicity limits of 1.8 mM and 9.7 mM.
The experiments showed that phenolics rich substrates
may be fermentable since fermentability depends on the
concentration and the nature of phenolic compounds
present in them. Indications also emerged from the
present study that mechanisms of inhibition among phen-
olic compounds are dissimilar and may not be defined
by the classes of phenolic compounds (aldehydes, acids,
alcohols and ketones) as they are currently known. Fur-
ther studies involving investigation of gene regulation and
varying enzymatic studies are needed to draw conclusions
on the specificity of phenolic compounds inhibition in
Saccharomyces cerevisiae.
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according to the observed growth profile.
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Catabolism of coniferyl aldehyde, ferulic 
acid and p‑coumaric acid by Saccharomyces 
cerevisiae yields less toxic products
Peter Temitope Adeboye1, Maurizio Bettiga1, Fredrik Aldaeus2, Per Tomas Larsson2 and Lisbeth Olsson1* 

Abstract 

Background:  Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries 
for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such 
as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds 
known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among 
phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic com-
pounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively 
investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric 
acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phe-
nolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of 
the culture broth to monitor various intermediate and final metabolites.

Result:  Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were 
more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to 
involved several transient intermediates that were concurrently formed and converted to other phenolic products. 
Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, 
the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevi-
siae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic 
acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced 
to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield 
increased to 127 % of the control in the presence of p-coumaric acid. Coniferyl aldehyde, ferulic acid and p-coumaric 
acid and their conversion products were screened for inhibition, the conversion products were less inhibitory than 
coniferyl aldehyde, ferulic acid and p-coumaric acid, indicating that the conversion of the three compounds by Sac-
charomyces cerevisiae was also a detoxification process.

Conclusion:  We conclude that the conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid into less inhibi-
tory compounds is a form of stress response and a detoxification process. We hypothesize that all phenolic com-
pounds are converted by Saccharomyces cerevisiae using the same metabolic process. We suggest that the enhance-
ment of the ability of S. cerevisiae to convert toxic phenolic compounds into less inhibitory compounds is a potent 
route to developing a S. cerevisiae with superior tolerance to phenolic compounds.
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Background
Lignocellulosic substrates are increasingly gaining atten-
tion as raw materials for biofuels and chemicals although 
numerous challenges on fermentability confront their 
usage as production platforms [1, 2]. Lignocellulosic sub-
strates are primarily composed of cellulose, hemicellulose 
and lignin [3]. To disintegrate and make lignocellulosic 
biomass structurally accessible to enzymatic hydrolysis 
before fermentation, it is first subjected to a pre-treat-
ment process [4, 5].

Also, the concept of chemical and fuel production in 
an integrated biorefinery is driving the interest in pulp-
ing process streams which are often rich in derivatives of 
lignin and hemicellulose [6, 7].

Pulping is a well-established technology for biomass 
disintegration and fractionation to make wood pulps 
[8]. Chemical pulping is a widespread process, the four 
classical methods principally used in chemical pulp-
ing are the kraft, sulfite, soda, and neutral sulfite semi-
chemical pulping (NSSC) processes [9]. Pulping involves 
cooking wood biomass to obtain cellulose fibers during 
which delignification takes place and monomeric sug-
ars from the hemicellulose fraction are released into the 
cooking liquor [10], the cooking liquor is then released 
as the process streams. Cooking liquor such as spent 
sulfite liquor, black liquor, delignification stream and 
pulp residues are useful energy and lignin sources, as 
well as having potentials for several purposes, includ-
ing being used for bioethanol and chemical production 
[11]. In biofuel production, the acids and phenolic com-
pounds derivatives of hemicellulose and lignin released 
into the process streams act as potent inhibitors against 
fermenting organisms [4, 12]. In the case of biochemi-
cal production, it has been shown that phenolic inhibi-
tors in black liquor can be converted into value added 
chemicals [13].

The diverse nature of phenolic compounds present a 
significant challenge, they are thus the least studied and 
understood of all of inhibitors present in lignocellulosic 
materials [14]. Although studies have shown that various 
phenolic compounds such as ferulic acid and coniferyl 
aldehyde influence specific processes in S. cerevisiae [15, 
16], the way the yeast cells respond and adapt to various 
phenolic compounds has not been well investigated. The 
ability of S. cerevisiae to convert particular phenolic com-
pounds under fermentation, such as converting ferulic 
acid to 4-vinylguaiacol and coniferyl aldehyde to coniferyl 
alcohol, has been previously reported. Some S. cer-
evisiae strains with increased tolerance to the inhibitory 
activities of phenolic compounds were also engineered 
[17, 18]. However, several processes and mechanisms 
involved in the conversion of phenolic compounds in S. 
cerevisiae remain poorly understood. Information on the 

possible conversion pathway as well as a comprehensive 
list of products formed from the conversion is lacking. 
Apart from the importance of understanding the meta-
bolic process involved with phenolic compound conver-
sion, it is also important to investigate if the conversion 
products are more, equally, or less inhibitory in com-
parison with the parent compound. A conversion process 
that leads to less inhibitory compounds is one of the keys 
that could be explored for metabolic engineering strate-
gies to develop a more phenolic tolerant S. cerevisiae. 
We have previously observed that inhibitory capacity of 
phenolic compounds against S. cerevisiae is compound 
specific, we also observed variation in the physiological 
influence on of phenolic compounds on S. cerevisiae [19].

In a lignocellulosic substrate, the different inhibi-
tory compounds work in synergy and limit the chances 
to assign specific cell physiological response observed 
(effects) to the compounds inducing such a response. 
Although, the ability of S. cerevisiae to convert some 
phenolic, such as cinnamic acids have been previously 
reported [17, 20, 21], the complexity of lignocellulosic 
substrates and pulping streams makes it incredibly dif-
ficult to assign conversion products to specific starting 
compound during the bioconversion process. Therefore, 
monitoring the intermediates and products of cata-
bolic conversion and investigating cell response to indi-
vidual compounds may be best done by studying the 
effects of the phenolic compounds in a single substrate 
study. Based on this, we have done a selective study on 
the interaction of S. cerevisiae with three phenolic com-
pounds coniferyl aldehyde, ferulic acid and p-coumaric 
acid under single substrate cultivation conditions in 
which only one of the three compounds is present in a 
cultivation set up.

In the present study, we closely investigated the inter-
actions between yeast and phenolic compounds in a 
controlled environment, in order to understand the 
mechanisms and metabolic processes in S. cerevisiae 
which facilitate the conversion of, and resistance to, 
phenolic compounds. We have studied the conversion 
of phenolic compounds in order to provide informa-
tion which is valuable for metabolic engineering and the 
development of yeast strains with improved tolerance 
to phenolic compounds. In addition, our investigation 
intends to pave the way to future research investigating 
the use of yeast as a catalyst for the potential aerobic con-
version of phenolic compounds to chemicals of interest. 
In this paper, we present results detailing the individual 
metabolic conversion of three phenolic compounds by 
S. cerevisiae: coniferyl aldehyde, ferulic acid, and p-cou-
maric acid (Fig.  1). The results suggest that there is a 
previously unreported route that starts with phenolic 
aldehydes and leads to phenolic alcohols.
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Results
Effects of coniferyl aldehyde, ferulic acid, and p‑coumaric 
acid on cell growth
We have previously defined the toxicity limits of coniferyl 
aldehyde, ferulic acid, and p-coumaric acid on S. cerevi-
siae as 1.4, 1.8 and 9.7, respectively using high-through-
put microtiter plate growth experiments [19]. The 
toxicity limits of the different phenolic compounds were 
defined as the concentration at which the cell perfor-
mance is reduced by 80 % with respect to the control, and 
are based on the aspect of the yeast cultivations which 
were most affected (maximum specific growth rates, or 
final OD, or prolongation of the lag phase) [19]. In fer-
mentor cultivations, it was found that the yeast cells did 
not grow in the presence of 1.4 mM coniferyl aldehyde. 
We therefore reduced the concentration of coniferyl alde-
hyde used in the cultivations by one concentration step to 
1.1 mM in order to successfully cultivate the yeast cells in 
the presence of coniferyl aldehyde. To study the influence 
of coniferyl aldehyde, ferulic acid, and p-coumaric acid 
on S. cerevisiae, three cultivation experiments were set 
up. The first cultivation set up was with 1.1 mM coniferyl 
aldehyde in mineral medium, the second cultivation 
was with 1.8  mM ferulic acid while the third was with 
9.7  mM p-coumaric acid. At these concentrations, the 
compounds did not arrest the growth of S. cerevisiae. The 
yeast grew at different specific rates in the presence of the 
different phenolic compounds, with the fastest growth 
being recorded in the presence of coniferyl aldehyde, 

closely followed by growth in the presence of ferulic acid. 
The slowest growth was observed in cultivations con-
taining p-coumaric acid (Fig.  2). The maximum specific 
growth rates of the yeast under the influence of coniferyl 
aldehyde was 0.41 ± 0.07 h−1 while it was 0.35 ± 0.02 h−1 
in ferulic acid. These were not significantly different from 
the specific growth rate of the control at 0.37 ± 0.02 h−1. 
However, the maximum specific growth rate of the cells 
in the presence of p-coumaric acid was statistically dif-
ferent, and was reduced to 0.29 ± 0.02 h−1. In the toxic-
ity ranking carried out in the Bioscreen experiments [19], 
we observed that the maximum specific growth rates of 
S. cerevisiae were reduced by 80  % in comparison with 
the control cultivation when each of the phenolic com-
pounds was present, we also observed a prolongation of 
the lag phase in the presence of coniferyl aldehyde. These 
were not observed in the bioreactor cultivation. We have 
attributed the changes in maximum specific growth rate 
and growth pattern to the scaling up of the experiment 
from the Bioscreen to bioreactors, which offer a differ-
ent, better controlled cultivation condition. In the case 
of a pH related toxicity, which may well be among phe-
nolic compounds, it is very probable that the differences 
in growth pattern between bioreactor cultivations and 
Bioscreen cultivations is pH related. The pH of all growth 
media was set to 5.0 at the start of each cultivation, 
however, the pH is not controlled in the bioscreen and 
reduces with time while in the bioreactor cultivations the 
pH was maintained at 5 throughout the cultivation.

a b 

c

Fig. 1  Structures of; a coniferyl aldehyde, b ferulic acid and c 
p-coumaric acid
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S. cerevisiae Ethanol Red in yeast minimal mineral medium (YMMM), 
coniferyl aldehyde, ferulic acid and p-coumaric acid
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Effects of coniferyl aldehyde, ferulic acid, and p‑coumaric 
acid on the titres and yields of fermentation products
During aerobic growth in batch cultures, S. cerevisiae 
induces aerobic fermentation during which, in addition 
to biomass, ethanol, glycerol and acetate are produced.

Biomass titres were 13.44 ±  0.06  g/l, 9.41 ±  0.05  g/l, 
8.19 ± 0.02 g/l and 10.21 ± 0.03 g/l in cultivations con-
taining coniferyl aldehyde, ferulic acid, p-coumaric 
acid and the YMMM control, respectively (Fig.  3). 
The biomass yields on glucose were 0.08  ±  0.009  g/g, 
0.06 ± 0.008 g/g, 0.14 ± 0.07 g/g and 0.11 ± 0.019 g/g in 
cultures with coniferyl aldehyde, ferulic acid, p-coumaric 
acid and the YMMM control, respectively (Table 1).

As enumerated in Table 1, the ethanol yield was high-
est at 0.4  ±  0.01  g/g in cultures containing coniferyl 
aldehyde, while ethanol yields were 0.36  ±  0.005  g/g, 
0.37 ± 0.011 g/g and 0.39 ± 0.011 g/g in cultures contain-
ing ferulic acid, p-coumaric acid and the YMMM control, 
respectively.

The glycerol yields were 0.08  ±  0.006  g/g in cul-
tures with coniferyl aldehyde; 0.08  ±  0.002  g/g with 
ferulic acid; 0.12 ± 0.002 g/g with p-coumaric acid; and 
0.08 ± 0.006 g/g in the YMMM control cultivation. The 

glycerol yield in p-coumaric acid was significantly higher 
than in other cultivations.

After the diauxic shift, at which point all the glucose 
has been consumed, ethanol, glycerol and acetate start 
to be assimilated. Assimilation of ethanol, glycerol and 
acetate was slowed in p-coumaric acid cultivations, the 
metabolites were still present after 73  h of cultivation, 
whereas they were assimilated within 50  h of cultiva-
tion in coniferyl aldehyde, ferulic acid, and in the control 
cultivations.

Conversion of phenolic compounds
Interestingly, we observed complete conversion of 
coniferyl aldehyde, ferulic acid and p-coumaric acid 
into other phenolic compounds. Conversion of the phe-
nolic compounds was monitored through sampling and 
analysis of the culture broth at regular intervals during 
the course of the cultivations. Conversion of coniferyl 
aldehyde and ferulic acid was initiated by the cells within 
the first 2 h of cultivation, while the conversion of p-cou-
maric acid was first observed much later. After 24  h all 
the coniferyl aldehyde had been converted, while ferulic 
acid and p-coumaric acid required a period of over 72 h 
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Fig. 3  Representative time course metabolite profiles of Saccharomyces cerevisiae Ethanol Red in a YMMM, b coniferyl aldehyde, c ferulic acid, d 
p-coumaric acid. ( ) glycerol, ( ) acetate, ( ) ethanol, ( ) biomass, ( ) Glucose
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for complete conversion (Table 2). We observed the con-
current formation of several intermediates during the 
conversion. Some intermediates such as homovanillin, 
2′,5′-dihydroxyacetophenone, coumaran and 3-vanil-
propanol from coniferyl aldehyde were very transient, 
and were only present in the culture broth for a period 
of about 24  h, whereas other intermediate products, 
such as 4-vinylguaiacol from both coniferyl aldehyde and 
ferulic acid, as well as the ferulic acid intermediate from 
coniferyl aldehyde, were slowly converted into other 
products over a longer time period (Table 2).

During the first 2  h of cultivation, coniferyl aldehyde 
was initially converted to ferulic acid and ferulic acid 
isomer, before being further converted to other phenolic 
acids and other classes of compounds. Ferulic acid was 
also converted to ferulic acid isomer and dihydroferu-
lic acid during the first 2  h of cultivation, before other 

conversion products were detected. The conversion 
trend in p-coumaric acid cultivations appeared to have 
fewer intermediates and products than in cultivations 
with coniferyl aldehyde and ferulic acid (Table 2). From 
the time evolution of the conversion products, it is evi-
dent that the observed conversion process was a sequen-
tial process involving several chemical reactions (Fig. 4). 
From the observed overlapping of products (Table 2), it 
is deducible that the chemical reactions involved in the 
conversion were simultaneously taking place.

Comparison of inhibition between coniferyl aldehyde, 
ferulic acid and p‑coumaric acid their conversion products
To verify that the conversion of coniferyl aldehyde, feru-
lic acid and p-coumaric acid is a detoxification process, 
toxicity screening of several conversion products of each 
of the compounds was carried out and compared to that 

Table 1  Metabolite profile of  S. cerevisiae in  control, phenolics-free yeast minimal mineral medium control medium 
in comparison with S. cerevisiae presence of each of 1.1 mM coniferyl aldehyde, 1.8 mM ferulic acid and 9.7 mM p-cou-
maric acid

Titre at the end  
of cultivation (g/l)

Titre at the end  
of respirofermentative  
phase (g/l)

Yield (g/g) µmax (h−1) Respirofermentative Respiratory
q (gg−1 h−1) q (gg−1 h−1)

Yeast minimal mineral medium

 Glucose 0.01 ± 0.005 1 0.37 ± 0.02 3.94 ± 0.04

 Ethanol 6.87 ± 0.1 0.39 ± 0.011 1.53 ± 0.02

 Biomass 10.24 ± 0.03 2.13 ± 0.07 0.11 ± 0.019 0.37 ± 0.02 0.08 ± 0.001

 Glycerol 0.06 ± 0.06 1.52 ± 0.1 0.08 ± 0.006 0.30 ± 0.05

 Acetate 0.37 ± 0.02 0.01 ± 0.001 0.03 ± 0.005

 CO2 15.18 ± 0.03 2.99 ± 0.1 0.30 ± 0.012 1.56 ± 0.12

 Coniferyl aldehyde

 Glucose 0.04 ± 0.005 1 0.41 ± 0.07 4.68 ± 0.10

 Ethanol 5.73 ± 0.06 0.40 ± 0.01 1.87 ± 0.10

 Biomass 13.44 ± 0.06 1.39 ± 0.03 0.08 ± 0.009 0.35 ± 0.01 0.09 ± 0.005

 Glycerol 1.18 ± 0.02 0.08 ± 0.006 0.37 ± 0.04

 Acetate 0.09 ± 0.04 0.01 ± 0.001 0.03 ± 0.002

 CO2 16.25 ± 0.07 4.72 ± 0.03 0.34 ± 0.005 1.59 ± 0.12

Ferulic acid

 Glucose 0.01 ± 0.005 1 0.35 ± 0.02 6.82 ± 0.08

 Ethanol 0.08 ± 0.02 6.57 ± 0.001 0.36 ± 0.005 2.44 ± 0.02

 Biomass 9.41 ± 0.05 1.35 ± 0.014 0.06 ± 0.008 0.41 ± 0.04 0.11 ± 0.006

 Glycerol 0.18 ± 0.00 1.35 ± 0.05 0.08 ± 0.002 0.51 ± 0.04

 Acetate 0.12 ± 0.006 0.01 ± 0.001 0.05 ± 0.002

 CO2 20.05 ± 0.1 3.34 ± 0.006 0.29 ± 0.01 2.29 ±  0.1

p-Coumaric acid

 Glucose 0.02 ± 0.02 1 0.29 ± 0.02 2.95 ± 0.07

 Ethanol 0.02 ± 0.02 5.4 ± 0.05 0.37 ± 0.011 1.11 ± 0.05

 Biomass 8.19 ± 0.02 1.93 ± 0.05 0.14 ± 0.07 0.29 ± 0.02 0.09 ± 0.003

 Glycerol 0.07 ± 0.03 1.32 ± 0.02 0.12 ± 0.002 0.31 ± 0.04

 Acetate 0.08 ± 0.01 0.01 ± 0.001 0.02 ± 0.008

 CO2 12.23 ± 0.13 1.54 ± 0.0 0.03 ± 0.005 0.07 ± 0.004
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of their parent compounds. In the toxicity screening, the 
concentration at which each phenolic compound com-
pletely inhibits cell growth was determined similarly 
to what we had earlier reported [19]. We found that the 
conversion phenolic products were all less toxic than 
their parent compounds (Fig. 5). With conversion prod-
ucts such as phenyl ethyl alcohol, the toxicity limits were 
not reached. The experiment was terminated because of 
inaccuracy in the OD measurement caused by the strong 
interference from the colour of the compounds as well 
as the particulate background resulting from insolubil-
ity at higher concentrations. Phenyl ethyl alcohol did not 
inhibit yeast growth at 22.1 mM as effectively as 1.1 mM 

coniferyl aldehyde or 1.8  mM ferulic acid. Significantly 
higher concentrations of other conversion products such 
as vanillin, dihydroferulic acid, and coumaran, were also 
needed to inhibit yeast growth to a comparable extent to 
the coniferyl aldehyde, ferulic acid, and p-coumaric acid 
from which they were derived. This proves that the con-
version products were much less toxic than their parent 
compounds and, therefore, the conversion serves as a 
detoxification process.

Discussion
Our results indicate that S. cerevisiae responds to phe-
nolic-rich environment with processes which include 

Table 2  The conversion products profile of 1.1 mM coniferyl aldehyde, 1.8 mM ferulic acid and 9.7 mM p-coumaric acid 
with time

“+” connotes the presence of a compound while a blank space means the compound was absent

0 h 2 h 24 h 48 h 72 h

Coniferyl aldehyde

 Coniferyl aldehyde + + +
 Ferulic acid + + +
 Ferulic acid, isomer + + + +
 Dihydroferulic acid + + +
 Homovanillin +
 2′,5′-Dihydroxyacetophenone +
 Coumaran + +
 3-Vanilpropanol + +
 4-Hydroxyphenylethylethanol + + +
 Phenyl ethyl alcohol + + +
 4-Hydroxyphenylethanol + + +
 Benzoic acid, 3-methoxy-4-hydroxy + + +
 p-Coumaric acid + + +
 Benzenepropanoic acid + + +
 4-Vinylguaiacol + + +
 Benzeneacetic acid +

Ferulic acid

 Ferulic acid + + + + +
 Ferulic acid, isomer + +
 Dihydroferulic acid + +
 2′,5′-Dihydroxyacetophenone +
 5-Allyl-1-methoxy-2,3-dihydroxybenzene + +
 4-Hydroxyphenylethanol + + +
 Benzeneacetic acid + + +
 4-Vinylguaiacol + + +
 Phenylethyl alcohol + + +

p-Coumaric acid

 p-Coumaric acid + + + + +
 Coumaran + + +
 4-Hydroxyphenylethylethanol + + +
 Phenyl ethyl alcohol + + +
 2,6-(1,1-Dimethylethyl)phenol + + +
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conversion of the phenolic compounds, and that conver-
sion could therefore be a possible mechanism for the cells 
to achieve tolerance to inhibitory compounds. In the pre-
sent study, we showed that: (1) phenolic compounds are 
converted by S. cerevisiae and cell growth is not arrested 
during the conversion; (2) the conversion process of 
phenolic compounds is a sequential process with sev-
eral intermediates, and may lead to detoxification since 
the conversion products are less toxic than their starting 
compounds; (3) some parts of the conversion pathway 
and mechanisms employed by S. cerevisiae may be com-
mon for all the phenolic compounds under investigation; 
(4) depending on the nature of the phenolic compounds 
involved, the conversion process may be rapid or slow.

In S. cerevisiae, the conversion and detoxification pro-
cesses for handling many toxic substances leads to arrest 
of cell growth. Toxic metabolites, have also been known 
to arrest the growth of S. cerevisiae, mainly because they 
inhibit specific cellular processes inside the cell [22, 23]. 
Inhibitors such as furfural which are present in lignocel-
lulosic materials have also been known to arrest growth 
and prolong the lag phase during conversion, severely 
affecting the cells redox metabolism, with potential 
impact on key cellular functions [24] In the present study, 

we observed a different relationship between growth and 
conversion of toxic compounds in S. cerevisiae. Simulta-
neous growth and conversion of the three phenolic com-
pounds; coniferyl aldehyde, ferulic acid and p-coumaric 
acid was demonstrated in S. cerevisiae, even though the 
conversion was a detoxification process. Ahough previ-
ous studies have shown that coniferyl aldehyde causes a 
prolongation of the lag phase [19], the lack of lag phase 
prolongation may follow from the reduction of the con-
centration of coniferyl aldehyde from 1.4 to 1.1 mM dur-
ing the scaling up of the process from the Bioscreen and 
Erlenmeyer flasks to the bioreactor, which, in combina-
tion with better aeration, agitation, and pH control in the 
bioreactor, may have favored yeast growth. The effect of 
the scale up to a bioreactor is also evident in the obser-
vation that the concentrations of compounds which 
resulted in a 80 % reduction in specific growth rate com-
pared to the control in the Bioscreen-based screening, 
did not have the same level of inhibition in the bioreactor 
cultivation.

The most striking physiological differences between the 
inhibitor-containing cultivations and the -control were 
that the conversion of coniferyl aldehyde and that of feru-
lic acid similarly led to reduced biomass yields on glucose 
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in cultivations containing any of these two phenolic com-
pounds; that increased glycerol accumulation was found 
in cultivations containing p-coumaric acid; and that 
ethanol yields are not reduced in the presence of any of 
these three phenolic compounds. Also, the conversion of 

coniferyl aldehyde as well as that of ferulic acid did not 
lead to a reduced maximum specific growth rate for the 
cells (Fig.  2). Coniferyl aldehyde may have favored an 
increased ethanol yield (Fig. 6a), however we do not yet 
fully understand the relationship—if any—between the 
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increased ethanol yield with sub-lethal concentrations of 
coniferyl aldehyde observed in this study. Although we 
have not investigated molecular mechanism responsi-
ble for the increased ethanol yield and reduced biomass 
yield in the presence of coniferyl aldehyde, the phenom-
enon has also been observed in yeast under stressful cul-
tivation conditions in some other instances, examples of 
which are a Saccharomyces cerevisiae strain with mutated 
GPD1 which has been engineered for reduced glycerol 
production [25], another case was in a cultivation of S. 
cerevisiae under aliphatic acid stress [4].

The significant reduction in maximum specific growth 
rate observed in cultivations containing p-coumaric acid 
may suggest ATP usage when converting p-coumaric acid 
into its less toxic products. We speculate that certain 
ATP-dependent reactions are involved in the conversion 
of p-coumaric acid. The reduction in biomass formation 

and increased glycerol production in cultivations con-
taining p-coumaric acid may be indicative of a difference 
between the mechanism employed by the cell to detoxify 
p-coumaric acid and that employed for coniferyl alde-
hyde and ferulic acid. Another interpretation could be 
that the compounds have different cellular targets and 
modes of inhibition in the cells. We speculate that this 
difference would aid interpretation of the results of our 
previous study, which showed that coniferyl aldehyde, 
ferulic acid, and p-coumaric acid, together with 10 other 
phenolic compounds, have different effects on S. cerevi-
siae growth, and, based on the different effects, belong to 
different clusters of phenolic compounds [19].

The results from this study enable us to hypothesize a 
conversion pathway that may be common for coniferyl 
aldehyde, ferulic acid, and p-coumaric acid, to further 
understand how S. cerevisiae, convert some phenolic 
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compounds such as ferulic acid earlier reported [18, 21]. 
The trend observed in the conversion process followed a 
transition from phenolic aldehyde to phenolic acid, after 
which phenolic alcohols and ketones were formed. Simi-
larly, in the case of ferulic acid, an isomer of ferulic acid 
was formed, as well as dihydroferulic acid, before other 
compounds were formed. In the case of p-coumaric acid, 
there was a conversion directly to alcohols. This observed 
conversion trend, coupled with the commonality of con-
version products among the three phenolic compounds 
studied, despite their structural differences, is indicative 
of a common conversion pathway for phenolic com-
pounds in yeast. Different conversion intermediates were 
formed during the individual conversion of the three dif-
ferent phenolic compounds (Table 2) but they neverthe-
less lead to similar or the same conversion end products. 
Based on the conversion data, it is evident that the point 
at which the conversion begins is dependent on the tox-
icity and structural complexity of the starting phenolic 
compound. In general, we therefore hypothesize that the 
conversion pathway may hold true for other phenolic 

compounds in the sequence we have observed, with a 
phenolic aldehyde first being converted to one or more 
phenolic acids, and the phenolic acids then being con-
verted to phenolic alcohols. Phenolic acids initially may 
be converted to other phenolic acids, but, invariably, all 
are converted to phenolic alcohols and other categories 
of phenolics, as illustrated in the simplified conversion 
scheme in Fig.  7. The conversion of coniferyl aldehyde 
to ferulic acid may require the activity of a coniferyl 
aldehyde dehydrogenase enzyme which is well known 
in bacteria species such as Pseudomonas, but has not 
been identified in S. cerevisiae. For the conversion we 
have observed under aerobic cultivation condition, we 
hypothesize that an oxidoreductase is responsible for 
the conversion of coniferyl aldehyde that we have stud-
ied, this would be further investigated in subsequent 
studies. It has been shown that the conversion of ferulic 
acid in S. cerevisiae is facilitated by decarboxylases [17, 
20], the most popularly known being phenyl acrylic acid 
decarboxylase. In addition, we hypothesize also that alco-
hol acetyl transferases and alcohol dehydrogenases play 
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active roles in the conversion of further conversion of 
phenolic alcohols to phenolic ketones. These hypothesis 
shall be investigated in our subsequent studies.

Another interesting observation is the isomerization of 
ferulic acid. While isomerization of phenolic compounds 
had previously been proposed in S. cerevisiae [21], to the 
best of our knowledge, this is the first time the formation 
of a ferulic acid isomer has been observed. The specific 
enzymes involved, and the benefit gained by forming 
isomeric intermediates are currently not clear. Among 
the three phenolic compounds tested, the conversion of 
coniferyl aldehyde—which is the most toxic compound—
was observed to be the most rapid. Within the first 48 h, 
coniferyl aldehyde was completely converted into its 
intermediate products, while the conversion of ferulic 
and p-coumaric acids lasted for 72 h. To survive in a toxic 
phenolic environment, yeast cells undertake a detoxifica-
tion process that converts toxic phenolic compounds to 
less toxic derivatives through the formation of several 
intermediates, until significantly less toxic compounds 
are formed.

The ability of the S. cerevisiae to convert, detoxify the 
phenolic compounds and produce high ethanol yields 
that is comparable to the control is an interesting obser-
vation because the S. cerevisiae strain used in this study is 
an industrial strain. It may be indicative of the relevance 
of the strain for second generation bioethanol production 
using substrates rich in phenolic compounds inhibitors.

Conclusion
We conclude that when S. cerevisiae is subjected 
to stress in a phenolics-rich substrate, S. cerevisiae 
responds by detoxifying its environment through the 
conversion of the toxic phenolic compounds, using a 
series of decarboxylation and oxidation processes into 
less toxic derivatives which the cells can then effectively 
cope with. This work highlights the in  situ detoxifica-
tion mechanisms in S. cerevisiae that can be exploited 
in developing phenolics resistant S. cerevisiae strains. 
Also, the close monitoring of the conversion process 
of coniferyl aldehyde, ferulic acid and p-coumaric acid 
as carried out in this study sheds light on the differ-
ent stages of conversion and numerous intermediates 
formed in the process of detoxification of the phenolic 
compounds. Although the detailed metabolic pathway 
involved in this conversion process remains to be elu-
cidated, the conversion explained in this study gives 
insight into the possibility of making high value phe-
nolic compounds using S. cerevisiae as the cell factory. 
Although this is a single substrate study, through this 
work, we can however deduce that phenolic rich sub-
strates such as pulping streams could be used for gen-
erating other products such as some of the phenolic 

conversion products which are useful for cosmetic, food 
and pharmaceutical applications. This therefore present 
an alternative use to lignocellulosic substrate other than 
production of biofuels.

Methods
Yeast strain
The industrial yeast strain S. cerevisiae Ethanol Red® 
(Fermentis, a division of S. I. Lesaffre, Lille, France) was 
used for this study.

Chemicals
All chemicals used in the preparation of the cultivation 
medium, including the phenolic compounds coniferyl 
aldehyde, ferulic acid, and p-coumaric acid, were pur-
chased from Sigma-Aldrich GmbH, Germany.

All chemicals used in the chemical analyses of the 
starting phenolic compounds and their conversion prod-
ucts were of PA grade. Ethyl acetate, dichloromethane 
and acetone were purchased from Merck, Germany. 
2,6-diethylnaphtalene and N,O-bis(trimethylsilyl)trif-
luoroacetamide (BSTFA) were purchased from Sigma-
Aldrich, Germany. O-Vanillin was purchased from Fluka, 
Sweden.

Medium preparation
The basal medium for the main cultivation was yeast 
minimal mineral medium (YMMM) [26]. Four cultiva-
tion media were used, (1) a control experiment without 
phenolic compounds in YMMM, (2) YMMM + 1.1 mM 
coniferyl aldehyde, (3) YMMM +  1.8  mM ferulic acid, 
and (4) YMMM +  9.7  mM p-coumaric acid. The con-
centration of phenolic compounds to be used in each 
medium had previously been determined by a toxicity 
experiment which has been reported previously [19].

Cultivation
Each cultivation condition was performed in tripli-
cate. The inoculum was cultivated in Erlenmeyer flasks 
incubated at 30  °C and 200  rpm for a period of 18 h in 
YMMM. A volume of inoculum that resulted in an OD600 
of 0.2 was added to the main cultivation. The main cul-
tivations were carried out in DASGIP parallel bioreac-
tor systems comprising of two units, each holding four 
SR0700ODLS vessels (DASGIP, Jülich, Germany). The 
culture volume was 700 ml and the fermentors were pre-
conditioned overnight at pH 5. Aeration was set to 1 vvm 
at an impeller speed at 400  rpm. The cultivations were 
run for 96 h and air aeration was maintained at a flow of 
11.7 l/h throughout the cultivation. A feedback loop was 
created between the impeller speed and the dissolved 
oxygen probe signal to maintain aeration above 40 % of 
oxygen saturation.



Page 12 of 14Adeboye et al. Microb Cell Fact  (2015) 14:149 

Cultivation of yeast was done separately in the pres-
ence of each phenolic compound.

Toxicity screening of phenolic compounds and conversion 
products on Saccharomyces cerevisiae
Experimental determination of the toxicity of the phe-
nolic compounds and their conversion products was 
carried out by high-throughput toxicity screening using 
Bioscreen C MBR (Oy Growth Curves Ab Ltd, Finland), 
the set up was as we have described previously [19]. S. 
cerevisiae cultivations were done with different con-
centrations of single phenolic compounds in parallel. 
Growth was monitored in each cultivation and the con-
centration at which growth is not observed is noted. The 
toxicity limit for each phenolic compound is the concen-
tration of a phenolic compound at which growth of the 
yeast is last observed. We have previously observed at 
this toxicity limit that the maximum specific growth rates 
and the final OD has been reduced to 80 % of the control, 
the elongation of lag phase is also 80 % more than that of 
the control.

OD measurement of culture
Growth was followed by OD600 measurements using a 
Thermo Scientific GENESYS 20 Visible Spectrophotom-
eter for measurement of the optical densities of cultures.

Determination of dry cell weight
Determination of dry cell weight was performed in trip-
licate. 5  ml of culture was filtered using pre-dried and 
weighed filter paper discs of 0.45 μm pore size (Sartorius 
Stedim Biotech, Goettingen, Germany) on a water tap 
vacuum filter unit (Sartorius Stedim Biotech, Goettingen, 
Germany). The filter paper discs were dried in a micro-
wave at 120  W for 15  min, weighed again and the bio-
mass was determined from the difference.

Determination of specific growth rates
Maximum specific growth rates was calculated from the 
plot of the natural logarithm of the measured optical den-
sity of the cultivation against the time of the cultivations. 
For cultivations in Bioscreen, the readings obtained from 
the Bioscreen were calculated back to standard spectro-
photometric measurements at 600 nm via the formula:

where ODspectro = equivalent OD on spectrophotometer 
at 600 nm, ODBioscreen = measured OD on the bioscreen

(1)ODSpectro =
ODBioscreen

PathLength (cm)× 1.32

(2)PathLength =
volume (ml)

r2 × π

where volume = culture volume in a well in the bioscreen 
plate; r = radius of the well.

Non-linearity at higher cell densities was corrected as 
described by Warringer et al. [27] using the formula:

where ODcor  =  the corrected OD and ODobs  =  the 
observed OD values, from which the average blank has 
been subtracted

Determination of rates and yields
The specific consumption rate of the substrate (glucose) 
was determined using the formula

where qsubstrate is the specific substrate consumption rate, 
µ the maximum specific growth rate, and Y(x/s) the bio-
mass yield coefficient.

The specific productivity rates of biomass, ethanol, ace-
tate and glycerol were calculated using the formula:

where qproduct is the specific productivity rate, qsubstrate the 
specific substrate consumption rate, and Y(p/s) the prod-
uct yield coefficient.

During the respiratory growth phase, the biomass yield 
Y(x/s), was calculated using a combination of glycerol, ace-
tate and ethanol as substrate.

The yields of ethanol, glycerol, acetate and biomass 
from the consumed glucose were calculated during 
the exponential growth phase by plotting each of the 
products against the total consumed glucose. The yield 
for each product was obtained as the slope of a linear 
regression fitted to the plot. Average values of biologi-
cal replicates were used as the final yield for each culture 
condition.

Analysis of metabolites
Analysis of metabolites from the cultivation was per-
formed by high performance liquid chromatogra-
phy (HPLC) using a Dionex Ultimate 3000 HPLC unit 
(Thermo Scientific, Dionex Corporation, Sunnyvale, 
USA) equipped with an Aminex HPX-87H (Biorad, USA) 
column (300  mm ×  7.8  mm), packed with 9  µm parti-
cles. The column temperature was set to 45 °C, and 5 mM 
H2SO4 was used as the mobile phase at a flow rate of 
0.6 ml/min. A Shodex RI-101 RI detector and a Ultimate 
3000 VWD 3100 variable wavelength ultraviolet detec-
tor coupled to the HPLC unit were used to quantify the 
metabolites.

(3)

ODcor = ODobs + (OD2

obs × 0.449)+ (OD3

obs × 0.191)

(4)qSubstrate =
µ

Y(x/s)

(5)qproduct = qSubstrate ×Y(p/s)
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Time‑based monitoring of the conversion of phenolic 
compounds and product formation
Simultaneously with the OD600 measurement, a 5  ml 
sample of culture was rapidly taken into 15  ml sample 
tubes and centrifuged at 0  °C and 5100  rpm for 5  min. 
Supernatants were kept frozen at −20 °C until qualitative
analysis was carried out with gas chromatography–mass 
spectrometry (GC–MS).

Prior to GC–MS analysis, 0.5 ml of sample was mixed 
with 0.5  ml methyl acetate and 50  µl internal stand-
ard (100  µg/ml o-vanillin in ethyl acetate) and shaken. 
0.45 ml of the mixture was dried using nitrogen until all 
the liquid had evaporated. 50  µl N,O-bis(trimethylsilyl)
trifluoroacetamide (BSTFA) was then added, and allowed 
to react with the solid residue for 30 min at 80 °C. Finally, 
950 µl dichloromethane and 50 µl external standard solu-
tion (111  µg/ml 2,6-diethylnaphtalene in acetone) was 
added.

The GC–MS analysis was performed using an Agilent 
HP7890A gas chromatograph (Agilent, Sweden) cou-
pled with a Waters AutoSpec Premier magnetic sector 
mass spectrometer (Waters, UK). 1 µl of each sample was 
injected in splitless mode, and the injector temperature 
was held at 280 °C. Separation was carried out on a BPX5 
capillary column (SGE Analytical Science, Sweden) of 
length 30 m, inner diameter 0.25 mm and film thickness 
0.25 µm. Nitrogen with a flow of 1 ml/min was used as 
mobile phase. The temperature program was: 50  °C for 
1 min, 10 °C/min to 300 °C, and then 300 °C for 10 min.

In the mass spectrometer, electron impact (EI+) was
used for ionization. Mass spectra were recorded from 
m/z 40–400 with a total cycle time of 0.7 s. The resolu-
tion was 1000. Identification of the compounds with 
the highest abundance was performed by comparison 
of mass spectra with a NIST MS Search 2.0 library. The 
internal and external standards were used to determine 
tentative concentrations of the identified compounds.

Statistical validation of data
All experimental data obtained in the course of the 
experiment were subjected to the student t test to deter-
mine if there was a significance level of difference with 
respect to the control. The number of replicates varied 
from 3 to 7, depending on the experiment. Therefore, a 
t test for two-sample assuming unequal variances was 
performed, with a significance level of probability set at 
p < 0.05. All error bars are standard deviations from the 
averages of multiple measurements of each parameter, all 
derived from biological replicates.
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The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth
conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor special-
ized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in
S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase
(Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under
aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase
(ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains
were cultivated in the presence of 1.1 mM coniferyl aldehyde under aerobic condition in bioreactors. The
results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S.
cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aromatic compounds are the second most abundant class of
organic compounds on earth, making up about 25% of the earth’s
biomass (Boll et al., 2002; Gibson and Harwood, 2002). Phenolic
compounds play important roles in the interactions of plants with
their abiotic environment (e.g. soil), and biotic environment, for
example by attracting insects and serving as feeding deterrents
to insects and birds (Harbourne, 1994). Phenolic compounds are
also the building blocks of lignin which strengthens the structure
of plants and also provides resistance to infection (Dorrestijn
et al., 2000; Matern and Kneusel, 1988; Nicholson and
Hammerschmidt, 1992).

Aromatic compounds are often inhibitory to microorganisms,
thus limiting the possibility of bioconversion of these compounds.
The ability of Saccharomyces cerevisiae to catabolize selected phe-
nolic compounds has been reported and efforts have been made
towards developing S. cerevisiae strains that exhibit increased tol-
erance to phenolic compounds by finding and expressing genes
of interest in S. cerevisiae (Larsson et al., 2001; Sundström et al.,
2010). Heterologous expression of genes from other organisms is
a strategy that has been used to confer new traits on various
microorganisms. Strains of Escherichia coli and S. cerevisiae have
been successfully engineered to heterologously express genes that
have conferred increased tolerance to phenolic compounds as well
as the ability to metabolize them (Larsson et al., 2001; Overhage
et al., 2003). The genes vaoA from Penicillium simplicissimum, calA
and calB, encoding coniferyl alcohol dehydrogenase and coniferyl
aldehyde dehydrogenase respectively, in the donor organism Pseu-
domonas sp. strain HR199, have been successfully expressed in the
E. coli XLI-Blue strain to produce ferulic acid as an intermediate in
the bioconversion of eugenol to vanillin.

To equip a strain for phenolic conversion, it is necessary to first
identify and understand the genes involved in the conversion of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biortech.2016.04.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.biortech.2016.04.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:maurizio.bettiga@chalmers.se
http://dx.doi.org/10.1016/j.biortech.2016.04.003
http://www.sciencedirect.com/science/journal/09608524
http://www.elsevier.com/locate/biortech


Table 1
Strains of Escherichia coli, plasmid and Saccharomyces cerevisiae used and constructed
in this study.

Escherichia coli
background strain

Recombinant
strain

Genotype Source and
reference

NEB 5-alpha
Competent
E. coli

New England
Biolabs Inc.

Saccharomyces cerevisiae
CEN.PK102-3A MATa ura3-52 leu2-3

MAL2-8c SUC2
(Entian and
Kotter, 2007)

CEN.PK113-7D MATa, MAL2-8 c,
SUC2

(Entian and
Kotter, 2007)

CEN.PK113-7D B_CALD MATa, MAL2-8 c,
SUC2, CALDH

This study

CEN.PK102-3A SC_ald5D MATa, LEU, URA, ald5 This study
CEN.PK102-3A Control MATa, MAL2-8c

SUC2, LEU, URA
This study

Native plasmid Character Source and
reference

YIplac128 LEU (Gietz and
Sugino, 1988)

YIplac211 URA (Gietz and
Sugino, 1988)
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phenolic compounds before overexpressing them in the host
organism. Several bacteria and fungi have been found to be able
to metabolize aromatic compounds, and are thus potential donors
of genes that could be heterologously expressed in other microor-
ganisms. The bacteria Pseudomonas sp. strain HR199 and
Corynebacterium sp. are good examples of microorganisms known
to be able to grow on eugenol as the carbon source (Achterholt
et al., 1998; Rabenhorst, 1996; Tadasa, 1977) and this ability is
being exploited to produce other phenolic metabolites from euge-
nol. It has been proposed that Pseudomonas sp. strain HR199 natu-
rally converts eugenol via coniferyl alcohol, coniferyl aldehyde,
ferulic acid, vanillin, and vanillic acid to produce protocatechuic
acid (Achterholt et al., 1998; Priefert et al., 1997). Corynebacterium
has been shown to employ a series of oxidation steps to metabolize
eugenol, involving ferulic acid, vanillin and vanillic acid as inter-
mediates before producing protocatechuic acid (Tadasa, 1977).
Both Pseudomonas and Corynebacterium seem to use a set of oxi-
doreductases for the efficient conversion of eugenol, and some
enzymes involved in the conversion in Pseudomonas have been
identified such as the coniferyl aldehyde dehydrogenase
(Achterholt et al., 1998; Tadasa, 1977) which primarily converts
coniferyl aldehyde. Among several other phenolic compounds,
coniferyl aldehyde is particularly potent in its inhibition of the
growth of S. cerevisiae. Earlier, it was shown that coniferyl alde-
hyde is converted to several other phenolic metabolites (Adeboye
et al., 2015). The aim of the present study was to enhance the abil-
ity of S. cerevisiae to convert coniferyl aldehyde by heterologous
expression of an enzyme known to perform similar function in
its native organism.

The utilization of plant biomass in technical and chemical pro-
cesses often starts with the deconstruction and hydrolysis of the
biomass (Wenzl, 1970). This leads to the breakdown of cellulose,
hemicellulose and lignin in wood, yielding fermentable sugars, as
well as several biologically active compounds that are inhibitory
to the fermentative organisms used for second-generation biofuel
and biochemical production. Together with organic acids from
hemicellulose and furaldehyde from the dehydration of sugars,
phenolic compounds from lignin significantly contribute to the
microbial inhibition that limits the bioconversion of lignocellulose
biomass (Larsson et al., 1999).

Since the coniferyl aldehyde dehydrogenase (CALDH) in
Pseudomonas has been documented in literature to facilitate the
catabolism of coniferyl aldehyde, a S. cerevisiae strain heterolo-
gously expressing CALDH from Pseudomonas sp. strain HR199
was engineered a goal to enhance its ability to catabolize coniferyl
aldehyde. Coniferyl aldehyde was previously reported to be extre-
mely inhibitory to S. cerevisiae (Adeboye et al., 2014), consequently
an increased capacity to catabolize coniferyl aldehyde may also
lead to increased tolerance of S. cerevisiae to coniferyl aldehyde.

Both Corynebacterium and Pseudomonas have been reported to
possess efficient oxidoreductase enzymes that enable them to con-
vert eugenol and intermediates like coniferyl aldehyde. Having
observed the conversion of coniferyl aldehyde under aerobic batch
cultivation of S. cerevisiae, it was proposed that S. cerevisiae would
possess similar enzymes. A search for oxidoreductases that could
be involved with the conversion of coniferyl aldehyde in S. cere-
visiae was carried out with the aim of improving understanding
of the catabolism of phenolic compounds by S. cerevisiae. Using
the Basic Local Alignment Search Tool (BLAST) from the National
Center for Biotechnology Information (NCBI) and the conserved
domain data base at NCBI revealed acetaldehyde dehydrogenase
ALD5 to be the closest to Pseudomonas CALDH. The ALD5 gene
belongs to the aldehyde dehydrogenase family in S. cerevisiae.

A mutant strain of S. cerevisiae, SC_ald5D, in which the complete
open reading frame of ALD5 was deleted was subsequently
engineered and investigated with regards to its sensitivity to and
conversion of coniferyl aldehyde in order to test the hypothesis
that S. cerevisiae possesses enzymes that are actively involved with
the conversion of coniferyl aldehyde.

2. Materials and methods

2.1. Materials

2.1.1. Yeast strain
S. cerevisiae strains CEN.PK102-3A and CEN.PK113-7D were the

parental strains used in this study. The strains developed in this
study were B_CALD, SC_ald5D and the control. The genotypic char-
acteristics of the strains used in this study are listed in Table 1.

2.1.2. E. coli
NEB 5-alpha Competent E. coli cells were used for plasmid con-

struction. The competent cells were developed by New England
Biolabs Inc. and were obtained from BioNordika, Sweden.

2.1.3. Chemicals
All chemicals used in the preparation of the cultivation

medium, including coniferyl aldehyde were purchased from
Sigma–Aldrich GmbH, Germany unless otherwise stated. All
chemicals used in the GC–MS analyses were of PA grade.
2,6-diethylnaphtalene and N,O-bis(trimethylsilyl) trifluoroac-
etamide (BSTFA) were also purchased from Sigma–Aldrich, Ger-
many . Ethyl acetate, dichloromethane and acetone were
purchased from Merck, Germany and O-vanillin was purchased
from Fluka, Sweden.

2.1.4. Protein sequence accession numbers
The nucleotide sequence systematic and accession numbers of

the ALD5 and CALDH genes are NP_010996, and WP_016502080,
respectively.

2.2. Methods

2.2.1. Strain construction
TDH3 promoter amplified from digested plasmid DNA was used

for CALDH. TDH3 was amplified with the primer pair TDH3_fwd
AAGCTTCAGTTCGAGTTTATCATT and TDH3_rev CTGCAGGTGTGTTT
ATTCGAAAC. CALDH gene was codon optimized and synthesized by
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Genescript (California, USA). The CALDH gene was inserted in the
CAN1 locus of CEN.PK113-7D, the successful recombinant strain
was the B_CALD strain. The insertion of CALDH was performed as
described by Sambrook et al. (1989). The synthetic CALDH gene
with TDH3 was inserted by transformation, as a linear cassette in
a double recombination event to replace CAN1. Selection of the
CALDH-bearing strain was performed on canavanine plates con-
taining a canavanine concentration of 80 lg/mL. The insertion
was further confirmed by PCR using the following PCR protocol:
denaturation at 95 �C for 3 min; 95 �C for 30 s, annealing at 48 �C
for 39 s, elongation at 72 �C for 2 min over a cycle of 30 reactions.
Final elongation was performed at 72 �C for 10 min and the holding
temperature of the product was 10 �C.

ALD5 was deleted using CEN.PK102-3A as the background
strain. The CEN.PK102-3A strain is auxotrophic for both URA and
LEU, therefore URA3 was chosen as the marker for the deletion of
ALD5. Homologous recombination was used with the following pri-
mer pair; URA3ald5_fwd TAAGACAGAAAACTTCTTCACAACATTAA
CAAAAAGCCAAAGAAGAAGAATTAGTTTTGCTGGCCGCATCTT and
URA3ald5_rev ATGTCGAAAGCTACATATAAGGTTATCATACATACCTT
CAATGAGCAGTCAACTCGGGCCTGAGTTACTTCA. The URA3 template
was amplified from the genomic DNA of S. cerevisiae. The subse-
quent PCR product was purified and transformed into CEN.
PK102-3A. The deletion of ALD5 was confirmed with a confirma-
tion PCR using the following primer pair ald5_delcon_fwd
GAATGGCTTCAAAGAACAGAAC and ald5_delcon_rev CACGAGGCAT
TTTTCATTATTC. The strain was then subjected to a second round of
transformation using the empty plasmid vector Yiplac 211 in order
to make the strain fully prototrophic.

2.2.2. Medium preparation
The basal medium used for the main cultivation was the yeast

minimal mineral medium (YMMM) (Verduyn et al., 1992). The
bioreactor cultivation medium used contained 1.1 mM coniferyl
aldehyde in YMMM. The concentration of coniferyl aldehyde used
in each medium had been previously determined in a toxicity
experiment (Adeboye et al., 2014). When screening for the concen-
trations tolerable to S. cerevisiae, the concentration of coniferyl
aldehyde in the medium was varied from 0.67 mM to1.4 mM.

2.2.3. Cultivation of S. cerevisiae strains
The inoculum was cultivated in Erlenmeyer flasks incubated at

30 �C and 200 rpm for a period of 18 h in YMMM. Cells were har-
vested by centrifugation (3000 rpm for 5 min at room tempera-
ture) from a volume of inoculum with an optical density OD600 of
0.2. The cells were resuspended in fresh cultivation medium and
immediately added to the main cultivation. The main cultivations
were carried out in DASGIP� parallel bioreactor systems compris-
ing of two units, each with four SR0700ODLS vessels (DASGIP,
Jülich, Germany). The culture volume was 700 ml and the fer-
menters were preconditioned overnight at pH 5. Aeration was set
to 1vvm at an impeller speed of 400 rpm. Cultivation was run for
96 h and aeration was maintained at 1vvm throughout the cultiva-
tion. A feedback loop was created between the impeller speed and
the signal from the dissolved oxygen probe to maintain aeration
above 40% of oxygen saturation. Triplicate cultivations were per-
formed for each strain.

2.2.4. OD measurements for culture growth determination
Growth was monitored by measuring the absorption at 600 nm

(OD600) using a Thermo Scientific GENESYS 20 Visible
Spectrophotometer.

2.2.5. Determination of dry cell weight
The dry cell weight was determined in triplicate using 5 ml of

culture. The sample was filtered using pre-dried and pre-weighed
filter paper disks with 0.45 lm pore size and a water-tap vacuum
filter unit (both from Sartorius Stedim Biotech, Goettingen, Ger-
many). The filter paper disks were dried in a microwave oven at
120W for 15 min, weighed again, and the dry cell weight was
determined from the difference in weight.

2.2.6. Determination of maximum specific growth rates
The maximum specific growth rate was calculated by plotting

the natural logarithm of the measured optical density of the cul-
ture samples against time during cultivation. To determine the
maximum specific growth rate on the Bioscreen, the readings
obtained from the instrument were calculated back to standard
spectrophotometric measurements at 600 nm using the
expression:

ODspectro ¼ ODBioscreen

Path length� 1:32
ð1Þ

where: ODspectro = equivalent OD on spectrophotometer at 600 nm
and ODBioscreen = OD measured on the Bioscreen.

Path length ¼ volume ðmlÞ
r2 � p

ð2Þ

where: volume is the culture volume in a well in the Bioscreen plate
and r is the radius of the well.

Non-linearity at higher cell densities was corrected as described
by Warringer et al. (Warringer and Blomberg, 2003) using the
expression:

ODcor ¼ ODobs þ ðOD2
cor � 0:449Þ þ ðOD3

cor � 0:191Þ ð3Þ
where: ODcor is the corrected OD and ODobs is the observed OD val-
ues, from which the average blank has been subtracted.

2.2.7. Determination of yields and rates
The yields of ethanol, glycerol, acetate, carbon dioxide and

biomass from the consumed glucose were calculated during the
exponential growth phase by plotting each of the products against
the total consumed glucose. The yield for each product was
obtained as the slope of a linear regression fitted to the plot. Aver-
age values of biological replicates were used as the final yield for
each culture condition.

The specific consumption rate of the substrate (glucose) was
determined using the relation

qsubstrate ¼
l
Yx=s

ð4Þ

where qsubstrate is the specific substrate consumption rate, l the
maximum specific growth rate, and Y(x/s) the biomass yield
coefficient.

The specific productivity of biomass, ethanol, acetate and glyc-
erol were calculated using the relation:

qproduct ¼ qsubstrate � Yp=s ð5Þ
where qproduct is the specific productivity, qsubstrate the specific sub-
strate consumption rate, and Y(p/s) the product yield coefficient.

During the respiratory growth phase, the biomass yield Y(x/s),
was calculated using a combination of glycerol, acetate and ethanol
as substrate. The average rate of conversion of coniferyl aldehyde
was calculated by plotting the concentrations of coniferyl aldehyde
against time, and determining the slope of the plot.

2.2.8. Toxicity screening of phenolic compounds and conversion
products on S. cerevisiae

The toxicity of the phenolic compounds and their conversion
products were determined experimentally by high-throughput
toxicity screening using Bioscreen C MBR (Oy Growth Curves Ab
Ltd, Finland), using the same set-up as described previously
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(Adeboye et al., 2014). S. cerevisiae cultivations were performed in
parallel with different concentrations of coniferyl aldehyde.
Growth was monitored in each cultivation and the coniferyl alde-
hyde concentration at which growth was not observed was noted.
The toxicity limit was defined as the highest concentration of con-
iferyl aldehyde at which growth of the yeast was observed.

2.2.9. Analytical methods
2.2.9.1. Analysis of metabolites. The fermentation metabolites pro-
duced during cultivation were analyzed using high-performance
liquid chromatography (HPLC) using a Dionex Ultimate 3000 HPLC
unit (Thermo Scientific, Dionex Corporation, Sunnyvale, CA, USA)
equipped with an Aminex HPX-87H (Biorad, USA) column (column
dimension, 1.3 � 7.8 mm, 9 lm particle size, 8% cross linkage). The
column temperature was set to 45 �C, and 5 mMH2SO4 was used as
the mobile phase at a flow rate of 0.6 ml/min. A Shodex refractive
index detector (RI-101) and an Ultimate 3000 variable wavelength
ultraviolet detector (VWD 3100) were used for quantification of
the metabolites.

2.2.9.2. Time-based monitoring of the conversion of coniferyl alde-
hyde. Simultaneously sampling for growth measurement (OD
measurement) at each time point, additional 5 ml volume of cul-
ture sample was rapidly collected, centrifuged at 0 �C and
5100 rpm for 5 min and the supernatants were stored at �20 �C
until analysis was carried out with combined gas chromatography
and mass spectrometry (GC–MS). Prior to GC–MS analysis, liquid–
liquid extraction was carried out using 1 ml ethyl acetate to extract
1 ml of sample. Extraction was carried out at pH 2 in glass sample
vials and 50 ll of an internal standard (100 lg/mL O-vanillin in
ethyl acetate) was added to each sample. The samples were vor-
texed on a multi-tube vortex at 2000 rpm for 20 min. The samples
were allowed to rest for 5 min after vortexing and derivatization
was then performed. To derivatize the samples, 125 ll of the sol-
vent phase (ethyl acetate) from the extracted sample was pipetted
into GC–MS vial and 87.5 ll of a derivatization reagent mix con-
sisting of 12.5 ll Pyridine, 0.75 ll Trimethylchlorosilane (TMCS)
and 74.25 ll of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)
were rapidly added to each sample. The samples were capped
and incubated in a rotary water bath at 70 �C and 120 rpm for
30 min. The GC–MS analysis was performed using DSQ II Single
Quadrupole GC–MS chromatograph (Thermo scientific, Germany).
One ll of each sample was injected in splitless mode, and the injec-
tor temperature was maintained at 250 �C. Separation was carried
out using a DB-5 capillary column (Agilent, Sweden) of length
30 m, inner diameter 0.32 mm and film thickness 0.25 lm. Helium
was used as mobile phase at a flow rate of 1 ml/min was used as
mobile phase. The temperature program was: 50 �C for 1 min,
5 �C/min to 350 �C, and then 350 �C for 5 min.

Electron impact (EI+) was used for ionization in the mass spec-
trometer. Mass spectra were recorded from m/z 40 to 400 with a
total cycle time of 0.7 s. The compounds with the highest abun-
dance were identified by comparison of the mass spectra with an
NIST MS Search 2.0 library. The internal and external standards
were used to determine the concentrations of the compounds
identified.

2.2.9.3. Preparation of cell free extracts for in vitro activity assays of
Ald5 in engineered strains. The engineered S. cerevisiae strains were
cultivated to mid-exponential phase with optical density of 3.0.
Five ml of culture sample was taken, allowed to cool down on ice
for 2 min and subsequently harvested by centrifugation at
4000 rpm for 5 min. The pelleted cells were washed twice in equiv-
alent volume of 100 mM potassium phosphate ice cold buffer (pH
7.0). The cells were resuspended in 0.5 ml of 65 mM potassium
phosphate buffer (pH 7.0) containing 1% concentration of protease
inhibitor. The cells were subsequently disrupted using acid washed
glass beads in a homogenizer using two disruption cycles of 6 m/s
for 20 s with cooling of the samples on ice for 1 min between the
two cycles. The cell debris and glass beads were removed by cen-
trifugation at 1000 rpm for 5 min. The supernatants were trans-
ferred to clean tubes and immediately analyzed for aldehyde
dehydrogenase activity.
2.2.9.4. Measurement of aldehyde dehydrogenase activity.
K+-activated aldehyde dehydrogenase was assayed using the
method described by Postma et al. (Postma et al., 1989). The assay
mixture contained 100 mM potassium phosphate buffer (pH 8.0),
15 mM pyrazole 0.4 mM dithiothreitol, 10 mM KCI and 0.4 mM
NAD+. A range of substrate concentrations and diluted enzymes
and extract were first used to determine the points of substrate
saturation (Vmax) after which 20 ll of cell free extract was used
in a total reaction volume of 200 ll. The reaction was started with
1 mM acetaldehyde. 1 Unit of acetaldehyde dehydrogenase is
defined as the amount that will oxidize 1.0 lmole of acetaldehyde
to acetic acid per minute at pH 8.0 and at 25 �C in the presence of
NAD+.
2.2.9.5. In vitro analysis of coniferyl aldehyde conversion with cell free
extracts. The assay mixture was the same as that of acetaldehyde
dehydrogenase assay. The reaction mixture contained 100 mM
potassium phosphate buffer (pH 8.0), 15 mM pyrazole 0.4 mM
dithiothreitol, 10 mM KCI, 0.4 mM NAD+ and cell extract. The reac-
tion was started with 0.5 mM coniferyl aldehyde in a reaction vol-
ume of 1 ml in Eppendorf tubes incubated at 30 �C in a
Thermomixer. Samples of 100 ll were drawn from the reaction
at 15 min intervals. The samples were transferred into new Eppen-
dorf tubes and the reaction was stopped by incubation in a Ther-
momixer at 90 �C for one minute. Each sample was subsequently
cooled on ice, extracted with 100 ll of ethyl acetate, derivatized
as described for other GC–MS samples and analyzed using GC–
MS. Due to the nature of the substrate and analytical platform,
the assay was not run at Vmax therefore, activity of the cell free
on coniferyl aldehyde was intended as average on time and
expressed as specific coniferyl aldehyde conversion rate (lmole/
min/mg).
2.3. Statistical validation of data

All obtained experimental data were subjected to the student
t-test to determine whether there were significant differences
between the data obtained on the different strains. A two-sample
t-test assuming unequal variances was therefore performed. The
significance level was set at p < 0.05. All error bars indicate one
standard deviation from the averages of multiple measurements
of each parameter among biological replicates. Propagation of
errors were also calculated among replicates by the expressions;
R ¼ 1
3

X3

i¼1

Xi ¼ 1
3
ðX1 þ X2 þ X3Þ ð6Þ
dR
R

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX1

X1

� �2

þ dX2

X2

� �2

þ dX3

X3

� �2
s

ð7Þ
where R is the final result of averages, error in R is dR, X is each
replicate experiment and dX is the deviation in each replicate.
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3. Results and discussion

3.1. Acetaldehyde dehydrogenase activity in recombinant S. cerevisiae
strains

To investigate the successful overexpression of CALDH in the
B_CALD strain and the deletion of ALD5 in the SC_ald5D strain,
the acetaldehyde dehydrogenase activity was measured. The
B_CALD extracts exhibited the highest activity per milligram of
protein at 15.12 ± 0.17 mU/mg while the SC_ald5D had the lowest
at 3.85 ± 0.08 mU/mg, which is consistent with the fact that it
harbored ALD5 deletion. The extract from the control strain (a pro-
totrophic CEN.PK strain) displayed an intermediate specific activity
of 4.78 ± 0.15 mU/mg. This confirmed the successful heterologous
expression of CALDH in the B_CALD strain and a successful deletion
of ALD5 in the SC_ald5D strain.

3.2. In vitro conversion of coniferyl aldehyde

The conversion of coniferyl aldehyde was investigated in cell
free extracts in vitro to determine the activity of the coniferyl alde-
hyde dehydrogenase gene in the B_CALD strain, and to study the
role of Ald5 in the conversion of coniferyl aldehyde in S. cerevisiae.
The trend followed by the three strains for in vitro coniferyl alde-
hyde conversion was the same trend as the one observed for
acetaldehyde dehydrogenase activity measurements (Section 3.1).
As expected, cell extracts from the B_CALD strain exhibited a speci-
fic coniferyl aldehyde conversion rate of 2.52 ± 0.05 lmole/min/mg
while extracts from SC_ald5D and the control strain exhibited con-
version rate of 0.71 ± 0.03 lmole/min/mg and 0.8 ± 0.01 lmole/
min/mg, respectively. Thus, the highest coniferyl aldehyde conver-
sion activity per milligram of protein (2.52 ± 0.05 U lmole/min/
mg) was observed in the B_CALD strain, confirming the activity of
CALDH on coniferyl aldehyde and its successful expression in the
recombinant strain.

3.3. Tolerance to coniferyl aldehyde

Tolerance to coniferyl aldehyde was determined through a tox-
icity test in which all three strains were cultivated in the multiple
automated growth curves instrument ‘‘Bioscreen” in the presence
of different concentrations of coniferyl aldehyde. The tolerance
was assessed by the ability of the cells to grow, and their maxi-
mum specific growth rates were calculated. As can be seen in
Table 2, the maximum specific growth rates of the strains
decreased with increasing concentration of coniferyl aldehyde,
and at 1.4 mM, no growth was observed in any of the strains. At
1.18 mM coniferyl aldehyde, the B-CALD strain had a maximum
specific growth rate of 0.083 ± 0.01 1/h while the SC_ald5D strain
grew at 0.064 ± 0.01 1/h and the control strain at 0.098 ± 0.05 1/
h. In terms of relative decrease in maximum specific growth rate,
as compared with the mineral medium reference cultivations,
B_CALD and the control both displayed a �70% decrease, while
SC_ald5D growth was more impacted by 1.18 mM coniferyl alde-
hyde, with almost 80% decrease in maximum specific growth rate.
In light of these data, it is possible to conclude that the B-CALD
Table 2
Maximum specific growth rates (1/h) of B_CALD, SC_ald5D and control strains at different

Strain Maximum specific growth rates (1/h) at different concentrat

Blank medium 0.67 mM 0.84

B_CALD 0.27 ± 0.01 0.15 ± 0.03 0.13
SC_aldD5 0.27 ± 0.02 0.22 ± 0.04 0.13
Control 0.29 ± 0.02 0.21 ± 0.03 0.21
strain retains the same tolerance to coniferyl aldehyde compared
as the control, while the deletion of ALD5 causes a more severe
effect on growth.
3.4. Effect of conversion of coniferyl aldehyde on the physiology of the
recombinant strains

The physiological performance of the strains varied when culti-
vated in the presence of 1.1 mM coniferyl aldehyde under aerobic
batch cultivation conditions in instrumented bioreactors (Fig. 1).
As expected, the strains displayed a slightly different growth
behavior in these conditions compared to the high throughput test
in Bioscreen (Section 3.3), most likely due to the different oxygena-
tion conditions. Due to the redox nature of coniferyl aldehyde
detoxification, and to the fact that the CALDH enzyme, overex-
pressed in the B_CALD strain, could deplete the cell of NAD+ it
can in fact be expected that oxygen limitation, and thus limited
capacity of NAD(P)H re-oxidation, as experienced under cultivation
in Bioscreen, has a negative impact on the B_CALD strain. All the
strains experienced a lag phase in the presence of coniferyl alde-
hyde. The B_CALD strain experienced an exceptionally long lag
phase of 36 h while strains SC_ald5D and the control had a lag
phase of 14 h. The maximum specific growth rate of the B_CALD
strain was 0.18 ± 0.02 1/h which is marginally lower than those
observed in the SC_ald5D and the control strains which had growth
rates of 0.24 ± 0.05 1/h and 0.24 ± 0.01 1/h respectively. The etha-
nol and glycerol yields did not differ between the strains, while the
biomass, acetate and CO2 yields varied between the strains and the
control (Fig. 2). The B_CALD strain showed biomass yield of
0.14 ± 0.01 g/g, �25% higher than the SC_ald5D and control strains
for which the values were 0.11 ± 0.006 g/g and 0.11 ± 0.006 g/g
respectively (Fig. 2b). The lower maximum specific growth rate
of B_CALD, yet accompanied by a higher biomass yield, were
reflected by a lower specific glucose consumption rate exhibited
by the B_CALD strain was 1.32 ± 0.14 g/g/h while the SC_ald5D
and the control strains showed specific glucose consumption rates
of 2.18 ± 0.12 g/g/h and 2.2 ± 0.14 g/g/h respectively (Fig. 2f). Since
the B_CALD strain exhibited a prolonged lag-phase and slower
specific growth rate, the final biomass titer was lower and glucose
consumption was slower in the strain. A lower specific glucose
uptake rate favors respiration which in turn could have allowed
a higher biomass yield on a glucose substrate rather than the aer-
obic production of ethanol. The lowest acetate yield,
0.005 ± 0.001 g/g was observed in the B_CALD strain, compared to
SC_ald5D and the control strains where acetate yields were respec-
tively 0.01 ± 0.001 g/g, 0.01 ± 0.001 g/g with the (Fig. 2c). The CO2

yields in the strains SC_ald5D and the control strains were
0.70 ± 0.02 g/g, 0.75 ± 0.02 g/g respectively, while the B_CALD had
the highest CO2 yield at 0.83 ± 0.08 g/g (Fig. 2e). The high yield of
CO2 of the B_CALD strain is consistent with increased respiration,
in line with the increased biomass yield on glucose.

It could as well be speculated that this may have been due to an
increased energy demand in the cell, which resulted in increased
respiration, to generate ATP required for the coniferyl aldehyde
conversion process, rather than for growth. This strain converted
coniferyl aldehyde before growth was initiated, unlike the other
concentration of coniferyl aldehyde.

ion of Coniferyl aldehyde

mM 1.01 mM 1.18 mM 1.4 mM

± 0.04 0.12 ± 0.02 0.08 ± 0.01 –
+ 0.02 0.09 ± 0.01 0.06 ± 0.01 –
± 0.01 0.10 ± 0.03 0.10 ± 0.05 –
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Fig. 1. Cell growth, expressed as the optical density in terms of the adsorption at 600 nm, of the investigated strains; B_CALD (N), SC_ald5D (j), and the control strain ( ) in
medium containing 1.1 mM coniferyl aldehyde. Asterisk denotes a significant difference between the B_CALD strain and other strains.

Fig. 2. Effect of 1.1 mM coniferyl aldehyde on the yields of (a) ethanol, (b) biomass, (c) acetate, (d) glycerol and (e) CO2 from the cultivations of recombinant strains B_CALD,
SC_ald5D and control using glucose as carbon source. (f) The specific glucose consumption rate. Asterisks denote differences between the B_CALD strain and other strains.
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strains which grew and converted coniferyl aldehyde simultane-
ously. Furthermore, the reduction in acetate yield that was
observed in the B_CALD strain may be directly related to the
increased CO2 yield. The observed change in the glucose consump-
tion rate may be the reason for the decrease in aerobic fermenta-
tion, i.e. a limited Crabtree effect in the B_CALD strain were
observed. This observation and the increased CO2 yield both
indicate increased respiration.
The prolonged lag-phase in the B_CALD strain was unexpected.
It is known that during the conversion of some inhibitory com-
pounds, cells may experience prolongation of lag-phase. A typical
example is the conversion of HMF that leads to a prolongation of
the lag-phase of S. cerevisiae (Ask et al., 2013). Prolongation of
lag-phase during HMF conversion is due to the interference with
the expression of several genes involved with biotransformation
and detoxification of inhibitors, transcription factors and genes
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Fig. 3. Conversion of coniferyl aldehyde by the engineered strains B_CALD ( ),
SC_ald5D ( ), and the control strain ( ).
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that regulate pleiotropic drug response and genes involved with
modification and degradation of damaged proteins (Ma and Liu,
2010). Factors similar to those responsible for the prolongation of
lag-phase during the conversion of HMF have not been reported
for S. cerevisiae in the presence of coniferyl aldehyde. Since a pro-
longed lag-phase was observed in the B_CALD strain expressing
of CALDH, this is believed to be primarily due to the expression
of CALDH which may have affected any of the cellular processes
involved with growth. Considering the complexity of gene interac-
tions and regulatory networks that are involved with growth, the
molecular influence of the expression of CALDH in the B_CALD
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Fig. 4. Effect of the conversion of coniferyl aldehyde on the lag phase of recombinant st
SC_ald5D and the control strains in yeast minimal mineral medium without coniferyl alde
control strain are shown when applicable.
strain that led to a lag phase extension during conversion of coni-
feryl aldehyde is not understood. A hypothesis is that the B_CALD
strain experienced a prolonged lag-phase because CALDH is
expressed at high levels, and, at the initial high concentration of
substrate (coniferyl aldehyde), it is could deplete the cell of NAD+

for the conversion of coniferyl aldehyde, as hinted by the low
acetate yield displayed by B_CALD. It has been shown that the
heterologous expression of proteins often impact negatively on
the specific growth rate and may not lead to an increase in cell
performance because it overburdens and alters the host cell meta-
bolism (Dürrschmid et al., 2008; Freigassner et al., 2009). The
inability of the B_CALD strain to simultaneously grow and convert
coniferyl aldehyde and the reduced specific growth rate may also
be linked to expression mechanism of the CALDH enzyme in the
new host, this was not investigated in this study.
3.5. Conversion of coniferyl aldehyde

Complete conversion of the 1.1 mM coniferyl aldehyde in the
medium was observed in all the strains. The B_CALD and the con-
trol strains converted all the coniferyl aldehyde in 36 h while it
took the SC_ald5D strain 48 h to completely convert all the coni-
feryl aldehyde (Fig. 3). Conversion started during the lag phase
and all the strains experienced a prolongation in the lag phase
compared to their cultivation in the absence of coniferyl aldehyde
(Fig. 4). Cessation of growth for a period of 36 h was observed in
the B_CALD strain during which period the conversion of almost
all of the coniferyl aldehyde occurred. SC_ald5D and the control
strains grew and converted coniferyl aldehyde simultaneously
(Figs. 3 and 4).

The volumetric conversion rate of coniferyl aldehyde
differed significantly between the three strains, as can be seen
from Table 3. During the first 12 h average conversion rates
of coniferyl aldehyde by strains B_CALD, SC_ald5D and the
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Table 3
Average volumetric rate of conversion of coniferyl aldehyde in the first 12 and 24 h of
conversion and the specific conversion rate of coniferyl aldehyde by B_CALD, SC_ald5D
and the control strains. Higher rates are indicated with asterisks for the B_CALD strain.
Asterisks denotes a significant difference between the B_CALD and other strains.

Strain Volumetric conversion rate (mM/
h)

Specific conversion rate of
coniferyl aldehyde (g/g/h)

0–12 h 0–24 h

B_CALD 0.0240 ± 0.0003 0.0330 ± 0.0004⁄ 0.030 + 0.003⁄

SC_ald5D 0.0230 ± 0.0003 0.0280 ± 0.0004 0.0009 ± 0.0001
Control 0.0320 ± 0.0004 0.0310 ± 0.0004 0.0011 ± 0.0003
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control were 0.024 ± 0.0003 mM/h, 0.023 + 0.0003 mM/h and
0.032 ± 0.0004 mM/h respectively. After 24 h of cultivation, the
volumetric conversion rate increased to 0.033 ± 0.0004 mM/h and
0.028 ± 0.0004 mM/h in the B_CALD and the deletion SC_ald5D
strains, respectively, while the control strain maintained a steady
conversion volumetric conversion rate of 0.031 ± 0.0004 mM/h, as
it could be expected due to the delayed growth of B_CALD. The
specific conversion rate over a period of 36 h showed the B_CALD
strain converted coniferyl aldehyde at 0.030 ± 0.003 g/g/h of cells
while the SC_ald5D converted at 0.0009 ± 0.0001 g/g/h and the
control strain at 0.0011 ± 0.0003 g/g/h (Table 3). The B_CALD strain
thus exhibited a specific conversion rate that is 33 times and 27
times higher than the SC_ald5D strain the control, respectively.

Although the SC_ald5D strain was still able to convert coniferyl
aldehyde, this strain showed the slowest specific conversion rate.
This supports the hypothesis that Ald5 is actively involved with
the conversion of coniferyl aldehyde. The aldehyde dehydrogenase
family in S. cerevisiae consists of 5 members that have been charac-
terized and sequentially named ALD2-ALD6. ALD2 (YMR170c), ALD3
(YMR169c) and ALD6 (YPL061w) are cytosolic, while ALD4
(YOR374w) and ALD5 (YER073w) are mitochondrial (Saint-Prix
et al., 2004). ALD genes have been reported to exhibit redundancy,
although they use different co-factors (Boubekeur et al., 1999;
Saint-Prix et al., 2004). The redundancy in the ALD gene family
may explain why the SC_ald5D strain was still capable of convert-
ing coniferyl aldehyde, even though it exhibited the highest sensi-
tivity to 1.1 mM coniferyl aldehyde in the tolerance test and the
conversion rate was lower. Also, the SC_ald5D strain had acetate
yields slightly lower than that of the control strain. In literature,
ALD5 has been reported to be involved in regulation or biosynthe-
sis of electron transport chain components and acetate formation
via oxidation of acetaldehyde produced from pyruvate during the
fermentation of sugars and that formed during ethanol oxidation
(Saint-Prix et al., 2004; Walkey et al., 2012). However, ALD5 has
been shown to facilitate acetate formation under anaerobic growth
conditions (Saint-Prix et al., 2004; Walkey et al., 2012). In this
study, all cultivations have been done under aerobic condition, this
could explain why acetate formation was not significantly different
between the SC_ald5D and the control strains.

Conclusively, the B_CALD strain exhibited efficient conversion of
coniferyl aldehyde, a trait which is valuable when developing
microorganisms that are both robust and useful for a more efficient
utilization of substrates rich in phenolic inhibitors as well as pro-
duction of specific metabolites. In the concept of biorefinery, where
complex natural substrates are used, a strain that has the potential
for bioethanol and biochemical production is vital. Although this
performance might have come at the expense of cell growth within
the first 36 h, the strain however rapidly recovered at the end of
the conversion.
4. Conclusion

This study was aimed at developing a S. cerevisiae strain with an
improved ability to convert coniferyl aldehyde and investigate
whether the strain would exhibit increased tolerance to coniferyl
aldehyde. Efforts were also made to identify an enzyme involved
in coniferyl aldehyde conversion in S. cerevisiae.

A successful attempt towards developing a strain of S. cerevisiae
strain with improved endogenous conversion of phenolic com-
pounds by heterologous expression of a known coniferyl aldehyde
dehydrogenase enzyme from Pseudomonas was demonstrated. The
performance of SC_ald5D strain strongly indicated that Ald5 is
involved with the conversion of coniferyl aldehyde in S. cerevisiae.
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