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Abstract
This thesis describes epitaxial growth of ZnO/GaN distributed Bragg re�ectors by
hybrid plasma-assisted molecular beam epitaxy on GaN(0001). The unique hybrid
approach employed the same growth chamber for continuous growth of both ZnO and
GaN without exposing the layers to the ambient conditions. The Bragg re�ectors con-
sisted up to 20 periods as veri�ed with cross-sectional transmission electron microscopy.
The maximum achieved re�ectance was 77% with a 32 nm wide stopband centered at
500 nm. A profound study of the ZnO and the ZnO/GaN growth processes was carried
out including growth along both ZnO(0001) and ZnO(0001̄) directions. The impact of
growth temperature, O2 �ow-rate and the Zn-�ux on the ZnO growth rate, structural
quality and surface and interface morphology, was investigated in detail. The layers
were studied with a wide range of materials characterization techniques such as x-ray
di�raction, scanning electron microscopy, atomic force microscopy, secondary-ion mass
spectroscopy and transmission electron microscopy. Low-temperature growth as well
as two-step low/high-temperature deposition was carried out where the latter method
improved the Bragg mirror re�ectance. Samples grown along the ZnO(0001) direc-
tion yielded a better surface morphology as revealed by scanning electron microscopy
and atomic force microscopy. It was observed that the growth rate of ZnO decreased
when the O2 �ow rate was increased. This is unexpected with respect to the common
knowledge in the molecular beam epitaxy research community. A detailed study of
this e�ect involving optical emission spectroscopy of the O-plasma, revealed that the
cause was an overall decrease of the amount of the active O provided by the plasma
source. Reciprocal space maps showed that ZnO(0001̄)/GaN re�ectors are relaxed
whereas the ZnO(0001)/GaN DBRs are strained. The ability to n-type dope ZnO
and GaN makes the ZnO(0001)/GaN DBRs interesting for various optoelectronic cav-
ity structures such as blue vertical surface emitting lasers and novel cavity-polariton
devices. This is the �rst time ZnO/GaN DBRs have been demonstrated.

Keywords: ZnO, GaN, Oxides, Nitrides, distributed Bragg re�ector (DBR), molecular
beam epitaxy (MBE)
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Chapter 1

Introduction

This chapter gives an introduction to ZnO and GaN and the bene�ts of combining
them to a into a hybrid ZnO/GaN DBR grown by a hybrid nitride/oxide MBE system.
A description of the organization of this thesis is given at the end of this chapter.

1.1 Motivation - ZnO/GaN

Semiconductors with a bandgap above 3 eV such as ZnO and GaN, are generally re-
ferred to as wide bandgap materials. The group-III materials B, Al, Ga and In alloyed
with the group-V element N, are referred to as III-nitrides. The direct bandgap of
GaN is 3.39 eV at 300 K [1]. The growth of GaN is today well-established [2]. Nitride-
based white-light-emitting light emitting diode (LED)s are very energy-e�cient light
emitters that are replacing incandescent light bulbs thus reducing the energy con-
sumption needed for lightning. White LEDs have also been combined with solar cells
and rechargeable batteries into compact, reusable and portable systems that are now
introduced in third world countries which lack a developed power grid. Lamps based
on burning fossil-fuels such as oil and kerosene are widely used in these countries.
These fossil-fueled lamps emit toxic fumes and are energy ine�cient. The introduc-
tion of clean and reusable white LED systems therefore o�er signi�cant improvement
of the quality of life in third world locations where the power grid is inaccessible.
Nitride-based edge-emitting laser diode (LD)s operating at a wavelength of 405 nm
(blue-violet light) are used in Blu-ray DVD players [3]. ZnO is formed by Zn from
group II and O from group VI. The direct bandgap of ZnO is 3.37 eV at 300 K [4]
which is close to the GaN bandgap. All e�orts to obtain reliable p-doping in ZnO
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1. INTRODUCTION

have so far been unsuccessful [5]. ZnO and GaN exhibit a wurtzite structure with
similar in- and out-of-plane lattice constants a and c. For bulk ZnO, aZnO = 0.325
and cZnO = 0.521 nm, respectively compared to aGaN = 0.319 and cGaN = 0.518 nm
for GaN. The ZnO/GaN lattice mismatch (aZnO − aGaN)/aGaN is 1.9% which is a
comparably small value and therefore reduces the risk of forming cracks.

MBE can be used to fabricate wide-bandgap heterostructures with interfaces that
are abrupt on the atomic scale [6, 7]. This is achieved by controlling the supply of
ultra-pure source material with mechanical shutters.

Both ZnO and GaN can be fabricated with other techniques such as pulsed laser
deposition (PLD) [8] and metal-organic chemical vapor deposition (MOCVD) [9]. Hy-
brid ZnO/GaN LED structures [10�13] and ZnO transparent contacts [14] have been
demonstrated.These hybrid structures were always grown using two di�erent deposi-
tion systems. The InGaN/GaN layers were �rst grown in an epitaxy system dedicated
for nitrides. Herafter, the sample was removed and re-mounted in another system
for the overgrowth of ZnO. This procedure was also used recently for the ZnO(0001)
overgrowth on GaN(0001̄) nanowires [15]. Often, MOCVD was used for the growth of
InGaN/GaN QWs while a range of techniques such MOCVD, PLD and MBE as were
used for the deposition of ZnO. This procedure introduced GaxOy sub-oxides uncon-
trollably on the nitride surface. These sub-oxides a�ect both the structural quality
of the overgrown ZnO layer and also the homogeneity of the ZnO/GaN interface [16�
21]. Non-radiative recombination centers can also be introduced into the structure
by these suboxides [11] The formation and thus the adverse e�ects of the sub-oxides
can be avoided or minimized if the InGaN or GaN is not exposed to air before the
ZnO growth. This can be achieved with a hybrid nitride/oxide MBE-system where
the same MBE growth chamber is used for both ZnO and GaN growth.

In this work the epitaxial growth of GaN and ZnO was done using the same growth
chamber which is a unique approach that to our knowledge, has only been reported
once before in Ref. [22]. The system design and assembly was part of this project. The
hybrid con�guration facilitates immediate and subsequent growth of the two materials
without the exposing any of them to the air ambient. Thus, the formation of sub-
oxides that are detrimental for subsequent epitaxial growth of ZnO, can be avoided.
This hybrid system was used to grow ZnO/GaN DBR:s for the �rst time.

1.1.1 ZnO/GaN DBRs

GaN-based blue-emitting vertical cavity surface emitting laser (VCSEL)s have been
reported by several research groups [23�28]. Both nitride based epitaxial and dielec-
tric DBRs have been used for the formation of the VCSEL optical cavity. However,
no commercial blue-emitting VCSEL exist yet.

The �rst approach using nitride DBRs utilizes a relatively small di�erence between
the refractive index of AlxGa1−xN or AlInN and GaN which means that a larger num-
ber of periods N is needed to achieve a high re�ectance DBR [24, 25, 29�31]. For
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1.2. ORGANIZATION OF THESIS

instance, N>20 for AlN/GaN DBRs and N>40 for AlInN/GaN Bragg mirrors. The
cavity with the active region is grown on top of the bottom DBR. The top DBR con-
sisting of dielectric materials, is then bonded onto the cavity. Strain-engineering is
needed for the AlxGa1−xN/GaN DBRs to avoid crack-formation caused by the large
lattice mismatch between high-Al containing AlxGa1−xN and GaN. The largest refrac-
tive index contrast for nitride-based DBRs is achieved for the AlN/GaN combination
but these DBRs also exhibit the largest challenges with crack formation.

The second approach use dielectric DBRs for both the bottom and the top DBRs.
The advantage is that only a few periods are nedeed to obtain a high re�ectance [23, 26�
28, 32�35]. The drawback with this approach is the high precision processing steps
needed to make a cavity with a well de�ned-thickness.

None of the described DBR approaches yield electrically conducting structures
which therefore require additional processing steps to enable electrical injection.

In this thesis a third approach using hybrid ZnO/GaN DBRs is described. This
method allows epitaxially growing a complete VCSEL structure in-situ which signi�-
cantly reduces the number of costly processing steps required to fabricate the discrete
VCSEL device. The lattice-mismatch between ZnO and GaN is 1.9% which is com-
paratively small and therefore minimizes the risk of forming cracks. The refractive
index di�erence between ZnO and GaN is ≈0.4 at a wavelength λ of 450 nm. This
di�erence is relatively large and therefore a smaller number of periods (N<20) are
needed to achieve a high-re�ectance DBR. Finally, n-doping of both ZnO [36] and
GaN is straightforward meaning that an electrically conducting ZnO/GaN DBR can
be achieved.

A hybrid ZnO/GaN DBR could thus enable the fabrication a blue-emitting VCSEL
that employs current injection through the DBR similar to GaAs-based VCSELs.

One of the general advantages of VCSELs as compared to edge-emitting laser
diodes is that they can be fabricated on the wafer-scale and also tested directly on
the wafer without having to dice the wafer. This lowers the fabrication costs of VC-
SELs compared to edge-emitting laser diodes that �rst must be processed into discrete
devices before they can be tested.

1.2 Organization of thesis

The next chapter 2 introduces a selection of materials properties for ZnO and GaN.
Herafter, chapter 3 gives a short introduction to epitaxy. The concepts of di�erent
growth modes and the atomistic picture of epitaxy are presented. A technical section
showing the con�guration of the hybride nitride and oxide MBE growth chamber is
also included. The following chapter 4 shows the characterization techniques used to
investigate the grown structures. A description of the optical emission spectroscopy
setup used to assess the e�ciency of the O-plasma source is also given. In chapter 5 the
growth methods and results of ZnO and GaN on 4H-SiC(0001) and GaN/Al2O3(0001)

3



1. INTRODUCTION

templates are described. The e�ect of substrate pre-treatment, nucleation and sub-
sequent growth is presented. A description on how to grow smooth ZnO layers of
both ZnO(0001) and ZnO(0001̄) on GaN(0001) is given. This chapter present a new
found ZnO growth rate dependence on the O2 �ow rate and how this is related to
the emission spectra from the O-plasma source. The following chapter 6 describes the
growth results of ZnO/GaN DBRs fabricated along the ZnO(0001̄) and ZnO(0001)
directions. Hereafter, chapter 7 provides a summary and discussion with an outlook
for ZnO/GaN DBRs. The last chapter 8 presents a summary of the appended papers.

4



Chapter 2

Physical properties of GaN and ZnO

This chapter provides a brief summary of selected physical properties of the wide-
bandgap semiconductors GaN and ZnO and how these can be utilized in a DBR.

2.1 Crystal structure

A crystal consists of periodically arranged atoms. The arrangement can be described
mathematically by a lattice with an attached basis that is associated with each lattice
point. Crystals exhibit long-range order compared with amorphous materials which
exhibit no order of atoms. The structure of a crystal in�uence its electrical, optical
and thermal properties. Table 2.1 summarizes a selection of properties of ZnO and
GaN.

Figure 2.1 shows a schematic of the wurtzite crystal structure which is the ther-
modynamically stable crystal phase for both GaN and ZnO. Each cation (Ga and
N) and anion (Zn and O) atom is indicated in the �gure. The primitive cell is a
hexagonal structure with four basis atoms [46]. The unit vectors are a1= ( 1

2
,
√
3
2
, 0)a,

a2= ( 1
2
,−
√

3
2
, 0)a and c = (0, 0, c

a
)a. The crystallographic [0001] and [0001̄] direc-

tions are indicated in Fig. 2.1 and are of special importance for the work presented in
this thesis since both ZnO(0001) and ZnO(0001̄) have been grown on GaN(0001) sub-
strates. GaN(0001) have also been fabricated on 4H-SiC(0001)-substrates and also on
both ZnO(0001) and ZnO(0001̄) layers. ZnO(0001) and Zn(0001̄) are also referred to
as Zn- and O-polar ZnO [47]. The corresponding names for GaN(0001) and GaN(0001̄)
are Ga- and N-polar GaN [41].
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2. PHYSICAL PROPERTIES OF GAN AND ZNO

Table 2.1: Selected properties for GaN and ZnO

Property Unit GaN ZnO
Lattice constant a (300 K) Å 3.189 [37] 3.249 [38]
Lattice constant c (300 K) Å 5.185 [37] 5.205 [38]
Band gap Eg (300 K) eV 3.39 [1] 3.37 [4]
Ordinary ref. index n0 (450 nm) - 2.45 [39] 2.106 [40]
Th. exp. coe�. αa0(100-600)K K−1 1.2-5×10−6 [41] 4.75×10−6 [5]
Th. exp. coe�. αc0(100-600)K K−1 1.1-4.4×10−6 [41] 2.9×10−6 [5]
Th. conductivity κ W/cm-K 1.86-2.05 [42] 1.10-1.16 [43]
Melting point TM K 2791 [41] 1703 [5]
Decomposition temperature TE

oC 850 [44] 550�600
Spontaneous polarization Psp C/m2 -0.034 [37] 0.057 [45]

The positions of the atoms, in units of a1, a2 and c are (0,0,0) and ( 2
3
, 1
3
, 1
2
) for the

positive cation atoms, and (0,0,u) and ( 2
3
, 1
3
,u+ 1

2
) for the negative anion-atoms, where

u is the dimensionless internal parameter. For the ideal wurtzite structure c/a =
√

8
3

and u = 3
8

[48]. Table 2.1 gives the in-plane lattice constants a and out of plane
lattice constants c for GaN and ZnO at room temperature.

One way of looking at a crystal structure is by identifying the stacking sequence
of atoms and classifying each stacking case as a speci�c polytype [49]. Let a capital
letter (A,B,C) denote a cation-anion pair in the vertical direction (one bilayer) in
�gure 2.1(a). Di�erent capital letters mean di�erent positions of a bilayer in the
horizontal plane. The stacking sequence for wurtzite (GaN and ZnO) is AB repeated
in the c-direction.

One substrate used in this work is the 4H-SiC(0001)-substrate where H denotes
hexagonal and the number 4 refers to the speci�c polytype [49]. The stacking sequence
for 4H-SiC(0001) is ABCB repeated in the c-direction. The lattice constants for 4H-
SiC(0001) are a=0,3073 nm, c=1,0053nm [50].

Two known polytypes of III-nitrides and II-oxides are 2H-GaN or ZnO and 3C-GaN
or ZnO [51, 52]

Figures 2.2(a)�(f) show various cross-sections of the wurtzite structure. Fig-
ure 2.2(a) shows the crystal with c-, a- and m-planes. The c-plane viewed from above
with the [0001] c-axis directed out from the image is shown in Fig. 2.2(b) The op-
posite plane is referred to as [0001̄]. Figure 2.2(c) shows the wurtzite crystal with
the normal of the a-planes directed to the right and the c-direction directed up. Fig-
ure 2.2(d) shows a side view of a ZnO(0001) or Zn-polar crystal and Fig. 2.2(e) shows
a ZnO(0001̄) (O polar) crystal. The e�ect of compression of a crystal is shown in
Fig. 2.2(f). Compression occurs when a crystal with a larger in-plane lattice constant
is grown onto a crystal with a smaller in-plane lattice constant such as ZnO grown on
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Figure 2.1: Schematic of the wurtzite structure. Hexagonal primitive unit cell with
four basis atoms (dashed lines in the left image) [46]. Each atom is bonded to four
nearest neighbors. The crystallographic [0001] and [0001̄] directions are indicated.
The normal of the c-plane is directed from the cation (Ga or Zn) to the anion (N or
O). The in plane lattice constant is denoted as a and the out of plane lattice constant
is denoted as c.

GaN. Compressive strain will decrease the in-plane lattice constant a and increase the
lattice constant c. The opposite occurs when a material is grown on a substrate with
a larger in-place lattice constant, for instance GaN on ZnO. Strain-free layers are said
to be relaxed.

2.2 Optical properties

The refractive indices are of utmost importance for the design of a DBR since they
ultimately determine the number of DBR periods needed. The refractive indices can
be determined with ellipsometry or the prism-coupling method. A consequence of the
anisotropic wurtzite crystal is that it has two refractive indices, the no-ordinary (for
polarization parallell to the c-axis) and the ne-extraordinary refractive indices (for
polarization perpendicular to the c-axis). Table 2.1 lists the values for the ordinary
refractive indices, given for GaN and ZnO at 450 nm. The refractive index for ZnO can
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2. PHYSICAL PROPERTIES OF GAN AND ZNO

Figure 2.2: Schematic for the wurtzite crystal. Hexagonal unit cell with a, m and
c-planes (a). Top view of c-plane surface (b). Side-view of crystal (c). Side view of
Zn(0001) (d). Side view of Zn(0001̄) (d). In-plane compressive strain decrease the
in-plane lattice constant a and increase the out-of-plane c-lattice constant (e).

be modeled below the fundamental absorption edge by using the �rst order Sellmeier
equation:

n(λ) =

√
A+

Bλ2

λ2 − C2
(2.1)

where A, B and C are �tting parameters and λ is the wavelength. Fits against
experimental data are A=2.84 (2.85), B=0.84 (0.87) and C=0.319 (0.310) µm for Ē ⊥ c̄
and (Ē ‖ c̄) [53]. The corresponding �rst order �tting parameters for GaN are A=3.60,
B=1.75 and C=0.256 µm for (Ē ‖ c̄) [54]. The refractive index of a material is also
a�ected by the temperature as shown for GaN [39]. Refractive indices determined with
the prism-coupling method for MOCVD grown GaN between 442�1064 nm are given
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in [55]. The refractive indices for ZnO can be found in refs. [53, 56�58]. Refractive
indices at T=4.2 K near the absorption edge are found in ref.[58].

2.2.1 ZnO/GaN - DBR principle

Figure 2.3(a) shows a schematic of a GaN/ZnO/substrate quarter-wave λ/4 re�ector
structure. If the thickness d of each layer ful�lls d = λ/(4n) where n is the refractive
index of the layer material, the re�ected light will add up in phase which will result in
the light being re�ected e�ciently. The re�ectivity is enhanced when more λ/4 pairs
are stacked on top of each other. The large refractive index di�erence between ZnO
and GaN (≈0.4) is advantageous since it means that only a small number of pairs is
needed to reach a high re�ectivity [Fig. 2.3(b)].

Figure 2.3: Schematic of a DBR. One λ/4 pair of two materials (a). A stack of λ/4
pairs (b).

2.2.2 DBR - design strategy

A DBR is mainly characterized by its re�ectance in, as given by equation 2.2 which
is based on the transfer matrix formulation [2] for incident, re�ected and transmitted
electromagnetic waves for a center wavelength λ.

R(N) = (
1− n2

2
nsn0

(n1
n2

)2N

1 +
n2
2

nsn0
(n1
n2

)2N
)2 (2.2)
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Here, N is the number of pairs of materials 1 and 2, n1, n2, ns, n0 are the refractive
indices for materials 1 and 2, the substrate and the region above material 1 in Fig. 2.3.
The region with high re�ectivity is the stop band of the incident electromagnetic wave.
The wave will not be transmitted through the material in the stop band. Instead the
light is re�ected. Important consideration when designing a DBR is given in the
following list.

High refractive index di�erence: A large refractive index di�erence n1-n2 means
that a smaller number of λ/4 periods is needed to achieve a speci�c re�ectance.
The refractive index di�erence between ZnO and GaN is (≈0.4) at 450 nm.

Well de�ned layer thickness: The thickness of a period must ful�ll the λ/4 crite-
rion.

Abrupt interfaces: Smooth interfaces are needed to avoid scattering e�ects.

2.3 Thermal properties

The thermal properties of a semiconductor are of importance for the epitaxial growth
since thermal mismatch between the thermal expansion coe�cients can lead to strain
and crack formation.

Table 2.1 lists the thermal expansion coe�cients for GaN and ZnO. The data for
the GaN was given for the temperatures 100-600 K in [41]. The thermal expansion
coe�cients for ZnO are given at room temperature in table 2.1. However, the expan-
sion was measured with powder X-ray di�raction (XRD) for temperatures between
200-1400o and �tted to the following analytical functions for the lattice constant a and
c for ZnO [5].

a = 3.2468 + 0.623× 10−5T + 12.94× 10−9T 2 (2.3)

c = 5.2042 + 0.252× 10−5T + 11.13× 10−9T 2 (2.4)

The thermal conductivity for GaN and ZnO can be measured with the scanning
probe microscopy (SPM)-method scanning thermal measurement (SThM). The higher
value of 1.16 W/cmK corresponds to the Zn-polar and the lower value of 1.1 W/cmK
to the O-polar bulk values. Higher values up to 1.47 W/cmK for the thermal bulk
conductivity have also been reported for N-plasma treated melt grown crystals [5] and
is closer to the reported values for GaN.
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Chapter 3

Epitaxy

This chapter gives a basic introduction to epitaxy. A description of the hybrid nitride
and oxide MBE-system used to fabricate the samples in this work, is also provided.

3.1 Introduction

The word epitaxy comes from the greek words epi meaning above and taxis meaning in
ordered manner and was introduced by Royer 1928 [59]. By de�nition epitaxy involves
the process of depositing or growing a crystalline layer on a crystalline substrate.
Epitaxy is necessary to fabricate various semiconductor structures for applications
such as laser diodes and light-emitting diodes.

Similar to other epitaxial methods, the MBE process involves the nucleation of
nuclei or islands of a crystalline material on the substrate surface followed by the
coalescence of these islands into a single crystal layer.

The processes in MBE are usually far away from thermodynamic equilibrium
and are therefore better described by kinetic models that involve mass transport and
adsorption, desorption, di�usion, incorporation, decomposition and growth rates.

Atomistic models describe the interaction between single atoms and gives for in-
stance the bond strength and bond length between the atomsWurtzite crystal [Fig. 2.1,
chapter 2]. The quantum mechanical aspects on this length-scale (nm) has to be taken
into account for the description of the chemical bonding between impinging atoms and
substrate atoms via their respective atomic or molecular orbitals [60].

A unique and unparalleled advantage of MBE is that it is possible to identify
di�erent growth modes in real-time by the observation of di�erent re�ection high
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3. EPITAXY

energy electron di�raction (RHEED) patterns with the help of a RHEED system that
is an integral component in most MBE systems.

Homoepitaxy refers to the case when the deposited or grown material is the same
as the substrate material. This case does therefore not induce lattice strain in the �lm-
substrate interface since the lattice constants are the same. Consequently, homoepi-
taxy yields high-quality thin �lms such as ZnO �lms grown on ZnO substrates. [9]

3.1.1 Heteroepitaxy

Heteroepitaxy refers to the case when the grown material is di�erent from the substrate
material. Heteroepitaxy can be further divided into either lattice matched or lattice
mismatched growth.

Heteroepitaxy can combine semiconductor materials with di�erent electrical or
optical properties that enable new compound materials with novel properties. For
instance, by precisely combining thin layers of GaN and InGaN compounds into QWs
LEDs and laserdiodes emitting in the UV-violet-blue and green spectral range, can be
fabricated.

For optical applications, a crack free conductive AlN/GaN DBR exhibiting a re-
�ectance R≥99% and with a stopband of 40-50 nm centered around 450 nm has been
demonstrated [61]. This MBE-grown DBR consisted of 20 pairs of lattice-mismatched
AlN/GaN-layers grown on a 6H-SiC(0001)-substrate. The structure is suitable for
optoelectronic applications in the blue-green spectral range.

A crack-free 40-pair lattice matched In0,17Al0,83N/GaN DBR has been grown on a
2-inch c-plane sapphire substrate by MOCVD. The thickness of each In0,17Al0,83N/GaN-
pair was 47/50 nm. The R of this DBR was 99.4% with a bandwidth of 30 nm centered
at 450 nm [62]. A higher number of pairs was needed in the lattice matched DBR
since the refractive index contrast between the layers was lower compared with the
lattice-mismatched AlN/GaN DBR [61].

The lattice mismatch in heteroepitaxy is measured by the mis�t parameter fm
de�ned as

fm =
al − asub
asub

(3.1)

where al and asub are the lattice constants of the epitaxial layer and the substrate,
respectively [63]. The lattice mismatch initially results in the accumulation of either
compressive or tensile strain. Above a certain critical thickness, the strain becomes so
large that the strained layer relaxes through the formation of dislocations and cracks.
Dislocations reduce the periodicity of the crystal structure. A lower crystal periodicity
translates to a lower structural quality.

3.1.2 Growth modes

Figure 3.1 shows three di�erent types of structures grown in this work. The images
are obtained with scanning electron microscopy (SEM) (see chapter 4.1).
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The main growth modes in epitaxy are classi�ed as follows [59]:

Frank-van der Merwe growth mode (FM-mode): Layer by layer growth. One
layer is grown before the growth of the next layer starts.

Step-�ow growth mode (SF-mode): Adatom di�usion along steps or step-�ow.
The layer advances along the step.

Stranski-Krastanov growth mode (SK-mode): 2D-layer growth followed by for-
mation of 3D-island [Fig. 3.1(a)].

Volmer-Weber growth mode (VW-mode): 3D-island growth [Fig. 3.1(c)].

Columnar growth mode (CG-mode): 3D-island growth followed by coalescence.
The islands merge and form a �lm [Fig. 3.1(b)].

3.1.3 Epitaxy - atomistic description

Mass-transport, adsorption, di�usion and incorporation are the key mechanisms in the
kinetic atomistic description of epitaxy which is important in MBE [64�67].

Figure 3.2 shows a schematic description on the atomistic view of epitaxy and is
referred to as Kossel's model of crystallization [59]. This model is also called the
terrace step kink model (TSK) model [68].

The schematic shows a cubic lattice and describes the basic processes involved
in homoepitaxy. Each atom is viewed as a building block with six faces where each
face has one possibility to interact and bond to another surface. The substrate at
temperature T is viewed as many building blocks put together into a single crystal
and each position is considered as a site. The substrate has a lower, a middle and an
upper terrace each separated with a vertical step height which is one building block
high. The length L is de�ned as the terrace or step length. The number of bonds
indicated at each site are (1) on a terrace, (2) at a step, (3) at a kink, (4) at a step
vacancy and (5) at a terrace vacancy.

An impinging �ux of atoms arrive at the substrate where they adhere to the surface
[Fig. 3.2 (lower terrace)]. The physisorbed state represent the weakest bond formed
between the adatom and the substrate. Desorption is the process when a physisorbed
adatom leaves the surface. The physisorbed adatom is free to move or di�use on
the surface between di�erent sites over �at surfaces, over steps or over islands [69].
Chemisorption is the process when the adatom binds to the surface and is thus incor-
porated into the growing layer. A higher growth temperature increases the desorption
from the substrate. A higher source temperature will increase the �ux of impinging
atoms onto the surface.

Di�usion can also occur along steps and bind at a more preferable kink site [Fig. 3.2
(middle terrace)]. Nucleus 1, 2 and 3 are 2D-islands and represent nucleation. Nucleus
1 shows a small nucleus dissociating. A nucleus can also di�use on the substrate and
become incorporated into a larger nucleus. The process where nuclei merge is called
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Figure 3.1: SEM micrographs of di�erent ZnO-growths on di�erent GaN(0001)-
surfaces. (a) Cross-section SEM image of a sample with a thin ZnO layer and islands.
The insert shows an SEM image of the surface of this sample (m1041). (b) A cross-
section SEM image of a columnar ZnO layer grown on in-situ grown GaN/4H-SiC.
The insert shows the SEM image of the sample (m1113). (c) SEM micrograph of a
sample with ZnO islands on GaN/4H-SiC (m1128)

14
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Figure 3.2: Schematic description of the atomistic view of homoepitaxial growth.
Atoms impinge on the substrate, where they adhere. The step-length of the terraces
is L. Di�usion of adatoms will occur as long as they are not bound strongly to the
substrate. The bond strengths for a speci�c site is increasing with increasing number 1-
5. An adatom is incorporated into the substrate when it stops to migrate and becomes
chemisorbed. Desorption of an adatom can occur before incorporation. 2D-nucleation
is shown for di�erent sizes of nuclei where the smallest nucleus both can migrate on
the surface as well as dissociate. A 3D-nucleus is formed at the highest terrace. The
rates for all reactions on the surface are greatly a�ected by the substrate temperature
T.

coalescence [70]. A larger 2D-island have a higher number of possible binding sites
and therefore grow faster compared with a smaller nucleus.

The di�usion length of an adatom is de�ned as the average length the adatom
moves on the surface before desorption or incorporation occurs. If the di�usion length
is smaller than the terrace or step length, the growth mode will yield 2D-islands on
the terraces (FM-mode). SF-mode mode will occur when the di�usion length is larger
than the terrace or step length [71].

A 3D-island is formed if the vertical growth rate is larger than the rate of growth
in the lateral direction [Fig. 3.2(upper terrace)].
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3.2 MBE technology - Nitrides and Oxides

Figure 3.3 shows a schematic of the refurbished MBE360-system used to grow ZnO
and GaN using the same growth chamber. There are also two additional chambers
used for sample transfer between ambient and the growth chamber. The growth of
GaN and ZnO in one single chamber is extremely rare and to our knowledge only been
reported previously by M.A.L Johnson et al. [22].

3.2.1 Ultra high vacuum

The base pressure (standby condition) of the growth chamber is maintained with an
ion pump and a cryo-pump. The base pressure is measured with an ion-gauge to
5× 10−10 Torr. During growth, the ion-pump is turned o� since the growth pressure
is above the ion-pump capacity. The cryo-pump is regulating the pressure during the
growth and is assisted by cryo-panels �lled with liquid nitrogen. The pressure range
during the growths was 3.0×10−6�5.0×10−5 Torr depending on the O2 �ow rate ΦO2

or the N2 �ow rate ΦN2 .

3.2.2 Substrate heater, sample mounting and transfer

The samples were In-mounted (soldered) on a 50 mm diameter Si(100)-wafer attached
to a ring-shaped Mo-holder. The Mo-holder is loaded into the load-lock and transferred
via the bu�er-chamber into the growth chamber onto the continuous azimuthal rotation
(CAR)-unit. The CAR-unit is a manipulator stage with the possibility to move in the
x-, y- and z-directions as well as z-rotation. The uniformity of the grown layer is
improved by the continuous azimuthal rotation of the substrate holder around its
surface normal (y-axis in �gure 3.3). All samples were continuously rotated at 6 rpm
during the growth experiments. The substrate heater is a Ta-circuit inside a pyrolytic
boron nitride (PBN) �xture. The temperature of the heater is measured with a W/Rh
thermocouple located on the back of the Mo-holder and behind the substrate back-
surface. Thus, the actual temperature on the substrate surface di�ers from the one
measured.

3.2.3 Solid e�usion cells

A solid source e�usion cell loaded with 7N Ga is used to provide elemental Ga. Ele-
mental Zn is provided by a solid source e�usion cell �lled with 6N Zn. Both elements
are contained in crucibles made of PBN. The Ga-source is usually operated between
1000-1120 oC for growth of GaN. A PBN aperture-plate with an aperture diameter of
7 mm was positioned over the ori�ce of the Zn-crucible to minimize oxidation of the
source material [72]. The aperture plate also provides additional control of the Zn-�ux.
The Zn source is operated between 290-440 o during growth of ZnO. The temperature
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Figure 3.3: Schematic of a hybrid MBE-system for growth of GaN and ZnO using the
same growth chamber. The shutters in front of the Zn- and O-sources regulate the �ux
of Zn-and O-atoms towards the heated substrate which is mounted on a rotating sample
holder. Real-time in-situ observation of the growth is possible by monitoring the
RHEED-pattern on the �uorescent screen. The GaN-growth is performed analogously.

is measured with a W/Rh thermocouple in contact with the crucible. Shutters are
located in front of all sources. Shuttering enables or disables the �ux of elements from
a speci�c source.

3.2.4 Nitrogen and Oxygen plasma sources

A N-plasma source (Veeco) supplied with 7N N2 is used for producing active N. An
O-plasma source (Veeco) supplied with 6N O2 for producing active O. Each plasma
source is equipped with a conduction tube protruding into the growth chamber. This
is a non-standard solution that was necessary to allow mechanical mounting of the
plasma-sources on the growth chamber since the available �ange size on the MBE-360
is 2.75" while the �ange size for the plasma sources is 4.5". The conduction tubes
lower the growth rate by a factor 2�4. The �ow-rate of O2 and N2 are each controlled
with a 5 standard cubic centimeter (sccm) mass �ow controller. The plasma for each
source can be maintained between 0.2-5.0 sccm. Both plasma sources can be operated
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in either low-brightness or high-brightness mode. All grown samples have been grown
in high-brightness mode. The di�erence between the modes can be observed through
a viewport located on the end of each plasma source.

3.2.5 Re�ection High Energy Electron Di�raction

The RHEED-system is an in-situ characterization tool used to monitor the growth
process in real-time. It has two major parts, a 10 kV RHEED-gun and a �uorescent
RHEED-screen mounted diametrically opposite to the gun. The electrons from the gun
can be adjusted at a glancing angle <3o with respect to the mounted substrate located
in the xz-plane. The electrons will be scattered or re�ected by the surface and also
di�racted in the case of an ordered surface such as an epitaxial layer. The di�raction
pattern can be observed on the RHEED-screen. This pattern depends on the electron
acceleration voltage, the lateral and vertical coherence length of the electrons and the
condition of the surface [73, 74]. With reference to the three terraces described in
�gure 3.2 the following will be observed with the RHEED-system:

Figure 3.2(Lower terrace): Streaks.

Figure 3.2(Middle terrace): Streaks but with a lower intensity due to population
of the surface with 2D-islands.

Figure 3.2(Upper terrace): Spots if completely covered with 3D-islands and a
combination of spots and streaks if the surface is partially covered with 3D-
islands.

Observation of rings and ring segments indicates a polycrystalline surface. A poly-
crystal consists of small crystalline domains that are randomly ordered with respect to
each other and to the substrate surface. This therefore no longer represents epitaxy.

3.2.6 The BEP-gauge

The beam equivalent pressure (BEP)-gauge is mounted on the CAR-unit on the
opposite side of the substrate heater. When rotated toward the sources the gauge
can detect a �ux of Ga or Zn atoms. The BEP-gauge gives a qualitative measure of
the atoms/s emitted from the source. The �ux of atoms is conveniently plotted as a
function of the source temperature and this is useful for the calibration of the �ux. It
also indicates when a solid source is empty and needs to be re�lled.
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Chapter 4

Characterization Techniques

This chapter introduces the characterization methods used for the structural, mor-
phological, electrical and optical characterization of the epitaxial layers described in
this thesis. It also describes the optical emission spectroscopy setup used to assess the
oxygen plasma composition.

4.1 Scanning electron microscopy

With SEM it is possible displaying sample images with a lateral resolution of 3�
6 nm. In SEM, electrons that are emitted from a �eld emission �lament located
in ultra high vacuum (UHV) are accelerated with a high voltage (2�20 kV) and
directed through a system of electron lenses and apertures before striking the sample
surface. The interaction between the incident electrons and the sample surface will
result in the emission of secondary, Auger and backscattered electrons. The secondary
electrons emitted from the sample, are collected by a detector. The detector signals
are processed electronically and ultimately form an image [75].

In this work a LEO Ultra FEG 55 SEM was used to characterize the samples. This
SEM was operated with a 5 kV acceleration voltage and with a 7.5 µm aperture. Plane-
view images of the sample surfaces provided information of the surface morphology as
shown in �gure 4.1(a) for a ZnO/GaN-structure grown on 4H-SiC(0001).

The samples were cleaved manually with a diamond scriber to expose a cross-
section of the sample edge for thickness measurements [Fig. 4.1(b)]. The cleaved
sample was mounted on the sample holder so that the cross-section faced the detector.
A secondary electron (SE) detector was used for an initial coarse adjustment before
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Figure 4.1: SEM micrographs for MBE-grown ZnO on in situ grown GaN/4H-SiC
(sample m1095). A plane-view image of the surface (a) and a cross-section micrograph
of the cleaved sample edge (b).

enabling the high-resolution InLens detector. An improved image quality was achieved
with a lower line scan speed and by averaging the detector signal up to 256 times. From
the cross-sectional images, the thicknesses of the layers could be determined with an
accuracy of ±5 nm. The growth rate was then calculated by dividing the measured
thickness with the growth time.

4.2 Atomic force microscopy

The surface morphology (topography) of a samples were investigated with atomic force
microscopy (AFM) [76], [77]. In AFM, a sharp tip located on the edge of a cantilever
scans the sample surface. The tip-surface atomic force interaction causes the cantilever
to de�ect and the degree of de�ection is recorded by a laser-photodetector system.
The photodetector signal is used by a closed-loop piezoelectric setup to which the
cantilever is attached. The piezoelectric setup moves the cantilever in a direction that
is parallel to the surface normal of the sample (height or z-coordinate). The closed-loop
con�guration will try to maintain a constant tip-sample interaction. A topographical
map of the surface can therefore be obtained since every z-value is associated with a
surface x- and y-coordinate. In this work, the AFM micrographs were recorded using
a Bruker Dimension 3100 system in tapping mode and under ambient conditions.

Figure 4.2 (a) shows a SEM image of the probe tip. A schematic of the tip
and the cantilever assembly is shown in Fig. 4.2 (b). An AFM micrograph of a
GaN(0001)/Al2O3-template is shown in Fig. 4.2 (c). The GaN surface exhibited curved
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terraces that were 0.23 nm high and 80 nm wide as indicated in the �gure. The the
peak-to-valley distance (z-value) was 0.9 nm over a 2 × 2 µm scan area. The probe

Figure 4.2: SEM image of an AFM probe tip (a) and the schematic for the tip-
cantilever assembly (b). AFM micrograph of GaN(0001)/Al2O3-template surface (c).
The white line indicates the height and length of the terraces.

tips used (HQ:NSC15/Al BS) had an uncoated tip diameter of 8 nm. The full tip cone
angle was 40◦ and the total tip height was 12�18 µm. The cantilever force constant
was 40 N/m and the resonance frequency was ≈ 325 kHz [78]. A z-range of 1-3 µm
was used. Images were captured over 2�5 µm areas with scan speeds of 1�2 Hz. For all
measurements the image artifacts [79] were minimized by observation of the real-time
lines of the trace and re-trace which should be identical.

4.3 X-ray di�raction

The structural properties of a material can be investigated analyzing the di�racted
x-ray pattern of an epitaxial layer that is irradiated by x-rays from an x-ray source.
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The fundamental relation between the incident x-ray beam and the crystal struc-
ture of the epitaxial �lm is expressed by Bragg's law

nλ = 2d sin θ (4.1)

where n=1,2,3.. is an integer representing the di�raction order, λ is the wavelength
of the incident X-ray beam (λ = 0.154056 nm), d is the distance between the crystal
planes and θ is the angle between the crystal planes and the incident beam as well as
for the di�racted beam.

Figure 4.3(a) illustrates fundamental geometry behind Bragg's law. The sample
surface normal ŝ is here parallel with the lattice plane normal n̂. It is common to
denote the incident angle with ω instead of θ as indicated in Fig. 4.3(a).

The distance between the crystal planes for a hexagonal crystal structure is given
by

d(h, k, l) = 1/

√
(h2 + k2 + l2)

4

3a2
+
l2

c2
(4.2)

where h,k,l are the Miller indices and a and c are the lattice constants of the hexagonal
unit cell [80].

In �gure 4.3(a) the angular change of direction between the incident and di�racted
X-rays is 2θ with respect to ω. If n,λ and 2θ are known, it is possible to determine
the plane distance d which can be used to identify a speci�c crystalline material. This
x-ray scan con�guration is called symmetric or on-axis.

Figure 4.3(b) shows two asymmetric re�ection geometries that make it possible to
determine the positions of di�raction peaks from crystal planes that are not parallel to
the sample surface n̂ ∦ ŝ. The incident and di�racted x-ray beams and the n̂ and ŝ are
still located in the same plane. Here, the angle of incidence with respect to the sample
surface is either lower ω −∆ or higher ω + ∆ as compared with the symmetric Bragg
re�ection condition. The di�racted beam is changed correspondingly with 2θ+ ∆ and
2θ − ∆ as indicated in Fig. 4.3(b). In order to ful�ll the Bragg conditions for these
planes, the detector and sample must be rotated to speci�c angles assuming that the
incident beam geometry is �xed which is the case for many common di�ractometer
systems. This will limit the number of planes or Bragg re�ections that are accessible
by the di�ractometer. Asymmetric scan geometries are also called an o�-axis scans
since n̂ ∦ ŝ.

In skew geometry scans, the sample is rotated both in the plane for the incident
and di�racted beams [Fig. 4.3(b)] as well as out of this plane as indicated in Fig. 4.3(c).

By performing a scan where only ω is changed and the detector is wide-open, the
sample is "rocked" through the Bragg condition for a re�ection (hkl). This type of
scan is thus called a rocking-curve. If a very wide scan-range is needed, the detector
angle is changed with 2θ where still ω = θ.

A deviation from the ideal crystal con�guration as observed for real crystalline
materials such as ZnO and GaN which have the wurtzite crystal structure, will a�ect
the di�racted x-ray pattern. This can be used to assess the crystal quality of the �lm.
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Figure 4.3: Braggs law for symmetric (a), asymmetric (b) and skew symmetric (c)
re�ection geometries.

In hexagonal crystal structures with a pronounced mosaic component such as GaN and
ZnO, the on-axis symmetric rocking curve yields the tilt that is related to threading
dislocations that have a Burgers vector b parallel to the 〈0001〉 direction which is
the case for pure screw dislocations. The skew-geometry rocking curve gives the twist
related to pure edge dislocations which are threading dislocations that have a b parallel
to 〈1000〉. Two scans are thus necessary to give a comprehensive assessment of the
structural quality of a wurtzite material such as ZnO and GaN. Mixed screw-edge
threading dislocations have components of both b.

The crystal or structrual quality is assessed by measuring the full-width-at-half-
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maximum (FWHM) of a di�raction peaks obtained from on- and o�-axis scans where
the o�-axis scan is performed in the skew-geometry con�guration. The FWHM of the
on-axis scan is a measure of the tilt ∆ωs of the layer whereas the FWHM from the
skew-geometry scan is a measure of the layer twist ∆ωe. A narrow FWHM of the
di�raction peak corresponds to a better crystalline quality.

It has been shown that it is possible [81�83] to obtain an estimate of the amount of
screw and edge dislocations from the tilt and twist measurements through the relations

ρs =
∆ω2

s

2π ln 2|bs|2
(4.3)

ρe =
∆ω2

e

2π ln 2|be|2
(4.4)

where ρs and ρe are the concentrations of screw and edge dislocations, respectively,
bs and be are the corresponding Burgers vectors and ∆ωs and ∆ωe is the tilt and twist
in radians.

From a set of individual ω/2θ scans which are performed with a crystal in front
of the detector and for a set of ω values, it is possible to obtain a map of the Bragg
re�ection peak and the surrounding region in the reciprocal space. A reciprocal space
map can be displayed in angular units (∆ω, ω/2θ) or in reciprocal units (Qx, Qy)
using the coordinate transformation

Qx = R(cosω − cos(2θ − ω)) (4.5)

Qy = R(sinω + sin(2θ − ω)) (4.6)

|Q| =
√
Q2

x +Q2
y = 2R sin θ (4.7)

where R is the radius of the Ewald sphere and |Q| is the length of the di�raction
vector [80, 84]. An ω/2θ-scan converted to reciprocal units will be a radial line if
extended to the origin in a (Qx, Qy) graph and is therefore also called a radial scan. In
a reciprocal space map, the vertical position of a re�ection is related to the out of plane
lattice constant c and the horizontal position is related to the in-plane lattice constant
a. A symmetric on-axis re�ection for a relaxed ZnO/GaN layer will have the same
Qx-value since this measurement is insensitive to the in-plane lattice constant. On
the other hand, an asymmetric re�ection for the relaxed ZnO/GaN layer will exhibit
di�erent Qx positions for the ZnO and GaN peaks since the in-plane lattice constants
are di�erent. For a fully strained ZnO/GaN-layer the Qx-positions for the ZnO and
GaN peaks coincide in an asymmetric geometry re�ecting the identical in-plane lattice
constants for ZnO and GaN.

In this work, a Philips X'Pert Materials Research Di�ractometer (MRD) was used
for the characterization of the grown ZnO and GaN layers (papers I � III) and
ZnO/GaN DBRs (paper V). A symmetric con�guration was used for the rocking curve
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scans across the (0002) re�ection. The rocking curve scans across the (101̄5) re�ec-
tion were obtained in a skew symmetric con�guration. Reciprocal space maps were
acquired with an asymmetric con�guration (with a high angle of incidence) across the
(101̄5) re�ection and in a symmetric con�guration across the (0002) re�ection.

4.4 Time of �ight secondary ion mass spectroscopy

A unique capability of time of �ight secondary ion mass spectrocsopy (TOF-SIMS) is
elemental mapping of a surface. The working principle of this instrument is based on
a primary ion beam directed against the sample surface. The primary beam creates
a sputtering e�ect which generate secondary ions that are then removed from the
sample. The secondary ions are collected and detected by through a mass detector
and are ultimately yielding a mass spectrum [85].

In this work an IONTOF V [86] was used for a qualitative characterization of grown
ZnO layers on GaN(0001)/Al2O3 templates [Paper I]. The primary beam was either
Bi or Cs. Two instrument modes can be used, the high-current bunch mode and the
burst alignment mode. The high-current bunch mode is associated with a lower spatial
resolution of 2�5 µm but with the highest mass resolution. The burst alignment mode,
which was used in this work, is associated with a lower mass resolution and broader
peaks but with a high lateral resolution (≈200 nm) [87]. Depth pro�ling of grown
layers was also performed.

4.5 Transmission Electron Microscopy

With transmission electron microscopy (TEM) it is possible to display specimen images
with an atomic resolution. The generation of electrons in a transmission electron
microscope is similar to that in an SEM, but the electrons are accelerated with a
much higher energy (80�300 kV). The electrons are directed against, and transmitted
through a thin slice of the specimen material. The interaction volume is therefore
small. A detector records the electrons from the sample. Both a direct image or a
di�raction pattern from the specimen can be obtained [88]

In this work the morphology and crystal structure of ZnO/GaN DBRs were in-
vestigated with a Jeol 3000F TEM equipped with a �eld emission gun (FEG) and
operating at 300 kV [paper V]. A FEI Nova NanoLab 600 DualBeam focused ion
beam (FIB)/SEM system was used to prepare the cross-sectional TEM lamellae with
a maximum thickness of 300 nm. This is the �rst time both specimen preparation and
TEM-analysis have been made on ZnO/GaN DBRs.
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4.6 Spectral Re�ectance Measurements

In paper V the re�ectance was measured for the ZnO/GaN DBRs. Figure 4.4 shows
a schematic of the employed re�ectance setup together with a photo of a cleaved
20-period ZnO(0001̄)/GaN DBR (sample S1-55) and the recorded re�ectance. The

Figure 4.4: A cleaved 20-period ZnO(0001̄)/GaN DBR (left) with a schematic spectral
re�ectance setup (center) and with the recorded re�ectance (right).

sample is illuminated at normal incidence with white light from a Xe-lamp (Thorlabs
OSL1-EC) through a bifurcated re�ection probe with one bundled illumination and
one detection �ber. The detection �ber collects the re�ected light from the sample
and directs it into a Avantes AvaSpec 3648 spectrometer used for wavelengths λ in
the 350�800 nm range. The diameter of the spot size on the sample was ≈2 mm.
The spectrometer is connected with a USB-cable to a computer with a data collection
software. Before each measurement the Xe-lamp was stabilized for 5 min. The dark
intensity signal Idark from the ambient was measured to assess signal noise �oor. The
measured intensity from a Si-wafer Iref which has a known re�ectivity Rref , was
recorded. The sample re�ectivity Rsample is then given by:

Rsample = Rref
Isample − Idark
Iref − Idark

(4.8)

over the entire 350�800 nm wavelength range [89]. Based on the re�ectance from the
reference sample, the measurement error was estimated to be ≈5% for λ<400 nm
and <1%) for 400λ<800 nm. A comparison between the measured re�ectivity from
a GaN/Al2O3 template with and without In on the backside showed that the In �lm

26



4.7. ELECTRICAL CHARACTERIZATION

did not a�ect the re�ectivity. From this we concluded that it was possible to measure
the re�ectivity from each ZnO/GaN sample without removing the In on the backside.

4.7 Electrical characterization

The electrical properties of the grown samples were assessed with Hall-e�ect measure-
ments using the van-der Pauw geometry [90] [91] shown in Fig. 4.5(a). Figure 4.5(b)
illustrates the Hall-e�ect geometry. When a current I is driven through a sample with

Figure 4.5: Van der Pauw geometry with contacts in the corners of a square sample
(a). The Hall-e�ect geometry (b).

a carrier concentration n together with a magnetic �eld B applied perpendicular to
the current, charges accumulate on the opposite sides of the sample which create a
transverse Hall voltage VH that can be measured. The Hall voltage can be derived
from the expression for the Lorentz force F as given by F = q(E + υ ×B) where q is
the charge carrier with the drift velocity υ. The carrier sheet density ns is given by

ns =
IB

q|VH |
. (4.9)

from which the carrier concentration can be calculated as n=ns/d for a known sample
thickness d. The Hall-voltage VH is negative for n-type carriers and positive for p-type
carriers.

From the van-der Pauw con�guration shown in Fig. 4.5(a), the Hall-voltage would
be V24 for a current I13. From the resistivity measurements RA = V43/I12 and RB =
V14/I23 it is possible to determine the sheet resistivity Rs by solving the van der Pauw
equation

e
−nRA

Rs + e
−nRB

Rs = 1 (4.10)
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which can be used to obtain the mobility µ with

µ =
|VH |
RsIB

. (4.11)

Usually the average is taken over a number of measurements with the magnetic �eld
directed in both directions of the sample and with all combinations of voltage and
current through the contacts 1�4.

In this work, a commercial HL5500 Hall-e�ect room temperature measurement
setup was used with software from Nanometrics Inc. Cross-sectional SEM was used
to determine the layer thickness d. The Hall samples were 5 × 5 mm2 and were cut
out from the grown 13× 13 mm2 sample in order to remove any inhomogeneous edge
e�ects of the grown layer. The contacts consisting of Au(60 nm)/Ni(20 nm) were
fabricated with e-beam evaporation and exhibited ohmic behavior on both ZnO and
GaN layers. The measurements were performed under dark conditions and a sample
current of 0.1 mA was employed. The background electron carrier concentration in the
ZnO layers was 1× 1019 cm−3 with µ = 51 cm2/Vs and Rs of 1123 Ω/�. The n-type
carrier concentration for the GaN-layers was 1.8 × 1018 cm−3 with µ = 108 cm2/Vs
and Rs of 1058 Ω/�.

4.8 Optical emission spectroscopy

The amount of active O in the O-plasma provided by the O-plasma source, was deter-
mined with optical emission spectroscopy [92, 93]. Figure 4.6(a�e) shows the optical
emission spectroscopy setup used in this work [paper IV].

The interior of the O-plasma source consists of a quartz-bulb with a 254 holes
facing the substrate heater [Fig. 4.6(b)]. The quartz bulb is surrounded with a coil to
which an RF-power in the range 150�300 W is applied. The sample is exposed to the
plasma by opening a shutter in front of the quartz aperture. Ultra pure 6N neutral
O2 was used as the source gas [Fig. 4.6(c)]. A plasma consisting of neutral, excited
and charged elements of O and (O2) was created inside the quartz bulb. Light is
emitted from the plasma when the constituent elements decayed to the ground state.
The emitted light was detected through the optical viewport located at the end of
the plasma source [Fig. 4.6(d)]. The well-de�ned atomic transitions of the emitted
light was used to identify the contents of the plasma. The total emitted spectral
line intensity I is given by I ∼ AN where A is the atomic transition probability and
N the number of excited atoms per unit volume [94]. A computer controlled �ber-
coupled Avantes AvaSpec 3648 spectrometer with a 200�1100 nm wavelength range
and with a resolution of 1.3 nm was used to record the emitted light from the plasma.
Figure 4.6(f) shows an optical emission spectrum obtained from the O-plasma with the
plasma operated at 150 W and with an O2 �ow-rate ΦO2=1.0 sccm. The highest peaks
were intentionally saturated to make the weaker peaks more visible. The National
Institute of Standards and Technology (NIST) Atomic Spectra Database for excited
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neutral atomic O (OI) and excited and singly ionized atomic O (OII) was used for
the spectral peak identi�cation [95]. The peaks related to excited and singly ionized
molecular O (O+

2 ) were identi�ed using the spectral data available in Ref. [96].
The insert in Figure 4.6(f) shows the total optical emission intensity as a function

of a varying ΦO2 where the intensity was integrated over the entire spectrometer
wavelength range (200�1100 nm) for each ΦO2 �ow rate. An increase of intensity up
to a maximum for 0.25 < ΦO2 < 2.0 sccm was observed. This initial intensity increase
was followed by an intensity reduction for higher ΦO2 values.

Figure 4.6(g) shows an increased emission intensity for a selection of peak-lines with
an RF-power between 150�300 and with ΦO2 = 1.0 sccm. These observations for the
employed 254-hole quartz bulb are similar to previously reported observations using a
275-hole aperture with an RF power between 150�450 W with ΦO2 = 1.5 sccm [97].
Nevertheless, in Ref. [97] it was pointed out that a lower number of aperture holes will
a�ect the response of the emission intensity.
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Figure 4.6: Optical emission spectroscopy setup. Oxygen plasma source (a) with
a quartz bulb equipped with a 254-hole aperture (b) supplied with O2 (c). Optical
viewport (d) to which an optical �ber (e) is attached and connected to a spectrometer.
The spectrometer is connected to a computer. Captured emission spectrum from the
O-plasma (f) with the integrated average emission intensity for all wavelengths for O2

�ow rates 0.25 < ΦO2 < 5.0 sccm (insert). Emission intensity of selected lines for
RF-powers 150�300 W (g).
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Chapter 5

Growth of ZnO and GaN

This chapter presents the growth and characterization of ZnO and GaN on 4H-
SiC(0001) substrates and GaN(0001)/Al2O3-templates. A description of the substrate
preparation is given and is followed by a section on how to grow GaN on 4H-SiC. Here-
after, a section on the nucleation is given related to paper 5.3. The nucleation section
describes how to grow either ZnO(0001) or ZnO(0001̄) on GaN(0001).

The next section describe how to grow a smooth ZnO(0001)-layers on GaN/4H-
SiC as reported in papers II-III. The described method has been employed also on
GaN(0001)/Al2O3-templates for both ZnO(0001) and ZnO(0001̄). This section also in-
clude a description on how the growth rate of ZnO(0001) and ZnO(0001̄) on GaN(0001)
depends on the active amount of O supplied by the O-plasma source (paper IV).

5.1 Substrates

In this work, two di�erent types of substrates have been used, 3-inch 4H-SiC(0001) and
2-inch GaN(0001)/Al2O3-templates. The GaN(0001)/Al2O3-templates were acquired
from SaintGobain Crystals [98]. Both standard non-intentionally doped and semi-
insulating GaN(0001)/Al2O3-templates were employed. The thickness of the GaN
template layer is 3.5�4.2µm on Al2O3. This GaN layer is completely relaxed on the
Al2O3 substrate (lattice constants aAl2O3 = 0.4765 nm and aAl2O3 = 1.2982 nm) [99].
Figure 4.2 in chapter 4.2 shows an AFM micrograph of the surface of an as-received
GaN template layer.
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The 4H-SiC(0001)-substrates were acquired from Cree[50]. Polishing of the SiC
substrates was performed by NovaSiC [100] and produced an atomically smooth surface
exhibiting straight and wide terraces.

5.1.1 Substrate preparation

The substrates were cleaved into (10�15)×(10�15) mm2 pieces and degreased using a
standard organic cleaning procedure (acetone, isopropanol, de-ionized H2O, sonication,
N2 blow-dry) before before they were In-mounted on the sample holder and introduced
into the MBE system. All samples were outgassed at 500�600◦C for 1�3 h in the growth
chamber prior to the growth.

An in-situ Ga-polishing or Ga �ash-o� procedure was performed prior to the GaN
growth to remove sub-oxides residing on the SiC substrate surface [101, 102]. This pro-
cedure also served as an independent temperature calibration of the speci�c substrate
holder.

Table 5.1 summarizes the di�erent substrate holder con�gurations, the substrate
temperatures for the (3×1) reconstruction and typical GaN growth temperatures for
the sample series presented in this work also given in papers I�V. All samples reported

Table 5.1: Summary of the di�erent substrate holder con�gurations used in this work.
Listed is the typical substrate temperature for the (3×1) reconstruction TS-(3×1) ,
the corresponding growth temperature for GaN, sample series with the corresponding
references.

Sample holder TS-(3×1) TS -GaN Samples Paper
(◦C) (◦C) (◦C)

Mo-block 870�880 900 m1001-m1013 �
Si+2 µm Ti 825�835 865 m1014-m1081 I

Si 650�670 650�700 m1082-m1264 II�V

in paperI were mounted on Si wafers coated with 2 µm Ti on the back side. From
sample m1082 and forward, all samples were mounted on Si-wafers without the Ti on
the backside (papers II � V). The measured substrate temperature was ≈ 150−180◦C
higher for a Si-wafer with a Ti-coated backside compared to a bare uncoated Si-
wafer. Early experiments with solid Mo holders exhibited a ≈ 200◦C higher substrate
temperature compared to an untreated Si-wafer. Knowledge of the type of substrate
holder is therefore important for a reasonable comparison of growth results.
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5.1.2 RHEED - ZnO on GaN

Figure 5.1 shows the temporal evolution of the RHEED-pattern from the [1120] az-
imuth before, during, and after 20 min growth of ZnO on a GaN(0001)/Al2O3 template
treated with N-plasma (exposure to N-plasma prior to the growth). A similar temporal
evolution was observed for Zn- and Ga-treated GaN(0001)/Al2O3-templates [paper I].

Figure 5.1(a) shows bright small streaks and Kikuchi lines (the curved lines) as ob-
served after (∼1h) thermal outgassing of the GaN(0001)/Al2O3 template. A brighter
pattern is observed after the N-plasma surface treatment [Fig. 5.1(b)]. The longer
streaks indicate an improved lattice ordering of the surface on the order of the elec-
tron coherence length which is ∼100 nm corresponding to an acceleration voltage of
10 kV [73], [74].

Figure 5.1(c) shows a lower intensity of the RHEED pattern during the �rst
minutes of ZnO growth with both Zn and O-shutters open. The reduced intensity is
attributed to a larger disorder on the surface as compared with the N-plasma exposure
case. For most samples, the RHEED patterns remained streaky for 3.5�4.5 minutes
and hereafter larger and brighter spots were formed. During this period of time, a
slow nucleation and island formation occurred as evidenced from AFM micrographs
[paper I].

Large and bright RHEED spots are observed after 4 min, indicating coalescence of
the islands which resulted in a rough surface morphology and which yielded transmis-
sion and di�raction of electrons through 3D features on the surface [Fig. 5.1(d)]. The
RHEED pattern remained spotty or in some cases, weak streaks developed between
the spots producing a modulated pattern. These weak streaks remained to the end of
the growth [Figs. 5.1(f)-(g)]. An increased intensity was observed for the �nal modu-
lated RHEED-pattern when the growth chamber was pumped down to base pressure
[Fig. 5.1(h)].

The N-plasma treated sample exhibited an RMS roughness of 4 nm and PV dis-
tance of 35 nm as determined from AFM scans over 2×2 µm2. In comparison, the Zn-
treated sample exhibited a more streaky end-of-growth RHEED pattern with less pro-
nounced modulated streaks indicating a smoother surface exhibiting an RMS rough-
ness of 2 nm and a PV distance PV=22 nm. Without pre-treatment, the RHEED
pattern changed from initial nucleation spots to di�use streaks which was maintained
for the rest of the growth indicating a comparably smooth layer. In this case, the
AFM micrographs showed only nucleation islands without a subsequent layer growth
[paper I].

5.2 GaN on 4H-SiC(0001)

The growth of GaN on the 4H-SiC and 6H-SiC polytypes with MBE has been described
in refs [2, 61, 101�104] and adapted to the requirements of this work.
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Figure 5.1: Temporal evolution of the RHEED-pattern from the [1120] azimuth be-
fore, during and after ZnO growth on a GaN(0001)/Al2O3 template. After thermal
outgassing (a). After N-plasma treatment (b). Growth after 2 min (c), 4 min (d),
10 min (e), 15 min (f) and 20 min (g). End of growth RHEED pattern with growth
chamber pumped down to base pressure (h).

Figure 5.2(a) shows a common GaN MBE phase diagram that illustrates Ga-rich,
Ga-stable and N-rich growth regimes. The corresponding RHEED-patterns and inten-

34



5.2. GAN ON 4H-SIC(0001)

sities during growth are very dark streaks or no pattern at all for Ga-rich growth, bright
and streaky for Ga-stable growth and very bright chevrons for the N-rich regime. The
optical microscopy image insert in Fig. 5.2(a) shows 2�8 µm wide Ga-droplets on the
surface of a GaN sample grown under Ga-rich conditions. It is possible to evaporate
these Ga-droplets by increasing the growth temperature. Large droplets leave circular
areas or footprints behind on the surface as revealed by optical microscopy.

A featureless GaN surface is observed in both dark �eld and bright �eld optical
microscopy for GaN grown under Ga-stable conditions as shown in Fig. 5.2(b). For
GaN grown under N-rich conditions, the bright �eld contrast image can be observed
indicating plateau-valley morphology [Fig. 5.2(c)].

Figure 5.2: Phase diagram for MBE of GaN. Dark �eld optical microscopy image
(insert) show Ga-droplets after Ga-rich growth (a). Optical microscopy image for
GaN grown under Ga-stable (b) and N-rich conditions (c) which also shows a few
Ga-droplets on the surface. These droplets resulted from a Ga-rich period during the
growth.

Figure 5.3 shows structural and morphological data for a GaN-layers grown on
4H-SiC(0001) during Ga-stable conditions.
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Figure 5.3: Morphological and structural data for a GaN(0001) layer grown on a
4H-SiC(0001) substrate. Cross-sectional SEM of a 190 nm thick layer (a). AFM
micrographs of GaN surfaces (b). XRC across the GaN(0002) re�ection (c). The XRC
FWHM is 107 arcsec for this re�ection. XRC across the GaN(1015) re�ection (d).
The (1015) XRC FWHM is 728 arcsec.

5.3 ZnO-nucleation and initial growth

This section describes ZnO nucleation on 4H-SiC, on GaN(0001)/Al2O3-templates
and on in-situ grown GaN/4H-SiC bu�er layers. In paper I we have reported on the
di�erence in nucleation and subsequent growth on GaN(0001)/Al2O3 and on in-situ
grown GaN/4H-SiC bu�er layers.
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5.3.1 ZnO nucleation on 4H-SiC(0001)

There are several experimental reports on the initial stages of the nucleation, the
coalescence and the epitaxial growth of ZnO on 6H-SiC(0001), [105�109]. In these
papers, the nucleation and coalescence is discussed. A more theoretical discussion
involving the Zn-O bond process on the substrate surface, is provided by Fujiwara
et al. [60]. A few papers have been published regarding the growth of ZnO on 4H-
SiC(0001) with MBE [110, 111]. Smooth ZnO layers on 4H-SiC(0001) have been
achieved using pairs of bu�er layers grown at a low temperature followed by high-
temperature annealing and subsequent growth. The reported AFM root mean square
(RMS) was 0.75 nm for a scan over a 2×2µm2 area and the FWHM was 468 arcsec
for an XRC across the ZnO(0002) re�ection [111].

We tried direct deposition of ZnO on 4C-SiC(0001) and observed nucleation islands
without layer formation. The ZnO growth parameters, including the Ga-polishing pro-
cedure prior to the growth, were similar to what is reported in paper I. The substrate
temperature was 590 ◦C for a Si wafer carrier with a 2 µm Ti back side coating and
the Zn beam equivalent pressure (BEP) was 1.0×10−5 Torr as measured before the
growth. The O-plasma source was operated at 300 W with an O2 �ow rate ΦO2 of
1.0 sccm.

Figure 5.4 shows small ZnO islands along the steps of the 4H-SiC(0001) substrate
after 30 min of growth. It was not possible to map the surface with AFM without

Figure 5.4: SEM micrograph of ZnO islands along 4H-SiC(0001) steps (sample m1060).

observing severe tip-imaging likely caused by the AFM tip picking up the islands
from the substrate surface. A growth performed under identical conditions but with a
growth time of 2 min, did not exhibit any surface features as revealed by AFM. The
islands are arranged along the steps-edges or terraces of the 4H-SiC(0001) substrate
(c.f. TSK-model in �gure 3.2, chapter 3.1.3). The number of binding sites for a Zn
and or an O atom at a step-edge are larger as compared with the number of binding
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sites on a terrace. Due to energetic reasons, the atoms rather stick to edges than to
�at surfaces with less available bonds. The XRC showed a weak broad ZnO signal
to the left of the 4H-SiC(0001) substrate peak. The weak signal intensity and the
broadening are attributed to the small size of the ZnO islands.

5.3.2 ZnO nucleation on GaN/Al2O3-templates

Nucleation of ZnO occurred on untreated GaN(0001)/Al2O3 but no layer formed.
These results are very similar to what was observed for ZnO growth on Ga-treated
4H-SiC.

Figures 5.5(a) and (c) show the ZnO nucleation islands on an untreated GaN(0001)/-
Al2O3-template after 5 and 20 min of growth, respectively. After 20 min growth, the
dispersed islands on the GaN-template were 15�30 nm wide and 0.5�0.7 nm high
[Fig. 5.5(c)]. Here, the step-morphology of the GaN-template is still clearly visible on
both samples and no coalescence of the islands into a layer had occurred. In contrast,
for a Zn-, N-plasma or Ga- pre-treatment, the ZnO islands coalesced and formed a
layer as reported in paper I.

Figures 5.5(b) and (d) show the ZnO nucleation islands on a Zn-treated GaN(0001)/-
Al2O3-template after 5 and 20 min of growth, respectively. After 5 min of growth, the
surface of the GaN(0001)/Al2O3-template was still visible [Fig. 5.5(b)]. After 20 min
of growth, the ZnO islands had coalesced into a columnar �lm on the Zn pre-exposed
GaN surface and the GaN surface was not visible anymore. The columns were 100�
200 nm wide and 3�15 nm high [Fig. 5.5(d)]. ZnO coalescence and �lm growth had
clearly occurred after 20 min.

Elemental analysis of nucleation samples

In paper I, ZnO is identi�ed with TOF-SIMS on nucleation layers that were grown
for 2�20 min. Here, the elemental mapping of ZnO+ and Zn+ is shown for 10×10 µm2

areas and for Zn- and Ga-treated GaN(0001)/Al2O3.
Figures 5.6(a)�(b) show detection of ZnO+ and Zn+ ions for a 20×20 µm area of

a ZnO nucleation layer grown for 5 min on a Zn-treated GaN(0001)/Al2O3-template
(sample m1064).

The scalebar represents the number of counts (cts) for each ion which in this case
is a qualitative measurement. A quantitative assessment on the real number of ions
requires a calibration sample. Nevertheless, the identi�cation of each ion mass from
the acquired mass spectra is unambiguous since isotopes or other elements could not
be detected during the measurements.

Figure 5.6(c) shows sputter pro�les of ZnO+ and Zn+ ions for a ZnO layer grown
for 20 min on a Ga-treated GaN(0001)/Al2O3-template (sample m1059). Each curve
is normalized to the corresponding maximum number of counts. The number of counts
decreases with the sputter time which indicates that the ZnO is completely sputtered
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Figure 5.5: AFM micrographs of nucleation sample surfaces after 5 (a)�(b) and 20 min
(c)�(d) of ZnO nucleation growth on untreated and on Zn pre-exposed GaN/Al2O3.

away. The increase of Ga+ is attributed to residual Ga droplets on the surface after
the Ga polishing procedure or Ga from the GaN layer.
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Figure 5.6: TOF-SIMS maps of ZnO+ ions (a) and Zn+ ions (b) for a ZnO layer grown
for 5 min on a Zn-treated substrate (sample m1064). Normalized TOF-SIMS graphs
for Zn+, ZnO+ and Ga+ ions plotted with respect to sputtering time for a ZnO-grown
layer for 20 min on Ga-treated GaN(0001)/Al2O3 (sample m1059) (c).

5.3.3 ZnO nucleation on GaN/4H-SiC

In paper I we reported on the need for Zn-, N-plasma or Ga-pre-treatment prior to the
ZnO growth on GaN(0001)/Al2O3. It was concluded that it is crucial to use a proce-
dure for removing the GaxOy sub-oxides to achieve ZnO growth on GaN(0001)/Al2O3-
templates. It was also reported that no such pre-treatment procedure is needed to
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achieve ZnO growth on in-situ grown GaN since these GaN-layers were never exposed
to ambient and thus never formed sub-oxides.

The same ZnO-growth conditions were used on in-situ grown GaN/4H-SiC bu�er
layers as for 4H-SiC(0001) and GaN(0001)/Al2O3-templates. Cross-sectional SEM
micrographs revealed that a 115�175 nm thick columnar ZnO �lm had formed. The
RMS roughness was 11 nm and PV distance 80 nm as determined from AFM scans
over 2×2 µm2. The XRC FWHM of the ZnO(0002) peak was 389 arcsec compared to
the FWHM of the GaN(0002) peak which was 108 arcsec.

In summary, we observed nucleation islands on all substrates but a ZnO layer
formation was only observed on pre-treated GaN(0001)/Al2O3-templates and on (un-
treated) in-situ grown GaN/4H-SiC-bu�er layers. The ZnO layers exhibited a rela-
tively rough morphology.

5.3.4 Zn(0001) and ZnO(0001̄) growth

The e�ect of pre-exposing GaN(0001)/Al2O3 layers to a Zn-�ux or O-plasma before
starting the ZnO growth has been investigated with respect to the resulting ZnO-
polarity, the structural quality and the interface homogeneity by a number of re-
search groups [16�21]. An important conclusion in these reports was that Zn pre-
exposure always resulted in Zn(0001) and O-exposure always resulted ZnO(0001̄). It
was also shown that no interface layer was formed between the ZnO(0001) layer and
the GaN(0001)/Al2O3-template for the Zn pre-exposed samples. O-plasma exposure
on the other hand, resulted in the formation of monoclinic Ga2O3 on the surface of the
GaN(0001)/Al2O3-template. The ZnO(0001̄) grown on this surface exhibited a lower
structural quality as compared to the ZnO(0001) layers that were grown on GaN(0001)
that was pre-exposed to Zn. Polarity determination of the grown layer can be done
with wet-etch experiments using hydrochloric acid (HCl) as described in Ref. [112].

In this work, both Zn(0001) and ZnO(0001̄) layers were grown on GaN(0001)/Al2O3-
templates. The ZnO(0001) layer growth was initiated by a 3 s up to 3.5 min pre-
deposition of Zn on the GaN/Al2O3(0001) before opening the shutter to the O-
plasma source. The ZnO(0001̄) growth was initiated with a 5 min pre-exposure of
the GaN/Al2O3-template to the O-plasma (RF-power at 300 W with an O2 �ow rate
of 2.0 sccm) before opening the Zn-shutter (papers IV- V).

The ZnO was etched in 0.012 M HCl for 10 s and the surfaces were examined
by SEM. Hexagonal etch pits [Fig. 5.7(a)] indicated Zn(0001) and rough hillocks
[Fig. 5.7(b)] was an indication of ZnO(0001̄) [112].

5.4 Growth of smooth ZnO layers on GaN(0001)/4H-SiC

Since the roughness of the initial grown ZnO(0001) layers [paper I] was comparably
high, a growth study of ZnO(0001) on in-situ grown GaN(0001)/4H-SiC was performed
and is described in papers II�III.
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Figure 5.7: SEM micrographs of ZnO layers after a 10 s etch in a 0.012 M HCl solution.
(a) ZnO(0001) and (b) ZnO(0001̄).

This section describes how to grow statistically smooth ZnO(0001) layers suitable
for DBRs. These results are also applicable for the growth of both ZnO(0001) and
ZnO(0001̄) on GaN(0001)/Al2O3 templates. In addition, a new growth rate depen-
dence of ZnO on the O2 �ow rate ΦO2 was observed and is described in detail in
paper IV.

Early reports describe the in�uence of the Zn/O-ratio on the growth of ZnO on
Al2O3 substrates with or without MgO or ZnO bu�er layers [113�116]. Other reports
treat ZnO growth on MOCVD-grown GaN(0001)/Al2O3 layers [16�21].

5.4.1 ZnO - growth temperature dependence

Figure 5.8 shows the growth rate of ZnO(0001) on GaN/4H-SiC layers for growth
temperatures 290 < TS < 500 ◦C and for two di�erent Zn-source temperatures, TZn =
390◦C and TZn = 420◦C (TZn is proportional to the Zn-�ux). The O-plasma RF-power
was 300 W and the O2 �ow rate was ΦO2 =2.0 sccm.

The temporal evolution for RHEED pattern was recorded during all growths. A
distinct spotty RHEED-pattern was observed for all samples and is a characteristic of
a rough surface. The growth rate is decreasing with increasing growth temperature
TS. This is expected due to a higher desorption at a higher substrate temperature.
Also, as expected for the employed O-rich growth conditions, the growth rate for the
samples grown with the Zn-source at 420◦C is higher than the growth rate for samples
grown with TZn = 390◦C. The SEM image inserts show the surface morphology of a
sample that was grown at a low TS and another sample grown at a high TS. Both
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Figure 5.8: Growth rate of ZnO on GaN(0001)/4H-SiC bu�er layers with respect to
the growth temperature and at TZn = 390◦C and TZn = 420◦C. The straight lines
are guides to the eye. The inserts show SEM micrographs of the surfaces of two ZnO
samples.

samples exhibit a network-like surface morphology and all other samples in the two
sample series exhibited a similar rough morphology.

5.4.2 ZnO - Zn source temperature dependence

Figure 5.9 shows the growth rate of ZnO(0001) on GaN(0001)/4H-SiC for 340 < TZn <
420 ◦C. The growth temperature varied inadvertently between 440�450◦C due to the
limitations of the substrate heater control loop. The O-plasma RF-power was 300 W
and the O2 �ow-rate ΦO2 = 2.0 sccm. A longer growth time was used to compensate for
the lower growth rates resulting from using a lower TZn. A spotty RHEED pattern was
observed for the sample grown (m1093) with the highest TZn. The SEM image inserts
show a sparse network-like morphology which is indicative for columnar growth. The
RHEED-pattern for the sample (m1093) grown with TZn = 380◦C evolved slightly
di�erently. Here, low-intensity lines started to form between the spots as well as
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Figure 5.9: Growth rate of ZnO on GaN(0001)/4H-SiC for di�erent Zn-source tem-
peratures. The surface morphology is shown in the SEM image inserts. The O-plasma
RF-power was 300 W and the O2 �ow-rate was 2.0 sccm. The line serves as a guide
for the eye. The growth times were 1 h (m1093), 1.5 h (m1094), 2 h 10 min (m1095)
and 3 h (m1096). The growth temperature was 440�450◦C.

chevrons at each spot. Chevrons are the result of facets forming on the surface. The
low-intensity lines between the spots are an indication of an improved lattice ordering
within the coherence length of the electrons di�racted from the surface. The lateral
coherence length is estimated to ≈150 nm for our 9.5 keV electron gun. The RHEED
pattern for m1095 and m1096 grown with a low TZn evolved from streaky to spotty
and then into modulated streaks. The modulated streaks were relatively bright and is
yet an indication of a smooth surface. This is con�rmed by the SEM images in Fig. 5.9
that show smooth surface morphologies.

5.4.3 ZnO - O2 �ow-rate dependence

Figure 5.10 shows the growth rate of ZnO(0001) on GaN(0001)/4H-SiC with respect
to the O2 �ow-rate for three sample series G1�G3. Each sample group was grown at
a di�erent TS
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Figure 5.10: Growth rate of ZnO(0001) on GaN(0001)/4H-SiC for di�erent O2 �ow-
rates and for three series of samples grown at a di�erent growth temperature.

For the G1-samples (H), TS was 440�445◦C, TZn = 350◦C corresponding to a Zn
beam equivalent pressure (BEP) of 0.8×10−6 Torr and with 1.0 < ΦO2 < 3.0 sccm. All
BEP values are given with the BEP-controller range 200 µA for the �lament current.
The Zn-BEP of 0.36×10−6 Torr [paperIII] corresponds to the BEP controller range
2 mA-range and represent the same Zn-�ux. The growth rate is relatively low and
a decreasing trend can be observed for a higher ΦO2 . The higher growth rate for
the sample grown with ΦO2 =2.0 sccm is probably caused by a higher Zn-�ux during
the growth than what was measured before the growth. All G1 samples exhibited a
smooth and featureless surface morphology suitable for DBRs as observed with SEM.
However, it was not expected to observe the decrease of the ZnO growth rate during
O-rich conditions and this was therefore investigated further.

The G2 (�) and G3 (O) samples were grown with a higher Zn BEP of 1.9×10−6 Torr
using 0.25 < ΦO2 < 3.0 sccm and using TS = 375◦C for the G2 group and TS = 550◦C
for the G3 samples. The higher growth rate for the G2- and G3- compared with the
G1-samples is attributed to the higher Zn-�ux. The higher growth rate for the G2-
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samples as compared to the G3-samples is attributed to the lower Zn desorption rate
at lower substrate temperatures. The increase of the growth rate when ΦO2 was
increased above the �ow rate of 0.25 sccm is expected since it is consistent with O-
limited growth conditions. Both G1 and G2 series exhibit a maximum growth rate
for 1.0 < ΦO2 < 2.0 sccm. The growth rate was expected to be independent of ΦO2

for O-rich conditions within a reasonable range of high ΦO2 because the growth rate
would be solely determined by the Zn-�ux under these conditions corresponding to
Zn-limited growth.

Figure 5.11 shows the growth rate of Zn(0001) and ZnO(0001̄) on GaN(0001)/Al2O3-
templates at TS = 375◦C using 0.25 < ΦO2 < 4.5 sccm with a Zn BEP of 1.7×10−6 Torr.

Figure 5.11: Growth rates of Zn(0001) and ZnO(0001̄) on GaN(0001)/Al2O3-templates
for di�erent O2 �ow-rates.

The growth rate for both Zn(0001) and ZnO(0001̄) exhibit the same unexpected
growth rate dependence with respect to the O2 �ow rate as for the in-situ grown
GaN(0001)/4H-SiC bu�er layers. The growth rate of ZnO(0001) is higher than the
ZnO(0001̄) growth rate and this is attributed to a higher number of back bonds (3)
for a Zn-atom on an O-terminated ZnO(0001) surface compared to only (1) back
bond for a Zn atom on an O-terminated ZnO(0001̄) surface. This di�erence in bond
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con�guration facilitates a higher incorporation rate of Zn-atoms in the ZnO(0001)
direction [117, 118].

Earlier reports show how the Zn-�ux during a constant O2 �ow-rate in�uences the
ZnO growth rate [113�115, 117, 119, 120]. The growth rate initially increases due to
Zn-limited (O-rich) conditions until it reaches a maximum. Hereafter, the growth rate
remains constant due to Zn-rich (O-limited) conditions. The ZnO growth rate has been
shown to increase during Zn-rich (O-limited) conditions when the O2 �ow rate was
increased from ΦO2 =1.5 sccm to ΦO2 =2.5 sccm [119]. In this report, the same growth
rate was observed during O-rich (Zn-limited) conditions for both ΦO2 =1.5 sccm and
2.5 sccm. All reports show how the growth conditions change from O-rich (Zn/O-ratio
< 1) through stoichiometric (Zn/O-ratio = 1) to Zn-rich (Zn/O-ratio > 1) where no
further increase of the growth rate occurs. It was therefore unexpected to observe
results that showed that the growth rate decreased when ΦO2 was increased.

A very likely cause for this reduced ZnO growth rate for a higher ΦO2 is a reduction
of the O-plasma source e�ciency due to a decrease of active O contributing to the ZnO
growth. The optical emission from the O-plasma source was therefore investigated.
The setup for the optical emission spectroscopy is described earlier in section 4.8.

Figure 5.12(a) shows the emission intensity for a selection of emission peak-lines
using 0.25 < ΦO2 < 5.0 sccm with an O-plasma source power of 300 W which was the
same as for the ZnO growths.

The emission peak-line intensities for excited neutral atomic O (OI) and excited
and singly ionized atomic O (OII) and unresolved combinations of OI and OII-lines
show an increased intensity for an O2 �ow-rate that was increased up to 1�2 sccm.
For ΦO2 > 2.0 sccm, the line intensity decreased.

In contrast, the emission line intensity for excited singly ionized molecular O
(O+

2 ) showed an intensity decrease from a low ΦO2 = 0.25 to a high ΦO2 =5.0 sccm
[Fig. 5.12(b)].

The ZnO growth rate showed the same dependence on the O2 �ow-rate as the
intensity for the emission spectra [Fig. 5.12(a)] and from this we concluded that the
decrease of the growth rate was caused by a reduced amount of active OI and OII that
could contribute to the ZnO growth. The singly ionized molecular O (O+

2 ) contribution
to the ZnO growth was negligible.

In summary, the ZnO growth rate has been shown to depend on the amount of
the active O (OI and OII) in contrast to earlier reports where it was related to the
O2 �ow rate. These observations has been con�rmed for ZnO(0001) on in-situ grown
GaN(0001)/4H-SiC and for Zn(0001) and ZnO(0001̄) grown on GaN(0001)/Al2O3-
templates and is reported in paper IV.

5.4.4 ZnO - smooth layers

The left column in Fig. 5.13 shows AFM micrographs over 2×2 µm2 for samples grown
with 1.0 < ΦO2 < 3.0 sccm [G1-samples in Fig. 5.10]. Every height image is arranged
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Figure 5.12: Emission line intensities for di�erent O2 �ow rates. (a) Excited neutral
atomic O (OI) or excited singly ionized atomic O (OII) and unresolved combinations
of OI/OII-lines. (b) Excited singly ionized molecular O (O+

2 ).

from the top row with ΦO2 = 1.0 sccm to the bottom row with ΦO2 = 3.0 sccm in
steps of 0.5 sccm. The right column shows 1 µm long height-pro�le sections which are
indicated with white lines in the the AFM micrographs. All samples exhibit the same
type of morphology.

Figure 5.14 shows the evolution of the AFM RMS and peak to valley (PV)
roughness for the ZnO samples grown with 1.0 < ΦO2 < 3.0 sccm.

We see that a higher O2 �ow-rate leads to a lower RMS roughness and PV distance
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thus indicating a smoother surface morphology. Sample m1099 has the smoothest
surface morphology with an RMS-roughness of ≈0.5 nm which is comparable to the
height of the ZnO unit cell. The surface exhibits nanoscale roughness as evidenced by
the height cross-section pro�les given in �gure 5.13. The sample surface is statistically
very smooth but does not exhibit ordering such as the step-�ow morphology observed
on MOCVD-grown GaN(0001) or a 4H-SiC substrate.

The RMS for the template was 0.06 nm and the PV was 0.9 nm over a 2×2 µm2

scan area. An RMS surface roughness of 0.75 nm over a 2×2 µm2 scan area from a
ZnO layer grown with MBE on a low-temperature ZnO bu�er layer deposited at a
low temperature on a 4H-SiC(0001) substrate, has been reported in Ref. [111]. An
RMS roughness of 1.6 nm has been reported for a MBE-grown ZnO layer on a MgO-
bu�er layer deposited on an Al2O3 substrate (5×5 µm2 scan area). This surface
morphology was ordered since 80 nm wide terraces could be observed [113]. Therefore,
our RMS-roughness compare well with corresponding values reported in the literature
(c.f. Table-2 in paper III for more references).
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Figure 5.13: AFM micrographs of ZnO surfaces for an O2-�ow rate of 1.0 sccm
(m1098), 1.5 sccm (m1100), 2.5 sccm (m1099) and 3.0 sccm (m1097) (Left column).
Height-pro�les sections are indicated with white lines and are shown in the right
column.
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Figure 5.14: The evolution of the AFM RMS and PV values of ZnO samples grown on
GaN(0001)/4H-SiC with respect to the O2 �ow rate. All measurements were taken over
a 2×2 µm2 area. The Zn-source temperatures was 350◦C. The substrate temperature
was 440�445◦C. The O-plasma power was 300 W. The growth times were 2 h 27 min
(m1097), 2 h (m1098), 2 h 47 min (m1099) and 2 h (m1100).
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Chapter 6

ZnO/GaN distributed Bragg re�ectors

Previous sections described how to grow smooth GaN, ZnO(0001) and ZnO(0001̄)
layers with optimized conditions [reported in papers I � IV]. This chapter describes
the growth of ZnO/GaN DBRs along both ZnO(0001) and ZnO(0001̄) crystallographic
directions which is reported in paper V.

6.1 Growth procedure - ZnO/GaN DBRs

Figure 6.1 shows a schematic corresponding to the �rst grown period for the ZnO/GaN
DBR sample series S1 and S2.

The samples in S1 were grown along the ZnO(0001̄) direction [Figs 6.1(a) and (b)]
while the S2 DBRs were grown along the opposite ZnO(0001) direction [Fig 6.1(c)].
The growth temperature TS is indicated in Fig 6.1 for each layer. The respective
number of periods grown for the S1 and S2 DBRs, were 2�20 and 1�5.5. All DBRs
were initiated with the growth of a ZnO layer and ended with a GaN layer. The
S1 DBRs started with a 5 min O-plasma pre-exposure using ΦO2 =2.0 sccm on
the GaN/Al2O3(0001) templates before opening the Zn-shutter which initiated the
ZnO(0001̄) growth. The �rst type of S1 DBRs were grown at the same TS for both
the ZnO and the GaN layers [Figs 6.1(a)]. The second type of S1 DBRs were grown
with a 3�9 nm thick low-temperature (LT) GaN bu�er layer at TS = 350◦C followed
by a high-temperature (HT) GaN layer grown at TS = 650◦C corresponding to one
pair of ZnO/GaN [Figs 6.1(b)].

Figure 6.1(c) shows the growth procedure for the S2 DBR samples grown with a LT
and a HT step for both the ZnO and the GaN layers. One ZnO/GaN period of the S2
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Figure 6.1: Schematic of the �rst period of the DBRs. (a) S1 DBRs grown along the
ZnO((0001̄) direction using the same substrate temperature for both ZnO and GaN.
(b) S1 DBRs grown along ZnO(0001̄) direction with a low- and high-temperature
GaN layer. (c) S2 DBRs grown along the ZnO(0001) direction with a low- and high-
temperature step for both ZnO and GaN. The growth direction which is parallel to
surface normal ŝ, is indicated in the �gure. Also indicated is the target center wave-
length λSB for the stopband with corresponding λ/4-layer thicknesses.

samples therefore corresponded to (LT-ZnO/HT-ZnO)/(LT-GaN/HT-GaN). The LT-
ZnO(0001) growth was started with a 3 s pre-deposition of Zn on the GaN/Al2O3(0001)
templates at TS = 300◦C before opening the shutter to the O-plasma which initiated
the growth. After the completion of the LT-ZnO layer, the TS was increased under
O-plasma exposure of the sample to the growth temperature for HT-ZnO. A LT-GaN
layers was initiated within 2�3 min after �rst switching o� the O-plasma and then by
simultaneously opening the shutters to the N-plasma source and the Ga-source. The
LT-GaN layers were 3�9 nm thick and were exposed to the N-plasma source during
the temperature ramp up to the HT-GaN growth temperature.

Studies on the growth of GaN on both ZnO(0001̄) and ZnO(0001) show that these
GaN layers were (0001)-oriented (Ga-polar). Xia et al. reported in 2014 that MBE-
growth of GaN on ZnO(0001̄) substrates at low growth temperatures TS < 550 ◦C
using Ga-rich conditions, resulted in GaN(0001)-layers whereas N-rich conditions and
TS > 600 ◦C yielded Ga(0001̄)-layers [121]. In 2004, Gu et al. used MBE to grow
Ga(0001) on both ZnO(0001̄) and ZnO(0001) substrates using a LT-GaN bu�er layer
followed by HT-GaN growth and using Ga-rich conditions [122]. Kobayashi reported
in 2006 on PLD deposition of GaN(0001) layers on ZnO(0001̄) substrates at room
temperature or by using a LT-GaN layer grown at room temperature followed by a
HT-GaN layer grown at TS = 700 ◦C [123]. Namkoong et al. reported in 2005 that
single polarity Ga(0001) �lms were grown with MBE on ZnO(0001) substrates but that
mixed polarity �lms with both GaN(0001) and GaN(0001̄) was the result on ZnO(0001̄)
substrates. These mixed polarity layers were dominated by GaN(0001) [124].

Based on these studies, we concluded that the GaN layers grown using the S1
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DBR growth scheme, most likely were Ga-polar [Fig 6.1(a) and b)] since a low growth
temperature and Ga-stable conditions were used for the growth of these structures.
However, it can not be excluded that these GaN layers had mixed GaN-polarity due
to previous reports. Further, we concluded that the growth of GaN on the ZnO(0001)
surface [Fig 6.1(c))] as in the case of the S2 DBRs, produced Ga-polar GaN layers.

6.2 List of selected sample properties - ZnO/GaN DBRs

Table 6.1 shows a selection of properties for the DBRs grown in this work. The S1
and S2 growth approach has been indicated in the sample name.

Table 6.1: Summary of selected properties for S1 and S2 ZnO/GaN DBRs. Listed
is the number of periods N, the peak re�ectance R, the stopband center wavelength
λSB , the RMS roughness and the PV distance as determined from AFM scans over
2×2 µm2. The type of surface morphology and the presence of Ga-droplets is also
indicated.

Sample N R λSB RMS PV Morphology Ga-
(%) (nm) (nm) (nm) droplets

S1-43 2 47 443 6.5 43 rough no Ga
S1-46 7 63 455 10.6 81.7 rough no Ga
S1-55 20 77 501 12.5 104 rough no Ga
S1-62 5 63 370 � � rough no Ga
S1-64 5 63 427 15.3 110 rough no Ga
S2-44 1 45-55 410 � � smooth no Ga
S2-47 2 47/50 420/775 � � plateau valley Ga
S2-51 1 52 396 1.7 16.3 plateau valley no Ga
S2-60 1 48 385 � � smooth no Ga
S2-45 2 60 382 � � plateau valley no Ga
S2-63 1 39 440 � � smooth Ga
S2-63 2 56�70 390 � � smooth Ga
S2-07 5.5 23/40 449/564 2.1 20.6 smooth Ga
S2-48 5 49/49 457/609 1.4 12.9 smooth Ga

The number of periods N is listed together with the peak re�ectance R, the stop-
band center wavelength λSB , the root-mean-square (RMS) roughness and the peak-
to-valley (PV) distance as determined from AFM scans over 2×2 µm2 and the type of
surface morphology and the presence of Ga-droplets. Samples S1�43, S1�46 and S1�55
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were grown with the same TS whereas the samples S1�62 and S2�64 were grown with
LT- and HT-GaN layers according to Fig. 6.1(a)�(b).

6.3 Properties of ZnO/GaN DBRs - Color

Figure 6.2(a) shows a photograph of a cleaved 20-period ZnO/GaN S1 DBR (sam-
ple S1-55). In Fig. 6.2(b) a 5.5-period ZnO/GaN S2 DBR where the top-layer is a
LT-GaN-layer (sample S2-07), is shown. The cleavage edge c'-c� and surface normal ŝ
is indicated in the �gure. To the naked eye, the 20-period ZnO/GaN DBR appeared
blue across the entire sample area. The 5.5 ZnO/GaN DBR exhibited a green color.
To exclude edge e�ects, the samples were cleaved close to their center area.

Figure 6.2: Photograph of an S1 (a) and an S2 (b) DBR after cleavage along the c'-c�
edge. The growth directions ZnO(0001̄) and ZnO(0001) and the number of periods
(N) as well as the surface normals ŝ are indicated.

Figures 6.3(a)�(d) show the respective optical microscope image obtained from a
2-, 7-, 20- and 5-period S1 ZnO/GaN DBR [Table 6.1].

Each surface was free of cracks. The In on the back side of the sample originating
from the sample mounting, is partially visible as white areas in Figs. 6.3(a)�(b). The
small dark spots observed on the 5-period ZnO/GaN DBR (sample S1-62) are regions
where the layers have delaminated from the substrate. This is attributed to a too thin
LT-GaN layer that might not have been coalesced properly, a too fast temperature
ramp that momentarily created large thermal stresses between the layers or a too high
growth temperature for the HT-GaN causing decomposition of the layer.
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Figure 6.3: Optical microscopy images for S1 ZnO/GaN DBRs grown along the
ZnO(0001̄)-direction for (a) 2 (sample S1-43), (b) 7 (sample S1-46), (c) 20 (sample S1-
55) and (d) 5 periods (sample S1-62).

Figures 6.4(a�d) show optical microscopy images for a 1�2-period S2 ZnO/GaN
DBRs listed in Table 6.1.

Figure 6.4(a) shows the optical microscope image of the surface of a 2-period
ZnO/GaN S2 DBR (sample S2-45). This sample was grown under N-rich conditions
which is known for creating the observed plateau-valley surface morphology. The insert
shows that the sample is highly non-uniform also on a small scale.

Figure 6.4(b) shows a comparably more uniform sample (sample S2-51) which was
grown with a higher amount of Ga but still under N-rich condition resulting in the
observed plateau-valley surface morphology.

Figure 6.4(c) shows a single-pair uniform and smooth ZnO/GaN S2 DBR (sam-
ple S2-63N1) with a high density of Ga-droplets caused by Ga-rich growth conditions.
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Figure 6.4: Optical microscopy images for S2 ZnO/GaN DBRs grown along the
ZnO(0001)-direction. (a) Sample with plateau-valley morphology (sample S2-45).
The insert shows foot-prints from droplets. (b) Sample with plateau-valley morphol-
ogy and with Ga-droplets (sample S2-51). (c) Smooth sample with a high density
of Ga-droplets (sample S2-63N1). (d) Featureless DBR sample with no Ga-droplets
(sample S2-60).

A uniform and featureless sample (sample S2-60) free of Ga-droplets is shown in
Fig. 6.4(d). This sample was grown under Ga-stable conditions where the amount of
Ga on the growth front is balanced by the desorption and incorporation of Ga.
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6.4 ZnO/GaN DBR surface morphology

Figures 6.5 show SEM micrographs for a 1-, 2- and 5-period ZnO/GaN S1 DBR [left
column, (a)�(c)] and the corresponding S2 DBR [right column, (d)�(f)] for samples
from Table 6.1.

Figure 6.5: SEM micrograph of the surface of a 1-, 2- and 5-period ZnO/GaN S1 DBR
sample [samples S1�57, S1�43 and S1�62) for (a)�(c)] and the surface of a 1-, 2- and
5-period S2 DBR [samples S2�44, S2�47 and S2�48) for (d)�(f)].
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The surface morphology of the ZnO/GaN S1 DBRs top GaN-layer evolved from
a smooth surface for a one-pair [Fig. 6.5(a)] DBR to a more rough morphology after
two [Fig. 6.5(b)] and �ve periods [Fig. 6.5(c)]. The surface morphology improved
for the �rst S1 DBR pair with a LT- and HT-GaN layer [Fig. 6.1(a) and (b)] but
this improvement was not maintained after growing additional pairs. A rough surface
morphology similar to the surface of the samples grown without LT/HT-GaN, was
observed after 5�7 pairs.

The surface morphology of the ZnO/GaN S2 DBRs top GaN-layer is smooth af-
ter one pair [Fig. 6.5(d)] and remains essentially unchanged after the growth of two
[Fig. 6.5(e)] and �ve pairs [Fig. 6.5(f)].

This shows that the surface morphology for the S1 DBRs becomes more rough after
growing more pairs compared to the S2 DBRs where a smooth surface is maintained
even after growing a large number of pairs. This was also con�rmed by AFM which
showed that the RMS roughness was 6�7 times larger for the S1 samples compared to
the S2 DBR structures. The PV distance was ≈5 times larger (Table 6.1).

Figure 6.6(a) shows an AFM micrograph of a 20-period ZnO/GaN S1 DBR (sam-
ple S1-55). The surface exhibit a relatively high RMS roughness of 12.5 nm and a PV
distance of 100 nm. Figure 6.6(b) shows the sample surface of a 5.5-pair ZnO/GaN
S2 DBR (sample S2-07) with a comparably low RMS roughness of 2.1 nm and a PV
distance of 20.6 nm.

Figure 6.6: (AFM micrograph of the surface of a (a) 20-period ZnO/GaN S1 DBR
(sample S1-55) and (b) a 5.5-period ZnO/GaN S2 DBR (sample S2-07).

The ZnO/GaN S1 DBRs were crack-free without Ga-droplets and the morphology
evolved into a rough surface for a higher number of pairs. The ZnO/GaN S2 DBRs
were crack-free with some samples having Ga-droplets on the surface due to inadequate
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control of the Ga-�ux caused by an ine�cient source control circuit. Samples grown
during Ga-rich conditions exhibited smooth surfaces with Ga-droplets such as samples
S2�07 and S2�48. DBRs grown during N-rich conditions exhibited smooth layers with
a pronounced plateau-valley morphology exempli�ed by samples S2�51 and S2�45.

6.5 ZnO/GaN DBR Re�ectance

Figure 6.7(a) shows the measured re�ectance for a 2-, 7- and 20-period S1 ZnO/GaN
DBR from table 6.1 grown at the same TS as shown in Fig.6.1(a).

Figure 6.7: Re�ectance spectra for ZnO/GaN S1 DBRs grown along the ZnO(0001̄)
direction (a) and for ZnO/GaN S2 DBRs grown along the opposite ZnO(0001) direc-
tion, (b)�(c). The sample name and the number of periods N is indicated for each
sample or graph.
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The highest re�ectivity of 77% was achieved for a 20-period ZnO/GaN S1 DBR
(sample S1-55) with a stopband center wavelength λSB at 500 nm and with a stopband
width of 32 nm. The thickness of the ZnO and the GaN layer is 60.9 nm and 51.0 nm,
respectively according to the λ/4 criteria corresponding to this position for the stop-
band center wavelength λSB . Figure 6.7(a) also shows the measured re�ectance for a
5-period ZnO/GaN S1 DBR (sample S1-64) grown with the LT/HT-GaN procedure
[Fig.6.1(b)]. A similar re�ectance was measured for sample S1-62 [Table 6.1] which
was also grown with the LT/HT-GaN procedure. These samples exhibited the same
the re�ectivity as for a 7-period ZnO/GaN DBR grown at the same TS (sample S1-
46). From this we conclude that the improved re�ectivity for a S1 DBR grown with
the LT/HT-GaN procedure is due to an improved interface quality compared with the
growth procedure where the same TS is used for both ZnO and GaN. These conclusions
are also supported from the observations of a more streaky RHEED pattern for the
LT/HT-GaN samples compared with a spotty RHEED-pattern for samples grown at
the same temperature.

The growth along the ZnO((0001) direction [growth procedure in Fig.6.1(c)] was
investigated for fewer pairs in order to decrease the interface and surface roughness
of the layers which in turn would improve the re�ectance. Figure 6.7(b) shows the
re�ectivity for ZnO/GaN S2 DBRs grown with one period of (LT-ZnO/HT-ZnO)/(LT-
GaN/HT-GaN) [samples in table 6.1]. A re�ectance of 40�55% was achieved after one
period and with λSB = 400− 500 nm. The di�erent positions of the peaks correspond
to varying ZnO and GaN layer thicknesses of the di�erent DBRs. For instance, a
thinner layer moves the λSB position towards shorter wavelengths.

Figure 6.7(c) shows the re�ectivity for ZnO/GaN S2 DBRs grown with two pe-
riods [samples in table 6.1]. The re�ectance is 45�60% and a second stopband at a
longer wavelength appeared for some samples such as S2�63 and S2�47. This is at-
tributed to failing control circuitry of the Zn-source resulting in an uneven Zn-�ux
for a longer time period. This caused the ZnO layers to be thinner than expected.
Also the Ga-source was failing and resulted in an erratic behavior with an intermit-
tent stable/unstable Ga-�ux causing either too much or too little Ga during the GaN
growth. This explained why the GaN layers were not possible to grow Ga-stable for
the prolonged periods required for the growth of the DBRs. It also explained why
some samples exhibited both Ga-droplets and a plateau-valley morphology indicative
of N-rich growth conditions. A Ga-rich growth condition resulted in a thicker than
expected GaN layer due to the continuing growth during the temperature ramps when
the N-plasma was on but the Ga-shutter closed. An N-rich growth condition resulted
in thinner GaN-layers with a typical plateau-valley morphology. The drift between
each S2 DBR-period made it virtually impossible to maintain a repeatable period
thickness. This is shown by sample S2-63 where the λSB = 440 nm after the �rst
grown period [Fig. 6.7(b)] and λSB = 390 nm after the second grown period even
though the growth parameters were seemingly identical. This sample was removed
from the MBE after the �rst period. The re�ectivity was measured and the sample
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was then reinserted into the MBE system for the overgrowth of the second pair.
The re�ectance spectra for S2 DBRs grown with 5 and 5.5 periods also showed

multiple re�ectance peaks [Fig. 6.7(d)] due to the unsu�cient thickness control. De-
spite these thickness control problems, the S2 DBRs exhibited a signi�cantly improved
surface morphology compared with the ZnO/GaN S1 DBRs [SEM micrographs in
Fig.6.5(c) and (f)]. The re�ectance of the S2 DBRs were also comparably higher al-
ready after one period [Fig. 6.7(c)] which we relate to the lower surface roughness of
the S2 DBRs.

6.6 Microanalysis of ZnO/GaN DBRs

Figure 6.8 shows a high-angle annular dark-�eld scanning transmission electron micro-
scope (HAADF-STEM) micrograph for a 20-period ZnO/GaN S1 DBR (sample S1-55)
[Fig. 6.8(a)] and for a 5-period ZnO/GaN S2 DBR (sample S2-48) [Fig. 6.8(b)].

The periodic ZnO/GaN structure can be observed clearly in Fig. 6.8(a) where
each dark layer corresponds to ZnO and each bright layer corresponds to GaN. A low
HAADF-STEM contrast between the ZnO and GaN layers is expected due to same
atomic number for ZnO (30+8) as for GaN (7+31). Compared to sample S1-55, the
ZnO are thinner and whereas the GaN layers in the S2 DBR [Fig. 6.8(b)]. This was
also veri�ed with cross-sectional SEM.

Figure 6.9(a)�(c) shows cross-sectional images of three ZnO/GaN S2 DBRs grown
with 5 periods [Fig. 6.9(a)(sample S2-48) and (c) (sample S2-15)] and 5.5 periods
[Fig. 6.9(b)(sample S2-07)].

The periodic structure of the ZnO/GaN DBRs is clearly visible. The �rst two
periods of sample S2-48 [Fig. 6.9(a)] are 82 and 75 nm, respectively which is lower
than than the target period of 101 nm [schematic in Fig.6.1]. For this sample it is
estimated that the largest deviation of the total period thickness originates from the
ZnO layer.

Sample S2-07 DBR exhibited ZnO layers with a thickness of 31�36 nm and GaN
layers that were 80�116 nm thick [Fig. 6.9(a)]. These thickness variations are the reason
for the multiple re�ectance peaks or stopbands previously shown in Figure. 6.7(d).

The thickness measurement of each (ZnO/GaN)-pair of the S2-15 DBR [Fig. 6.9(b)
(sample S2-15)] yielded (14/45), (12/38), (16/42), (14/38) and (12/45) nm which is
close to the target layer thickness of 46 nm for GaN but far from the target ZnO
thickness of 56 nm required for reaching the target λSB = 450 nm. These samples
exhibited Ga-droplets which reduced the re�ectance through scattering if the incident
light. This was very prominent for sample S2-15 which had a very high density of Ga-
droplets and consequently barely no re�ectance peak. However, the observed interfaces
for the S2 DBRs were abrupt which is a necessity for an e�cient DBR.
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Figure 6.8: Cross-sectional HAADF-STEM phase contrast images of (a) a 20-period
ZnO/GaN DBR grown along ZnO(0001̄) direction (sample S1-55) and (b) a 5-period
ZnO/GaN DBR grown along the ZnO(0001) direction (sample S2-48). Courtesy

Dr. Reza R. Zamani at Solid State Physics and Nanometer Structure Consortium

(nmC@LU), Lund University, Sweden.

6.7 Structural analysis of ZnO/GaN DBRs

Figure 6.10 shows symmetric XRD ω/2Θ triple axis scans across the (0002) re�ec-
tions for a 2- and a 20-period ZnO/GaN S1-DBR (samples S1-43 and S1-55) and the
corresponding scan for a 5.5 period S2 DBR (sample S2-07).

Interference fringes are observed to the left of the ZnO(0002)-peak for the 2-period
DBR (sample S1-43) which indicates a smooth interface morphology. The interfer-
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ence fringes are reduced for the 20-period DBR (sample S1-55) which indicates an
increased interface roughness. Both ZnO(0002) peaks are located to the left of the
GaN(0002) peak indicating a relaxed or nearly relaxed structure. These observa-
tions are in agreement with the previously shown surface morphologies for 1�5 period
DBRs [Fig. 6.5(a)-(c)] where the surface morphology became rougher with an increas-
ing number of periods. The position of the ZnO(0002) peak for the 5.5 period DBR
(sample S2-07) is located further to the left as compared to the (0002)-peaks related
to the S1-DBRs. This shows that these ZnO layers are strained to the GaN-layers.
The intensity of this ZnO(0002) re�ection was also very weak due to the low thickness
of the layer. The observations from the ω/2Θ-scans are in agreement with reciprocal
spacemaps captured across the asymmetric (101̄5) re�ection which showed a nearly re-
laxed ZnO peak for the 20-period S1- DBR (sample S1-55) and a low-intensity strained
ZnO peak for the S2-DBR (sample S2-07) [paper V].

Preliminary data obtained from X-ray 2Θ/ω-scans with an open detector in the
range 10 < 2Θ < 80 ◦ exhibit a di�erence between DBRs grown along the ZnO(0001̄)
and the ZnO(0001)-directions. Additional weaker peaks in the spectrum are observed
for the DBRs grown along the ZnO(0001̄) which is an indication of interface oxides.
TEM investigations must be carried out for a correct identi�cation of the phase of the
interface oxides.
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Figure 6.9: Cross-sectional SEM images of (a) a 5-period (sample S2-48), (b) a 5.5-
period (sample S2-07) and (c) a 5-period (sample S2-15) ZnO/GaN DBR grown along
the ZnO(0001) direction.
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Figure 6.10: Symmetric XRD ω/2Θ triple axis scans across the (0002) re�ections for
a 2-period ZnO/GaN DBR grown along the ZnO(0001̄) direction (sample S1-43), a
20-period ZnO/GaN DBR grown along the ZnO(0001̄) direction (sample S1-55) and
a 5.5-period ZnO/GaN DBR grown along the ZnO(0001) direction (sample S2-07).
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Chapter 7

Summary and Outlook

This chapter presents an outlook for ZnO/GaN DBRs in the context of fabricating
a blue-emitting VCSEL. A motivation for growing DBRs along (0001) as being the
most promising way forward, is presented. The DBRs grown along (0001̄) may also
be improved, which is also discussed.

7.1 Summary and discussion

The 20-period ZnO(0001̄)/GaN DBR presented in this work shows a re�ectance of
77% which was the highest obtained re�ectance value for all structures. This type of
DBR also exhibited a surface roughness that increased after each grown period. The
reason for this morphology degradation is presently unknown and warrants further
studies.

A possible explanation is that a higher-than-expected Zn-�ux was used inadver-
tently due to the failing Zn-source control circuitry. As has been shown previously,
a high Zn-�ux yields a rough ZnO surface. Nevertheless, the Zn- BEP was measured
before each growth experiment and in some cases also before each grown period and
these BEP measurements did not show any signi�cant change of the Zn-BEP.

Another cause for the deteriorating surface morphology could be the low GaN
growth temperature employed TS = 350◦C. This low TS is known to be a very chal-
lenging for obtaining high-quality GaN. The established GaN TS is in the temperature
region 720 < TS < 800◦C.

The ZnO(0001̄)-oriented DBRs that were fabricated with a LT/HT-GaN layers
did initially show a streaky RHEED-pattern and consequently a smoother surface
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morphology after the �rst period but after growing a number of periods, the surface still
became rougher. These ZnO(0001̄)/(LT/HT-GaN) DBRs did not show a signi�cant
improvement in terms of surface roughness as compared to the DBRs grown at a
constant TS for both ZnO and GaN.

Yet another possible explanation is the e�ect of surface oxides formed on the GaN
surface when the growth of the ZnO layers was initiated. Reports have described that
O-plasma pre-exposure create monoclinic Ga2O3 on the GaN(0001)-surface. This
surface oxide results in a lesser structural quality ZnO(0001̄). The length of the O-
plasma exposure a�ects the thickness of the Ga2O3 surface oxide. A 5 min O-plasma
pre-exposure was used for the growth of the O-polar DBRs. A reduced thickness of
Ga2O3 may improve the structural quality of O-polar ZnO. The minimum O-plasma
exposure time that still yields ZnO(0001̄), is yet unknown.

The growth of GaN on ZnO(0001̄) has also been reported to exhibit an interface
oxide ZnGa2O4 which also might a�ect the structural quality of the layers. Di�raction
patterns obtained from XRC scans with open detector in the range 10 < 2Θ < 80 ◦

show that there is a di�erence between DBRs with ZnO layers grown along the
ZnO(0001̄) axis and the opposite ZnO(0001) direction. The ZnO(0001̄) scan shows
di�raction peaks that are not observed for the (0001) grown DBRs. These additional
peaks most likely are an indication of the presence of ZnGa2O4 or similar oxides but
a TEM analysis must be carried out to unambiguously identify this interface oxide.

In contrast to the O-polar DBRs, the surface morphology of the DBRs grown along
the ZnO(0001) direction showed a smoother surface morphology. These DBRs yielded
a comparably high re�ectance of 45�55% already after the growth of the �rst pair.
The literature report on small or no interface oxides on the ZnO(0001)/GaN interface.
Preliminary data from X-ray 2Θ/ω-scans in the range 10 < 2Θ < 80 ◦ did not exhibit
any extra unknown peaks related to interface oxides. Studies found in the literature
show that a higher crystal quality is achieved for ZnO(0001) compared to ZnO(0001̄).

As has been shown previously in this work, the maximum e�ciency of the O-
plasma source can be found with optical emission spectroscopy. Operating the O-
plasma source at this point yields the maximum growth rate from which the smoothest
surface can be found by optimizing the Zn-�ux. Deviations of the O2 �ow-rate from
this point will yield a lower growth rate. A higher O2 �ow-rate will a�ect the surface
roughness only to a small degree.

It has also been shown that a precise control of the Zn- and Ga-�ux is crucial
for obtaining accurate DBR periods. The technical problems encountered for the
ZnO(0001) DBRs concerning the instability of the Zn- and the Ga-source �uxes, caused
a poor layer thickness accuracy when growing a large number of periods. Despite these
equipment issues, the DBRs grown along the ZnO(0001) showed the smoothest surfaces
and are therefore the most promising path toward high-re�ectance ZnO/GaN DBRs.
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7.2 Outlook

The grown ZnO and GaN layers have been con�rmed to be n-type materials, as ex-
pected. The n-conductivity of both ZnO and GaN can increased in a controlled fash-
ion through n-doping which is a straightforward process for both materials. Common
donors for n-doping of ZnO are Al, Ga and In wheras Si is the most commonly used
donor GaN. The ability to obtain high-re�ectance ZnO(0001)/GaN DBRs that are also
highly conductive electrically makes it very interesting to use these DBR structures
to fabricate a blue VCSEL that is electrically injected through the DBR. Beside the
electrically conductive DBR, a tentative blue VCSEL design would consist of a GaN
cavity that includes InGaN/GaN QWs. A current aperture could be formed by etching
or ion-bombarding the ZnO layers. An electrically conducting top p-type ZnO/GaN
DBR is not yet possible due to the challenges associated with p-doping ZnO. Never-
theless, the top DBR could still consist of an in-situ grown ZnO-based DBR. ZnO is
readily etched in common acids and forming a mesa is therefore straightforward. The
whole VCSEL structure could therefore be grown in-situ thus minimizing the number
of device processing steps.

A hybrid oxide/nitride MBE system would be necessary for this project. Based on
the experience from working with this type of system, the entire MBE system must be
resistant to O to avoid premature degradation of the components. Further, the system
should be equipped with Ga, In and Zn sources that yield a very stable �ux during
growth. The doping sources include a dedicated group III-source such as an In-source
for n-doping of ZnO and Si and Mg sources for n- and p-doping of GaN. It would also
be desirable to enclose each plasma sources in a small turbopumped vacuum chamber
since this would allow to keep these sources on permanently throughout the growths.

Both GaN and ZnO are semiconductors with a large exciton binding energy. The
exciton binding energy is 26 meV for GaN and 60 meV for ZnO meaning that the
excitons are stable at room temperature. An exciting project including the hybrid
MBE system is to grow cavity-polariton ZnO/GaN structures for the fundamental
study of polaritons. Combining these two semiconductors might lead to new insights in
polariton physics and also open the path to practical applications based on polaritons.
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Chapter 8

Summary of Papers

Paper I

Nucleation and epitaxial growth of ZnO on GaN(0001) The growth of ZnO on
GaN(0001)/Al2O3 templates was compared with the growth of ZnO on GaN(0001)/4H-
SiC(0001)-bu�er layers using the same growth chamber for both ZnO and GaN. The
growth of ZnO and GaN using the same growth chamber is a very rare approach
that has been previously investigated only once. A signi�cant di�erence in terms of
nucleation and growth between the substrates was observed. The GaN(0001)/Al2O3

templates was found to need a surface pre-treatment to allow the formation of a ZnO
layer. Zn-, Ga- and N-plasma pre-treatments were investigated. The in-situ grown
GaN/4H-SiC(0001) bu�er layers did not need any surface treatment to enable the
ZnO layer growth. The di�erent nucleation and subsequent epitaxial growth is related
to the existence of monoclinic Ga2O3 the GaN/Al2O3 templates surfaces. The growth
of ZnO and GaN has so far been performed in two di�erent growth chambers by other
research groups. The transfer between the growth chambers in ambient, exposes the
�rst grown GaN(0001)-layer to air. This procedure inevitably creates sub-oxides on
the GaN(0001)-surface. By using the same growth chamber for GaN and ZnO it is
therefore possible to avoid the formation of sub-oxides on the GaN(0001) surface.

My contribution: The growth experiments, RHEED analysis, AFM, XRD and
SEM of all samples. Dr. Per Malmberg conducted the TOF-SIMS measurements at the
National center for imaging mass spectrometry at Chalmers University of Technology
in Gothenburg Sweden. I analyzed the SIMS-results. I wrote the paper.
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Paper II

Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-
SiC bu�er layers A growth study was made of ZnO growth on in-situ deposited
GaN/4H-SiC bu�er layers. The growth was investigated with respect to the Zn-source
temperature, the substrate temperature and the O2 �ow-rate. The full-width-at-half-
maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(101̄5)
re�ections was 198 and 948 arcsec, respectively. From RSMs we concluded that the
relaxation of our ZnO layers occurred early and abruptly in the course of the growth.
The crystal quality was assessed with XRD and we found that crystal quality of ZnO
and GaN grown in the same growth chamber, was comparable. Room-temperature
Hall-measurements were performed on the ZnO layers. All �lms were inherently n-
type. The background electron carrier concentration n was 1 × 1019 cm−3 with µ =
50 cm2/Vs and a sheet resistance Rs of 1.1 kΩ/�.

My contribution: The growth experiments and AFM, XRD, SEM of all samples.
The Hall-e�ect measurements were made together with Tobias Tingberg. I wrote the
paper.

Paper III

Growth of ZnO(0001) on GaN(0001)/4H-SiC bu�er layers by plasma-assisted
hybrid molecular beam epitaxy The growth of ZnO(0001) on GaN(0001)/4H-SiC
was investigated. A more extensive systematic investigation was made of the ZnO
growth. The Zn-�ux was determined with a thickness calibration from the deposition
of Zn and cross-sectional SEM. Smooth ZnO layers were obtained with a root-mean-
square roughness of 0.3 nm. Electrical measurement were made on both ZnO and
GaN layers. The polarity was determined with wet-etch experiments and SEM char-
acterization of the surface morphology. Both columnar ZnO layers and compact and
statistically smooth ZnO layers were achieved. The crystal quality was assessed for all
grown layers with a thickness above 34 nm. The background electron carrier concen-
tration n for the GaN-layers was 1.8 × 1018 cm−3 with µ = 108 cm2/Vs and a sheet
resistance Rs of 1058 Ω/�.

My contribution: The growth experiments and AFM, XRD, SEM of all samples.
Polarity determination of the layers. The Hall-e�ect measurements were made together
with Tobias Tingberg. I wrote the paper. I also gave an oral presentation of these
results at the 18th European Molecular Beam Epitaxy Workshop in Canazei, Italy,
March 15-18, 2015.
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Paper IV

Impact of O2 �ow rate on the growth rate of ZnO(0001) and ZnO(0001̄)
on GaN by plasma-assisted molecular beam epitaxy In this paper we re-
port on a new growth-rate dependence for ZnO(0001) and ZnO(0001̄) growth on
GaN(0001)/Al2O3 templates with respect to the O2 �ow rate. ZnO(0001) layers were
also grown on in-situ grown GaN(0001)/4H-SiC(0001) bu�er layers. An unexpected
decrease of the ZnO growth-rate was observed for higher O2 �ow-rates. This is con-
trary to the behavior reported in the literature. Optical emission spectroscopy on the
plasma source was employed to identify the contents of the plasma. The emission in-
tensity from the plasma is an assessment of the amount of active O inside the plasma.
Excited neutral atomic O (OI) and excited and singly ionized atomic O (OII) was iden-
ti�ed. Excited and singly ionized molecular O (O+

2 ) was also identi�ed. The spectral
lines exhibited a maximum emission intensity for the OI, OII and unresolved OI/OII-
lines for 1.0 < ΦO2 < 2.0 sccm. This trend follows the evolution of the growth-rate in
the ΦO2 interval of 1.0�2.0 sccm for both ZnO(0001) and ZnO(0001̄). The evolution
of the O+

2 line intensity as a function of ΦO2 di�ered signi�cantly and did not corre-
late with the ZnO-growth-rate. We therefore concluded that the O+

2 contribution to
the ZnO growth is negligible. This showed that the active O species related to the
OI, OII and unresolved OI/OII-lines signi�cantly contributed to the ZnO growth. We
have shown that it is not the direct amount of O2 supplied to the O-plasma source
that determine the growth rate but rather the amount of active O delivered from the
O-plasma source.

My contribution: Growth of both ZnO(0001) and ZnO(0001̄) layers. Identi�-
cation of the unexpected growth rate dependence on the O2 �ow-rate during early
growth experiments. Setup of optical emission spectroscopy. Collection and analysis
of optical emission spectra and peak identi�cation. Polarity determination. SEM-
characterization. I wrote the paper.

Paper V

Hybrid ZnO/GaN distributed Bragg re�ectors grown by plasma-assisted
molecular beam epitaxy, In this paper we report on the fabrication of two types
of ZnO/GaN distributed Bragg re�ectors with center wavelengths 400�500 nm and
with up to 20 ZnO/GaN periods. Growth along both ZnO(0001) or ZnO(0001̄) di-
rection was investigated. A maximum re�ectivity of 77% at a center wavelength of
501 nm was achieved with a 20-pair ZnO(0001̄)/GaN re�ector. The periodic struc-
ture of the DBRs is clearly shown in micrographs obtained by transmission electron
microscopy. The DBRs were grown completely in-situ. ZnO(0001̄) re�ectors were
grown at the same substrate growth temperature for ZnO and GaN and also with a
low-temperature/high-temperature-GaN-layer. An improved re�ectivity was achieved
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with the insertion of the LT/HT-GaN layer. The ZnO(0001)/GaN re�ectors were
fabricated with LT/HT-layers for both ZnO and GaN. One period therefore corre-
sponded to (HT-ZnO/LT-ZnO)/(HT-GaN/LT-GaN). A smoother surface morphology
was achieved for ZnO(0001)/GaN DBRs which improved the re�ectivity for the �rst 1�
2 grown pairs compared to the ZnO(0001̄)/GaN re�ectors. Reciprocal space maps show
that the ZnO(0001̄)/GaN re�ectors are relaxed whereas the ZnO(0001)/GaN re�ectors
are strained. The ability to n-type dope the ZnO and GaN makes the ZnO(0001)/GaN
re�ectors interesting for bottom re�ectors in blue vertical surface emitting lasers. This
is the �rst time ZnO/GaN DBRs have been reported.

My contribution: Growth experiments. Re�ectance measurements, SEM-, AFM-
and XRD-characterization. The TEM-characterization was made by Dr. Reza R.
Zamani in the group of Prof. Kimberly A. Dick Thelander (Solid State Physics and
Nanometer Structure Consortium (nmC@LU), Lund University). I wrote the paper.
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