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We report on a study of the spatial profile of proton beams produced through target normal sheath

acceleration using flat target foils and changing the laser intensity distribution on the target front

surface. This is done by either defocusing a single laser pulse or by using a split-pulse setup and irra-

diating the target with two identical laser pulses with variable spatial separation. The resulting proton

beam profile and the energy spectrum are recorded as functions of the focal spot size of the single

laser pulse and of the separation between the two pulses. A shaping of the resulting proton beam pro-

file, related to both an increase in flux of low-energy protons in the target normal direction and a

decrease in their divergence, in one or two dimensions, is observed. The results are explained by sim-

ple modelling of rear surface sheath field expansion, ionization, and projection of the resulting proton

beam. VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4942032]

I. INTRODUCTION

More than a decade ago, first experimental results1,2

showed the possibility to accelerate protons to tens of MeV

kinetic energy over a sub-mm length by using ultra-intense

laser pulses irradiating the front side of lm-thick metal foils.

The laser pulse forms a megaampere electron current inside

the target penetrating through the rear surface and expanding

into vacuum, leading to a charge separation on the scale of

the Debye length. In the resulting electric field—which is of

the order of up to a few TV/m—protons, mainly from the

hydrocarbon contamination layer on the target rear surface,

are quickly accelerated to high energies.3,4

This process, the target-normal-sheath-acceleration (TNSA)

mechanism,5 creates a continuous, Boltzmann-like, energy

distribution up to a cut-off energy, which has attracted consid-

erable interest, partly from a fundamental plasma physics point

of view and partly because of its great potential for novel appli-

cations. It represents a very compact source of energetic ions.

The pulse duration, at the source, is short, and the transverse

emittance is very low.6–8 Potential applications in medi-

cine, material science, accelerator physics, and industry, for

example, have been widely discussed.3,9 However, in order

to become a useful source for applications, a number of pa-

rameters must be greatly improved. For example, the shot-

to-shot stability, the maximum proton energies, and the

laser-to-proton energy conversion efficiencies must be

increased. At the same time, the beam divergence should be

reduced. In addition, for many applications, the proton

energy distributions must be reduced, and ideally, a narrow

energy spread achieved. All these improvements require

further experimental and theoretical studies and enhanced

understanding of the fundamental processes involved.

In typical TNSA experiments, using a flat metallic target

foil irradiated on the front surface by a tightly focused laser

pulse, the beam of protons leaves the target’s rear surface

centred along the target’s normal (TN) direction. The maxi-

mum proton energy, EProt, within the beam depends on the

peak laser intensity IL and, thus, for a given laser pulse dura-

tion, both on the pulse energy and the irradiated spot size

on the target. Brenner et al.10 show that increasing IL by

increasing the pulse energy has a significantly larger influ-

ence on the total flux of protons than the same increase in in-

tensity obtained by reducing the laser spot size. Xu et al.11

and Green et al.12 show that, with constant laser pulse energy

and pulse duration, the total flux of protons can be increased

by defocusing the laser at the target, even though the peak

laser intensity is decreased. The proton beam divergence

depends on the laser parameters and on the proton energies;

the most energetic protons exhibit the smallest divergence.13

Schollmeier et al.14 used micro-structured target foils as a

tool to demonstrate the effect of defocusing the laser beam

on the generated proton beam. Several more studies have

been reported in the literature regarding the proton beam

divergence and laminarity15 and how they can be manipu-

lated, e.g., via the use of curved targets.16,17 In this paper, we

report on experimental studies of how the angular/spatial dis-

tribution of the proton beams can be manipulated without

changing the target shape or composition, and instead by

varying spatially the laser intensity distribution on the tar-

get’s front surface. We keep the target and laser parameters

fixed and vary the intensity distribution while monitoring thea)Electronic mail: Bastian.Aurand@uni-duesseldorf.de
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spatial proton beam profile. In recent studies, it was shown

that by using a fixed, hollow, doughnut-like laser beam pro-

file, the beam divergence, and energy profile could be manip-

ulated.18 Here, we vary the intensity distribution either by

defocusing the laser on the target or by dividing the focused

laser pulse into two spatially separated pulses, with a separa-

tion that can be continuously varied. In the first case, we find

that the proton beam divergence can be significantly reduced

by optimally defocusing the laser pulse, and in the second

case that, with optimized separation between the two foci,

the proton beam divergence is reduced in the direction of the

separation of the foci, resulting in an elliptically shaped pro-

ton beam. These collimation effects, in one or two dimen-

sions, are found to be mainly affecting the relatively large

number of low energy protons. The number of low energy

protons in the target’s normal direction increases while their

divergence decreases, resulting in intense beams of low-

energy protons, collimated in one or two dimensions.

II. EXPERIMENTAL SETUP AND METHODS

The experiments were carried out using the Lund 10 Hz

multi-terawatt laser system; a chirped-pulse amplification

(CPA) based Ti:sapphire laser with a pulse duration of 35 fs

and a temporal contrast better than 1� 10�9 50 ps before the

main pulse. In the experiments presented here, the energy per

pulse, on target, was kept fixed at 0.6 J. The experimental

setup19 is shown in Fig. 1(a). After compression, the 45 mm di-

ameter beam was guided into the interaction chamber and sent

onto a split-mirror setup (Figure 1(b)) before reaching an off-

axis parabolic (OAP) focusing mirror. For the first part of the

investigation, the split-mirror setup was positioned in a way

that the full laser beam was reflected on one of the mirrors,

and thus, only one focal spot was produced. Instead, the target

foil was moved to different positions along the optical axis

around the beam waist. For the second part of the investiga-

tion, the split-mirror setup was positioned such that each laser

pulse was divided into two halves, resulting in two identical

focused laser pulses hitting the target foil. The foil was then

positioned in the focal plane of the focusing mirror while the

separation between the two foci was varied between shots.

The split-mirror setup consists of two planes, protected sil-

ver mirrors of standard optical quality (k/10 flatness). They

have a vertically oriented wedged shaped edge in order to ena-

ble the mirrors to be mounted very close to each other, with a

gap of only a few tenths of a millimetre, but with the possibility

to move freely relative to each other. Due to a separate mount-

ing, the mirrors can be tilted independently in vertical and hori-

zontal directions. In addition, one of the mirrors is mounted on

a linear translation stage, which moves the mirror perpendicu-

lar to its surface, enabling the relative optical path length and

therefore the relative timing of the pulses to be accurately con-

trolled. The complete split-mirror setup is further mounted on

another linear translation stage moving it transversely with

respect to the laser beam. This enables the split ratio of the

pulses to be varied. Both beams are sent onto the same off-axis

parabolic mirror, with 152 mm focal length and focused to a

circular spot with radius rL¼ 2.5 lm (HWHM) reaching a peak

intensity of IL¼ 2� 1019 W/cm2.

FIG. 1. (a) Experimental setup: The laser beam is guided onto the split-mirror and separated into two parts which are focused by an f/3 parabolic mirror onto

the target. For diagnostics, either a spectrometer, consisting of a dipole magnetic field, a scintillator, and a camera, or a spatial detector to image the beam pro-

file is used. (b) The split-mirror consists of two independently adjustable rectangular mirrors with a gap of a few tenths of a millimetre in between. (c) By tilt-

ing one of the mirrors, the spatial separation of the beams and the resulting foci can be varied.
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Applying angular tilts in one direction to one of the mir-

rors, the two foci can be separated in that direction of the

focal plane (Figure 1(c)). Note that this tilt is induced more

than 1 m upstream of the interaction point and is in the order

of some l-rad. Neither a significant pulse front tilt nor a sig-

nificant relative temporal difference between the beams is

induced. By use of a deformable mirror in the beam line, the

phase was corrected to ensure a good quality of the focus in

the overlapped case. The slight horizontal elongation of the

beam, which can be seen in Figure 1(c), is independent of

the tilt direction. Fine adjustment of the temporal overlap

can be done by adjustments of the relative path length while

monitoring the interference patterns occurring in the focal

plane when the foci have a spatial overlap. In the studies

reported here, the splitting ratio was fixed at either 100:0 or

50:50, and the relative time delay Dt¼ 0.

As a target, we used 3 lm-thick Al foils mounted in a

matrix target holder realizing 340 independent targets and

where each new target can be aligned within a few seconds,

with an accuracy of better than 18 lm (standard deviation)

with respect to the laser focus position. The target is

mounted at 45�, horizontally tilted, with respect to the laser

axis.

In order to take advantage of the high repetition rate of

the laser and the fast target alignment procedure, only online

proton diagnostics were used. A magnetic-field based proton

spectrometer disperses the protons, after passing through a

1 mm entrance pinhole, depending on their energy onto a

scintillator (St. Gobain: BC-408; 500 lm thick), wrapped in

a 12 lm thick aluminum foil to block heavy ions, which is

monitored by a 16-bit camera (Princeton: PhotonMAX1024).

The proton signal is collected in the target’s normal direction

covering a solid angle of 8� 10�5 sr, and the energy uncer-

tainty due to the pinhole size is DE/E� 10%. In addition, a

spatial detector is used to monitor the spatial-intensity distri-

bution of the proton beam.20 A scintillator (St. Gobain: BC-

408; 500 lm thick) is positioned (65 6 2) mm behind the tar-

get in a light shielded box with a 12 lm thick and light tight

Al entrance window. The scintillator emission is imaged

onto an optical fibre bundle, which allows for the image to

be transferred onto a 12-bit CCD camera placed outside the

vacuum chamber. This enables a reconstruction of the two-

dimensional proton beam spatial profile. With this detector

setup, the signal is not energy selective, but represents a

superposition of all protons, which are stopped in the scintil-

lator (0.9 MeV<EStop< 7 MeV). We typically investigate

protons with maximum kinetic energies of E� 6 MeV, so

most protons are stopped in the scintillator. The signal from

the detector is thus not representing the number of protons,

but rather the deposited energy. By adding additional bars of

aluminum with different thicknesses in front of the detector

allowed us to distinguish between electrons and protons in

the detector, which was used to calibrate the device.

III. EXPERIMENTAL RESULTS

A. Defocus scan with a single laser focus

When we use only one laser focus and move the target

foil along the laser propagation axis, i.e., through the focus, we

find, as expected, that the highest proton energy is obtained

with the target at best focus (r0lm� 2.5 lm), where the peak

intensity is the highest. The proton beam is then centered along

the TN direction, and the profile, integrating over all protons

with E> 0.9 MeV, is spatially round and smooth. However,

the divergence dramatically decreases when the target foil

is positioned at 6375 lm (r375lm� 8.5 lm) or at 6450 lm

(r450lm� 10.5 lm) from best focus (see Figure 2(a)). This cor-

responds to approximately three to four Rayleigh lengths, and

the peak laser intensity is reduced by roughly one order of

magnitude. The laser beam profile was carefully investigated

in order to ensure a homogeneous distribution of energy over

the enlarged irradiated spot. The small difference in the inten-

sity of the proton beam distribution. which can be seen in

Figure 2(a) for target positions before and behind the focus, is

not systematically different for the full measurement cam-

paign, but they differ systematically within one measurement

run with the same laser alignment. This might result mainly

from the fact that a laser beam profile for a real laser is not

only perfectly Gaussian but also to a smaller extent that a real

focussing element is not perfectly parabolic. In this case, it can

be shown by ray-tracing that there are small differences in

local divergence and intensities on small scales within the

beam profile.

The observed decrease in the proton beam divergence is

not due to the decrease in the laser intensity, which is easily

verified by reducing the laser energy with the target at a best

FIG. 2. (a) The proton beam profile for

five representative shots measured with the

spatial detector for the target foil positioned

at best focus (middle) (r0lm� 2.5lm),

375lm (r375lm� 8.5lm), and 450lm

(r450 lm� 10.5lm) before and after the

focus (upper/lower). In the defocused case,

the proton beam is collimated compared to

best focus. The corresponding proton

energy distribution in the TN direction is

shown in (b).

023113-3 Aurand et al. Phys. Plasmas 23, 023113 (2016)



focus. Instead, it represents a significant relative increase in

the number of low energy protons propagating close to the

TN direction. The overall lower proton energy results from

the de-focusing and therefore the reduced sheath field

strength.

Figure 2(b) shows the proton energy distribution

observed in the TN direction with the target both at the best

focus and defocused by 375 lm. This shows the significant

relative increase in the number of low energy protons and a

corresponding decrease in protons with the highest energies.

This resembles the finding in Ref. 11, but here, it is evident

that the increase in low-energy protons in the TN direction is

partly due to a reduction in divergence of these protons.

Defocusing the laser pulse thus leads to reduced divergence

and a significantly increased relative flux of low energy pro-

tons in the centre of the beam, even though the maximum

proton energy is reduced. Using different aluminum filters in

front of the spatial detector reveals as well the finding that in

the defocused case, the energy of the protons in the center of

the beam decreases, while their particle number increases.

B. Two foci of equal intensity and variable separation
with the target foil at the best focus

Using similar measurement methods compared to the

previous paragraph, we find as expected that the highest pro-

ton energy is obtained with zero separation, i.e., when the

two foci overlap and give rise to the highest peak intensity

on target. The spatial beam profile is then round in the TN

direction, and with the highest energy protons having the

smallest divergence, consistent with several previous

reports.2,21,22 When separating the two foci in one direction,

we find that the proton beam shape changes from circular to

elliptical, with the minor axis in the direction of separation.

When the separation is increased further, the proton beam

profile becomes round again (see Figure 3(a)). Since this

effect occurs both for horizontal and vertical tilt, it is con-

cluded that it is not due to the incidence angle between the

laser and target, e.g., caused by an elongated beam profile

due to the projection on the target surface. The degree of el-

lipticity, defined as the ratio between the major and the

minor axis of an ellipse fitted to 80% level in each proton

dose distribution, is shown in Figure 3(a) for different sepa-

ration of the foci. When placing a filter in front of the spatial

detector, stopping protons with energy below 1.7 MeV, we

find that the elliptical shape disappears and we are left with a

significantly weaker but circular proton beam, for all values

of foci separation.

This observation is similar to the case of defocusing as

discussed above, where we observed a collimation in two

dimensions of low energy protons when defocusing the laser

on the target foil. Here, we also find a collimation of low

energy protons, but now only in one direction. This is further

verified by measuring the proton energy distribution in the

TN direction, as a function of separation between the two

foci. Figure 3(b) shows two plots of the proton energy distri-

bution in the TN direction with the two foci separated at

9 lm and 30 lm divided by the distribution obtained with the

two overlapping foci. The inset shows the original signal.

These plots show the significant increase in the number of

low energy protons obtained with the optimum separation,

accompanied by a relative decrease in protons with the high-

est energies. With large separation (30 lm) between the two

foci, two independent proton sources are obtained, with the

FIG. 3. (a) The upper figures show the measured proton beam profile for the case of two foci being overlapped or separated (horizontally or vertically). For an

intermediate separation of �3 focus diameters, the resulting beam profile becomes elliptical. Overlapping or separating the foci further results in a circular

shaped profile. Calculating the ellipticity from the beam profile for different spatial separations in horizontal and vertical direction illustrates the change in the

beam profile. (b) The inset shows the proton energy distribution in the forward direction for three different separations between the two focal spots. The large

plot gives the energy distribution measured for the different separations divided by the corresponding distribution obtained in the case that both foci overlap

(red curve 0 lm separation). For a separation of 9 lm, the number of low energy protons is increased.
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same reduction in the maximum energy as for the optimum

separation, but without the enhancement in proton flux at low

energies. These graphs show that the elliptical shape observed

with the spatial detector actually represents a collimation

effect, with an increase in proton number in TN direction, and

that this collimation mainly affects the low energy protons.

IV. MODELLING

A numerical model was developed to investigate how

the size of the laser focus and the separation of the laser foci

in the case of two beams may be expected to influence the

resulting proton beam distribution. The model (an earlier

version of which is described in Ref. 23) calculates how the

evolving fast electron density distribution on a grid corre-

sponding to the target rear surface maps into the beam of

protons accelerated by TNSA. Fast electrons produced at the

target front side in a given laser focus are assumed to be bal-

listically transported through the target in a beam with a

fixed divergence angle. Transport phenomena such as colli-

sions and self-generated fields are not accounted for, but are

expected to have a limited effect in relatively thin targets.24

Recirculation or refluxing of fast electrons within the foil is

also neglected. It was validated in simulations that refluxing

for a 35 fs-duration laser pulse will occur essentially only for

target thicknesses of more than 3 lm. The rear-surface fast

electron sheath dynamics, field-ionization of hydrogen, and

the direction of projection of the resulting protons are calcu-

lated. Unlike more computationally intensive 3D Particle-in-

Cell (PIC) modelling, this simpler approach enables a range

of parametric scans to be performed relatively quickly, to

explore the expected changes to the proton beam profile.

The initial diameter of the fast electron distribution at the

target rear side, arising from a laser focal spot of radius rL at

the front side, is given by de ¼ 2ðrL þ D tan h1=2Þ, where h1=2

is the divergence half-angle of the electron beam as it propa-

gates within the target of thickness D. The sheath profile due

to the single laser focus is assumed to be parabolic.24 In the

case of two laser foci, two fast electron distributions are gen-

erated at the target rear, with the degree of overlap depending

on the separation of the laser foci and the magnitude of h1=2.

In the calculations below, D¼ 3 lm and h1=2 is set to 30�.
The target rear surface is defined as a spatial grid of 80� 80

cells of 0.025 lm size, centred at X¼ Y¼ 0. Electrons arrive

over the duration of the laser pulse, which is set equal to 35 fs.

The magnitude of the sheath field increases with the increase

in the fast electron number density over the first half (rising

edge) of the laser pulse and thereafter decreases with time

due to lateral expansion of the electron population. The maxi-

mum field strength is calculated (assuming a sharp boundary)

as Emax ¼ E0

ffiffiffiffiffiffiffiffiffiffi
2=eN

p
, where eN is Euler’s number (2.7183),

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne0kBTe=�0

p
, �0 is the vacuum permittivity, and Te and

ne0 are the fast electron temperature and maximum density,

respectively (as derived in Ref. 25). The fast electron temper-

ature is determined from ponderomotive scaling.26 The num-

ber of fast electrons generated, and thus the fast electron

density, is calculated assuming a laser pulse energy of 0.6 J

and a laser-to-fast electron energy conversion efficiency of

20%. The conversion efficiency is fixed at this value in the

intensity range explored in this study, based on measurements

reported in Ref. 27. The initial transverse sheath expansion

velocity is set equal to 0.7c (as determined from a previous

experiment8 and simulations28), and it decreases exponentially

with a 1/e time constant of 60 fs. The rate of reduction in the

transverse expansion velocity is based on time- and space-

resolved interferometry measurements of a probe beam

reported in Ref. 8, scaled to the shorter laser pulse used in the

present work. The sheath evolution is calculated in 0.8 fs

steps.

Free protons are released by field ionization of a uniform

layer of hydrogen, as calculated using the Ammosov-Delon-

Krainov (ADK) rate29 at each time step. Changes in the pro-

ton front due to the evolving electric field are calculated, and

the local gradient to this front is used to determine the pro-

jection of the resulting beam of protons. The detector plane

is defined by a 3 cm� 3 cm spatial grid with a resolution

equal to 100 lm and is set 6.5 cm from target, to match the

experimental conditions. The 2D proton beam spatial-

intensity distributions calculated after 200 fs are compared

with the measurements.

A. Defocusing

The simulations show that as the laser pulse is defocused,

the maximum kinetic energy in the proton beam is reduced,

but the number of low-energy protons increases. In addition,

more gradual gradients in the sheath field lead to a reduction in

the beam divergence. The result is therefore, at the optimum

amount of defocusing, a narrow and intense beam of low

energy protons. This is illustrated in Figure 4. Further defocus-

ing reduces the laser intensity too much, and the proton beam

quickly reduces in brightness. In the simulation, the proton dis-

tribution can be analyzed separately for different proton ener-

gies. When this is done, it is found that the observed intense

and narrow beam is due to protons with kinetic energy less

than 70% of the maximum energy obtained at best focus. This

is in agreement with the experimental finding.

B. Two spatially separated foci

For the purposes of modelling the case of the two spa-

tially separated foci, it is assumed that the fast electron popu-

lation produced by each laser spot passes through the thin

foil without interaction with the other and emerges at the

rear side. The electron density at the rear surface is summed

in regions of overlap, which enhances the sheath field. The

results of these simulations show that as the spot separation

is increased, the proton beam becomes elliptical, with the

minor axis in the direction parallel to the separation direction

(Figure 5). The maximum degree of ellipticity is obtained

when the separation is �3 focal spot diameters. As the sepa-

ration is further increased, the two spots each give rise to in-

dependent circular proton beams. The spatial separation of

these is not noticeable in the far-field detection plane, where

a single round proton distribution is therefore observed.

These simulation results are in excellent agreement with the

experimental finding. In the simulation, the proton distribu-

tion can be analyzed separately for different proton energies.

When this is done, it is found that the observed ellipticity is
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due to protons with kinetic energy less than 70% of the max-

imum energy. Analyzing only the high energy range of the

proton energy distribution, circular beam profiles are found

independently of spot separation. This is also in agreement

with the experimental findings.

V. CONCLUSION

This article addresses the influence of defocusing and

focus shaping of the laser pulse on the generated proton beam

profile and the proton energy distribution. Defocusing a single

laser beam by a few Rayleigh lengths on the target front sur-

face results in a spatially larger electron distribution directed

towards the target rear surface, which has a lower average

energy due to the lower initial laser intensity. As a result, the

created sheath field on the rear surface covers a larger area,

resulting in a larger proton source size, but is weaker than in

the case of a focused laser beam. The secondary accelerated

beam of protons is more collimated, due to the larger electron

distribution at the target rear side leading to a lesser electro-

static sheath field gradient, and therefore more directed elec-

tric field distribution. At the same time, the proton flux is

increased due to the larger source size of protons being accel-

erated. This however results in a reduction of the electric field

strength, leading to an overall lower proton energy.

By using two laser beams, to create two foci separated

by a few laser spot diameters, we could transfer this effect of

beam-shaping to a tool in order to generate a customized

proton beam of high flux in one direction. In that case, the

superposition of the shape of the two foci as well as the

resulting electron distribution driven through the target

forms an expanded sheath field in one direction at the target

rear surface. The beam of accelerated protons is produced

with a lower divergence in only one direction. We demon-

strated that for our experimental parameters, this effect

occurs for a focal spot separation between the two foci of

approximately three focal spot diameters. A larger beam sep-

aration results in two independent proton sources,30 each

FIG. 4. Simulation results showing the

electrostatic sheath field distribution

after 200 fs for: (a) rL¼ 5 lm, (b)

rL¼ 10 lm, and (c) rL¼ 15 lm. The

corresponding proton beam profiles,

integrated over the full proton energy

range, are shown in (d)–(f), respec-

tively. In the defocused case, the

sheath field is larger and weaker,

resulting in a proton beam with smaller

divergence.

FIG. 5. Simulation results showing the

electrostatic sheath field distribution

after 200 fs for focal spot separation

equal to: (a) 0 lm, (b) 15 lm, and (c)

30 lm. The corresponding angular pro-

ton distributions at the target surface

are shown in (d)–(f), respectively, and

the resulting proton beam distributions

in the detector plane are shown in

(g)–(i), respectively. At an optimum

foci separation, corresponding to case

(b), the divergence in the x-direction is

significantly reduced.
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with high divergence but relative low energy. A smaller sep-

aration results in one proton source with high divergence

and high energy, due to the addition of both laser beams.

Figure 6 illustrates schematically the sheath expansion in

three of the cases investigated experimentally. These results

obtained by laser beam splitting presents an indirect mea-

surement of the sheath field size, which was estimated to be

in the order of 20 lm. This is in agreement with the results

obtained in Ref. 31 using a laser system with a similar pulse

duration as in our study, i.e., a few tens of femtoseconds. For

longer laser pulse durations, where the electrons can be

accelerated and recirculated within the target during the

pulse duration, the sheath field becomes larger, as, e.g.,

obtained in Refs. 32 and 33.

In summary, the proton beam can be shaped by this

effect, increasing the proton flux for the low energy proton

part. The cost of this effect is a reduction in the maximum

proton energy. For distinct applications which do not need

high proton energies but a high proton flux with a shaped

beam profile (e.g., proton beam writing34 or radioisotope

production35), this method might be sufficient to at least pre-

form the beam profile before using collimators to create the

desired shape. This enhances the process efficiency and

reduces the number of protons which need to be dumped

away creating unnecessary activation or radiation at the col-

limator. Using this technique on high energy lasers could be

a scheme to accelerate protons as a fast ignition driver. Here,

as well primarily a high proton flux is needed.

In the case studied above, both laser beams interact with

the target at the same time. In further studies, one can intro-

duce a temporal delay between the two pulses, which may

result not only in a collimation but also in a change of direc-

tion of the proton beam due to a possible tilt of the sheath

field front at the target rear surface. This may allow for a

new method of combined beam collimation and shaping.

Exploring the influence of varying the relative intensities of

the two pulses is additional options for further studies.
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