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Ion acceleration due to the interaction between a short high-intensity laser pulse and a moderately

overdense plasma target is studied using Eulerian Vlasov–Maxwell simulations. The effects of var-

iations in the plasma density profile and laser pulse parameters are investigated, and the interplay

of collisionless shock and target normal sheath acceleration is analyzed. It is shown that the use of

a layered-target with a combination of light and heavy ions, on the front and rear side, respectively,

yields a strong quasi-static sheath-field on the rear side of the heavy-ion part of the target. This

sheath-field increases the energy of the shock-accelerated ions while preserving their mono-energe-

ticity. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948424]

I. INTRODUCTION

When multiterawatt laser pulses focused to ultrahigh

intensities illuminate the surfaces of dense plasma targets,

protons can be accelerated to energies of several tens of

MeV within acceleration distances of only a few micro-

meters.1,2 There are many potential applications for such

beams, for example, isotope generation for medical applica-

tions,3 ion therapy,4–7 and proton radiography.8 However,

several of the foreseen applications of laser-driven ion sour-

ces require high energies per nucleon (above 100 MeV) and

a small energy spread, which is still far beyond the reach of

current laser–plasma accelerators. It is therefore important to

find ways to optimize the acceleration process with the aim

of producing high-energy, mono-energetic ions.

At present, the most studied mechanism for laser-driven

ion acceleration is Target Normal Sheath Acceleration

(TNSA),9 which has been used to explain experimental results

for laser intensities in the range I ¼ 1018–1020 W=cm2. In

TNSA, fast electrons that are accelerated by a laser pulse set

up an electrostatic sheath-field that in turn accelerates ions

from the rear side of the target. Although the sheath-field is

very strong (of the order of teravolts/meter), the spatial extent

and duration of the field are short. Due to the short accelera-

tion distance and time, it is difficult to reach the high energies

that are required for many applications. Furthermore, TNSA

yields protons with a broad energy spectrum. In contrast

to this, electrostatic shock acceleration has been suggested

as a mechanism to obtain proton beams with a narrow energy

spectrum.10 Experimental results have shown that mono-

energetic acceleration of protons can be achieved in near-

critical density plasma targets at modest laser intensities,11

with the hypothesis that these mono-energetic beams are the

result of shock acceleration.

In hot and moderately overdense plasmas, shockwaves

are of a collisionless nature. The laser light pressure com-

presses the laser-produced plasma and pushes its surface to

high speed. In the electrostatic picture, ions are reflected by

a moving potential barrier and as long as the shock velocity

vs is constant, the reflected ions obtain twice this velocity.

The number of reflected ions is dependent on the size of the

potential barrier and temperature of the ions. Macchi et al.12

reported that the reflection of ions influences the shock-

wave, yielding a trade-off between a mono-energetic spec-

trum and the number of accelerated particles. Additionally,

Fiuza et al.13,14 have shown that if the sheath-field at the rear

side can be controlled, e.g., by keeping it approximately con-

stant in time by creating an exponentially decreasing density

gradient at the rear side, then the mono-energeticity of the

ion distribution created by reflection at the shock-front can

be preserved.

Combining collisionless shock acceleration (CSA) with a

strong, quasi-stationary sheath-field may be a way to reach

even higher maximum proton energies and optimize the ion

spectrum. In this work, we use 1D1P Eulerian Vlasov–Maxwell

simulations to study the interplay of CSA and TNSA. The

objective is to investigate how the efficiency of CSA is affected

by variations in the laser pulse and target parameters, and find-

ing a way to tailor the density profile of the target for enhanced

ion acceleration due to combined CSA and TNSA. It is shown

that a layered plasma target with a combination of light and

heavy ions leads to a strong quasi-static sheath-field, which

induces an enhancement of the energy of shock-wave acceler-

ated ions.

The rest of the paper is organized as follows. In Section II,

we describe the Vlasov–Maxwell solver VERITAS (Vlasov Eule

RIan Tool for Acceleration Studies), used for modelling laser-

based ion acceleration. Section III presents results of simula-

tions of the interaction of short laser pulses with moderately

overdense targets with various density profiles. Section IV

describes laser-driven ion acceleration using multi-ion species

layered targets. Conclusions are summarized in Section V.

II. NUMERICAL MODELLING

Collisionless acceleration mechanisms can be modelled

by the Vlasov–Maxwell system of equations. Numerical

approaches to solve this system are primarily divided into

Particle-In-Cell (PIC) methods and methods that discretize

the distribution function on a grid, the so-called Eulerian

methods. As PIC methods do not require a grid in momen-

tum space, they are efficient at handling the large range of

scales associated with relativistic laser–plasma interaction.

They are therefore very useful to model high dimensional
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problems. However, they introduce statistical noise — mak-

ing it difficult to resolve the fine structures of the distribution

function. On the other hand, solving for the distribution func-

tion on a discretized grid yields a high resolution of fine

structures, but at a higher computational cost. In cases when

the number of accelerated particles is low, as is sometimes

the case in collisionless shock acceleration (e.g., in the

experiment described in Ref. 11), the low-density tail of the

particle distribution is difficult to resolve in PIC simulations.

Furthermore, the shock dynamics may be affected by the

low-density non-thermal component in the ion distribution.12

We therefore choose to implement the Eulerian approach in

this work.

For the case of a plasma with spatial variation in one

direction, the Vlasov equation can be reduced to a two

dimensional 1D1P problem

@f

@t
þ px

mc
@f

@x
þ q Ex þ

1

mc
p� Bð Þx

� �
@f

@px
¼ 0; (1)

where f is the electron or ion distribution function, x is a spa-

tial coordinate, px is a momentum coordinate in this direction,

m denotes the rest mass of the charged particles (electrons or

ions), and c is the relativistic factor. The single-particle

Hamiltonian H ¼ mc2½1þ ðP� qAÞ2=m2c2�1=2þ q/ yields

conservation relations for the transverse canonical momentum

(orthogonal to the direction of variation of the plasma):

P? ¼ qA? þ p? ¼ 0. The conservation of P? stems from the

fact that the y and z coordinates do not enter the Hamiltonian.

Here, c is the speed of light, q is the charge, / and A are the

electrostatic and vector potentials, respectively.

The numerical tool used in this paper, VERITAS, employs

time-splitting15–21 and the positive and flux conservative20

methods to solve the Vlasov equation self-consistently with

Maxwell’s equations. VERITAS has been extensively bench-

marked by comparing with the results obtained by the PIC

code PICADOR
22 and the results of another Vlasov–Maxwell

solver.23 Furthermore, VERITAS shows an excellent agreement

with the analytical results derived in Ref. 24, where quasi-

stationary solutions were obtained for a cold overdense

plasma with a fixed ion background, illuminated with circu-

larly polarized light (the specifics of these benchmarks will

be discussed in future work).

A. Time-splitting method

A common approach to solve the Vlasov–Poisson and

Vlasov–Maxwell systems is the time-splitting method.

Under this scheme, the Vlasov–Maxwell system is consid-

ered in the form

@f

@t
þ Lf ¼ 0; (2)

where in the 1D1P case

L ¼ px

mc
@

@x
þ q Ex þ

1

mc
p� Bð Þx

� �
@

@px
: (3)

Writing L ¼ Aþ B, we introduce the two equations

@f

@t
þ Af ¼ 0 (4)

and

@f

@t
þ Bf ¼ 0: (5)

Equation (2) is advanced to second order accuracy in time by

first advancing Eq. (4) a half time-step, followed by advanc-

ing Eq. (5) a full time-step and finally advancing Eq. (4) yet

another half time-step. In addition to this, the electromag-

netic field is advanced and defined at half-integer time-steps.

Time-splitting can be performed using different choices

of the operators A and B. In this paper, we use

A ¼ px

mc
@

@x
þ @

@x

px

mc

� �
;

B ¼ q Ex þ
1

mc
p� Bð Þx

� �
@

@px

þ @

@px
q Ex þ

1

mc
p� Bð Þx

� �� �
: (6)

This yields the split equations

@f

@t
þ @

@x

px

mc
f

� �
¼ 0 (7)

and

@f

@t
þ @

@px
q Ex þ

1

mc
p� Bð Þx

� �
f

� �
¼ 0; (8)

which conserve particle number individually. Further details

are given in Appendix A.

B. Electromagnetic fields

For a one-dimensional system, Maxwell’s equations

take the form

@Bx

@x
¼ 0;

@Bx

@t
¼ 0;

@By

@t
¼ @Ez

@x
;

@Bz

@t
¼ � @Ey

@x
;

@Ex

@x
¼ q=�0; �0l0

@Ey

@t
¼ �l0Jy �

@Bz

@x
;

and

�0l0

@Ez

@t
¼ �l0Jz þ

@By

@x
:

Here, the currents and charge density are determined by the

distribution functions, according to

J? ¼
X

s

qs

ms

ð
p?s

cs

fs dpx

and
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q ¼
X

s

qs

ð
fs dpx;

where the summation ranges over all species. The transverse

vector potential A? is obtained by E? ¼ �@A?=@t and is

used together with the conservation of canonical momentum

P? to calculate the relativistic factor c and the transverse com-

ponents of the current. The numerical scheme for solving the

electromagnetic field equations is described in Appendix B.

III. TNSA AND SHOCK-WAVE ACCELERATION

We consider moderately overdense plasma targets with

different density profiles (rectangular, exponential, and multi-

species layered) having peak number densities n0 ¼ 2:5nc,

where nc ¼ mex2�0=e2 is the cutoff or critical density at which

the laser frequency x equals the electron plasma frequency.

Ions are assumed to be cold, with an initial temperature

Ti ¼ 1 eV, while electrons are assumed to have an initial tem-

perature Te ¼ 5 keV. The targets are heated by linearly

polarized Gaussian laser-pulses with short pulse lengths, hav-

ing full-width at half-maximum (FWHM) of the intensity in

the range 25–50 fs. The Gaussian shape factor of the vector

potential is aðtÞ ¼ a0 exp½�2ln2ðs=tpÞ2�, where s ¼ t� tp and

tp is the pulse duration at FWHM. The dimensionless laser am-

plitude a0 ¼ eA0=mec is in the range of a0 ¼ 2:5–3:5 and

relates to the laser intensity I and wavelength k according to a0

¼ 0:85ðIk2=1018 Wcm�2 lm2Þ1=2
. The combination of

a0 and pulse length is varied such that the laser fluency

F ¼ T�1
Ð

aðtÞ2 dt remains constant. Here, T is the duration

of the optical cycle corresponding to the wavelength k.

Regarding numerical resolution, simulations have been per-

formed with spatial resolution Dx ¼ k=200, momentum

space resolution Dp ¼ mec=20, and time step Dt ¼ T=200.

A. Density profile variation

The target is assumed to be a proton–electron plasma, i.e.,

with Z ¼ A ¼ 1, where Z and A are the charge and mass num-

bers, respectively. The plasma density profile is taken to be

FIG. 1. Ion phase-space distribution at

three different time instants (t ¼ 39T,

75 T and 108 T) for the exponential (left)

and rectangular (right) plasma density

profiles. The target is irradiated by a lin-

early polarized pulse with a0 ¼ 2:5 and

pulse length 50 fs.
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nðxÞ ¼ n0ðx� 2kÞ=k if x 2 ½2k; 3k�
n0 exp ½�ðx� 3kÞ=5k� if x 2 ½3k; 25k�

�
(9)

with n0 ¼ 2:5nc for both electrons and ions. This type of

density profile, with a linear rise on the front side and an ex-

ponential decrease on the rear side, can be naturally formed

by the pre-heating and expansion of the target due to a laser

pre-pulse.11

We use a linearly polarized laser pulse with a0 ¼ 2:5
and pulse-length of 50 fs. For reference, the amplitude peak

of the laser-pulse impinges on the front side of the plasma at

time t¼ tp. The wavelength is taken to be k ¼ 0:8 lm.

At incidence of the laser-pulse on the target, the laser

energy is absorbed near the critical density and electrons are

accelerated to strongly relativistic energies. The left panel of

Fig. 1 shows the ion phase-space distribution fiðx; pxÞ at three

time instances t ¼ 39T, 75 T, and 108 T. The target is heated

and an electrostatic shock-structure is generated that travels

into the plasma at a constant velocity vs ¼ 0:041c. The veloc-

ity of the shock-wave is inferred from the velocity of the max-

imum of the electrostatic potential barrier. This value can be

compared to the hole-boring velocity vHB ¼ 0:034c, obtained

via12 vHB ¼ a0c½ðZ=AÞðme=mpÞðnc=neÞð1þ RÞ=2�1=2
, with ne

¼ 2:5nc; a0 ¼ 2:5, Z¼ 1, and mp=me ¼ 1836. From simula-

tions, we determined the reflectivity to be R¼ 0.67. The

reflected ions initially travel with a momentum corresponding

to twice the shock velocity p ’ 130mec, see Fig. 1(a); how-

ever, as time goes by, the ion spectrum becomes broader as

shown in Figs. 1(c) and 1(e). The broadening of the ion spec-

trum is due to two different effects: First, not all the ions will

have the same initial reflection velocity, because the speed of

the potential barrier varies during its formation. Second, the

reflected ions will be affected by the longitudinal electric

field, which also varies in both space and time. At the rear

side of the target, one observes TNSA, but the sheath field is

not strong enough for substantial acceleration in this case.

To investigate the effect of the density profile, we also

consider a rectangular plasma slab with n0 ¼ 2:5nc and

thickness d ¼ 5:5k. The length of the slab was chosen so

that the particle number is the same for both the rectangular

and exponential density profiles. The ion distribution at three

time instances (t ¼ 39T, 75 T, and 108 T) is shown in the

right panels of Fig. 1. The dynamics of the shock-formation

is similar for both the cases, but the shock velocity is slightly

lower and closer to the hole-boring velocity. It is 0:037c in

the rectangular case compared with 0:041c for the exponen-

tial case. Furthermore, the TNSA is stronger than in the ex-

ponential case, resulting in a TNSA-dominated broad ion

energy spectrum, as can be seen in Fig. 2 (blue dashed line).

From this, we can conclude that the shape of the density pro-

file at the rear side has an important role in suppressing the

sheath-field responsible for TNSA. Similar conclusions were

drawn in Refs. 13 and 14, where electrostatic shocks driven

by the interaction of two plasmas with different density and

relative drift velocity were studied using PIC simulations.

The energy spectrum given in Fig. 2 was calculated

based on the entire ion population using dN=dE ¼ ðdp=dEÞÐ
fiðx; pxÞ dx, where E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
and fiðx; pxÞ is the

ion distribution function. Note that the exact value of the

initial ion temperature does not influence the results, as long

as the ions are cold at the start of the simulation. A simula-

tion with the same laser-pulse and target parameters, but an

initial ion temperature of Ti ¼ 100 eV gives identical results.

FIG. 2. Proton spectrum at t ¼ 108T for the exponentially decreasing den-

sity profile (red solid) and the rectangular plasma slab (blue dashed).

FIG. 3. Longitudinal electric field as a function of position and time for the

(a) exponential and (b) rectangular density profiles. The target is irradiated

by a linearly polarized pulse with a0 ¼ 2:5 and pulse length 50 fs.
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This also applies to a simulation with an initial electron tem-

perature of Te ¼ 2:5 keV.

Figure 3 shows the longitudinal electric field as a func-

tion of time and space for the exponential and rectangular

density profiles. From Fig. 3(a), it can be noted that the

sheath-field at the rear side of the exponential density pro-

file is smaller than the one at the shock-front. This, com-

bined with the fact that regions with significant electric

fields at the rear side are associated with lower ion density,

leads to less pronounced TNSA. Therefore, the resulting

ion spectrum has a broad bump-like structure with a maxi-

mum ion energy at around 3 MeV, as shown in Fig. 2 (red

solid line); contrasted with the rectangular density profile,

for which the proton spectrum is shown with a blue dashed

line. In the latter case, the sheath-field at the rear side is

very strong, as can be seen in Fig. 3(b), and gives rise to the

broad exponential proton spectrum that is typical for cases

when TNSA is dominant.

B. Laser pulse variation

1. Pulse intensity

Here, we show results for the exponential density profile

heated by a laser pulse with a0 ¼ 2:5
ffiffiffi
2
p

and pulse length

25 fs. With these parameters, the laser fluency is the same as

in the case with the longer and less intense pulse described

in Section III A. Figure 4 shows the ion distribution function

at times t ¼ 39T, 75 T, 108 T, and 240 T. Compared to the

case with the longer pulse with lower intensity (both the rec-

tangular and exponential profiles), the time for the shock to

develop is considerably longer. The velocity of the shock-

wave in the more intense pulse case is also higher, with

vs ¼ 0:049c.

At first, it may seem counterintuitive that the shock is

developed later in the case of the shorter and more intense

pulse, given the fact that the shock velocity is higher. The

main reason for the later development is the shorter pulse

length and higher intensity, which leads to operation close to

the onset of relativistic transparency and larger penetration

of the pulse into the plasma rather than reflection/compres-

sion at the plasma vacuum interface. This gives smaller peak

ion and electron densities after interaction with the laser

pulse, and results in differences in the electrostatic potential

and the reflection time of the ions.

In both cases, the ion and electron densities have their

largest peak value right after the interaction with the pulse.

For the shorter pulse case, however, the peak values are

much lower (see Fig. 5). These lower ion and electron den-

sities lead to a more gradual and wider potential barrier.

Figure 6 shows the electrostatic potential as a function of

time and space for the exponential density profile in the cases

with different laser intensities and pulse lengths (a0 ¼ 2:5 left

panel, a0 ¼ 2:5
ffiffiffi
2
p

right panel). The potential is scaled and

shifted according to 2e/=mpv2
s �max½2e/=mpv2

s � þ 1, such

that the peak of the potential is unity. Furthermore, the poten-

tial has been truncated at zero. When the laser pulse hits the

target, there is an oscillation in the densities and electrostatic

potential, due to j � B-heating. The frequency of the oscilla-

tion is approximately twice the laser frequency. For the more

intense pulse, these oscillations persist for a longer time.

FIG. 4. Ion phase-space distribution

for the exponential density profile irra-

diated by a linearly polarized pulse

with a0 ¼ 2:5
ffiffiffi
2
p

and pulse length 25

fs at t ¼ 39T, 75 T, 108 T and 240 T.

053103-5 Svedung Wettervik, DuBois, and F€ul€op Phys. Plasmas 23, 053103 (2016)



For ions at a low temperature, reflection occurs for a

potential barrier height approximately equal to unity. If the ions

have acquired a velocity in the direction of the shock, reflection

occurs at a slightly smaller barrier height, which is the case at

later times due to sheath-expansion of the target. Hence, a

shock solution may develop although the potential barrier ini-

tially does not have sufficient height for ion reflection to occur.

For a linearly rising potential barrier, the reflection time

for an ion is given by d=vs, where d is the spatial extent of

the barrier. As mentioned before, the potential barrier for the

shorter and more intense pulse is initially wider (see Fig. 6),

yielding a proportionally longer reflection time. Even if the

shock velocity is slightly higher in the more intense case, the

spatial extent of the barrier is even larger, so the reflection

time, d=vs, is longer.

Figure 5 shows a steepening of the peak ion density from

t ’ 25T to t ’ 100T in the case of the shorter and more intense

pulse (solid blue line). This steepening is associated with per-

sisting oscillations in the electrostatic potential. The width of

the potential barrier is reduced and, therefore, the reflection

time for the ions as well. Finally, a shock is developed, albeit

much later than in the case of the longer pulse. This shows that

shock acceleration can be operated close to the relativistic

transparency regime which maximizes the hole-boring velocity

and is also seen to yield a higher shock velocity.

2. Pulse splitting

Previous numerical results indicate that using a train of

short laser pulses may produce more efficient ion-acceleration

than one Gaussian pulse with the same energy.25–27

Furthermore, experimental results in Ref. 11 show that a

smooth pulse containing the same energy as a pulse train will

result in a monotonically decreasing ion spectrum, instead of

a spectrum with a well-defined peak as in the pulse-train case.

This indicates that the efficiency of shock acceleration is

improved in the case of multiple pulses.

To investigate how the splitting of the pulse affects the

shock dynamics, here we consider the exponential density

profile irradiated by two laser pulses with a0 ¼ 2:5 and pulse

length 25 fs, which are separated by 50 fs in time. Figure 7

shows the electrostatic potential as a function of time and

space. The variation in the electrostatic potential indicates

that a shock-structure is formed already after the first pulse.

FIG. 5. Peak ion (solid) and electron (dashed) densities as functions of time.

Red lines: a0 ¼ 2:5. Blue lines: a0 ¼ 2:5
ffiffiffi
2
p

.

FIG. 6. Electrostatic potential as a

function of space and time. (a) a0 ¼
2:5 and pulse length 50 fs, (b) a0 ¼
2:5

ffiffiffi
2
p

and pulse length 25 fs.

FIG. 7. Electrostatic potential in the case of the exponential density profile

irradiated by two laser pulses with a0 ¼ 2:5 and pulse length 25 fs, which

are separated by 50 fs in time.
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The arrival of the second pulse perturbs the potential barrier

associated with the shock, leading to a slight increase of its

velocity, from vs � 0:030c to vs � 0:039c. Hence, the use of

two pulses increases the velocity of the shock, although it

remains smaller than if all the energy would have been in a

single pulse, cf. vs � 0:041c for a single pulse with a0 ¼ 2:5
and pulse length 50 fs.

The effect of pulse-splitting is even more important for

higher initial plasma densities, as predicted by previous nu-

merical and experimental results, see, e.g., Ref. 27. The rea-

son is that the absorption of the second pulse can be

enhanced if the target density at the front side becomes lower

due to heating-induced expansion caused by the first pulse.

This results in higher electron temperatures and conse-

quently stronger TNSA. This heating-induced absorption

enhancement effect is not as pronounced if the initial den-

sities are close to the critical density. Our simulations show

that for a rectangular density profile with n0 ¼ 25nc, the

energy spectrum is TNSA-dominated and the cutoff ion

energy is increased by 10% in the case of two pulses with

a0 ¼ 2:5 and pulse lengths 25 fs separated in time with 50 fs,

compared with the case of one pulse with a0 ¼ 2:5 and pulse

length 50 fs. Corresponding simulations with peak densities

n0 < 2:5nc do not give a substantial increase in the proton

energy if the pulse is split.

Figure 8 shows snapshots at t ¼ 108T of the electron dis-

tribution function for both the exponential and the rectangular

profiles for different values of a0 and pulse shapes. The simu-

lations confirm that the hot electron temperature in all cases

is on the order of magnitude of the ponderomotive scaling

Th � mec2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0=2
p

� 1Þ. Specifically, the case with the

more intense pulse (with shortest pulse length) leads to the

highest hot electron temperature, as expected from the pon-

deromotive scaling, even if the fluency is the same in different

cases. The Mach number of the shocks M ¼ vs=cs is around

1.7 in all cases, if we use the ponderomotive scaling to esti-

mate the hot electron energy as the temperature in the sound

speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
.

IV. ENHANCED ION ACCELERATION USING
MULTI-ION SPECIES LAYERED TARGETS

For a target with a steep rear boundary, a strong sheath-

field can be obtained and used to increase the energy of

shock-accelerated ions. Targets with a single light ion spe-

cies are subject to significant TNSA, and hence, the resulting

ion energy-spectrum becomes broad. Furthermore, the accel-

eration of ions at the rear side leads to a decay of the sheath-

field strength, and hence, its usefulness for post-acceleration

is reduced. To combine the use of a strong sheath-field for

post-acceleration and a low degree of TNSA, we consider a

double layered rectangular target consisting of a layer of

light ions (protons) at the front side (x 2 ½2k; 4k�) and heavy

(immobile) ions at the rear side (x 2 ½4k; 6k�). We use the

density profile nðxÞ ¼ 2:5nc in the light ion part. In the heavy

ion part, we consider two cases for the electron density profile,

nðxÞ ¼ 2:5nc and nðxÞ ¼ 25nc, respectively. For comparison,

we also consider a single layer rectangular target with protons

nðxÞ ¼ 2:5nc for x 2 ½2k; 6k�. The targets are irradiated by a

laser pulse with a0 ¼ 2:5 and pulse length 50 fs.

Figure 9 shows snapshots of the ion distribution function

for the single-species and double layered targets at t ¼ 39T,

FIG. 8. Electron phase-space distribu-

tion at t ¼ 108T in the exponential and

rectangular density profile cases.

Panels (a) and (d) show the case with

a0 ¼ 2:5 and pulse length 50 fs, for the

exponential (a) and rectangular (d)

plasma profiles. Panel (b) depicts the

exponential density profile irradiated

by two laser pulses with a0 ¼ 2:5 and

pulse length 25 fs, which are separated

by 50 fs in time. Panel (c) is for the ex-

ponential profile with a0 ¼ 2:5
ffiffiffi
2
p

and

pulse length 25 fs.
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75 T, and 108 T. The laser heats the front side of the target

and launches a shock. Until the shock reaches the region

with heavy ions in the double layer, its behaviour is similar

to that in the single species target. For the double-layered tar-

gets, the shock wave is stopped at the interface between the

layers, but the shock-wave reflected ions continue and finally

cross the rear side of the target. When this occurs, the ions

are further accelerated due to the sheath field, leading to

higher proton energies than what they would have from the

reflection by the shock-wave alone.

If the heavy ion layer has higher density than the light

ion layer, ions can be slowed down due to the sheath field

that is created by the density difference at the interface.

Those ions that have acquired enough energy from the

shock-wave potential barrier can penetrate the interface and

continue through the target. The interface between the layers

acts effectively as a filter: it reflects the low energy ions and

leads to a narrower energy spectrum after the interface. By

comparing Figs. 9(h) and 9(i), we see that more protons pen-

etrate the interface in the low density case, as can be

expected since the size of the potential barrier associated

with the sheath field at the interface between the light ion

and heavy ion layers is smaller in this case.

Inside the heavy ion layer, the energy spectrum ranges

from zero for protons that had initial energy just above the

threshold for reflection to the highest energy of reflected

ions, reduced by the size of the potential barrier. The electric

field inside the heavy ion layer is very small, so the protons

are crossing this layer without gaining much energy. As it

takes less time for the higher energy light ions to cross the

heavy ion layer, the distribution is rotated in phase-space, as

can be noted by comparing, e.g., Figs. 9(f) and 9(i). When

the light ions reach the interface to vacuum, they are acceler-

ated by the strong sheath-field there.

In all cases, the maximum proton energies exceed the

energy of 2.9 MeV for reflected ions by the shock-wave, as

can be seen in Fig. 10, where the proton spectrums in the

three cases are presented. Furthermore, in the single species

case, we have a broad TNSA-dominated proton spectrum.

For the layered targets, we observe that the range of the spec-

trum shrinks and the maximum proton energy increases com-

pared to the single species case. The shrinkage of the

spectrum is stronger in the high density case. In other words,

by choosing the density of the heavy ion layer appropriately,

it should be possible to further optimize the monoenergetic-

ity of the ion beam. As mentioned before, the reason is that

the longitudinal electric field in the boundary region between

FIG. 9. Ion phase-space distribution for single- and double-layer target structures, irradiated by a linearly polarized pulse with a0 ¼ 2:5 and pulse length 50 fs

at t ¼ 39T, 75 T, and 108 T. (a,d,g) Single-species target, (b,e,h) layered target with n ¼ 2:5nc, and (c,f,i) layered target with the high density heavy ion layer

having n ¼ 25nc.

FIG. 10. Proton spectrum at t ¼ 108T for single-species and double-layered

targets. Green dash-dotted line is for the single-species target. Blue dashed

line is for the layered target with n ¼ 2:5nc. Red solid line is for the layered

target with the high density heavy ion layer having n ¼ 25nc.
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the light and heavy ion part of the layered target is stronger

in the high density case, which hinders the penetration of

low energy ions to the high density region. However, those

ions that cross that boundary and reach the rear side of the

target will be efficiently accelerated.

The number of accelerated ions can be increased by

using a thicker proton layer on the front side of a double-

layer target. Then, the shock will be sustained for a longer

time, as in the single species case, where the shock is sus-

tained throughout the whole target width. To quantify the

increase in particle number, we can compare the number of

shock-accelerated ions at different time instances in a simu-

lation with a target that has larger spatial extent. For exam-

ple, for the case with the exponential density profile and

laser parameters a0 ¼ 2:5
ffiffiffi
2
p

, pulse length 25 fs, the numbers

of shock accelerated ions at t ¼ 200T and t ¼ 240T are 1.60

and 2.14 times larger than that at t ¼ 160T.

Figure 11 shows the electric field as a function of position

and time in the layered targets compared with the single

species one. During the initial part of the simulation, the

sheath-field is set up by the hot electrons that are generated by

the laser-pulse. For the single-species target, the sheath field

changes its structure in time as the plasma expands at the rear

boundary. On the other hand, for the double layered targets,

the sheath field is stronger and has less time variation. The

strongest sheath field is obtained in the high density case, with

a maximum value of 10 TV/m. Note that in Fig. 11, we only

show values up to the maximum value for the low density

case (7 TV/m). Our simulations show that as long as A=Z
� 10, the temporal variation of the sheath field will not affect

the quality of the shock-accelerated protons.

V. CONCLUSIONS

Vlasov-modelling of collisionless shock acceleration

allows for high resolution of the distribution function and,

therefore, is highly suitable in cases where effects of low-

density tails in the distribution function need to be resolved

accurately. In this paper, we have restricted the discussion to

1D1P modelling for simplicity. Although the shock dynam-

ics is expected to be slightly different in the 2D case, the

main conclusions should be valid, given the fact that parti-

cle-in-cell simulations have shown only a few percent differ-

ences in the energy cutoff of the ions between 1D and 2D

configurations.10,28

We show that by using a target with a smooth (e.g.,

exponentially decreasing) density profile at the rear side,

TNSA can be kept at a low level, making CSA the main

mechanism of acceleration of particles. On the other hand,

the energy of the shock-wave accelerated ions could poten-

tially be increased by the sheath-field produced at the rear

side. Provided that the sheath-field has limited variation in

time, the mono-energeticity of the ions may be preserved.

Early launch of the shock increases the number of ions that

are reflected and can be optimized by an appropriate choice

of laser parameters and also potentially the density profile.

We observe that for the same laser fluency, a higher in-

tensity combined with a shorter laser pulse duration leads to

a higher shock velocity, but the Mach number is only slightly

increased. The main difference compared to the lower inten-

sity and longer pulse length case is that the shock develops

later. This may be due to that the shorter duration of the laser

pulse leads to a less peaked ion-density and hence wider

potential barrier, which results in a longer reflection time for

the ions. We show that splitting the laser-pulse can also lead

to higher shock velocities, but without the delay of the

shock-formation.

FIG. 11. Longitudinal electric field as a function of position and time for tar-

gets irradiated by a linearly polarized pulse with a0 ¼ 2:5 and pulse length

50 fs. (a) Single-species target, (b) layered target with n ¼ 2:5nc, and (c)

layered target with the high density heavy ion layer having n ¼ 25nc.
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Our simulations show that by using a target which con-

sists of light ions on the front side and heavy ions on the rear

side, it is possible to combine a strong quasi-static sheath-

field with CSA. The dynamics of the shock-formation in the

double-layer target resembles the one in a rectangular single-

species plasma slab, but as soon as the light ions pass the

rear side of the target, they obtain higher energies due to a

strong sheath field, which is produced due to the charge-

separation between the electrons that penetrate the rear side

of the target and the heavy ions at rest. This leads to a very

efficient acceleration and an increase in the proton energies

compared to the energies of shock-reflected ions, without

broadening of the energy spectrum if the heavy ion layer has

a high density.
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APPENDIX A: NUMERICAL DESCRIPTION OF ONE
DIMENSIONAL CONSERVATION LAWS

Consider a conservation law

@tf þ @f½aðf; tÞf � ¼ 0; (A1)

which may be either Eq. (7) or Eq. (8). Introduce the map-

ping Xðs; t; fÞ

dX s; t; fð Þ
ds

¼ a X s; t; fð Þ; s½ �
X t; t; fð Þ ¼ f

8<
: (A2)

and a discretization ðfi; tjÞ ¼ ðiDf; jDtÞ. It then holds that

ðf
iþ1

2

f
i�1

2

f f; tjþ1

	 

df ¼

ðX tj;tjþ1;fiþ1
2

	 

X tj;tjþ1;fi�1

2

	 
 f f; tj
	 


df; (A3)

which can be written as

ðf
iþ1

2

f
i�1

2

f f; tjþ1

	 

df ¼

ðf
iþ1

2

f
i�1

2

f f; tj

	 

df�

ðf
iþ1

2

X tj;tjþ1;fiþ1
2

	 
 f f; tj
	 


df

þ
ðf

i�1
2

X tj;tjþ1;fi�1
2

	 
 f f; tj
	 


df: (A4)

Introducing cell-averaged discrete values of the distribution

function

f j
i ¼

1

Df

ðf
iþ1

2

f
i�1

2

f f; tj
	 


df (A5)

and fluxes /iþ1
2

/iþ1
2
¼ 1

Df

ðf
iþ1

2

X tj;tjþ1;fiþ1
2

	 
 f f; tj

	 

df; (A6)

Eq. (A4) can be written as

f jþ1
i ¼ f j

i � /iþ1
2
þ /i�1

2
: (A7)

The choice of the method to evaluate Xðtj; tjþ1; fiþ1
2
Þ and the

corresponding flux /iþ1
2

determines the accuracy of the

method.

For the non-relativistic Vlasov–Poisson equation, aðf; tÞ
is independent of f and Xðtj; tjþ1; fiþ1

2
Þ can be determined to

second order accuracy by

X tj; tjþ1; fiþ1
2

� �
¼ fiþ1

2
� a tjþ1

2

	 

Dt: (A8)

For the relativistic Vlasov–Maxwell system on the other

hand, aðf; tÞ is not independent of f and Eq. (A8) yields a

first order accurate approximation of Xðtj; tjþ1; fiþ1
2
Þ.

To evaluate the fluxes /iþ1
2
, we use the positive and flux

conservative method.20 The distribution function f ðfÞ, in the

cell with index i, is approximated in terms of the cell aver-

aged values with indices ði� 1Þ, i, and ðiþ 1Þ, according to

f fð Þ ¼ fi þ
�þi

6Df2
½2ðf� fiÞðf� fi�3

2
Þ

þðf� fi�1
2
Þðf� fiþ1

2
Þ�ðfiþ1 � fiÞ

þ ��i
6Df2

½2ðf� fiÞðf� fiþ3
2
Þ

þðf� fi�1
2
Þðf� fiþ1

2
Þ�ðfi � fi�1Þ;

where we have suppressed the time-index j. Furthermore, the

limiters �þi and ��i are given by

�þi ¼
min 1;

2fi
fiþ1 � fi

� �
if fiþ1 > fi

min 1;�2
f1 � fi
fiþ1 � fi

� �
if fi > fiþ1

8>>><
>>>:

(A9)

and

��i ¼
min 1; 2

f1 � fi

fi � fi�1

� �
if fi > fi�1

min 1;
�2fi

fi � fi�1

� �
if fi�1 > fi:

8>>><
>>>:

(A10)

The quantity f1 is the maximum cell-averaged value.

Straightforward integration yields the flux

/iþ1
2
¼ a

�
fi þ

�þi
6

1� að Þ 2� að Þ fiþ1 � fið Þ

þ �
�
i

6
1� að Þ 1þ að Þ fi � fi�1ð Þ

�
(A11)

if aiþ1
2

is positive, where a ¼ ½fiþ1
2
� Xðtj; tjþ1; fiþ1

2
Þ�=Df. For

negative aiþ1
2
, we instead have
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/iþ1
2
¼ a

�
fiþ1 �

�þiþ1

6
1� að Þ 1þ að Þ fiþ2 � fiþ1ð Þ

�
��iþ1

6
2þ að Þ 1þ að Þ fiþ1 � fið Þ

�
: (A12)

This is a third order interpolation of the fluxes, except in the

presence of steep gradients. The limiters ensure that the

interpolation is positivity preserving and does not violate the

maximum principle. Finally, as boundary conditions, we set

the fluxes across boundaries to zero which enforces that par-

ticles cannot leave or enter the domain and yields strict parti-

cle conservation.

APPENDIX B: DISCRETIZATION OF THE
ELECTROMAGNETIC FIELD EQUATIONS

By introducing the quantities

G6 ¼ Ez6cBy and F6 ¼ Ey6cBz;

we may write

@

@t
6c

@

@x

� �
F6 ¼ �Jy=�0; (B1)

@

@t
6c

@

@x

� �
G7 ¼ �Jz=�0: (B2)

Introducing characteristics g ¼ tþ x=c and � ¼ t� x=c, it

holds that

@

@t
þ c

@

@x

� �
Fþ ¼ 2

@Fþ
@g

;

@

@t
� c

@

@x

� �
F� ¼ 2

@F�
@�

(B3)

as well as

@

@t
þ c

@

@x

� �
G� ¼ 2

@G�
@g

;

@

@t
� c

@

@x

� �
Gþ ¼ 2

@Gþ
@�

: (B4)

To advance Equations (B1) and (B2), we take cDt ¼
jDxj and use a second order accurate central difference

scheme:

F
jþ1

2

6; iþ1
2
61ð Þ ¼ F

j�1
2

6; iþ1
2ð Þ
� DtJj

y; iþ1
2
61

2ð Þ=�0; (B5)

G
jþ1

2

6; iþ1
2
71ð Þ ¼ G

j�1
2

6; iþ1
2ð Þ
� DtJj

z; iþ1
2
71

2ð Þ=�0; (B6)

where i is an index for the spatial-coordinate and j is an

index for the temporal-coordinate.

Additionally, the electric field component Ex is calcu-

lated by

E
jþ1

2

x; iþ1
2ð Þ
¼ q

jþ1
2

i Dxþ E
jþ1

2

x; i�1
2ð Þ
; (B7)

which is second order accurate, provided that the charge den-

sity can be determined with first order accuracy.

Regarding boundary conditions, the laser pulse is imple-

mented as a Dirichlet boundary condition for the transverse

fields, and we use open boundary conditions at the boundary

that is not associated with the laser. For the electric field

component Ex, we have the Dirichlet boundary condition

Ex¼ 0 at the right boundary.

Finally, defining the discretized vector-potential on the

spatial cell-faces, it can be calculated with second order accu-

racy in time on integer time-steps by using a central-difference

approximation of the time-derivative in @A?=@t ¼ �E?.
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