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(2,0) Theory and Higher Spin:
Twisting, Turning and Spinning Towards Higher Energies
Hampus Linander
Department of Physics, Chalmers University of Technology

Abstract
This thesis investigates an enigmatic six-dimensional quantum theory known
as (2,0) theory and a three dimensional conformal theory of higher spin. The
former has resisted an explicit construction as a quantum field theory, yet
its existence can be inferred from string theory and M-theory where it plays a
prominent role. Theories of higher spin, only recently emerging with consistent
formulations, also have intricate connections with string theory where they
might provide insight into the high energy behaviour and have recently played
an important part in holographic dualities. A deeper understanding of these
theories is therefore an important challange that promise to provide new insight
into string theory and the mathematical framework of theoretical physics in
general.

First the six dimensional (2,0) theory is investigated in terms of an explicit
formulation of one free tensor multiplet on circle fibrations. The fibration
geometry provides additional data in a compactification to five dimensions
used to derive an interacting generalization. Topological twisting of the tensor
multiplet is then carried out, resulting in an off-shell formulation making use
of the Q-cohomology structure.

The second part of the thesis concerns conformal higher spin in three dimen-
sions, constructed as an extension of the gauge theory formulation of gravity.
Using a computer tensor algebra system developed for this purpose, the full
non-linear system is solved at the spin 3 level.

Keywords: Supersymmetry, Yang-Mills theory, Topological field theory, Topo-
logical twisting, (2,0) theory, Compactification, Circle fibrations, Higher spin.
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1
Introduction

“ No fairer destiny could be
allotted to any physical theory,
than that it should of itself point
out the way to the introduction
of a more comprehensive theory,
in which it lives on as a limiting
case. ”

– Albert Einstein, Relativity
(translation) [1]

In the search for a unified theory1 of gravitation and quantum mechanics we
have been led into the world of higher dimensions and symmetries. This thesis
continues investigations of two enigmatic theories that seems to hold many
keys to the understanding of our universe. The first is a unique theory in six
dimensions and the second a three dimensional theory that both challange the
currently available framework of model building in physics.

1The word theory should in the context of theoretical physics not be confused with the
more everyday use of the word: it shares the meaning in that it is something that aims to
explain a certain phenomena, but in contrast it is a very concrete mathematical model that
enables exact calculations of the behaviour of its constituents.
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Chapter 1. Introduction

In the early parts of the 20th century theoretical physics produced two
wonderful theories that both completely changed the way we view the world
around us: special relativity [2] and quantum mechanics [3]. They describe
a strange reality where light travels at constant velocity independent of the
reference frame and where things at a small scale become quantised and un-
certain. Both have now been shown to describe our world extremely well [4].
It was therefore very annoying that quantum mechanics did not seem to be
on friendly terms with special relativity. It took an enormous effort and the
greater part of the 20th century to find the correct way of joining these two
theories into what is now called quantum field theory. The efforts were not
without reward because the result was the standard model of particle physics
[5], a quantum field theory that together with the general theory of relativity
describes almost everything2 we see around us in terms of a handful of elemen-
tary particles and forces. Recently the last particle predicted by the standard
model, the Higgs boson, was found independently by the ATLAS and CMS
detectors at the LHC3.

Einstein’s theory of general relavitity describes gravity at length scales
that are large in a certain very precise sense. It shows us how mass and
energy curves space-time so that planets orbit their suns and light deflects
when travelling past a cluster of galaxies. The theory predicts black holes,
whose existence has long been infered by indirect measurements4. It also
predicts gravitational waves and recently both have been observed together in
spectacular fashion when LIGO5 detected the signal from a black hole merger
[8].

The standard model of particle physics and the general theory of relativity
have shown remarkable aptitude in describing a wide range of phenomena but
both have their limits. They are valid up to a certain energy scale where

2In terms of everyday phenomena such as a human being sitting in a chair on the planet
earth this is certainly true, but to describe the singularity of a black hole or the origin of
dark matter and dark energy there arises the need for new additions to our understanding.

3Large Hadron Collider, a particle accelerator at the CERN facilities on the France-
Switzerland border near Geneva.

4See e.g. [6, 7]
5Laser Interferometer Gravitational-Wave Observatory in Washington and Louisiana,

USA.
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new physics needs to enter the picture, a scale that for gravity is much higher
than for the standard model. At the time of writing the standard model has
been shown to be valid, by particle collider experiments, up to energies of
about6 1 TeV [9] but there are tentative signals of new physics at this scale
[10, 11]. As for the theory of general relativity there are at this point no
experimental evidence for any deviations, even in some of the most energetic
processes available to us for observation [8, 12, 13]. Even so, there are no
doubts as to its inability to describe certain phenomena. When it comes to
details of a gravitational collapse inside the event horizon, or the very early
events of our universe, it falls short. In these very energetic processes gravity
is not well described by the classical theory of general relativity but rather is
expected to have a quantum mechanical formulation. It is remarkable that
general relativity has led us this far and so vividly pointed the way to new
phenomena that seem to require radically new ways of thinking. The problem
of quantum gravity is a difficult one, and to find a solution we are invited to
broaden our horizons beyond our four-dimensional universe.

One should not despair at this uncomfortable leap into further dimensions
and levels of abstraction. As Einstein said himself regarding special relativity
in the quote, so too has now the general theory of relativity attained this fairest
destiny. Even though a full answer to this question is still out of reach, there
is a good candidate: string theory [14, 15].

String theory is higher dimensional in two ways. One in that it is formulated
in more than four dimensions and another in that the fundamental objects are
not zero-dimensional but rather one-dimensional: they are strings. Why is
string theory interesting? It is a theory that describes both the fundamental
particles and their interactions, and gives a quantum mechanical description
of gravity. Why is string theory not the answer? Maybe it is, but even though
much progress has been made in understanding the theory we still know too
little about it to say for sure.

It is at the cross roads of string theory and quantum field theory that we

6In everyday quantities this can be stated as follows: The standard model correctly
predicts the outcome of two protons colliding with the equivalent energy of a flying mosquito.
Since a mosquito weighs roughly 1021 times as much as a proton this is quite a lot of energy
for a single proton.

3



Chapter 1. Introduction

find the topic of Paper I – Paper III. The rather dull name of (2,0) theory
does not convey the importance that it warrants. As will be covered in the next
chapter it is a very special theory that enjoys a host of interesting properties,
the most peculiar of which is that as of yet there is no framework where it
can be explicitly defined. String theory and M-theory provides evidence for its
existence yet quantum field theory cannot accomodate its formulation. This
is the precarious situation that (2,0) theory finds itself in still today, about 20
years after its inception. It is the aim of this thesis to add a small piece of
the puzzle that hopefully increases the understanding of this theory and in the
end will result in its explicit formulation.

(2,0) theory can be construced as a certain limit of string theory, a feature
that is thought to be shared by what is known as higher spin theories. This
type of theory, of which the three dimensional one in Paper IV is an exam-
ple, contain a large number of particles that generalize the ingredients of the
standard model. String theory predicts a large number of new particles and
in processes of very high energy these look just like the ones in described by
these higher spin theories.

Both the six- and three dimensional theories can be related to string theory,
but this is only a small piece of the puzzle. It turns out that they both are
interesting by themselves and also, more suprisingly, that they are connected.

1.1 Outline

In chapter 2 an introduction to (2,0) theory, the main theme of the first part of
the thesis, is given. First its origin in string theory and M-theory is reviewed.
The theory is then described in terms of its symmetries and the problems of
an explicit formulation are explained. The simpler non-interacting version of
the theory is introduced with the field content of the tensor multiplet together
with classical equations of motion.

Chapter 3 begins with an introduction to the concept of compactification.
A simple example of a vector field in a circle geometry is worked through. Fibre
bundles are then introduced to facilitate the generalization to circle fibrations.
The last section in this chapter summarises Paper I where (2,0) theory on

4



1.1. Outline

circle fibrations are investigated.
Chapter 4 concerns topological twisting, the topic of Paper II. Rigid su-

persymmetry on curved manifolds is used as a motivating problem and the
technique is then introduced through a concrete example of N = 2, D = 4 su-
per Yang-Mills theory. This section ends with some comments on the general
features of topologically twisted theories. The final sections gives an overview
of Paper II and Paper III where (2,0) theory is topologically twisted and
compactified to a four-dimensional theory.

Chapter 5 deals with the theory of higher spin, the topic of Paper IV.
These types of theories deals with fundamental excitations of spin higher than
two that turn out to have deep connections with string theory, nuclear physics
and also has relevance for (2,0) theory. This chapter begins with an introduc-
tion to the intricacies of higher spin theories and motivations for why they are
relevant. The last section gives a brief overview of the history leading up to
consistent interacting theories of higher spin.

Chapter 6 describes the construction of a conformal higher spin theory in
three dimensions which is the topic of Paper IV. The simpler theory of pure
gravity is first introduced which is then rewritten as a gauge theory and finally
extended to a higher spin theory through the higher spin algebra.

5



2
(2,0) theory: from strings to

M-theory

The main subject of Paper I – Paper III is the six-dimensional superconfor-
mal theory known as (2,0) theory. It is the purpose of this chapter to try to
give an overview of its place in theoretical physics and an introduction to the
formulation of the free theory.

In the mid 90’s there was a surge of activity in the field of string [16]. The
ember for this explosion was the realization that the different versions of string
theory are all related by dualities [17, 18] and that there is an underlying eleven-
dimensional theory [17], now known as1 M-theory [19, 24–29] with eleven-
dimensional supergravity [30] as its low energy limit [17]. It was also around
this time that the first evidence for a special six-dimensional theory was found
as different limits of string theory and M-theory [31, 32].

Immidiately the difficulties, some of which will be reviewed here, with con-
structing an explicit formulation was recognised [33]. In the following years it

1There is no consensus on the meaning of the M in the name M-theory as proposed by
Edward Witten [19], but suggestions include membrane, matrix and even mystery, magic or
mother. “Membrane” can refer both to the interpretation of the branes as the fundamental
objects of the theory but also eludes to the earlier investigations of the supermembrane of 11d
supergravity [20, 21]. Matrix theory entered the picture [22, 23] as a possible formulation,
hence the “Matrix”.
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was realised that the low energy behaviour of the two2 different branes of M-
theory, the M2-brane [35] and M5-brane [36], are gouverned by superconformal
theories in three and six dimensions [37]. The former share some of the intrica-
cies of the six dimensional theory, but here there has been much progress with
the advent of the BLG model [38–42] and ABJM theory [43], that seem to de-
scribe aspects of interacting M2-branes [34]. Multiple M5-branes of M-theory
can interact by M2-branes ending on the fivebranes [32], as can be seen in the
dual string theory picture [44] and reinforced by noting that the end of the
M2-brane appears as 1-dimensional solitonic solutions to the low energy theory
of the M5-brane [45]. These self-dual [45] strings seem to play an important
part3 in the puzzle and some progress has been made towards understanding
their interactions [45–64]. Besides the string like solitonic solutions on the
M5-brane there are also three-dimensional solitonic objects [36] that can be
interpreted as intersecting M5-branes [65, 66].

An example of a configuration of M5- and M2-branes is presented in figure
2.1 on the next page, where a stack of three M5-branes is shown together with
M2-branes stretching between them. Using the duality between M-theory and
string theory this configuration corresponds in type IIA string theory to a stack
of D4-branes with both D2-branes and fundamental strings, depending on if
the M2-brane wraps the compact dimension or not. The low-energy limit of
the M5-brane is the conjectured (2,0)-theory whereas the low-energy limit of
the D4-brane is the more familiar five-dimensional supersymmetric Yang-Mills
theory.

Since the D4-brane is obtained by compactification of the M5-brane on a
circle, a natural conjecture is that five-dimensional supersymmetric Yang-Mills
theory is obtained by compactifying (2,0)-theory on a circle. This is the topic
of Paper I where a non-interacting version of (2,0)-theory is compactified
on circle fibrations. For some more progress in the description of different

2That there are two branes in M-theory can be seen from 11d supergravity where su-
persymmetry specifies the field content to consist of a metric GMN , spin 3

2 field Ψα
M and

a three-form CMNP . The three-form couples electrically to a two-dimensional object, the
M2-brane, and magnetically to a five-dimensional object, the M5-brane [34].

3In the words of the discoverer of the Dp-branes: “Of all the new phases of gauge and
string theories that have been discovered this is perhaps the most mysterious, and may be
a key to understanding many other things.” [15]

7



Chapter 2. (2,0) theory: from strings to M-theory
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Figure 2.1: A stack of M5-branes in 11d M-theory is dual to a stack of D4
branes in 10d type IIA string theory. The theories are dual when one of the
coordinates, x5 in this example, is taken to be a circle of radius R where the
type IIA picture on the right is reached in the limit R→ 0 [37].

brane-configurations in M-theory see for [28, 67–69].
The general structure of the six dimensional theory was quickly recognised

as a chiral4 (2,0) supersymmetric conformal theory with no coupling constants
[37, 70], but as of yet there is no local and covariant action. Instead, most of the
modern understanding of the theory comes from string theory, gauge/gravity
dualities [71] and more recently from numerical conformal field theory methods
[72]. Another approach, used in Paper I – Paper III, has been to regard the
low-energy limit of a single M5-brane: the non-interacting theory of one tensor
multiplet. This simpler setup, as will be reviewed below, has well defined

4In the sense of a self-dual three-form in the spectrum.
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2.1. Shadows of (2,0): quantum field theory

classical equations of motion that can be analysed. It turns out that even the
free theory and its solutions give remarkable insight into lower-dimensional
theories [73, 74].

2.1 Shadows of (2,0): quantum field theory

“ And my soul from out that
shadow that lies floating on the
floor. Shall be lifted —
nevermore! ”

– Edgar Allan Poe, The Raven

How symmetric can a theory be? It turns out that this question has a definite
answer in the context of quantum field theories. The answer gives surprising
restrictions on possible theories and at the very extreme end we find a spe-
cial theory in six dimensions, (2,0)-theory. A non-interacting version can be
explicitly defined in terms of a six-dimensional field theory. The difficulties,
eluded to in the previous section, that a formulation of the interacting the-
ory present might indicate that the free field theory is only a shadow, but a
shadow non the less represents some features of its creator. It turns out that
the non-interacting version has quite a lot to tell us.

Before constructing the free theory in terms of its equations of motion in
section 2.1.3 some general results on space-time symmetry is reviewed in 2.1.2
and the role of symmetry in the following section.

2.1.1 Symmetries: prologue

To construct models of reality based on symmetry considerations has been a
very fruitful idea. One prominent example is the standard model of parti-
cle physics, where the structure is defined solely in terms of its local gauge
symmetries [5]. In a space-time based description of quantum fields this lo-
cal symmetry is almost a necessity5. The name symmetry in this context is,

5This will be elaborated in more detail in the sections on higher spin.
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Chapter 2. (2,0) theory: from strings to M-theory

however, slightly misleading and a more appropriate name might be redun-
dancy. The physical states of the theory does not transform under local gauge
transformations, it is only a symmetry of the mathematical framework that
enables a covariant formulation. In light of the gauge/gravity dualities6 [75, 76]
this can even be said about general coordinate invariance. These considera-
tions seem to imply that symmetry is really an emergent property, and not
a fundamental guiding principle [18]. In fact, only Lorentz symmetry and its
generalization to supersymmetry seem to be left standing7.

Nevertheless, symmetry considerations has been, and continues to be, a
powerful tool that also in the case of (2,0) theory constitutes a solid framework
for defining some of its general features.

2.1.2 Restrictions on space-time symmetries

The space-time symmetry group of any physically viable theory must contain
the Lorentz group to abide by the laws of special relativity. It can furthermore
be invariant under scaling transformations as the theory of classical electro-
magnetism is. The smallest group containing both Lorentz transformations
and scaling transformations is the conformal group which in addition to the
aforementioned transformations also contain what is called special conformal
transformations. By a theorem due to Coleman and Mandula [78], this is
the largest possible space-time symmetry group for a consistent quantum field
theory under some very natural conditions on the theory and on the form of
the symmetry group. There can also be internal continuous symmetries of the
theory that have to commute with the space-time group. It turns out however
that there are some loopholes to this argument [79] that makes it possible to
extend the spacetime symmetry of a theory. One such loophole is to regard
symmetries that are not generated by ordinary numbers but rather by anti-
commuting numbers. This extends the possible symmetries to include what
is called supersymmetry [80]. This is a symmetry that looks very peculiar,
it exchanges fermions and bosons. If we combine the conformal group with
the supersymmetry transformations we get what is called the superconformal

6This duality will be touched upon in chapter 5.
7And even here there are proposals to dispose of them as well [77].

10



2.1. Shadows of (2,0): quantum field theory

group. Another loophole is an assumption of finitely many field. There will
be reason to come back to this last assumption in the second part of this the-
sis, but let us first investigate the situation for the more manageable case of
finitely many fields.

Armed with the knowledge of the possible symmetries a reasonable theory
can possess, superconformal symmetry, we can now look for its representations.
In the 70’s Nahm [81] classified the superconformal algebras and showed among
other things that they exist only in space-time dimensions less than or equal
to six. Thus if we are looking for superconformal theories we need only look
in dimension six and below. The existence of a superconformal algebra is a
necessary condition but certainly not a sufficient one. Actually it was not at
all clear that there should exist any well defined superconformal theories above
space-time dimension four8. It was therefore a very interesting development
when evidence for a theory in six dimensions was put forward [31].

2.1.3 Tensor multiplet

From the work of Nahm [81] we know that there is one possible representation
of the (2,0) superconformal algebra called the tensor multiplet. This represen-
tation contains scalars, fermions and a three-form. Thus if we would like to
try to write down a field theory description of the theory our field contents is
fixed9.

The tensor multiplet contains the fields summarised in table 2.1 where the
bold face numbers indicate the dimensionality of the representations and a
subscript c indicates that the spinor has positive chirality.

A few general comments on this field content is in order. Firstly the
fermions Ψ are symplectic Majorana-Weyl, where the word symplectic stems
from the fact that they transform10 under Spin(5)R ∼= Sp(4). The observant
reader will have noticed that the theory contains no gauge field in the usual

8There are now many examples of superconformal theories in dimension four and below,
the most prominent one being N = 4 SYM in four dimensions.

9There is of course the possibility of having multiple tensor multiplets which would be
the case for the general theory.

10This is in fact crucial for the Majorana reality condition which in six dimensions requires
an interplay between the R-symmetry and complex conjugation.
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Chapter 2. (2,0) theory: from strings to M-theory

Field Spin(5,1) × Spin(5)R

Φ 1 5
Ψ 4c 4
H 10 1

Table 2.1: Field content of free (2,0) theory, the tensor multiplet.

sense of a two-form field strength. Instead we have a three-form that, as can
be seen from the dimensionality of its representation, must be self-dual. This
is the source of the main mystery surrounding the theory. It is known that
the theory is interacting and that it is classified by a choice of Lie group in
the ADE-series, however the natural way to implement such an interaction
would be through a gauge field which from just representation considerations
is not present. Furthermore a dynamical theory of a self-dual three-form in six
dimensions is notoriously difficult as we will shortly experience.

For the moment we can sidestep the problems of interactions and regard
just the free theory. In this case the three-form poses no immediate concep-
tual difficulties, apart from the interesting features we will look closer at in a
moment.

The next step in constructing a candidate theory would be to write down
an action for the fields. In the case of the scalars and fermions the answer is
essentially unique and is given by the standard expressions

SΦ =
∫
M6

d6x
√
−G

(
∇MΦ∇MΦ + 1

5RΦ2
)

and

SΨ =
∫
M6

d6x
√
−GΨ̄ΓM∇MΨ.

Here R is the scalar curvature of the manifold M6 and ΓM are six-dimensional
gamma matrices. The curvature term in the scalar action is required for the
theory to be conformally invariant. These actions give rise to the local equa-
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2.1. Shadows of (2,0): quantum field theory

tions of motion

∇2Φ− 1
5RΦ = 0

ΓM∇MΨ = 0.

When it comes to the three-form the situation is more precarious. The
natural action for an n-form can be generalised from the action of electromag-
netism SEM =

∫
F ∧ ?F , where F is the U(1) field strength. This form of the

action carries over to the general case immediately and we are led to consider

SH =
∫
M6
H ∧ ?H.

Here we face a problem. Since H is self-dual we have that ?H = H and
substituting this into the action we find H ∧ H = 0. This is the second
mystery, there is no known six-dimensional local and covariant action for a
self-dual three-form. If we restrict attention to the equations of motion we are
for the moment saved. The equation of motion that follow from the action for
a general, non-self-dual, H is given by

d ? H = 0.

This equation works perfectly well also for a self-dual field and reduces in this
case to

dH = 0,

the condition that H is a closed three-form. This means that a consistent set
of equations for the three-form is

H = ?H

dH = 0 .

The theory should be invariant under the superconformal algebra and hence
there should exist suitable supersymmetry variations transforming solutions to
these equations of motion into each other. Indeed one finds that the transfor-
mations (2.1)-(2.3) below transforms solutions to the equation of motion into
each other provided the supersymmetry parameter satisfies condition (2.4).
A few words on notation is here warranted. Apart from the six-dimensional
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Chapter 2. (2,0) theory: from strings to M-theory

indices M,N,.. these expressions contain lower case Greek indices α, β, · · · in
the four-dimensional spinor representation of the Spin(5)R symmetry. The bi-
linear forms Mαβ and Tαβ lowers and raises indices in these representations.
It is now convenient to regard the five-dimensional vector representation of
Spin(5)R as the symmetric traceless tensor product of two spinor represen-
tations. This gives the space-time scalar Φ a representation as a bispinor,
enabling a compact and computationally efficient form of the supersymmetry
transformations.

δHMNP = 3∇[M
(
ΨαΓNP ]ε

α
)

(2.1)

δΦαβ = 2Ψ[αεβ] − 1
2T

αβΨγε
γ (2.2)

δΨα = i

12HMNPΓMNP εα + 2iMβγ∇MΦαβΓMεγ + 4i
3 MβγΦαβΓM∇Mε

γ (2.3)

∇Mε
α − 1

6ΓMΓN∇Nε
α = 0 (2.4)

Equation (2.4) is the conformal Killing spinor equation. For rigid super-
symmetry the natural condition that comes to mind is for the parameter to
be covariantly constant, this is however not a conformally invariant equation.
The operator in (2.4) is, together with the Dirac operator, the only natural
conformally invariant operators available [82]. On a manifold that admits two
independent solutions to (2.4) the theory is maximally supersymmetric with
16 supercharges.

Conformal invariance of abelian11 (2,0) theory manifests itself in the fact
that the equations of motion and supersymmetry transformations depend only
on the conformal class of the metric. This means that the theory is invariant
under a change of the metric of the form

G→ e−2σ(x)G,

where σ is a function on M6.
At last we find ourselves with a starting point for explicit investigations,

the tensor multiplet together with its classical equations of motion. This might
11The non-interacting version will sometimes be called the abelian. This is equivalent

since all the fields transform in the adjoint representation.
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2.1. Shadows of (2,0): quantum field theory

seem like a poor substitute for the full interacting quantum theory but this is
the only local covariant explicit formulation available at the moment. It seems
reasonable that some general features of the theory should also be present in
the free, classical version. In fact there are some quantities of the full quantum
theory that can be calculated in terms of just the free classical theory, see [83]
for such an example.

Before moving on to the description of Paper I let us recall the counting
of dimensionality of the representations in table 2.1. The scalar Φ is a vector
under Spin(5)R and hence has five on-shell degrees of freedom. The three-form
has a two-form potential with 15 independent components. Gauge invariance
reduces this to 10 and the equations of motion removes four additional com-
ponents12. The six remaining components are then finally reduced to three
independent degrees of freedom by the self-duality condition.

The fermionic field Ψ is a chiral spinor in six dimensions, hence it transforms
in a four-dimensional13 representation of Spin(5,1). It also transforms in the
four-dimensional spinor representation of Spin(5)R, enabling the symplectic
Majorana condition to be imposed. This condition halves the 16 complex
components down to eight which the Dirac equation further reduces to four
complex components, or eight real on-shell degrees of freedom.

Thus there are an equal number of bosonic and fermionic on-shell degrees
of freedom (eight), a necessary condition for supersymmetry.

12Start with an unconstrained two-form potential B. Its field strength H = dB is invariant
under B → B+ dΛ1 however Λ1 is itself invariant under Λ1 → Λ1 + dΛ0, thus there are five
independent gauge parameters. Adopt light-cone coordinates and boost to a frame where
p+ = 1 and pM 6=+ = 0. The five independent gauge parameters can be used to impose for
example B−M = 0. The equation of motion then implies B+M = 0, which in light of the
gauge choice, imposes four further relations.

13A Dirac spinor in d dimensions has 2b d
2 c complex components which in six dimensions

is 8, giving a chiral spinor 4 complex components.
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3
Circle fibrations

The topic of Paper I is compactification of (2,0) theory on a circle fibration. It
is the purpose of this chapter to introduce the concept of fibered spaces and how
they are used in physics. There is a beautiful but rather large theoretical basis
behind these methods which will not be covered, for an excellent exposition of
these topics in the context of (2,0) theory see [84].

In section 3.1 the theory of compactification is reviewed with a simple
example of a vector field on a circle. The generalization to circle fibrations and
their geometry is covered in section 3.2 starting with a minimal introduction
to fibre bundles. Finally the content of Paper I is described in section 3.3.

3.1 Compactification

Starting with a theory defined in D space-time dimensions there is a way to
create a whole class of d < D -dimensional theories. This process is called
compactification [85] and as the name implies it involves the use of compact
manifolds. The concept dates back to the early 20th century when a unified
theory of electromagnetism and gravity was sought. It was found that general
relativity defined on a five-dimensional space-time, where one of the directions
is periodic, describes gravity and electromagnetism in four dimensions [86].

The unifying theory of electromagnetism and gravity did not work out in
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3.1. Compactification

the end but the concept of building lower dimensional theories from higher
dimensional ones became a widely used method. The process of compactifica-
tion can be readily described by an example, and usually the simplest possible
candidate is the theory of a scalar field compactified on a circle. In the next
section a slightly more involved example of a vector field compactified on a cir-
cle is described. The purpose of this is two-fold: first it provides an example
where there arises new fields in the compactification of a different type than
the original fields, secondly the specific example lies closer to the computa-
tions carried out in Paper I and the reader may therefore find it elucidating
to compare the results.

3.1.1 Theories on a circle

The canonical example of a compactification is when space-time is taken to be
of the form1

MD = RD−1 × S1 ,

where S1 denotes a circle. Let us investigate what happens to the theory of a
single gauge field on this manifold. Given a one-form potential A = AMdxM

and its field strength F = dA, a Maxwell-like action is given by

S = 1
2π

∫
MD

F ∧ ?F , (3.1)

where ? denotes the Hodge dual2. The field strength F , and hence the action,
is invariant under A→ A+ dΛ. Let us denote the index corresponding to the
circle by ϕ and the D − 1 other directions by lower case Greek letters. Let us
also, by a slight abuse of notation, use ϕ to denote the coordinate on the circle.
The fact that the circle is periodic enables us to make a Fourier expansion in
the coordinate ϕ.

A =
∞∑

n=−∞
An(xµ)einϕ

1For simplicity the space-time is taken to be flat but in general it can be curved, as will
be the case for the later parts of this chapter.

2Here taken to be defined by ?1 = vol(M).
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Chapter 3. Circle fibrations

Here An = A?−n are one-forms on MD and can be split into the parts that lie
in the direction of RD−1 and in the direction of the circle

An = AD−1
n + Aϕndϕ.

Substituting this into the expansion and taking the exterior derivative, recall-
ing that dϕ ∧ dϕ = 0, gives us three terms

dA =
∞∑

n=−∞
dAD−1

n einϕ +
∞∑

n=−∞
dAϕn ∧ dϕeinϕ +

∞∑
n=−∞

AD−1
n ineinϕ ∧ dϕ .

Substituting this back into the action might not seem to give anything
particularly nice but with a few observations an elegant answer emerges. The
first observation is that the Hodge dual induces an inner product between
forms and that the action in (3.1) is nothing but the inner product 〈dA, dA〉.
In particular the basis 2-forms dxM ∧ dxN are orthogonal with respect to this
inner product which has as a consequence that

〈dA, dA〉 =
∞∑

m=−∞

∞∑
n=−∞

einϕeimϕ

·
[ 〈

dAD−1
n , dAD−1

m

〉
−mn

〈
AD−1
n ∧ dϕ, AD−1

m ∧ dϕ
〉

+
〈
dAϕn ∧ dϕ, dAϕm ∧ dϕ

〉
+ im

〈
dAϕn ∧ dϕ, AD−1

m ∧ dϕ
〉

+ in
〈
dAϕn ∧ dϕ, AD−1

m ∧ dϕ
〉 ]
.

The second observation is that
∫
S1
eimϕe−inϕdϕ = 2πδmn. Performing the

integration over ϕ thus results in

1
2π

∫ 2π

0
〈dA, dA〉 =

∞∑
n=−∞

[ 〈
dAD−1

n , dAD−1
−n

〉
+ n2

〈
AD−1
n , AD−1

−n

〉
+ 〈dAϕn, dA

ϕ
−n〉 − in

〈
dAϕn, AD−1

−n

〉
+ in

〈
dAϕ−n, AD−1

n

〉 ]
.

By combining the second, third, fourth and fifth term for n > 0 gives the
more transparent form

1
2π

∫ 2π

0
〈dA, dA〉 =

〈
dAD−1

0 , dAD−1
0

〉
+ 〈dAϕ0 , dAϕ0 〉

+
∑
n6=0

[ 〈
dAD−1

n , dAD−1
−n

〉
+ n2

〈
AD−1
n − i

n
dAϕn, AD−1

−n + i

n
dAϕ−n

〉 ]
.
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3.2. Fibre bundles

The first line above describes a massive vector field AD−1
0 together with

a massless scalar Aϕ0 . In the second line, the mass term for the AD−1
n6=0 vector

fields has now been shifted by i
n
dAϕn. This shift can be cancelled by a gauge

transformation δAD−1
n = dΛn, where the gauge parameter Λ is also Fourier

expanded, resulting in a collection of massive AD−1
n6=0 vector fields.

These are quite general features when compactifying a theory, the appear-
ance of a tower of new massive fields as well as massless ones. It might seem
distressful that there now emerges an infinite number of fields in the compact-
ified theory. On the other hand, if the only interest is in what happens below
a certain energy scale the increasingly heavy fields in the tower will not play a
role. In the low energy limit only the massless fields remain, which as we have
seen are finite in number.

3.2 Fibre bundles

In the previous section the basic features of compactification was worked out:
a space-time with a compact direction gives rise to, in the low energy limit, a
theory in one dimension lower containing new fields. This method is tremen-
dously useful and has been used to derive a great deal of information about
various theories, as well as constructing new ones [87]. A very prominent ap-
plication is the compactifications of string theory and M-theory [88, 89]. There
are some very natural generalizations to this scheme. Firstly the space-time be
curved. This complicates the above discussion but does not change the basic
results of compactification. Another interesting direction is to let the compact
space vary in its geometry over the lower dimensional manifold. The concept
of one space varying over another can be described in the language of fibre
bundles.

Intuition for fibre bundles comes naturally with a simple example. Consider
the “patch of grass” in figure 3.1. An idealised picture is a collection of one-
dimensional fibres (grass) attached to a plane (ground). Thus the grass-covered
ground can be thought of as a bundle of fibres.

More generally, the ingredients of a fibre bundle is a manifold M called the
base and a manifold F called the fibre. The intuitive statement that a copy of
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Chapter 3. Circle fibrations

Figure 3.1: Line segments fibered over a plane.

the fibre F should be attached at every point of M can be made precise with
the following definition.

A fibre bundle E over a manifold M with fibre F is a space that is locally
diffeomorphic to the direct product of an open neighbourhood of M with F .

In other words if we take an open neighbourhood V ⊂ E there exists an
open neighbourhood U ∈M such that

V ∼= U × F.

This is illustrated schematically in figure 3.2, where over each point in the
neighbourhood U ⊂ M we find a copy of the fibre F which in this case is
indicated by a line.

Figure 3.2: A fibre bundle. Over each point in a neighbourhood U we find a
copy of the fibre F . Note that the figure only shows a subset of the fibers, in
reality there is a dense cover of fibers over all points in U .
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3.2. Fibre bundles

3.2.1 Circle fibration

In the special case when the fibre F is a circle, the resulting bundle is called a
circle bundle. This means that at each point in the base M we find a circle. In
this work a manifold that can be described as a circle bundle will be called a
circle fibration. In Paper I the six-dimensional space-time is a circle fibration
over a five-dimensional base. The manifolds involved can be summarised with
the diagram in figure 3.3 below. Here the manifold M6 is a circle fibration
with fibre S1. The arrow from S1 to M6 indicates the embedding of the fibre
in M6. The base of the fibration is M5 and the arrow from M6 to M5 indicates
that to each point in M6 there is an associated point in the base given by a
projection π.

S1 −→ M6
locally∼= M5 × S1

↓ π
M5

Figure 3.3: A diagrammatic description of a circle fibration M6.

3.2.2 Geometry of circle fibrations

So far, the only focus has been the smooth structure of the manifolds in ques-
tion. This section will give a brief overview of how the metric information
about a manifold is represented in the special situation of a circle fibration.

On a general six-dimensional Lorentzian manifold M6 there is a semi-
definite metric tensor GMN . If M6 is a circle fibration, locally

M6|V ∼= M5|U × S1.

I.e. an open neighbourhood of M6 is isometric to a product of an open neigh-
bourhood in M5 and a circle. The metric on the product space on the right is
not necessarily a product metric, i.e. it will in general not have a block diagonal
structure.

Let ϕ be the coordinate in the direction of the circle, and as before we also
let ϕ be the value of the index for this direction. The metric GMN will then
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Chapter 3. Circle fibrations

have the structure

G = Gµνdxµdxν + 2Gµϕdxµdϕ+Gϕϕdϕdϕ . (3.2)

There are more convenient parametrizations than the above. A better way to
keep track of the reparametrization invariance in six dimensions is

G = gµνdxµdxν + r2 (dϕ+ θµdxµ)2 .

This is just a renaming of the components in (3.2). It keeps track of reparametriza-
tion invariance since

ϕ→ ϕ+ λ(xµ) ⇔ θµ → θµ + ∂µλ.

The vector θ transforms as a U(1) gauge field under reparametrizations and the
fact that the six-dimensional theory is reparametrization invariant means in
essence that the compactified theory can only depend on the gauge invariant,
non-dynamical, field strength

Fµν = ∂µθν − ∂νθµ .

The scalar r also naturally corresponds to the radius of the fibre which can be
seen if we take θµ = 0 thereby making the metric block diagonal.

3.3 (2,0) theory on circle fibrations
In Paper I, (2,0) theory is compactified on a space-time that is a circle fibra-
tion over a five-dimensional base manifold. Already in the original work [31]
proposing the existence of (2,0) theory some aspects of its compactification on
R5 × S1 were discussed. Compactification arguments also played an essential
role in deducing its existence through the web of string theory dualities. By
various considerations one can make it very plausible that the theory com-
pactified on a circle will give rise to five-dimensional super Yang-Mills theory
[90]. The lack of an explicit construction of the theory of course means that
there are no proofs for such claims but only indications. Lately there have
been efforts to show that (2,0) theory can perhaps be completely described by
a five-dimensional theory [91, 92].

The purpose of Paper I is to continue these efforts in the more general
setup that circle fibrations provide.
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3.3. (2,0) theory on circle fibrations

3.3.1 Overview of paper I

The plan is summarised in figure 3.4 below. The starting point is to regard
one free tensor multiplet of (2,0) theory on a circle fibration. A low energy
limit is taken and we find a five-dimensional supersymmetric theory. This is
illustrated in figure 3.5 below which shows an M5-brane3 where one direction is
compactified and the surviving zero-mode on the resulting D4-brane in the low-
energy limit. This theory is shown to have a unique extension to an interacting
theory which we derive. That the extension is unique makes it plausible that
this is the low energy limit of the interacting (2,0) theory in six dimensions.

Free (2,0) on M5 × S1 Interacting (2,0)

Free SYM on M5 Non-abelian SYM on M5

low energy

Figure 3.4: Method of Paper I. Starting from the abelian theory in six di-
mensions we take the low energy limit on a circle fibration and extend to an
interacting theory.

Figure 3.5: When one of the directions along the M5-brane (left) is com-
pactified (center) the possible modes in this direction are quantized according
to their Fourier expansion, starting with the constant zero-mode (red) and con-
tinuing with an infinite tower of increasingly massive excitations (green). In
the low-energy limit only the zero-mode, which has no dependence on the circle
coordinate, survives (right).

3The M5-brane should not be confused with the base manifold M5 of the circle fibration.
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3.3.2 Abelian compactification

Let M6 be a circle fibration over M5 as described in section 3.2.2. Recall that
the fibration metric is given by

G = gµνdxµdxν + r2 (dϕ+ θµdxµ)2 . (3.3)

It is now a straight forward calculation to show that the scalar equation of
motion4

∇̂M∇̂MΦ− 1
5R̂Φ = 0 ,

reduce in five dimensions to an equation that can be integrated to the action

Sφ =
∫

d5x
√
−g

(
−1
r
∇µφαβ∇µφαβ − 1

5Rφαβφ
αβ +K(g,r,θ)φαβφαβ

)
, (3.4)

where
K(g,r,θ) = 1

r3∇µr∇µr − 3
5

1
r2∇µ∇µr + 1

20rFµνF
µν

contains the geometric information about the circle fibration, i.e. the fibration
radius r and the non-dynamical5 field strength Fµν = ∂µθν − ∂νθµ. Note that
in the general case the geometric data r and F are functions on M5 and so
can vary over the manifold.

For the fermions the computation is also in principle straight forward but is
complicated by the somewhat more heavy machinery of spinors in curved back-
grounds. In Paper I we provide a self contained description of this process.
The result is that the fermion equation of motion

ΓM∇̂MΨ = 0 ,

reduce in five dimensions to an equation that integrates to an action of the
form

Sψ =
∫

d5x
√
−g

(1
r
iψ̄γµ∇µψ −

1
8Fµνψ̄γ

µνψ
)
. (3.5)

4Here the six-dimensional covariant derivative and scalar curvature are indicated with a
hat to distinguish them from their five-dimensional counterparts.

5The field strength Fµν , together with r, constitutes the geometric information in the
fibration which from a five-dimensional perspective can be regarded as background fields.
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3.3. (2,0) theory on circle fibrations

Both (3.4) and (3.5) have the appearance of five-dimensional super Yang-
Mills but with additional geometric terms stemming from the fibration.

Now the self-dual three-form enters the picture, and the story gets more
interesting. Let us delve a bit deeper into the calculations to elucidate some of
the features of its compactification. On the fibration geometry the three-form
H can be written as

H = E + F ∧ dϕ , (3.6)

with E a three-form on M5 and F a two-form on M5. A self-dual three-form
in six dimensions has 10 independent components, which is the same number
as for a three-form or a two-form in five dimensions. One would therefore
expect that the components of F and E are identified and this is precisely
what happens. Writing out the self-duality condition H = ?H results in

E = −1
r
? F + θ ∧ F. (3.7)

Thus, in the end we have a two-form field strength in five dimensions, precisely
what is needed for a standard gauge theory6.

It is now immediate that the equation of motion dH = 0 implies first that
dF = 0 from (3.6) and also that dE = 0, which with the identification in (3.7)
gives an equation of motion for F that can be integrated to the action

SF =
∫
M5

(
−1
r
F ∧ ?F + θ ∧ F ∧ F

)
.

At this point a feature of the compactification of (2,0) theory emerges that
is very unusual but which has been known from its inception. Even though
the above theory is non-interacting, the form of the coupling constant from
the factors in the first term can be anticipated. It would seem that we have a
coupling constant

√
r which is the inverse of what would be expected from a

standard dimensional reduction where we integrate out the circle and pick up
a factor of r in the numerator, giving rise to a coupling constant 1√

r
. In the

context of compactification on circle fibrations this comes about very naturally
from the geometry of the fibration.

6This can be compared to the example in section 3.1.1 where the potential gives rise to
two new fields that are independent.
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In a similar fashion to the reduction of the equation of motions, the five-
dimensional supersymmetry transformations can be derived as

δφαβ = 2ψ[αεβ] − 1
2T

αβψ̄γε
γ ,

δFµν = −2i∇[µψαγν]ε
α + i

1
r
∇ρrψαγµνρε

α − 2i1
r
∇[µrψαγν]ε

α

+ rFµνψαεα + 3
2rF[µ

ρψαγν]ρε
α − 1

4rF
ρσψαγµνρσε

α

and
δψα = 1

2Fµνγ
µνεα + 2iMβγ∇µφ

αβγµεγ

+ 2i1
r
Mβγφ

αβ∇µrγ
µεγ − rMβγφ

αβFµνγµνεγ .

The five-dimensional theory is invariant under these transformations pro-
vided the supersymmetry parameter satisfies the reduced version of the con-
formal Killing spinor equation

∇µε
α = 1

2
1
r
∇νrγµγνε

α + i

8rF
ρσγµγρσε

α + i

4rFµ
νγνε

α.

3.3.3 Interacting generalization

In the second part of Paper I we extend the abelian theory in five dimensions
to include interactions. This process is strongly constrained by the symmetries
present. It turns out that there seems to be only one possible interacting
extension.

Let us list the symmetries of the five-dimensional theory. Apart from five-
dimensional Lorentz symmetry and the R-symmetry there is, if the background
geometry permits, maximal supersymmetry. The introduction of the length
scale r has broken the conformal symmetry but there is still a remnant of it. To
see this, note that the theory in six dimensions only depends on the conformal
class of the metric. This means that we end up with the same theory in five
dimensions if we instead regard the metric

G′ = e−2σG ,
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3.3. (2,0) theory on circle fibrations

where σ is a smooth function on M5. In terms of the fibration geometry this
means that the theory is invariant under

gµν → e−2σgµν ,

r → e−σr ,

which can be deduced from the form of the metric in (3.3).
Any modifications to the theory must respect these symmetries. The plan

is now straight forward, promote F to be the field strength of a connection
of a non-abelian gauge group. Let the scalars and fermions transform in the
adjoint representation of this gauge group. We then proceed to promote all
the covariant derivatives to gauge covariant derivatives. At this point the
theory is gauge invariant but no longer supersymmetric. To continue we begin
by satisfying the condition that in the case of a trivial fibration the theory
should reduce to supersymmetric Yang-Mills. To this end we add the standard
Yukawa and φ4 terms.

S = Sφ + Sψ + SF +
∫
M5

d5x
√
−g
(

21
r
fabcφaψ̄bψc + 1

r
fabef

cdeφaφbφcφd

)
.

To preserve the supersymmetry of the action we also modify the supersym-
metry variations according to

δψa = · · ·+ 2fabcφbφcε .

With these modifications the theory reduces to five-dimensional super Yang-
Mills in the case of a trivial fibration with product metric.

The main result of Paper I is that these modifications also in the case
of a general fibration geometry constitutes a supersymmetric theory. We also
argue that the above modifications constitute the only possible extension to
the abelian theory respecting all the symmetries present.
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4
Topological twisting

This chapter concerns the main technique used in Paper II and Paper III,
topological twisting. Briefly, it is a method to create topological field theories
out of supersymmetric theories. From another perspective it can be viewed as
a method to create supersymmetric theories on general curved manifolds from
theories on flat manifolds. Topological twisting was introduced to theoretical
physics as a technique in the 80’s [93], and has since been used to derive many
striking results [94–98].

Section 4.1 reviews the basic requirements for supersymmetry on curved
backgrounds that can be satisfied by performing a topological twist, reviewed
by an example in section 4.2. The topological twisting of (2,0) theory is covered
in section 4.3 where the contents of Paper II and Paper III i presented.

4.1 Supersymmetry on curved manifolds

Let us start from the perspective of trying to create a globally supersymmetric
theory on a curved manifold. A supersymmetry transformation is parametrised
by a constant spinor ε. On a flat manifold there is no ambiguity in what
we mean by a constant parameter, it simply has no space-time dependence.
However when the theory lives on a curved manifold the situation becomes
more tricky. The proper generalization to being constant is to be covariantly
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constant. So to have a good parameter for supersymmetry we need to find a
covariantly constant spinor. This is in general impossible and imposes severe
constraints on the geometry of the manifold as can be easily seen. Suppose we
have a spinor ε that is covariantly constant:

Dµε = 0.

The above condition trivially implies [Dµ, Dν ] ε = 0 and using the fact that
the covariant derivatives commutes to the Riemann tensor we find

RµνρσΓρσε = 0.

This is an integrability condition for the curvature on the manifold which in
general is not satisfied.

4.2 The twist
Topological twisting solves this problem in a very elegant fashion using the
tools of group theory. The idea is to replace the space-time group by a new
one, combining the space-time symmetries with the R-symmetry. The spinor
representation of the original theory will now be reducible and will, under
certain circumstances, contain a part that does not transform at all under the
new space-time group. This means in particular that this part of the spinor
also transforms trivially under the new space-time holonomy group and thereby
can be considered as a rigid supersymmetry parameter.

4.2.1 Example: N = 2, D = 4 SYM

The details of the technique is best explained by an example. A very instructive
example is that of the original paper introducing the concept, namely the
twisting of N = 2 super Yang-Mills theory on four-dimensional Euclidean
space-time. [93].

This theory has an SU(2) R-symmetry (denoted below by SU(2)R) and the
space-time symmetry group is Spin(4). The space-time group is isomorphic
to SU(2)l × SU(2)r, where the two groups are often referred to as the left and
right part (here indicated by the subscripts). The supersymmetry parameters
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ε are chiral spinors transforming in the two-dimensional representation of the
R-symmetry group SU(2)R. Let us look at one of these parameters, the one
transforming under SU(2)r. Its transformation properties are summarised as.

SU(2)l × SU(2)r × SU(2)R

ε ∈ 1 2 2 .

Let us now define a new SU(2). For concreteness let us denote the gener-
ators of SU(2)r by {T il } and the generators of SU(2)R by {T iR} with i ∈ 1,2,3.
We define a new set of generators T itwist generating a new SU(2) as follows.

T itwist = T ir + T iR

The new group is thus what is called the diagonal of SU(2)r × SU(2)R, we
rotate in both factors at the same time.

How will ε transform under this new group? What we have been doing
simply amounts to taking the tensor product of the two representations and
the answer is that

2⊗ 2 = 1⊕ 3.

The representation (1,2,2) under SU(2)l×SU(2)r×SU(2)R therefore splits
into (1,1)⊕ (1,3) under SU(2)l × SU(2)twist.

SU(2)l × SU(2)r × SU(2)R

(1,2,2)
twist−→

SU(2)l × SU(2)twist

(1,1)⊕ (1,3)

Note that the first term is a singlet under both factors. Thus we find that
from the original 8 supercharges we have constructed one scalar supercharge
under the new Lorentz group. Let this scalar supercharge be called simply Q.

Q ∈ (1,1)

This supercharge have many interesting properties. From the supersymmetry
algebra {

Qα, Qβ
}

= (γµ)αβ P µ ,

we see that after the twisting we have a Lorentz scalar in the left hand side
but there is no Lorentz scalar operator available for the right hand side so we
must have

Q2 = 0.
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Here we have an operator that squares to zero. This invokes a strong urge
to immediately look for Q-closed and Q-exact quantities and examine what
their cohomology looks like. In words the cohomology of this operator means
that we are looking at supersymmetric quantities but we don’t care if they
differ by a quantity that is the supersymmetry transformation of something
else.

A first observation is that the expectation value of a Q-exact operator
vanishes.

〈δQO〉 =
∫
DΦ (δQO) e−S[Φ]

=
∫
DΦ δQ

(
O e−S[Φ]

)
=
∫
DΦ

(
O [Φ + δΦ] e−S[Φ+δΦ] −Oe−S[Φ]

)
= 0

(4.1)

In the first step we use that the action is supersymmetric. The last step
assumes that the path integral measure is supersymmetric so that the total
supersymmetry variation can be absorbed by a change of variables in field
space, Φ′ = Φ + δΦ with DΦ′ = DΦ.

It also turns out that in this theory the stress tensor is a Q-exact quantity.

T µν = δQλ
µν

This has a very interesting consequence. Lets regard the expectation value
of a supersymmetric and metric independent operator O and lets see how it
behaves under a metric perturbation.

δg 〈O〉 =
∫
DΦOδge−S[Φ]

By the definition of the stress tensor and the fact that it is Q-exact it follows
that

δg 〈O〉 =
∫
DΦOδgµνT µνe−S[Φ]

=
∫
DΦOδgµνδQλµνe−S[Φ]

=
〈
δQ (δgµνλµν)

〉
= 0 .
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Chapter 4. Topological twisting

In the last step the result in (4.1) is used, i.e. that the expectation value
of a Q-exact operator vanishes. The upshot of all this is that if attention is
restricted to Q-cohomology then the theory is in fact topological.

4.3 Twisting (2,0)
The existence of the interacting (2,0) theory in six dimensions has, as we
have seen in the previous chapters, provided an explanation of many prop-
erties of lower dimensional theories. One beautiful example of this is the
construction due to Gaiotto [99]. Here a whole class of four-dimensional su-
persymmetric gauge theories1 are constructed by compactifying (2,0) theory
on a Riemann surface with possible defects. Their common origin in the six-
dimensional theory induces a web of dualities between these theories, a kind
of S-duality. Closely related to this construction is a recent conjecture that
there is a correspondence between four-dimensional N = 2 gauge theories and
two-dimensional conformal field theories. This conjecture2 is referred to as the
AGT3 correspondence [102] and states, among other things, that correlation
functions in Liouville theory can be computed by the Nekrasov [103] partition
function of a four-dimensional N = 2 super Yang-Mills theory.

One very natural explanation of this was put forward in [104] and also
indicated in [105]. The observation is that if we could somehow compactify
(2,0) theory on the four-dimensional manifold instead we would end up with
a conformal theory on the Riemann surface. The idea would then be to look
for quantities that are protected under both compactifications and this would
then hopefully explain the correspondence.

Again the fact that there is no explicit formulation of (2,0) theory means
that these ideas rest on the assumption of the existence of the theory. Further-
more in [104] it is assumed that when the compactification on the Riemann
surface is performed and the holonomy of the four manifold is twisted, the
result is a topological field theory on the four manifold. In Paper II we inves-
tigate these claims by explicit calculations in the setting of the abelian theory

1Usually referred to as class S [100, 101].
2There is as of yet no formal proof of this correspondence.
3Alday, Gaiotto and Tachikawa [102].

32



4.3. Twisting (2,0)

version of (2,0) theory.
One of the main differences between our treatment and that of [104] is

that we work in Lorentzian signature. There are certain conceptual difficulties
when formulating the theory in Euclidean signature. One of them is that the
Hodge dual does not square to one but rather to minus one which implies that
we cannot regard a real self-dual three-form but rather a complex three-form.
The situation for the spinors is also different in the two signatures. To be
as explicit as possible and to avoid any pitfalls with the choice of Euclidean
signature we choose to carry out our investigation in Lorentzian signature.

4.3.1 Overview of paper II and III

The setup used in both Paper II and Paper III is summarised in figure 4.1.
The starting point is to regard abelian (2,0) theory on a Lorentzian manifold
M1,5 = C × M4, where C is a compact two manifold. We choose to work
in Lorentzian signature to avoid the problems associated to formulating (2,0)
theory in Euclidean signature. This choice of signature is not ideal from the
perspective of twisting as will be shown shortly, however we try to stay as close
as possible to the proposed construction in Euclidean signature and see where
it leads us.

Abelian (2,0) theory on M1,5 = C ×M4

Twist M4 holonomy

Compactify on C

Figure 4.1: Setup for Paper II and Paper III. Abelian (2,0) theory is twisted
and compactified on a Lorentzian manifold of the form C ×M4.

In Paper II the details of the twisted theory is worked out and the flat
theory on M4 is shown to possess a Q-exact stress tensor. The extension to
a formulation on curved manifolds is investigated where problems arise when
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trying to naively covariantize the theory. Paper III resolves these issues and
constructs a compact4, off-shell formulation in terms of the Q-cohomology.

4.3.2 Lorentzian twist

In chapter 2 we saw that (2,0) theory has an R-symmetry group Spin(5), in
this section indicated by a subscript R. Thus on a Lorentzian manifold M1,5

the bosonic part of the symmetry group of the theory is given by

Spin(1,5)× Spin(5)R.

We now take the six manifold to be of the form

M1,5 = C ×M4,

where C is a compact two manifold with Minkowski signature and M4 is a four
manifold. The space-time symmetry group is broken into two parts and we
now have

Spin(1,1)︸ ︷︷ ︸
C

× Spin(4)︸ ︷︷ ︸
M4

×Spin(5)R.

It should here be pointed out that the space-time symmetry group contains
a non-compact part when working in Minkowski signature. Normally to be
able to find a scalar supercharge the subgroup of the holonomy group that
the untwisted supercharge transforms under needs to be twisted. This means
that the corresponding subgroup of the Lorentz group must be embeddable
into the R-symmetry group of the theory. Since it is not possible to embed a
non-compact group into a compact group we will only perform a partial twist
corresponding to the relevant parts of the holonomy on M4.

Now we make a few observations regarding the structure of the symmetry
groups. The Lorentz group on M4 is Spin(4) which is isomorphic to SU(2) ×
SU(2). As before we let a subscript l and r denote the left and the right factor
respectively. For the R-symmetry group we have that Spin(3) × Spin(2) ⊂
Spin(5)R. Using that Spin(3) ∼= SU(2) we thus have that

SU(2)l × SU(2)r × SU(2)R × U(1)R ⊂ Spin(4)× Spin(5)R. (4.2)
4In the notational sense.
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The supersymmetry parameter ε is a symplectic Majorana-Weyl spinor of
negative chirality. In terms of the Lorentz group on M4 it therefore5 transforms
as (2,1) ⊕ (1,2) under SU(2)l × SU(2)r. It transforms in the 4 of Spin(5)R

which under the subgroup SU(2)R × U(1)R transforms as 2 1
2 ⊕ 2− 1

2 .
Combining this information we have that the supersymmetry parameter

transforms under the subgroups in (4.2) as

ε ∈ (1,2,2)± 1
2 ⊕ (2,1,2)± 1

2 .

From the results in section 4.2.1 we now see what needs to be done to find a
scalar supercharge. There are two possibilities that are equivalent. We choose
to twist SU(2)r and SU(2)R. Let SU(2)′ = SU(2)r × SU(2)R, then the first
term in 4.3.2 will be twisted according to table 4.1.

SU(2)l × SU(2)r × SU(2)R × U(1)R

(1,2,2)± 1
2

twist−→
SU(2)l × SU(2)′ × U(1)R

(1,1)± 1
2 ⊕ (1,3)± 1

2

Table 4.1: Twisting of the supersymmetry parameter representation.

After twisting there are two scalar components on M4 with positive and
negative U(1)R charge. There is now a definite choice of which supercharge
to use. To see this we need to consider the transformation properties un-
der Spin(1,1)C. Let ± indicate the two one-dimensional representations of
Spin(1,1) ∼= R. Here we let the + correspond to the representation that in
Euclidean signature would have positive charge under Spin(2) ∼= U(1). Then
the full representation of the part of ε in table 4.1 is given by

+(1,2,2)± 1
2

twist−→ +(1,1)± 1
2 ⊕ +(1,3)± 1

2 . (4.3)

The supersymmetry parameter is a spinor of negative chirality which fixes the
choice of Spin(1,1) representation to be + in (4.3).

5The spinor representation 4 of negative chirality decomposes under Spin(1,1)×SU(2)×
SU(2) as (2,1)−⊕ (1,2)+ where ± indicates the eigenvalue under Γ01, for details see Paper
II.
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M6
twist−→ M4

Φ Eµν , σ̄, σ

Ψ ψµ, ψ̃µ, χµν , χ̃µν , η, η̃

H F−µν , F
+
µν , Aµ

Table 4.2: Field content of the twisted theory in four dimensions stemming
from the fields in six dimensions.

If the twisting was carried out in Euclidean signature then we would also
have to twist away the dependence on Spin(1,1) by taking the diagonal embed-
ding of U(1)′ in Spin(2)C × Spin(2)R. The twisted U(1) charge is then simply
the sum of the individual charges. It is then clear that the component of the
M4 scalar representation in (4.3) that would have zero charge under U(1)′ is
the one with negative U(1)R charge.

Therefore we choose to regard the M4 scalar supercharge in the represen-
tation (1,1)− 1

2 when performing the calculations in Paper II.

4.3.3 Twisted tensor multiplet

The fields of the tensor multiplet gives rise to a number of fields when the
twisting is performed. With similar arguments as in the previous section one
arrives at the field content in (4.2). Here Eµν is a real self-dual two form, σ
a complex scalar, {ψ, ψ̃} fermionic one forms, {χ, χ̃} fermionic self-dual two
forms, {η, η̃} fermionic scalars, {F−, F+} anti self-dual and self-dual real two
forms and finally Aµ a real one-form.

In Paper II the derivation of the twisted field content is performed in de-
tail. Let us here only confirm the counting. The space-time scalar Φ transforms
in a five-dimensional representation corresponding to the three components of
the self-dual two-form and the two components in the complex scalar. The
fermionic fields, counting from left to right, contain 4 + 4 + 3 + 3 + 1 + 1 = 16
real components corresponding to the 16 real components of the symplectic
Majorana-Weyl spinor Ψ. Similarly the fields arising from the self-dual three-
form sums to 10 real components.

The six-dimensional equations of motion and supersymmetry transforma-
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tions give rise to corresponding equations and transformations for the twisted
fields. This is also derived in detail in Paper II from the explicit relations
between the twisted and untwisted fields of the tensor multiplet.

It turns out that the twisted theory splits into two sectors, one containing
{Eµν , ψ̃µ, Aµ, χµν , η} and the other containing {Fµν , χ̃µν , ψµ, σ, σ̄, η̃}.The latter
sector is equivalent on-shell to Donaldson-Witten theory, the unique twist of
N = 2 super Yang-Mills, whereas the former is related to the Vafa-Witten
twist of N = 4 super Yang-Mills.

4.3.4 Stress tensor

After a compactification on C the equations for the twisted fields will be purely
four-dimensional. We then proceed to determine the stress tensor for the
theory defined on a flat manifold. This is done in two steps. First an ansatz
for the stress tensor for the fields arising from Φ and Ψ is made from the metric
variation of the action that does exists for these fields. For the fields arising
from H an ansatz is made starting from the stress tensor for a general three-
form. It is found that this ansatz needs to be modified for the stress tensor to
be supersymmetric. The modified stress tensor is then shown to be Q-exact
with

T µν = δQλ
µν ,

where

λµν = 1
2

(√
2iψ(µ∂ν)σ + ψ̃(µ∂ρEν)

ρ + ∂ρψ̃
(µEν)

ρ − ∂(µψ̃ρEν)
ρ

+ iψ̃(µAν) − i

2 χ̃
(µ
ρF
−ν)ρ − i√

2
gµνψρ∂

ρσ − 1
2g

µνψ̃ρ∂σEρσ −
i

2g
µνψ̃ρA

ρ
)
.

Here Q denotes the scalar supercharge transforming as (1,1)− 1
2 under the

twisted Lorentz group, described in the previous section.
The question then arises as to how this expression carries over to the case

of a curved manifold. In Paper II this extension is investigated with the
result that a naive covariantization meets some problems pertaining to the
bosonic self-dual fields. The conclusion was that it seemed difficult to construct
necessary curvature corrections to allow the stress tensor to be both conserved
and Q-exact.
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4.4 Off-shell structure and resolution
It turns out that the issues with a conserved covariant stress tensor can be
solved by certain additions to the equations of motion for the self dual two-
form Eµν . In Paper II it was shown that the obstruction to a conserved stress
tensor consisted of certain curvature terms of the form

DµTµν = −1
4DτRρκE

τκEν
ρ + 1

8DνRµκρτE
τκEµρ.

This might seem surprising but since the stress tensor in this twisted theory is
not derived from an action, but rather from the equations of motion, conserva-
tion is not guaranteed. In fact, the procedure to find the correct stress tensor
in Paper II consisted of using an ansatz obtained from the scalar action that
was then modified to ensure supersymmetry. A natural guess would then be
to look for suitable modifications to the equations of motion for the self-dual
two form to ensure also conservation of the stress tensor. From the six dimen-
sional perspective one very natural addition in the curved case is that of the
conformally coupled scalar. For the six dimensional scalar action to be con-
formally invariant an addition of the form RΦ2 is needed, which would imply
a correction to the equations of motion for Eµν of the form

D2Eµν = aREµν . (4.4)

In Paper II it is shown that this kind of addition is not enough.
Fortunately, it turns out that there is another possible curvature correction.

Since Eµν is self-dual any new term must also respect this symmetry. Besides
the term in (4.4), the only other possibility is

(P+)µντσRτσ
ρλEρλ,

where P+ is the projection on the self-dual part. In Paper III it is shown
that an addition of this form, together with the term in (4.4) makes the stress
tensor conserved.

4.4.1 Q-cohomology formulation

In the example of twisted N = 2 super Yang-Mills, the stress tensor is Q-
exact. One way to show this is by noting that the action is itself Q-exact with
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L = {Q, V }. The quantity V is Grassmann odd and can be thought of as a
supersymmetric potential of the action. This implies that a metric variation
of the action takes the form

δg

∫
M4

√
g L =

∫√
g
(1

2Tr(δg){Q, V }+ δg{Q, V }
)

=
∫√

g δgµν

{
Q,

1
2Tr(δg)V + δV

δgµν

}
.

The last step gives a manifestly Q-exact expression for the stress energy tensor.
In Paper III the same structure is shown to also exist for both sectors of

the twisted theory on M4. The result is a very compact formulation of the
theory in terms of the quantity V given by

V = −
(1

2(iAµ + hµ)−DνEµ
ν
)
ψ̃µ − 1

8

(
Fµν −

1
2Bµν

)
χ̃µν + i√

2
ψµDµσ,

together with the supersymmetry variations

δEµν = iχµνv ,

δψ̃ν = ivAν − vDµEν
µ ,

δAµ = Dµη ,

δFµν = −4D[µψν]v ,

δχ̃µν = 2ivBµν ,

δψν = −vi
√

2Dν σ̄ ,

δσ =
√

2η̃v ,

where the variations of the remaining fields are zero. Notice that since the
supersymmetry variation of the field Bµν vanishes the Lagrangian is just LB =
2iBµνB

µν which implies that Bµν = 0 on-shell. This auxiliary field makes
the off-shell formulation of the theory in terms of the potential V possible by
ensuring that Q2 = 0, which otherwise is only valid on-shell.

The full relationship derived in Paper III between the quantities V , L,
λµν and T µν can be summarised in the commuting diagram in figure 4.2 on
the next page.
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V

δg

��

Q // L

δg

��
λµν

Q
// T µν .

Figure 4.2: The relationship between the quantities V , λµν that generate the
Lagrangian and the stress tensor. Metric variations are denoted by δg and su-
persymmetry transformations with Q.
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5
Higher spin

In the standard model of particle physics there are fundamental particles of
spin 0 (Higgs), 1

2 (Leptons and quarks) and 1 (Vector bosons). An outstanding
problem is to include gravity at the quantum level, although it is clear that the
force is mediated by a spin 2 boson: the graviton. Losely speaking any theory
that contains fundamental constituents of spin greater than 2 is said to be a
theory of higher spin. These kinds of theories have a long history stretching
back all the way to the inception of quantum field theory where they were at
first discarded as inconsistent. They have seen periods of popularity as it was
later realised that consistent theories could be formulated and today higher
spin is a very active field of research with connections to string theory, nuclear
physics and holography. This chapter serves as a selective introduction to the
parts relevant for this thesis.

Theories of higher spin have many features that makes them an interesting
topic to study. As is common in the world of fundamental theories of physics,
there are many possible ways to arrive at a their doorstep. One very natural
place to start in the context of this thesis is with the quest for symmetry.
Higher spin theories are indeed very symmetric, a point that will be elaborated
on in section 6.2, but before we dive into these more abstract considerations
I would like to start by giving an overview of how higher spin theory fit into
larger picture of physics and make contact with some of its history. There are
also tantalising connections to the topic of the first half of this thesis, (2,0)
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theory, to be elaborated on in section 5.2.2. As a first taste of the intricacies
that these theories present, why not begin by investigating what the general
principles of physics tell us about their properties?

5.1 Go, no-go: An existential crisis
Within the framework of quantum field theory there are strong restrictions for
any interacting theory of matter that abide by the rules of special relativity
and other relevant symmetry properties. These restrictions can be summarised
in so called “no-go” theorems, previously considered in section 2.1.2, where one
makes natural assumptions for a physical theory and then see what limits these
entail. In the case of higher spin there are a number of such “no-go” theorems
and one might at first glance come to the conclusion that such theories cannot
exist in any useful form relevant for physics. However, under closer scrutiny,
it turns out that the assumptions leave some possibilities open. To appreciate
the situation it is instructive to take a look at one of these theorems and then
see how it can be avoided.

Let’s start with a very compact argument due to Weinberg [106]1. This
particular example is also a very nice demonstration of how simple principles
can be used to draw striking conclusions about the structure of a theory. Con-
sider a quantum field theory in four space-time dimensions. Let it contain
some massive scalar particle φ (for example the Higgs particle). Now lets first
regard its minimal coupling to a new massless particle of spin 1. Minimal cou-
pling implies here the introduction of the simplest possible2 interaction term
in the Lagrangian for the spin 1 particle, commonly denoted Aµ, which for a
scalar particle takes the form3

eAµφ∂µφ ,

where e is the charge of φ. The astute reader well versed in the wonders of
QFT can now without effort take the Fourier transform of this expression and

1The exposition here will be hand-waving at best, for a detailed derivation see [107].
2Note that minimal coupling is enough to describe all of the standard model.
3We are looking for a scalar containing Aµ which can only be constructed by introducing

a derivative. Alternatively this vertex follows from the Klein-Gordon action DµφDµφ with
the gauge-covariantised derivative Dµφ = (∂µ + eAµ)φ.
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p+ q p

q

Figure 5.1: General n-particle process without and with the emission of an
additional massless particle.

conclude that the corresponding vertex will carry a factor of the momentum of
the scalar particle. In figure 5.1 a general process is depicted where the blob
represents some form of interaction of the original theory (tree level or loop).

In the right-hand diagram the same process is supplemented by one of the
legs emitting the new massless particle with momenta q. Momentum con-
servation then specifies the new propagator to carry momentum p + q. If the
original process involving n particles was given by the matrix element Mn then
the new process will multiply this with an additional factor for the new vertex
and propagator4 roughly of the form

M ′µ
n+1 = Mn

∑
i

eηi (pµi + qµ)
(pi + q)2 −m2 =

∑
i

Mn
eηi (pµi + qµ)

2pi · q
,

where the sum is over all the external particles, ηi is ±1 for initial/final state
and in the last step it is used that p2 = m2 and q2 = 0. For very small q the
leading contribution is

M ′µ
n+1 ≈Mn

∑
i

eηip
µ
i

2pi · q
(5.1)

The amplitude corresponding to this process is given by contracting this matrix
element with the polarization vector for the massless particle. For the spin 1

4The denominator corresponds to the massive propagator and the numerator stems from
the vertex.
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particle considered here the polarization vector is given by εµ.

A = εµM
′µ
n+1

Recall now that the covariant theory of a massless spin 1 particle, formulated
in terms of a vector potential Aµ, enjoys a gauge symmetry where it is in-
variant under Aµ −→ Aµ + ∂µα(x). In terms of the polarization vector this
transformation reads

εµ → εµ + αqµ .

Hence, if the amplitude is to be gauge invariant it is demanded that

qµM
′µ
n+1 = 0 .

Looking at (5.1), this implies that
∑
i

eηi = 0 , (5.2)

i.e. the process conserves the total charge. If this process is repeated for a
massless spin 2 particle the matrix element (5.1) receives an additional factor
of momentum in the numerator5 and so the analogue of (5.2) becomes

∑
i

eηip
µ
i = 0 ,

but since the total momentum is conserved (also by Lorentz invariance) this
implies that all the charges have to be equal, i.e. all particles must couple in
the same way to a massless spin 2 particle. This is the quantum version of the
equivalence principle: gravity acts universally on all matter.

Now what happens if we consider adding a massless particle of spin 3?
Already for spin 2 the resulting constraint is very tight! Again the numerator
in (5.1) receives another momentum factor and the final relation reads

∑
i

eηip
µ
i p

ν
i = 0.

5This can be seen easily by considering the corresponding coupling term in the Lagrangian
which now must contain an additional derivative so as to create a scalar out of the spin 2
field with two indices.
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This relation simply cannot be satisfied for arbitrary momenta unless e = 0,
i.e. if massless spin 3 particle does not interact at all.

A quick glance at this might result in statements such as “Interacting mass-
less higher spin particles are forbidden”. Looking carefully at the assumptions
a more correct conclusion is that minimally coupled massless higher spin par-
ticles in Minkowski space are forbidden.

However, the first statement is not entirely wrong. If we take it to mean
that interacting massless higher spin particles are forbidden in the low energy
limit it is actually perfectly correct! By the theorem above such particles
would have to be non-minimally coupled which results in interaction terms
that are irrelevant in the Wilsonian sense and hence will vanish in the low
energy limit [108]. Weinberg’s arguments tells us that we should not expect to
observe massless higher spin particles in our everyday life, which we confirm
empirically: there are no observed long range forces mediated by a higher spin
carrier.

Another way of succinctly rewording the above conclusion is that it is very
difficult to construct a theory for a massless particle of higher spin that removes
the unphysical polarizations. In the case of lower spin this problem is what
leads us to gauge invariance: The covariant theory of a photon is formulated
in terms of a four-vector Aµ that a priori propagate four degrees of freedom.
This is only brought down to the two physical polarizations after we construct
the theory to be gauge invariant. The arguments above, that rests firmly on
the principle of gauge invariance, shows that for higher spin this is not possible
in the minimal setting6.

5.2 Why higher spin?

5.2.1 Massless higher spin, nuclear physics and string theory

So why are massless higher spin particles interesting? Certainly there are
massive higher spin particles observed in nature. The spectrum of particles
in nuclear physics contain a proliferation of these. Here they arise as com-

6In the sense of the previous paragraphs
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posite particles of the more fundamental quarks for which we do have a good
description, quantum chromodynamics. As is by now well understood, a good
microscopic description might not be a good tool to understand the more
macroscopic physics. For example we do not use quantum electrodynamics to
calculate how many light bulbs a certain fuse can support, we use the simpler
Maxwell theory of electromagnetism which for this purpose is very accurate.
In the case of hadronic resonances or nuclei interacting at low energy one is led
to look for an effective theory valid for calculation in energy regimes relevant
for nuclear processes. Here one looks for local Lagrangian for the effective
degrees of freedom. Even for massive higher spin this poses big difficulties
where minimal coupling to electromagnetism implies superluminous propaga-
tion [109]. Thus higher spin theory is interesting also from a nuclear physics
perspective.

The concept of high energy limits presents, at least for the author, the
most compelling reasons to study higher spin. Not in the context of nuclear
physics but in the search for fundamental theories of physics. In the quest
for a quantum description of gravity, one of the most promising directions is
string theory. The spectrum of string theory contains, apart from the building
blocks needed for the standard model and quantum gravity, an infinite number
of massive higher spin states7. These states have mass squared proportional
to the string tension 1

α′
that for a given spin s satisfies [15]

M2 > C
s

α′
,

where C is a constant. Thus string theory contains higher spin states but they
are massive so that they will be invisible at low enough energy. However in the
limit where α′ →∞ they become massless. So also in the case of string theory
there is a limit that is related to an interacting theory of massless higher spin
states [110]. In fact this relation has today been explored to some extent and
many interesting results are now known [111–116].

7The connection to nuclear physics is not by chance, string theory arose from the attempts
to create a local interacting theory of massive higher spin objects observed in nuclear physics.
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5.2.2 Holography

Recently a new door opened up into the toolbox of mathematical physics: the
AdS/CFT correspondence [75], for a modern review see [117]. This duality
between theories in AdS spacetime and conformal field theory on its boundary
has had profound implications ranging from a better understanding of string
theory [75, 118], strongly coupled systems such as the quark gluon plasma
[119], black holes [120] and recently also higher spin theory [121].

The connection to higher spin theory can be loosely derived starting from
the considerations in the previous section. In the standard incarnation of the
duality the theories of interest are type IIB string theory on AdS5×S5 with N
units of flux on S5 and N = 4 supersymmetric U(N) Yang-Mills theory. The
parameters of the string theory are the string coupling gs and the tension 1

α′

whereas the Yang-Mills theory has the coupling constant gYM. In its original
formulation [75] the duality states that these theories are equivalent when their
parameters (up to numerical factors) are related as

g2
YMN = R4 1

α′2
,

gs = g2
YM,

(5.3)

in a certain limit: the large N limit is taken while keeping g2
YMN fixed and

finally the t’Hooft coupling g2
YMN is taken to infinity as well.

On the string theory side the first limit is, as can be seen above, the small
string coupling limit where tree level string theory becomes a good approxima-
tion. The second one corresponds to a small string length limit, i.e. a point-like
limit where supergravity is a good description. From the gauge theory per-
spective the first limit is the planar limit with an infinite number of colors.
Here the effective gauge coupling is not gYM but rather gYM

√
N , so that the

first limit is the planar limit for fixed effective gauge coupling8. The second
limit is then clearly the strong coupling limit.

When the dusts settles after this bonanza of limits and identifications the
result is that the strongly coupled Yang-Mills theory is dual to the weakly
coupled string theory in the low energy limit, i.e. supergravity. In terms of

8Note in particular that the first limit implies gYM → 0, this does not imply that the
gauge theory becomes weakly coupled.
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computational complexity this is a relation between the difficult strongly cou-
pled Yang-Mills theory and the easy weakly coupled supergravity theory. This
easy-hard duality is the heart of what makes the AdS/CFT correspondence so
fantastic.

This original form of the duality is, as we see above, a very specific limit
both in energy and parameters. There is by now evidence [76] that the duality
is much more far reaching where the most optimistic conjecture is that it is
valid generally, i.e. for arbitrary parameters.

In the context of higher spin one looks at the above relations and thinks
about a different limit. As was shown in the previous section the tensionless
limit of string theory should correspond to a theory of massless higher spin.
In the relation (5.3) the right hand side tends to zero as 1

α′
→ 0 with R large

and fixed. On the other side this mean that now the t’Hooft coupling tends
to zero so that the Yang-Mills theory becomes free. If one is to trust this
implication and if the zero tension limit of string theory really is a higher spin
theory then a strange conclusion is made: Higher spin theory on AdSd is dual
to a free conformal field theory in d− 1 dimensions. At first this might seem
unreasonable, how can an interacting theory be equivalent to a free theory?
Or even worse, does this imply that higher spin theory is trivial in some sense?
The fears of the latter question fortunately are not materialised and in fact the
answer turns out to be very interesting. Actually the concept of interacting
theories expressed in terms of free theories is not new, bosonization in two
dimensions is one such example. Instead this fact becomes a virtue for the
higher spin theory where the free conformal theory can be used to calculate
properties of the higher spin theory [121, 122].

Recently the duality for higher spin has been partly verified and in fact it
has at this point become one of the corner stone examples of these types of
dualities. One reason for this is that it turns out that in particular instances
of the duality there is a match between a free O(N) CFT and higher spin
theory where the coupling is proportional to 1√

N
. This means that in the large

N limit there is a correspondence between a free higher spin theory and a
“free” CFT in the sense that the correlation functions factorise. Thus this is
an example of a weak-weak duality which is an excellent chance to be able to
show the correspondence rigorously where explicit calculations can be carried
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out on both sides [121, 122].
The connection to the first part of this thesis is made when one looks at

another example of the AdS/CFT correspondence in light of higher spin. Here
one starts with the conjectures correspondence between M-theory on AdS7×S4

and the AN series of (2,0) theory in six dimensions [75]. If the same type of
tensionless limit is taken as before there emerges a duality between a higher
spin theory in AdS7 and free (2,0) theory [123]! What this really means is a
bit puzzling since here there is no coupling constant which means that the AN
theory for large N is inherently interacting. At least the small N limit would
in some sense correspond to the abelian theory and thus would presumably be
related to a strongly interacting higher spin theory.

5.3 The road to interactions

“ The difficulty of this problem
is illustrated by the fact that the
most immediate method of taking
into account the effect of the
electromagnetic field, proposed by
Dirac (1936), leads to
inconsistent equations as soon as
the spin is grater than 1. ”

– Markus Fierz &
Wolfgang Pauli, 1939

The first considerations of higher spin particles was initiated by Dirac [124]
when investigating relativistic field equations in 1936. Two years later a sys-
tematic study by Fierz and Pauli [125] concluded that a set of symmetric
traceless fields Φµ1, ..., µn in four dimensions governed by the equations

∂µ∂
µΦµ1, ..., µn = m2Φµ1, ..., µn

∂νΦνµ2...µn = 0,

describe consistently free particles of spin n and identified the problems of a
simple gauge procedure to introduce interactions. More than this they iden-
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tified that these equations could be reproduced through a Lagrangian formu-
lation with auxiliary fields and took the first steps towards interactions by
noting that seemingly consistent couplings with an external field could be ac-
commodated in this formulation. The auxiliary fields turn out to be necessary
to enforce proper transversality conditions on the propagating fields.

These ideas was furthered by Fronsdal [126] and Chang [127] and resulted
in a Lagrangian formulation for massive higher spin fields of arbitrary spin
in 1974 by Singh and Hagen [128]. Here it was noted that the transversality
condition takes the form of successive identities

∂µ1 · · · ∂µλΦµ1...µs = 0 ,

for λ ≤ s where s is the spin.
At this point in time there is however a growing number of negative re-

sults starting with the soft photon argument (see section 5.1) of Weinberg in
1964 and including the Aragone-Deser [129] calculations of the presence of
non-physical modes in the coupling of a spin 5

2 field to gravity. These two
results in combination was particularly devastating since gravity, according
to Weinberg, has to couple universally. Furthermore the problems persisted
also for the massive case where Velo and Zwanziger [130] showed that there is
superluminous propagation when interactions are present.

It was another twenty years until finally a consistent interacting higher spin
theory in four dimensions was constructed by Vasiliev and Fradkin [131–133].
They achieved this by noting that the previous no-go results all concerned flat
space and set out to construct a theory in the other maximally symmetric
space-times, de Sitter and anti-de Sitter space. The result is an interacting
theory where the interaction terms comes dressed with an infinite sum of higher
derivative terms. This means that the interaction is in some ways non-local
but are controlled by the fact that they come for higher powers of the inverse
AdS radius. This is also the heuristic reason for why there is no limit of these
theories in flat space, it is singular. There is by now a large literature on this
subject, see [134] for a recent review.

Even before the details of the Vasiliev-type9 theories was worked out it
9Vasiliev continued the program of investigating these higher spin theories and they have

since been referred to as “Vasiliev theory” in the literature.
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was noted that many of the no-go theorems can also be evaded by going down
to three dimensions [135, 136]. For example the Aragone-Deser obstructions
come with the Weyl tensor which vanish in three dimensions. These three di-
mensional theories provide another angle on the problem of higher spin theory
and it is in this direction that the work in this thesis builds.
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Conformal higher spin in 3d

Higher spin in general spacetime dimension is a very difficult problem that
only recently was shown to be consistent as an interacting theory [133, 134].

It turns out that for three dimensions the situation is slightly better. Here
there exists formulations not only of interacting higher spin of Vasiliev type
but also constructions based on Chern-Simons type theories. In particular
there are theories of higher spin where the infinite tower of higher spin can
be truncated consistently so that only spins up to a finite number is present.
This is very different from the situation in for example four dimensions where
there are no such truncated theories.

6.1 3d gravity

Quantum gravity in four space-time dimensions is hard, this is one of the
current outstanding problems. It is hard for a number of reasons. Perhaps the
most basic one being that the Einstein-Hilbert action, that gives rise to the
Einstein field equations, is perturbatively non-renormalisable [137]. In three
dimensions, the situation is drastically different [138].

It is often the case that things get easier as one moves down in space-
time dimension. One can hope that by investigating a certain theory in lower
dimensions it is still possible to draw some conclusions on its behavior in
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higher ones. Though what often happens is that the lower dimensional theory
becomes either too simple or different so that in the end it is hard to do just
that.

In the case of gravity there is a huge simplification going from four to three
dimensions, no propagating degrees of freedom remain. Remarkably, despite
this, there are still many interesting phenomena persisting such as black holes
[139, 140]. The most interesting feature is that there has been much progress
towards a quantized theory [141]. That a theory of quantum gravity seems to
exists with an explicit formulation in three dimensions makes it a very inter-
esting toy model to study. Early work include the investigation of the classical
theory coupled to matter [142] where the geometry from point like sources
results in conical structure. The non-perturbative quantization was carried
out in [143] using a Chern-Simons formulation. More recent progress seems to
point to some subtleties in the exact definition of the quantum configurations
relevant for the path integral [141, 144–146]1.

The feature that makes three dimensional gravity tractable is that it is
closely related to a simpler topological model called Chern-Simons theory.
This also provides the starting point for an extension to a theory of higher
spin considered in Paper IV. As a warm up to the more complicated setup
in the higher spin theory the next section will provide an introduction to the
gauge formulation of gravity in three dimensions.

6.1.1 Gravity as a gauge theory

The starting point for three dimensional quantum gravity, as well as for the
coming investigations, is the fact that Einstein gravity can be formulated as a
Chern-Simons gauge theory [148].

Let M be an oriented Lorentz three-manifold and A an iso(2,1) connection.
Consider the Chern-Simons [149] action

S =
∫
M

tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)
,

where tr is an invariant bilinear form2. There is a lot to be said about this
1For a recent review see [147].
2That such a bilinear form exists [138] for iso(2,1) is another special circumstance in

three dimensions that is not true in general for iso(d− 1,1)
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functional, as a starting point in context of mathematical physics the reader
is referred to [94]. At this point, however, let us take it at face value and see
explicitly what it implies. Let T a be a basis for the Lie algebra. The connection
can then be written as A = AaT

a, so that the first term above takes the form

tr
(
T aT bAa ∧ dAb

)
= tr

(
T aT b

)
Aa ∧ dAb.

Choose a particular set of generators of iso(2,1) and write the connection as

A = eaP
a + ωaM

a , (6.1)

where ea, ωa ∈ Λ1(M) and P a, Ma satisfy the commutation relations[
P a, P b

]
= 0 (6.2)[

Ma, P b
]

= εabcP
c[

Ma,M b
]

= εabcM
c. (6.3)

Here P a are the three generators for translations and Ma the three Lorentz
transformations. This form of the algebra looks very simple but might be
slightly confusing for someone working in higher dimensions. In four (and
higher) dimensions a rotation can be specified by two directions spanning a
plane in which the rotation takes place. In three dimensions, on the other
hand, these two directions are uniquely specified by the direction that is not
rotated. The relation between these two perspectives is facilitated by the
totally antisymmetric epsilon tensor so that the more familiar form is recovered
as

Mab = εabcM
c.

Returning now to the Chern-Simons action for the iso(2,1) connection,
what equations of motion does it imply? A variation of the connection gives3

δS =
∫
M
δtr

(
A ∧ dA+ 2

3A ∧ A ∧ A
)

= 2
∫
M

tr
(

(dA+ A ∧ A) ∧ δA
)
, (6.4)

3 In this calculation one uses the linearity of the trace, the product rule for the variation
followed by an appropriate partial integration and repeated use of the cyclic property of the
trace.
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where one finds the gauge covariant field strength F = dA+A∧A and concludes
that the stationary point of the action functional is given by solutions to

F = 0 ,

i.e. flat connections. What does this imply for the specific parametrization of
A in (6.1)?

dA+ A ∧ A = deaP a + dωaMa + (eaP a + ωaM
a) ∧

(
ebP

b + ωbM
b
)

= deaP a + dωaMa+
1
2

[
P a,P b

]
ea ∧ eb +

[
P a,M b

]
ea ∧ ωb + 1

2

[
Ma,M b

]
ωa ∧ ωb

= deaP a + dωaMa + εabcea ∧ ωbP c + 1
2ε
ab
cωa ∧ ωbM c = 0

Since the generators are algebraically independent the above relation imply

dea + εbcaωb ∧ ec = 0 (6.5)
dωa + 1

2ε
bc
aωb ∧ ωc = 0 . (6.6)

These equations are precisely the zero torsion condition and the vanishing of
the curvature two-form, if the fields ea and ωa are interpreted as the frame field
and spin connection respectively. In fact, the zero curvature equation turns
out to be exactly the Einstein equation in three dimensions.

Let us press on a bit further to make this plausible. From the first equation
we identify a Lorentz covariant exterior derivative as

DVa = dVa + εa
bcωb ∧ Vc ,

for a form V ∈ iso(2,1)⊗Λ1(M). Note that it is covariant under iso(2,1) since
(6.5) corresponds to a component of the field strength. Let us see what the
curvature for this covariant derivative is by computing

DDVa = D
(
dVa + εa

bcωb ∧ Vc
)

= εa
bcωb ∧ dVc + εa

bcd (ωb ∧ Vc) + εa
deωd ∧

(
εe
bcωb ∧ Vc

)
= εa

bcdωb ∧ Vc + εa
deεd

bcωe ∧ ωb ∧ Vc ,

from which the curvature can be identified as

R̃ac = εac
bdωb + ωa ∧ ωc .
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Note that it is a two-form and that it is antisymmetric in its gauge indices.
Dualizing this once results in

Rf = εf
acR̃ac

= −2dωf + εf
acωa ∧ ωc ,

which is exactly two times (6.6). Thus the covariant derivative4 from (6.5)
gives rise to a curvature tensor that is consistent with (6.6).

Note now that the vanishing of the Riemann tensor implied in (6.6) really
is an equation for the Ricci tensor. This follows from the fact that in three
dimensions the Riemann tensor can be expressed in terms of the Ricci tensor,
there are no further independent components. This can be seen in many
different ways, the most explicit being the fact that in three dimensions there
is an identity5

Rµν
ρσ = 4δ[µ

[ρRν]
σ] − δ[µ

ρδν]
σR ,

expressing the Riemann tensor in terms of the Ricci tensor. Hence if the latter
vanishes then so does the former. This means that vacuum solutions to the
Einstein equation in three dimensions are flat spacetimes or, in the presence of
a cosmological constant, spacetimes of constant curvature. In four dimensions
the Riemann tensor do have additional independent components and can thus
be non-trivial in vacuum. It turns out that spacetime is curved outside an
energy-mass source, whereas in three dimensions this is no longer the case.

To reiterate, the Chern-Simons action for the gauge group ISO(2,1) gives
rise to equations of motion that are equivalent to the Einstein equations in
three dimensions. This is encouraging, however it must be remembered that
the spacetime symmetry group ISO(2,1) enters here as the gauge group. This
means that translations and Lorentz transformations are gauge transforma-
tions. For this to make sense it must be verified that they give rise to the
standard transformation rules for the dreibein and spin connection.

4If we interpret (6.5) as the vanishing of torsion for a dreibein ea.
5This can be easily derived using the fact that in three dimensions two antisymmetric

indices is equivalent to one using the epsilon tensor. Rewriting the two antisymmetric pairs
of the Riemann tensor this way and then using the epsilon identities immediately gives the
sought relation.
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The Chern-Simons action is invariant under6 gauge transformations

δA = dΛ + [A,Λ] ,

where Λ is a Lie-algebra valued function. To see this one can first note that F
satisfies the Bianchi identity7

dF + A ∧ F − F ∧ A = 0 ,

which is immediate from the form of F . Now the result in (6.4) can be used
with the particular form of δA from above8

δgaugeS =
∫
M

tr
(
F ∧ (dΛ + [A,Λ])

)
=
∫
M

tr
(
− dFΛ + F ∧ [A,Λ]

)
=
∫
M

tr
(
A ∧ FΛ− F ∧ ΛA

)
,

where the first step is an integration by parts and the second uses the Bianchi
identity. This expression vanishes since the second term is an even permutation
of the first9. Thus the Chern-Simons action is invariant under infinitesimal
gauge transformations.

How do these transformations act in the case at hand? The gauge param-
eter Λ can written as10

Λ = ρaP
a + τaM

a . (6.7)

One then quickly calculates using the commutation relations (6.2)-(6.3) that

δA = dΛ +
[
ebP

b + ωbM
b,Λ

]
= dρaP a + dτaMa − εabcτaebP c + εbacρaωbP

c + εbacτaωbM
c .

6A more complete analysis shows that it is invariant under gauge transformations con-
nected to the identity.

7Which is the statement that F is covariantly constant.
8Note that we want to show that the action is gauge invariant without the use of the

equation of motion, i.e. we use the form of δS derived previously which is valid in general
but we are not using that F = 0.

9The trace is cyclic and the wedge product between A and F is even since F is a two-form.
10For the convenience of the reader the same notation as in [143] is used.
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From which we read off the variations

δea = dρa − εbcaτbec − εbcaρbωc ,
δωa = dτa − εbcaτbωc .

Take a look at how the parameter τa enters. From (6.7) it is clear that it
should parametrize the Lorentz transformations. Without doing the detailed
computation we can observe that the second term in δea corresponds exactly
to a local Lorentz transformation τb(T b)acec with (T b)ac = εbc

a (which precisely
corresponds to the antisymmetric generators of so(2,1)), so that the two boosts
are T 2, T 3 and the spatial rotation is T 1.

Looking at δωa, it contains the correct vector transformation but also the
inhomogeneous term dτa needed to be compatible with the solution of ωa in
terms of ea from the zero torsion equation11 (6.5).

The translations are a bit more subtle for a very interesting reason. In stan-
dard gravity they should correspond to local diffeomorphisms, however here
we already have a notion of diffeomorphisms in that the Chern-Simons theory
lives on a background geometry. If we were to find that these two notions of
local diffeomorphisms generate different transformations on the fields then the
interpretation as standard Einstein gravity would fall apart. They turn out
to be equivalent up to terms that vanish using the equations of motion [138].
This means that at least classically the theory corresponds exactly to Einstein
gravity.

This has profound consequences for three dimensional gravity. The first
consequence is that this formulation makes very explicit the fact that the
theory is topological [138]. This is clear already from the Einstein field equa-
tions in light of the fact that there are no more independent component in
the Riemann tensor apart from the Ricci tensor. Thus there is no room for
any propagating degrees of freedom in the metric. Here however this is built
into the formulation where the Chern-Simons action makes no reference to any
metric on the base manifold at all. Since there is a well defined quantization of
Chern-Simons theory this also means that the gravity theory can be quantized
resulting in a consistent quantum theory of gravity in three dimensions [150].

11I.e. the solution of ωa contains derivatives on ea which after a local Lorentz transforma-
tion then generates terms of the form dτa.
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Since the theory is topological one might think that it is trivial in some
sense but it turns out that it is still a very rich system where many of the
phenomena from four dimensions show up. Coupled to matter in the form of
point particles it turns out that even though the vacuum is flat it curls up
the space into cones so that the dynamics of particles do feel the presence of
each other [142]. For a negative cosmological constant there are even black
holes [139], which together with the fact that there is an explicit quantum
description makes it possible to study the quantum behavior of black holes
directly.

6.2 Conformal gravity and higher spin algebra

Using the gauge theory formulation of gravity reviewed in section 6.1 we are
now in a position to introduce the relevant theory for Paper IV. It builds on
the same foundation as the Chern-Simons gauge theory but starts with the
gauge group SO(3,2) instead, being the conformal group in three dimensions.
By using a particular presentation of the corresponding algebra the extension
to higher spin become almost immediate.

The conformal version is interesting for many reasons. First, in the quest
for the most symmetric theories this is the natural starting point. Furthermore
the conformal theory becomes relevant when doing holography. It turns out
that in general, a higher spin theory in AdS4 of Vasiliev type is dual to a three
dimensional conformal higher spin theory [151]12.

There are even indications that holography of higher spin theories might
be more rich than expected. Here the boundary dual seems to be a special
case of a more general duality to a conformal higher spin theory on a generic
three-manifold embedded in AdS4 [151, 152].

Recently conformal higher spin theories have played a role in continuing
the program of verifying the AdS/CFT duality and provided some striking
new results in this direction [153].

12This statement seems to be in tension with the hand waving arguments in section 5.2.2
but it turns out that certain truncated versions of the Vasiliev theory is dual to free bosonic
and fermionic vector models [151].
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Before introducing the construction relevant for Paper IV the gauge de-
scription of gravity will first be extended to the conformal algebra in the fol-
lowing section. Following this the higher spin algebra is introduced in 6.2.2
together with some comments on the necessary computational tools in section
6.2.3.

6.2.1 Conformal gravity

The conformal group in three dimensions consists of the generators P a and Ma

of ISO(2,1) together with dilationD and special conformal transformationsKa.
It is isomorphic to SO(3,2). The additional commutators are given by

[D,P a] = P a

[D,Ka] = −Ka

[P a, Ka] = −2εabcM c − 2ηabD .

It is now possible to carry out the same program13 as in section 6.1.1 and arrive
at a theory for conformal gravity instead of Einstein gravity [154].

Another peculiarity of three dimensions relevant here is that the Weyl
tensor, which is conformally invariant, vanishes14 and so the equation of motion
resulting from this system is not related to the Weyl tensor but rather to the
Cotton tensor [154]. In the standard notation the resulting equation reads

εµνρDµ

(
Rνσ −

1
4gνσR

)
= 0 , (6.8)

and it can be shown that solutions are conformally flat spacetimes [155].
In the case of conformal gravity in the gauge formulation some new phe-

nomena shows up. To see this first note that the gauge field now has two new
fields corresponding to the new generators,

A = eaP
a + ωaM

a + bD + faK
a ,

13In a certain sense the conformal case is more straight forward since the group SO(3,2)
is semi-simple, thereby having a unique invariant bilinear form. See [154] for details.

14This is a restatement of the fact that the Riemann tensor can be expressed in terms of
the Ricci tensor.
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together with new gauge parameters corresponding to the dilation and special
conformal transformations,

Λ = ρaP
a + τaM

a + γD + σaK
a .

Also here the question presents itself as to whether this extension corre-
sponds to what would normally be called conformal gravity [156, 157]. It turns
out that here as well the theories are equivalent at the classical level. The way
to show this is to use the gauge parameter σa to gauge away the field b [154].
The resulting equations of motion then first relate fa to ea, in fact fa is nothing
but the Schouten tensor [154],

fµ
a = 1

2e
νa
(
Rµν −

1
4gµνR

)
.

The remaining equation is then exactly (6.8). Note that here there seemed to
be more fields, but in the end the larger gauge symmetry makes it possible
to go back to a formulation where again the vielbein is the only remaining
independent field. This is something that will manifest itself when generalizing
to higher spins.

6.2.2 Poisson algebra

Now we will introduce a specific kind of presentation of the so(3,2) algebra
with the goal of extending conformal gravity to higher spin. The first parts of
this section is not strictly necessary if one is willing to take the final result of
the Poisson algebra formulation at face value, but for the interested reader we
provide a bottom up derivation.

First note that the three dimensional spin group in Lorentz signature is
isomorphic to SL(2,R) [158]. One possible choice for the generators are15

T11 =
0 1

0 0

 , T12 =
−1

2 0
0 1

2

 , T22 =
0 0

1 0

 ,

15In the standard presentation of sl(2,1) the generator T12 is multiplied by a factor 2,
which slightly alters the commutation relations. The version used here is convenient for our
purposes.
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which satisfy the commutation relations

[T11, T22] = −2T12

[T11, T12] = T11

[T22, T12] = −T22 .

Introducing the two dimensional epsilon symbol εαβ with ε12 = 1, these gener-
ator can be written in the compact form

(Tαβ)γδ = δγ(αεβ)δ . (6.9)

Now let qα and pα be two real SL(2,R) spinors, where indices are raised and
lowered with the antisymmetric εαβ. Looking at them for the moment as
coordinates and conjugate momenta we can contract them with the relevant
indices of (6.9) to obtain a generating function

Tαβ = p(αqβ) ,

that satisfies the same commutation relations under the Poisson bracket{
f, g

}
PB

= ∂f

∂qα
∂g

∂pα
− ∂g

∂qα
∂f

∂pα
.

Let us do one example very explicitly,{
T11, T22

}
PB

=
{
p1q1, p2q2

}
PB

= ∂(p1q1)
∂q2

∂(p2q2)
∂p2

− ∂(p2q2)
∂q1

∂(p1q1)
∂p1

= ε21p1q2 − ε12p2q1 (6.10)
= −2p(1q2)

= −2T12 ,

where the epsilon tensors in (6.10) arise when lowering the index on the partial
derivative and the vanishing terms in the sum over the index α have been
dropped.

Let us at this point change the notation slightly. Since we will always be
working with only p’s and q’s let us calculate{

qα, pβ
}

PB
= δαβ ,
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and then define
[qα, pβ] = δαβ .

Note now that since the Poisson bracket satisfies the usual Leibniz’s rule of the
commutator, all the necessary information is contained in the above relation.
Thus in what follows we will use the commutator with the above definition.

Pressing on, we can use the three dimensional gamma matrices γ0,γ1 and
γ2 to get a vector expression for the generators16

Ma = −1
2(γa)αβqαpβ ,

where the commutation relation now takes the form[
Ma,M b

]
= εabcM

c .

This now finally makes contact with the standard form (in three dimensions)
of the commutation relations for the Lorentz algebra so(2,1). At this point one
might rightly wonder what the virtue of all this is. The first nice realization
is that the remaining generators of so(3,2) are found by simply including the
missing bilinears in pα and qα,

D = −1
2q · p, P a = −1

2 (γa)αβ q
αqβ, Ka = −1

2 (γa)αβ pαpβ .

A more interesting upshot of this formulation is that it is now very natural
to ask what happens if we include higher order polynomials in qα and pα. The
first thing to note is that if we include any generator with more factors then
we must include all generators with more factors all the way up to infinity.
To see this note that the Poisson bracket removes one qα and one pα by the
differentiation. Let G(nq + np) denote a generator with the indicated sum of
the number of p’s and q’s. Then we have schematically that[

G(n1), G(n2)
]

= G
(
n1 + n2 − 2

)
.

This implies that the nq + np = 2, i.e. so(3,2) generators close under the
commutator as we have seen. It also implies that if n1 = 2 but n2 > 2 then[

G(2), G(n2)
]

= G(n2) ,
16The normalization introduced in this step aims to follow the one in [159].
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so that the so(3,2) generators also preserve the sum nq + np of higher order
generators. If however both nq > 2 and np > 2 then they commute to a
generator of strictly higher order, which implies that we must include all higher
order generators to close the algebra.

What is the representation structure of these higher order generators? It
turns out that on the sl(2,R) side things are easy. Start by finding the irre-
ducible parts17 of the simple bilinear Tαβ = qαpβ, by writing it as a sum of the
symmetric and antisymmetric part

Tαβ = q(αpβ) + q[αpβ] .

Since the antisymmetric tensor product in two dimensions contains just one
independent component this term is proportional to εαβ,

Tαβ = q(αpβ) − 1
2ε
αβqγpγ , (6.11)

which can be verified by contracting with εαβ. Notice that when doing this
contraction the first term vanishes by symmetry, i.e. it is automatically trace-
less18. The conclusion, to be elaborated on in the next section, is that the
irreducible tensors in qα and pα are totally symmetric products with possible
factors of q · p = qαpα together with the two dimensional epsilon tensor.

Let us now introduce the following definition,

G(nq,np,c)α1...αnq+np−2c = C(nq,np,c)q(α1 · · · qαnq−cpαnq−c+1 · · · pαnp+nq−2c)(q · p)c ,

with c ≤ nq+np
2 , where nq and np denotes the total number of p’s and q’s and

where the number of contracted pairs are specified by c. The constant C is
a normalization that is unimportant for the discussion here, see Paper IV
for details. Note that the number of free indices uniquely specifies c so that
sometimes when they are specified the c will be dropped.

Since we will only be working with even spins the generators are most
conveniently presented with vector indices,

17This is a standard technique, see for example [160].
18Recall that εαβ is the metric in the spinor representation.
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G(nq,np,c)a1...aN = C(nq,np,c)×
(γa1)α1α2 · · · (γaN )α2N−1α2N q

(α1 · · · qαnq−cpαnq−c+1 · · · pα2N )(q · p)c . (6.12)

To reiterate, the irreducible generators are in one to one correspondence
with the triples {nq,np,c}. The commutation relations can now be calculated
by using the fundamental relation [qα, pβ] = δαβ followed by a decomposition
into the irreducible parts19.

As an example let us rederive the commutation relation for two so(3,2)
generators P a and Ma.

[
P a,M b

]
= 1

4(γa)αβ(γb)γτ
[
qαqβ, qγpτ

]
= 1

4(γa)αβ(γb)γτqγ
([
qα, pτ

]
qβ + qα

[
qβ, pτ

])
= 1

4(γa)τβ(γb)γτqγqβ + 1
4(γa)ατ (γb)γτqγqα

= 1
2(γa)τβ(γb)γτqβqγ

= 1
2ε
ab
c(γc)βγqβqγ

= εabcP
c ,

(6.13)

where the identity (γ[a)αδ(γb])βδ = εabc(γc)αβ has been used.
A generator with more vector indices, i.e. more q’s and p’s, will in general

carry higher values of spin. To see this, first note that a generator of the
form in (6.12) is automatically irreducible in its vector indices. It is symmetric
because of the symmetrization on the q’s and p’s and it is traceless because of
the Fierz identity

(γa)αβ(γa)γδ = εαγεβδ + εβγεαδ .

Together, this means that a generator Ga1...aj is totally symmetric and trace-
less, i.e. it carries spin j.

It is now possible to calculate the commutation relations for the higher spin
algebra using the same techniques as in the example calculation (6.13). This
can be done by hand for the lower spin levels however they quickly become

19This is most easily performed by doing the decomposition for the sl(2,1) parts of the
expression which then implies irreducibility also for the vector expression.
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tedious and prone to errors. The next section describes how this calculation
was instead implemented in a computer algebra system.

6.2.3 sl(2,R) tensor product decomposition

Here the more general decomposition of sl(2,R) tensors, that generalize the
simple example (6.11), will be presented.

Let Sα1...αr be a totally symmetric (i.e. irreducible) sl(2,R) tensor. The
decomposition of the tensor product with an sl(2,R) vector V β is then given
by20

V βSα1...αr = V (βSα1...αr) + r

r + 1ε
β(α1Sα2...αr)γVγ .

Let us confirm the counting: The tensor Sα1...αr sits in the symmetric tensor
product of rank r which for this two dimensional representation is21

(
r+1

1

)
=

r+ 1 dimensional. The tensor product above is therefore 2(r+ 1) dimensional
which decomposes into the two symmetric rank r+1 and r−1 representations.

Using the above relation one can recursively decompose a general prod-
uct of tensors into its irreducible parts. This is doable by hand for smaller
representations but it quickly becomes tedious and prone to errors. The de-
composition is however easily implemented in a computer algebra system. For
the calculation of the algebra structure constants the above decomposition was
implemented as a Mathematica program.

6.3 Paper IV: 3d conformal higher spin
In Paper IV an interacting theory of higher spin is constructed using the
Chern-Simons based formulation with the higher spin gauge algebra described
in section 6.2.2. This theory was first considered in [161] where the first anal-
ysis of the spin content was carried out at the linear level. Paper IV builds

20This formula can be easily derived by doing an ansatz for the two possible irreducible
tensors that can be constructed with the symmetries of the left hand side and then taking an
appropriate trace or symmetrization to isolate the terms. Thus it is a simple generalization
from the two-index version in (6.11).

21This formula can be established for a general d-dimensional representation by realizing
that the independent components are in one to one correspondence with the number of ways
to place d− 1 separators between the r indices.
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on previous work [159, 162] and the main new addition is the analysis of the
coupled spin 2 - spin 3 system at the non-linear level, something that has
previously been unfeasible due to the size of the resulting calculations. This
obstacle is tackled by performing the tensor algebra and related calculations
in a computer algebra system developed for this purpose. This system con-
sists of an implementation of symbolic tensor algebra routines in Mathematica
together with an interface to the index canonicalization package xPerm [163].

6.3.1 Higher spin gauge theory

Let A be a spacetime one-form taking values now in the infinite dimensional
higher spin algebra defined in 6.2.2. It can be written as a formal sum

A =
∞∑
s=2

As ,

where each As contains generators with nq + np = 2(s − 1) that turns out to
correspond to spin up to s. For example the spin 2 and 3 parts are given by22

A2 = eaP
a

(2,0)
+ ωaM

a

(1,1)
+ b D

(1,1)
+ faK

a

(0,2)

A3 = eabP
ab

(4,0)

+ ẽabP̃
ab

(3,1)
+ ẽa P̃

a

(3,1)

+ ω̃abM̃
ab

(2,2)
+ ω̃aM̃

a

(2,2)
+ b̃ D̃

(2,2)

+ f̃abK̃
ab

(1,3)
+ f̃aK̃

a

(1,3)

+ fabK
ab

(0,4)
.

Here the naming convention for the spin 3 generators and fields follow that of
spin 2 and in fact they are quite appropriate as will be shown. The q and p

content is indicated by the underset (nq,np). Note that for a given value of
s the irreducible content might be of lower spin, this happens precisely when
the generator contains contracted pairs q · p.

22The generators are here given a specific name for convenience so that for example
G(3,1,1)a = P̃ a.
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The spacetime spin s here is different from the spin j considered previously
in the context of the algebra. This is because the gauge potential is a one-form,
i.e. it carries a spacetime index, so that the spacetime spin contents of Aµa1...aj

contains spin up to s = j + 1.
To clarify the above expansion, let us look at how the spin 2 part, i.e.

the so(3,2) generators, fit in this picture. For s = 2, there are three possible
combinations of (nq,np) given by (2,0), (1,1) and (0,2). The first and the last
one contain a single irreducible part since there are no possible contractions of
qαqβ and pαpβ. For the middle one there are two irreducible parts, q(αpβ) and
q · p, corresponding to G(1,1,0) and G(1,1,1) that we have given the name Ma

and D.
At the next level s = 3 there are more solutions to nq + np = 2(s− 1) = 4.

They are (4,0), (3,1), (2,2), (1,3) and (0,4). These will be called the spin 3
generators.

At this point it might be pertinent to point out again that although this
part of A is referred to as the spin 3 sector, it contains fields of lower spin
content such as ẽa. The reason that this convention makes sense is that, as
will be shown, the lower spin fields will be completely solved for in terms of
fields of spin 3 (or gauged away) so that the only remaining fields will be of
spin 3. In fact all fields will be shown to be related to eab, the generalization
of the spin 2 frame field.

The gauge parameter Λ now also becomes a formal sum over the infinite
set of generators,

Λ =
∞∑
s=2

Λs ,

which for the spin 3 sector takes the form

Λ3 = Λab
(4,0)

P ab + Λab
(3,1)

P̃ ab + Λa
(3,1)

P̃ a + Λab
(2,2)

M̃ab + Λa
(2,2)

M̃a

+ Λ
(2,2)

D̃ + Λab
(1,3)

K̃ab + Λa
(1,3)

K̃a + Λab
(0,4)

Kab .

Using the gauge transformations above there are many possible gauge
choices. It turns out that from the structure of the transformation laws stem-
ming from δA there is a natural choice where the calculations simplify some-
what, see Paper IV for details, given by
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ẽµ
a = 0 ,

ω̃µ
a = eµ

aω̂ ,

f̃µ
a = εµ

abf̂b + eµ
af̂ .

(6.14)

The equations of motion stemming from the Chern-Simons action now
naturally generalize to the higher spin setting. Just as the resulting equation
F = 0 splits into separate equations for each generator in section 6.1.1, here it
splits into an infinite number of equations consisting of a growing number of
equations at each spin level.

For spin 3 this results in a system that is summarized in table 6.1. Here the
second column notation f1(f2) indicates that field f1 is solved for in terms of
f2. Note also that this system is written in the gauge (6.14), which results in
that some equations of motion become constraints. There is a general pattern
here where the equation at level (nq,np) is used to solve for fields one level
down, i.e. (nq − 1,np + 1). The last equation can not be used to solve for any
fields and becomes the dynamical equation for the remaining spin 3 field eab.
In analogy with spin 2 this equation is called the Cotton equation.

The pattern above can be seen purely from algebra consideration as follows.
A given (nq, np, c) component of F = dA + A ∧ A will contains terms that
are proportional to G(nq,np,c). Since the first term in F does not contain
any commutator it will give rise to dA(nq,np,c) while the second term gives
contributions whenever there are generators G1(m1,n1,c1) and G2(m2,n2,c2)
such that the commutator [G1, G2] contains G(nq,np,c).

From the fundamental relation [qα, pβ] = δαβ this is possible when

m1 +m2 − 1 = nq (6.15)
n1 + n2 − 1 = np, (6.16)

since the commutator removes one q and one p in every resulting term. Take
now Ga

1 = P a, i.e. m1 = 2, n1 = 0, c1 = 0. The solution for G2 is then
m2 = nq − 1 and n2 = np + 1.

Taking a step back, this means that there will be a term in the equation
of motion F (nq,np,c) = 0 proportional to the product of ea and A(nq − 1,np +
1). Under the assumption of an invertible frame field ea this means that
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F (nq,np) = 0 Solution

F ab(4,0) = 0 ẽabµ
(
eabµ
)

F ab(3,1) = 0 ω̃abµ
(
ẽabµ
)

F a(3,1) = 0 bµ, ω̂

F ab(2,2) = 0 f̃abµ
(
ω̃abµ

)
F a(2,2) = 0 f̂a, f̂

F (2,2) = 0

F ab(1,3) = 0 fab
(
f̃ab
)

F a(1,3) = 0

F ab(0,4) = 0 Cotton equation.

Table 6.1: Spin 3 equations of motion and the solution cascade.

F (nq,np) = 0 gives a solution of A(nq − 1,np + 1) in terms of dA(nq,np) plus
other terms not involving a derivative.

The above gives an indication that this structure is possible but relies on
specific commutators to be non-zero which might not be the case. It can in
fact be shown that the commutators relevant for the above results are always
non-zero.

Another important feature is that when G1 is stepped down to lower q and
higher p the relation (6.16) implies that n2 ≤ np + 1. Thus there will only be
terms containing fields A(m2,n2) with n2 ≤ np + 1 which in turn means that
the solution for A(nq − 1,np + 1) above will be in terms of fields with lower p
content.

Together this implies that there is a solution cascade that in the spin 3 case
looks like

(0,4)→ (1,3)→ (2,2)→ (1,3)→ (4,0) , (6.17)

as indicated in table 6.1. This should be read from left to right where each

70



6.3. Paper IV: 3d conformal higher spin

successive field content is solved for in terms of the previous.

6.3.2 Spin 3 Cotton equation

Recall that the component F (1,3) was used to solve for fab
(0,4)

which means that

the last equation F (0,4) remains as a differential equation for the remaining
field eab. This equation is of order 5 since there are 4 field substitutions in the
cascade (6.17) and one from the equation F (0,4) = 0. Generalizing this, it is
easy to see that for spin s the last equation will be of order 2(s−1)+1 = 2s−1.

Furthermore the equation at level (nq,np) will contain, apart from dA(nq,np)
and A(nq − 1,np + 1), terms containing A(nq + 1,np − 1) stemming from the
commutator23 with faK

a. The last type of term, where m1 = 1 and n1 = 1
corresponds to the commutator with ωaMa and will according to the counting
above contain exactly A(nq,np). It is comforting, but of course a necessity
of the construction, that this term always exactly corresponds to the correct
spin connection contraction for a Lorentz covariant derivative together with
dA(nq,np) of the schematic form

D = d+ ω .

At this point the possible terms are exhausted which means that the (nq,np)
component of F will have the form

F (nq,np) = DA(nq,np) + e
(2,0)

A(nq − 1,np + 1) + f
(0,2)

A(nq + 1,np − 1) . (6.18)

Of course there are many possible tensor contractions that will be realized so
that the actual expression is more complicated, however this general form will
always be adhered to. Here it is seen explicitly that the second term in (6.18)
makes it plausible that there will be a solution for A(nq + 1,np − 1).

Returning to the last equation, F (0,4) = 0, the general form (6.18) stipu-
lates that the second term will then not be present (since for example nq−1 =
−1). How does the equation look? It turns out that already at the spin 3 level
this equation in terms of eab contains on the order of 103 terms. This might
seem excessive given that there is only one field but recall that it is of fifth

23This corresponds to the solution of (6.15)-(6.16) when m1 = 0 and n1 = 2.
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order and couples to the spin 2 Schouten tensor so in general it contains terms
of the form

D5 e
(4,0)

, f
(0,2)

D3 e
(4,0)

, f 2

(0,2)
D e

(4,0)

D2 f
(0,2)

D e
(4,0)

, D f
(0,2)

D e
(4,0)

, f
(0,2)

D f
(0,2)

e
(4,0)

.
(6.19)

Since the equation F (0,4)µνab = 0 carries two antisymmetric (spacetime form
indices) and two symmetric traceless indices (algebra indices), there will also
be trace terms where the above terms are supplemented by the flat metric ηab.
The above terms are of course tensors, which then have a multitude of possible
index contractions. The slightly more rigorous way of estimating the number
of terms is to look at the representation contents. The first term in (6.19) is
the product

3⊗ 3⊗ 3⊗ 3⊗ 3⊗ (7 + 5 + 3) , (6.20)

where the five 3’s correspond to the covariant derivatives and the field

eµ
ab ∈ 3⊗ 5 = 7⊕ 5⊕ 3 .

After some calculations24 one finds that product (6.20) is

40(1)+105(3)+135(5)+125(7)+90( 9)+50(11)+21(13)+6(15)+17 . (6.21)

The Cotton equation transforms in 3⊗ 5 (two antisymmetric indices and two
symmetric traceless) so naively the possible terms are of the form 7 + 5 + 3
however one of the results of Paper IV is that both the 5 and 3 vanish so that
it transforms only in the 7 dimensional representation. The decomposition in
(6.21) then stipulates around 125 terms of this type. Similar considerations
for the other types of terms brings this number up to the order of 103 terms, in
rough agreement with the explicit expressions obtained through the computer
algebra.

6.4 Computer algebra
The work in Paper IV would not have been possible without the help of com-
puters. This help comes in the form of a tensor algebra system developed in

24Or more conveniently by using a Lie algebra system such as LieART [164]
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parallel with the investigations of paper. It is implemented in Mathematica
which provides a solid foundation for a variety of mathematical problems but
where a general symbolic tensor algebra system is lacking. This is in part
because this is a very complex task with varying requirements depending on
the particular situation. There are however a number of symbolic tensor ma-
nipulation packages available for a number of different platforms such as (in
no particular order) Mathematica (xAct), Maple (GRTensorII) and Maxima
(itensor) together with the more low level libraries for Python (Sympy), C++
(Redberry) as well as stand alone applications (Cadabra). Many of these could
have served equally well as a foundation for the calculations instead of devel-
oping new code, however the specific needs of this project made a custom
solution with an interface to xPerm [163] necessary. xPerm is as the name
suggests a core algorithm in xAct which provides efficient canonicalization of
tensor expressions. The problem of canonicalization is quite general and xPerm
provides a very solid implementation that has become the standard for many
computer algebra systems.

6.4.1 Canonicalization of tensor expressions

One of the main problems of computer based tensor calculation is that of
canonicalization. Essentially this is the question of whether two tensor expres-
sions are equivalent. When working with small rank tensors in expressions
with only a few tensor products this is seldom a problem. As an example lets
look at an expression containing a symmetric tensor Sab and a general tensor
Tab,

SabT
bcScd − ScaSbdT cb .

After staring at this for a while, renaming some dummy indices, raising and
lowering indices, and using the symmetry of Sab one concludes that this expres-
sion is in fact zero. Can this procedure of comparing two terms be formulated
as an algorithm? For smaller expressions such as this one it is often enough to
lexicographically sort the factors, rename and raise/lower dummy indices and
sort the indices using the symmetries. However when the expression is larger
and there are more complicated symmetries involved, this simple procedure
becomes ambiguous.
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One way to solve this problem is to have an algorithm that maps a tensor
expression to a certain canonical form. This should be canonical in the sense
that all equivalent expressions should be mapped to the same form. An in-
structive way to regard this problem is to see the various operations such as
renaming dummy indices and symmetry permutations as transformations in a
“space of expressions”. Equivalent expressions will then lie on the same orbit of
all the allowed operations and the problem is to find a canonical representative
of these orbits.

This is in essence what is solved with the Butler-Portugal algorithm [165]
for tensor canonicalization. An efficient implementation of this algorithm in
C is provided in the package xPerm [163] that has been interfaced through
Mathematica in this work.

6.4.2 Verification

Since the computer algebra system has been developed in parallel during this
work there has been much effort to validate the results. One of the major con-
firmations of the systems validity comes from the solution of the constraints
stemming from the particular gauge choice. The resulting system is overdeter-
mined and provide many non-trivial checks of the consistency of the computer
algebra computations. Another check comes from the fact that the remaining
gauge transformations after a partial gauge fixing can be evaluated either be-
fore or after substituting the cascade fields. On a more basic level, the linear
truncation has been verified to agree with calculations by hand for the full spin
3 system.
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The results of Paper I, among which is that the compactification of free (2,0)
theory on circle fibrations seems to have a unique extension to an interacting
supersymmetric theory, is another step towards the ultimate goal of an ex-
plicit construction of the interacting (2,0) theory in six dimensions. In light of
its strong connections to M-theory and string theory this continues to be an
important challange for the future. There have been many interesting develop-
ments regarding the compactification of (2,0) theory in the last few years. In
direct relation to Paper I there have been some recent devlopments regarding
circle fibrations in the context of (2,0) theory [98, 166–168]. The relationship
to five-dimensional super Yang-Mills continues to be an active area of research
with many recent results [169–173]. In [174] the co-author of Paper I, using
the results of Paper I, investigated a particular example of a singular cir-
cle fibration and solved the equations of motion for the gauge field. It was
shown that the theory couples to additional degrees of freedom living on the
singularity in the form of a Wess-Zumino-Witten model.

Another very interesting direction related to the compactifications in Pa-
per I-Paper III has been the construction of a large class of four-dimensional
theories through compactification of (2,0) theory on a Riemann surface [99].
Through their common origin in six dimension there is a whole web of dualities
between these theories extending S-duality of N = 4 SYM in four dimensions.
Similar to this is the compactification on three-dimensional manifolds, also
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resulting in a number of dualities [175–177]. Investigating these dualities in
terms of the tensor multiplet using similar techniques as in Paper I is also a
possible future direction.

In Paper II-Paper III the twisting, and subsequent compactification, of
(2,0) theory on spacetimes of the form C ×M4 was carried out. The result is
a compact formulation of the four-dimensional topological theory that makes
use of the Q-cohomology structure.

This geometric setup is particularly interesting since it relates to the con-
jectured AGT correspondance [102]. It would be very interesting to continue
in this direction to see if it is possible for the free tensor multiplet to say
anything about the correspondance. One possible way forward would be to in-
clude higher excitations from the two-dimensional manifold so that an explicit
calculation of observables on both sides would be possible.

The topological twisting of (2,0) theory also continues to be a useful tool
with recent results including [101, 178, 179] and [180] which also has strong
connections to Paper I. Another very interesting development that lies outside
the scope of this thesis is the conformal bootstrap of (2,0) theory, which has
provided many new concrete results using completely different methods [72].

In Paper IV the focus is shifted towards theories of higher spin. Using
a tensor algebra system developed for these purposes the non-linear Cotton
equation for the coupled spin 2 - spin 3 system has been analyzed in the
context of conformal higher spin in three dimensions in the Poisson algebra
formulation. To reach this point the full non-linear spin 3 system was solved
in the frame field formulation.

By gauging the analogue of Lorentz transformations for the spin 3 frame
field the resulting Cotton equation is shown to correspond at the linear level
to previous results in three dimensional higher spin. Here these solutions arise
naturally from the Chern-Simons based formulation, paving the way for a more
fundamental description of the conformal higher spin system.

At the non-linear level the equations and solutions are complicated, on the
order of 103 terms for the spin 3 system, making manual computation very
difficult. Despite this complexity, several key symmetry properties of the non-
linear Cotton equation has been verified using the computer algebra system.

To make contact with the next spin level the linearised analysis has been
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extended to spin 4 and makes it plausible that a similar non-linear analysis
can be carried out in the future.

The explicit and highly constrained structure of the theory makes it an
excellent target for future investigations of higher spin systems. Some imme-
diate questions consists of a more compact description of the spin 3 system and
an extension to higher spin levels. One possible direction here is to solve the
system before gauging, thereby hopefully making the process more amenable
to a more algorithmic solution suitable for the computer algebra system. An-
other direction is to include higher order contributions from the higher spin
star-product algebra.

A more long term goal is the coupling of the pure higher spin system
to matter which facilitates solutions connecting to the other known higher
spin theories in three dimensions. This could give some new insight into the
structure of higher spin theories on AdS background and possibly shed some
light on the structure of the higher order vertices currently being investigated
using the HS/CFT duality [121].

In all these investigations, both for (2,0) theory and higher spin, computer
aided calculations have been an indispensible tool. In particular for Paper
IV, the results would not have been feasible to obtain by hand.

7.1 Final remarks

In light of their position on the frontier of high energy physics, the importance
of (2,0) theory and higher spin cannot be overstated. A proper understanding
of the former will be crucial in the quest for M-theory, the mysterious theory
that seems to underlie all the different formulations of string theory. Also
higher spin seems to hold many important keys to unlock the secrets of the
high energy limit of string theory. Furthermore, they have provided important
evidence for holographic dualities and seems to indicate an even richer struc-
ture than previously imagined. Through holographic duality (2,0) theory and
higher spin finally meet. Although the details of this encounter is out of reach
for the moment, it is a tantalising future prospect.

It is clear that (2,0) theory and higher spin continue to provide very chal-
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lenging and important questions for the future. By twisting, turning and
spinning, some aspects of their elusive dance has been uncovered in this thesis.
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