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Impact of 4D Channel Distribution on the
Achievable Rates in Coherent Optical

Communication Experiments
Tobias A. Eriksson, Tobias Fehenberger, Peter A. Andrekson, Magnus Karlsson, Norbert Hanik, and Erik Agrell

Abstract—We experimentally investigate mutual information
and generalized mutual information for coherent optical trans-
mission systems. The impact of the assumed channel distribution
on the achievable rate is investigated for distributions in up
to four dimensions. Single channel and wavelength division
multiplexing (WDM) transmission over transmission links with
and without inline dispersion compensation are studied. We
show that for conventional WDM systems without inline dis-
persion compensation, a circularly symmetric complex Gaussian
distribution is a good approximation of the channel. For other
channels, such as with inline dispersion compensation, this is
no longer true and gains in the achievable information rate
are obtained by considering more sophisticated four-dimensional
(4D) distributions. We also show that for nonlinear channels,
gains in the achievable information rate can also be achieved by
estimating the mean values of the received constellation in four
dimensions. The highest gain for such channels is seen for a 4D
correlated Gaussian distribution.

Index Terms—Channel models, Digital communication, Fiber
nonlinear optics, Mutual Information, Optical fiber communica-
tion.

I. INTRODUCTION

COHERENT optical communication systems have largely
been enabled by the use of digital signal processing

(DSP) [1] which is used to mitigate signal distortions such as
laser phase drifts and polarization drifts. This has eased the use
of higher order modulation formats that make use of both the
phase and the amplitude of the optical field. The driving force
to increase the modulation order is the ever-increasing demand
for increased data rates in today’s communication systems [2],
as a higher order modulation format enables transmission with
a higher spectral efficiency (SE).

One of the key technologies in present communication
systems is forward error correction (FEC) coding. The use of
FEC can increase the sensitivity of a communication system
significantly at the cost of lower spectral efficiency, due to
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the overhead from the code, and increased complexity in the
encoding and decoding circuitry. Without the use of FEC,
many higher-order modulation formats such as polarization-
multiplexed 16-ary quadrature amplitude modulation (PM-
16QAM) cannot be transmitted over any significant distance
before the detected data can no longer be considered ”error-
free” (typically defined as bit error rate (BER) < 10−15) [3].
However, using advanced FEC, PM-16QAM can be transmit-
ted over transoceanic distances [4]. The use of advanced FEC
in combination with PM quadrature phase shift keying (PM-
QPSK) has enabled record SE-transmission distance products
[5], [6].

Up until recent years, the FEC codes used in fiber-optic
transmission systems were typically Reed-Solomon (RS) [7]
or Bose-Chaudhuri-Hocquenghem (BCH) codes [8], decoded
using hard-decision (HD) algorithms. This means that the
received constellation is demapped into bits before information
is passed to the decoder. In recent years, the FEC codes
considered for fiber-optic systems are based on soft-decision
(SD) decoding, which means that the soft information from
the received constellation after the receiver DSP is sent to
the decoder. Examples of such codes are low-density parity
check codes (LDPC) [9], polar codes [10], and turbo codes
[11]. These types of codes can achieve significantly higher
sensitivity compared to the HD codes at the cost of higher
complexity. It should be noted that in some cases, concatenated
codes with an inner SD code and an outer HD code are
considered, which is practical if the inner code has an error-
floor above the error-free BER limit.

For HD coding schemes, if the channel seen by the FEC can
be modeled as a binary symmetric channel, the achievable rate
after decoding can be fully determined by the pre-FEC BER
[12]. In other words, estimating the BER from the received
constellation gives a good estimate of the post-FEC BER
and is indeed what is done in most fiber-optic transmission
experiments. The main reason that the FEC decoder is not
implemented in experiments is that the number of samples
needed for good statistics at a post-FEC BER of 10−15 is
infeasible with offline processing. For SD decoders on the
other hand, there exists no such relation between the pre-FEC
BER and the achievable rate. This can be explained by the fact
that an SD decoder does not work on bits as input. For optical
communication systems with SD FEC, it has been shown that
mutual information (MI) is a more reliable measure than the
pre-FEC BER [13]. In [14], it is shown that for an LDPC code
and a turbo-product code (TPC) with bit-wise decoders, the
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Fig. 1: Schematic of a typical fiber optical communication system. Items listed under Tx. DSP and Rx. DSP functions that are
marked with * are not implemented in this work.

generalized mutual information (GMI) gives a good estimate
of the post-FEC BER independently of the modulation format
and optical launch power for a link without inline dispersion
compensation.

Most of the previous work on mutual information as a
figure of merit in fiber-optic communication systems has
been carried out theoretically or with simulations [14]–[20],
or in experiments where the output statistics of the channel
is considered as memoryless with additive Gaussian noise
statistics with the same variance in all dimensions [13], [21]–
[23].

However, the fiber-optic channel is inherently nonlinear,
which when approximated as memoryless white Gaussian
noise means that information is lost. This has been discussed
in several publications [16], [17], [19], [20], [24]. In [25], we
study the impact of different four-dimensional (4D) assump-
tion of the memoryless channel distribution on the achievable
information rate. We show that for single-channel transmission
of 14 Gbaud PM-16QAM in a transmission system with inline
dispersion compensation with high launch powers, significant
gains in the achievable information rate can be achieved
by employing receiver-side models that assume 4D channel
distributions.

In this work we experimentally investigate different esti-
mates of the achievable rate using both MI and GMI. We
compare different models of the channel distribution and
its impact on the achievable rate for different transmission
scenarios. We show that for most realistic scenarios, circularly
symmetric Gaussian noise statistics is a good assumption. We
also show that for some specific links, a higher achievable rate
can be achieved by using more sophisticated channel models,
based on 4D distributions, in the decoder.

II. ACHIEVABLE INFORMATION RATES

Fig. 1 shows a schematic of a typical long-haul point-to-
point fiber optical communication system for which different
estimates of the achievable information rate will be derived in
this section.

A. Mutual Information

We follow the approach of [17], [18], [26] to evaluate a
lower bound estimate on the symbolwise mutual information
(MI) from real d-dimensional symbols that are obtained after
transmission and DSP. Let the channel input X be a d-
dimensional random variable that is drawn from a constellation
X = {s1, . . . , sM} with cardinality |X | = M = 2m with
identical probability. The channel output Y denotes a random
variable that is dependent on X and the channel. The MI
between X and Y is given as

I(X;Y ) = EXY

[
log2

pY |X(Y |X)

pY (Y )

]
, (1)

where pY |X is the conditional memoryless channel transition
rldistribution and pY the channel output density. The MI gives
the highest rate for a specific channel and input distribution at
which reliable communication is possible and cannot exceed
m bits per channel use. In other words, below the MI there
exist codes with the possibility of a post-FEC BER that
approaches 0. As indicated in Fig. 1, the MI is calculated
on a symbol level, i.e., the bit-to-symbol mapping does not
influence the MI.

Note that (1) gives the MI for a memoryless channel. In
reality, a fiber-optic channel exhibits memory, which makes
I(X;Y ) a lower bound on the MI calculated with the channel
input and output as sequences [27, Sec. III-F] [28]. We
also note that considering a finite memory due to nonlinear
effects of the fiber-optic channel can have a large effect
on the achievable information rate [19]. Since most of the
linear memory introduced in the optical fiber channel, such
as dispersion and inter-symbol interference, is compensated
by the DSP, we restrict our analysis to the memoryless MI
for the remainder of this work. The experimental results in
Section IV nevertheless apply to the true fiber-optic channel
with residual memory after DSP.

Using the weak law of large numbers, we can estimate
I(X;Y ) of (1) via Monte-Carlo integration from N input-
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output pairs (xi,yi) [26] as

1

N

N∑
i=1

log2
pY |X(yi|xi)
pY (yi)

p−→ I(X;Y ), (2)

where
p−→ denotes convergence in probability. Eq. (2) implies

that if there is an analytical description of the channel over
which we have transmitted N symbols, an estimate of the MI
is obtained whose accuracy increases with N .

In fiber optical communications, however, the channel tran-
sition distribution pY |X is not known, i.e., Eq. (2) cannot
be evaluated directly. Following [26], it can be shown that a
lower bound on I(X;Y ) is achieved by using mismatched
decoding. The samples at the channel output, after fiber
transmission, are evaluated as if they were transmitted over
an auxiliary channel with transition distribution qY |X instead
of the true yet unknown channel pY |X . Note that qY |X has
the same input and output alphabet as pY |X , i.e., qY (y) =∑
x∈X qY |X(y|x) ·PX(x). Since MI is an achievable rate, a

lower bound on the MI will also be an achievable rate. We
denote this lower bound as R and define it as

I(X;Y ) = EXY

[
log2

pY |X(Y |X)

pY (Y )

]
≥ EXY

[
log2

qY |X(Y |X)

qY (Y )

]
, R. (3)

Throughout this paper, we define R in units of bit per 4D-
symbol (bit/4D-sym). It is apparent that the better qY |X
resembles pY |X , the tighter the bound in (3) will be, and a
higher achievable rate is obtained. Although we do not obtain
the true MI of the channel, the mismatched decoder approach
gives a practical achievable rate since a decoder would also
have to assume a channel. Using the auxiliary channel qY |X ,
a lower bound on MI is estimated in the same fashion as in
(2),

1

N

N∑
i=1

log2
qY |X(yi|xi)
qY (yi)

p−→ R, (4)

where xi and yi, as in (2), are obtained experimentally from
the true channel pY |X .

In this paper, we assume qY |X to be d-dimensional Gaus-
sian distributed,

qY |X(y|sj) =
1

(2π)
d
2 |Σj |

1
2

e−
1
2 (y−µj)

TΣ−1
j (y−µj) (5)

for j = 1, . . . ,M and sj denoting the jth constellation point.
Further, x and y are real d-dimensional column vectors and
|Σj | is the determinant of the covariance matrix Σj . We
discuss in detail in Section II-C how the mean values µj and
the covariances Σj of (5) are obtained. The choices for the
auxiliary channel in this work are presented in Section II-D.

B. Generalized Mutual Information

In addition to MI, we also compare achievable rates using
GMI as a figure of merit. GMI gives an achievable rate for
the bit-wise (BW) decoder [29] and has been shown to be an
accurate estimate of the post-FEC BER for a wide range of
channels, modulation formats, and codes [14], [30]. It should

be noted that, in the same way as for the MI estimates, this is
a mismatched decoder approach. While it gives an practically
achievable rate, it does not give the highest achievable rate
for the BW decoder. However, for decoders applying iterative
demapping and decoding [31], [32], it is yet to be validated
how accurately GMI represents the post-FEC performance.

Assuming uniformly distributed transmitted symbols, the
GMI is estimated as [14]

GMI ≈ m− 1

N

m∑
k=1

N∑
i=1

log2

(
1 + e(−1)

bk,iLLRk,i

)
, (6)

where bk,i is the transmitted bit sequences and LLRk,i is
the log-likelihood ratio with k denoting the bit position and
i denoting the ith received symbol. In analogy to the MI
computation in (3), the calculation of LLRs also requires an
assumption on the underlying channel distribution. In addition
to finding the best-possible matching of the auxiliary channel
and the true channel distribution, an optimization over a non-
negative parameter is in principle required, as discussed in [14,
Sec. III-C]. This optimization is omitted in this work, possibly
resulting in a lower GMI estimate.

For the general case of a d-dimensional Gaussian distribu-
tion as defined in (5), the LLRs are calculated as [14], [33]

LLRk,i = log
qY|Bk

(yi|1)
qY|Bk

(yi|0)
= log

∑
j:sj∈Xk

1

qY|X(yi|sj)∑
j:sj∈Xk

0

qY|X(yi|sj)

= log

∑
j:sj∈Xk

1

1√
(2π)d|Σj |

exp
(
− 1

2 (yi − sj)
TΣ−1j (yi − sj)

)
∑

j:sj∈Xk
0

1√
(2π)d|Σj |

exp
(
− 1

2 (yi − sj)TΣ−1j (yi − sj)
) ,
(7)

where qY |Bk
denotes the probability density function of the

auxiliary channel conditioned on transmitting the kth bit Bk
of X . Further, X k0 and X k1 are the sets of constellations points
where the kth bit equals 0 and 1, respectively. It is important
to note that, as indicated in Fig. 1, the GMI is dependent
on the bit-to-symbol mapping. Throughout this paper, we use
Gray-coded constellations in two dimensions.

C. Parameter Estimation

We can see from (5) that the dimensionality and the choice
of µj and Σj define the Gaussian auxiliary channel and thus,
both MI and GMI. In this work, we differentiate between static
and adaptive mean values. Note for the adaptive case, the mean
values are estimated for a batch of received symbols but kept
constant over this batch. This should be differentiated from a
case where the mean values are tracked over time, which is
not in the scope of this paper. The covariances are taken as
either independent and identically distributed Gaussian (iidG)
or correlated Gaussian (CG).

When static mean values are used, µj is one of the M values
of the input alphabet X , i.e., µj = sj , ∀j. For adaptive mean
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values, we use the conditional sample mean µj for the jth

mean of the multivariate normal distribution,

µj =
1

|Ij |
∑
i∈Ij

yi, (8)

where the index set Ij denotes the indices of all yi’s that
correspond to a sent constellation point xi as Ij = {i ∈
{1, . . . , N} : xi = sj}.

For iid Gaussian auxiliary channels, Σj is a d× d identity
matrix Id multiplied with the average one-dimensional noise
variance,

σ2
1D =

1

d

d∑
l=1

1

N − 1

N∑
i=1

(yi,l − µj,l)2, (9)

where the index l refers to the lth dimension of a d-dimensional
vector. Note that σ2

1D is identical for all j’s, i.e., Σj = σ2
1D ·

Id, ∀j. In the case of correlated Gaussian auxiliary channels,
M Σj’s are calculated, one for each constellation point. The
sample covariance conditioned on the jth constellation point
being sent is then estimated from the received samples y as

Σj =
1

|Ij | − 1

∑
i∈Ij

(yi − µj)T(yi − µj). (10)

The estimates of (8) and (10) have the same dimensionality d
as the auxiliary channel in (5). It is important to note that this
conditional sample covariance means that the noise is not ad-
ditive since Σj varies with the transmitted constellation point
sj . In other words, the channel noise statistic is conditionally
Gaussian.

Throughout this paper, we randomly choose N samples at
the output of the DSP to estimate the parameters of qY |X and
N different samples to calculate the achievable rate. For each
estimated achievable rate, we use four different experimental
batches, from each we take 200000 samples. The final achiev-
able rate is an average over these four batches. This double
Monte Carlo approach ensures that we do not overestimate the
achievable rate by estimating secondary parameters, i.e., the
covariances and the mean values, and our figure of merit, i.e,
the achievable rate, from the same sequence.

D. Channel Models

In this work we consider five different models of qY |X using
the Gaussian distributions that are given in Table I. The 2D-
iidG distribution is considered as a baseline since this is the
most typical assumption made in the literature, i.e., all received
constellation points are assumed to have the same variance
in both dimensions and no adaptation of the mean values
of the received constellation points is applied. We compare
this to 2D-CG which assumes different covariances for each
constellation point and also the center of each received con-
stellation point is estimated. Since a polarization-multiplexed
signal is indeed 4D, and the full 4D-field is required in the
DSP, we investigate two 4D distributions. 4D-iidG assumes
the same variance for all constellation points and in all four
dimensions and 4D-CG estimates a 4D covariance matrix for
each constellation point. Both of the 4D estimates applies

TABLE I: Models of the distribution of qY |X

NAME DESCRIPTION PARAMETERS DOFS§

1D-iidG 1D iid Gaussian noise in
each quadrature and adap-
tive mean values.†

d = 1

µj as per (8)
Σj = σ2

1D · I1

(4+1)·4=
20

2D-iidG 2D iid Gaussian noise in
each polarization with static
mean values.‡

d = 2

µj = sj
Σj = σ2

1D · I2

(0+1)·2=
2

2D-CG 2D correlated Gaussian
(CG) noise and adaptive
mean values.‡

d = 2

µj as per (8)
Σj as per (10)

(16·2+16·
3)·2=160

4D-iidG 4D iid Gaussian noise and
adaptive mean values.

d = 4

µj as per (8)
Σj = σ2

1D · I4

(162 · 4 +
1)=1025

4D-CG 4D CG noise and adaptive
mean values.

d = 4

µj as per (8)
Σj as per (10)

(162 · 4 +
162 ·10) =
3584

§ The calculated number is the total for all four dimensions of PM-16QAM.
† The total R is the sum of the R in all four quadratures.
‡ The total R is the sum of the R in both polarizations.

adaptation of the center points of the received constellations in
4D. As PM-16QAM can be seen as a 1D modulation format,
i.e. 4-ary pulse amplitude modulation in each dimension, we
also include a 1D distribution where we assume the same
variance for each constellation point and estimate the center
of the 1D received constellation points. Shown in Fig. 2
are the received constellations in one polarization with R ≈
7 bit/4D-sym for two different experimental configurations,
namely 20 Gbaud PM-16QAM in (a)–(b) WDM transmission
without inline dispersion compensation and (c)–(d) single-
channel transmission with inline dispersion compensation.
Indicated in Fig. 2 is the 90 % confidence interval of the
variance, calculated from a Chi-square distribution with two
free parameters, as black circles for 2D-iidG and white circles
for 2D-CG. Green circular markers indicate the transmitted
constellation and white square markers the estimated mean
values.

Also listed in Table I are the degrees of freedom (DoFs)
for each distribution considered for the full 4D signal. The
DoFs denote the number of parameters in µj and Σj that are
estimated for each auxiliary channel. The expression in the
last column of Table I denotes the number of estimated mean
values plus the number of covariances, multiplied with 4/d
to get a 4D expression for the DoFs. For 2D-iidG no mean
values are estimated and a single variance is estimated per
two dimensions, yielding total of 2 DoFs in four-dimensions.
The 1D-iiG estimate with adaptive µj’s has 4 mean values
and one variance in each of the 4 four dimensions, resulting
in 5 DoFs per 1D, or 20 DoFs in 4D. The remaining DoFs are
calculated in analogy. Note that for the CG estimates, each Σj

has d(d+ 1)/2 DoFs because Σj is a symmetric matrix. The
number of DoFs is related to the complexity of the receiver.
However, the actual complexity will depend on the specific
type of decoder that is implemented, which is not in the scope
of this paper. To reduce the DoFs, we note that it might be
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(a) 2D-iidG : WDM wo. ILDC (b) 2D-CG : WDM wo. ILDC (c) 2D-iidG : SC w. ILDC (d) 2D-CG : SC w. ILDC

Fig. 2: Measured constellations at R ∼ 7 bit/4D-sym illustrating the difference between 2D-CG and 2D-iiDG estimates showing
(a) 2D-iidG and (b) 2D-CG for WDM transmission of 20 Gbaud PM-16QAM without inline dispersion compensation (ILDC).
Further shown are (c) 2D-iidG (d) 2D-CG for single channel (SC) transmission of 20 Gbaud PM-16QAM with inline dispersion
compensation. Circles and ellipses indicate the 90% confidence interval of the variance for iidG (black) and the covariance for
CG (white) estimates, respectively. The green circular markers shows the transmitted constellation which is also what is used
for fixed mean values. White square markers show mean values estimates as per (8).

possible to exploit symmetries in Σj and µj . However, this
is beyond the scope of this work.

We also investigate GMI considering both 2D and 4D
symbols, denoted as GMI2D and GMI4D, which correspond
to the cases of 2D-iidG and 4D-iidG in Table I, although both
estimates use fixed mean values which is what is assumed
in most conventional bit-wise decoder structures [30]. Thus,
GMI2D has 2 DoFs and GMI4D has 1 DoF. However, in
Section. V, we discuss the impact of using adaptive mean
values for the GMI estimates.

Note that the MI and GMI analysis applies to a discrete-
time channel which in this case starts with the digital-to-analog
converters (DACs), as shown in Fig. 1. Choices that are made
in the transmitter (Tx) on pulse-shaping or dispersion pre-
compensation will have an influence on the achievable rate
since it actually changes the discrete-time channel. The same
goes for the receiver (Rx) side, where the choices of algorithms
will influence the achievable rate. An example that affects the
results significantly is if any nonlinear compensation technique
is used or not. More obvious perhaps is the impact from
choices made on the actual transmission channel such as
amplifier spacing, optical launch power, amplifier technology,
and whether inline dispersion compensation is used or not.

III. EXPERIMENTAL SETUP

The transmitter is shown in Fig. 3a. The electrical driv-
ing signals are generated using a 4-channel arbitrary wave-
form generator (AWG) running at 60 Gs/s, producing either
10 Gbaud or 20 Gbaud PM-16QAM signals with root-raised
cosine (RRC) pulses using a roll-off factor of 0.5. The AWG
drives two IQ modulators that are modulating in total 7
WDM channels using distributed feedback lasers (DFBs) with
∼150 kHz linewidth as sources. For single-channel transmis-
sion, all lasers except the center channel are turned off. The IQ
modulators are modulating the even and odd WDM channels
separately and the signals are decorrelated in the AWG. After
the IQ modulators, the optical signals are combined and sent
to a polarization-multiplexing emulation stage based on split,
delay, and recombination with orthogonal polarization states.

The optical signals are propagated over a recirculating
loop shown in Fig. 3b. The loop consists of two spans of
80 km of conventional single-mode fiber (SMF) amplified
by erbium-doped fiber amplifiers (EDFAs). Before the first
span, a variable band-pass filter (V-BPF) is used to filter out
excessive amplified spontaneous emission (ASE) noise. The
bandwidth of the filter is varied depending on the type of
signal transmitted. Before the second span, a programmable
wavelength-selective switch is used both as V-BPF and, when
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WDM-signals are transmitted, as a gain equalizer. Preceding
both spans are variable optical attenuators (VOAs) that control
the optical launch power. Also in the loop is a polarization
scrambler (pol.-scrambler) that is synchronized to the round-
trip time of the loop and a third EDFA compensates for the loss
of the pol.-scrambler and the loop-switching components. The
recirculating loop can be configured to have either inline dis-
persion compensation using dispersion-compensating modules
(DCMs) based on fiber-Bragg gratings [34] or uncompensated
by simply bypassing the DCMs. The DCMs are placed directly
after the EDFAs that are preceding the fiber spans, as no extra
EDFAs are then needed. It is important to note that the DCMs
themselves inflict no nonlinear distortions [35].

The center channel is detected using a coherent receiver
based on an integrated polarization-diverse optical hybrid with
balanced photo-detectors as depicted in Fig. 4. As local-
oscillator (LO) a DFB laser of the same type as the transmitter
lasers is used. The electrical signals are sampled using a
50 GS/s real-time oscilloscope with 33 GHz bandwidth and
processed using off-line DSP.

A. Digital Signal Processing

The DSP starts with optical front-end compensation fol-
lowed by resampling to 2 samples/symbol. If there is no inline
dispersion compensation, electronic dispersion compensation
(EDC) implemented in the frequency domain is applied. Po-
larization demultiplexing and adaptive equalization are applied
using four FIR filters in a butterfly structure. The filter taps are
initially updated using the constant-modulus algorithm (CMA)
for pre-convergence followed by decision-directed least mean
square (DD-MLS) for final adaptation. The number of taps is
either 17 for 20 Gbaud signals or 25 for 10 Gbaud. Frequency
estimation based on the fast Fourier transform and carrier
phase estimation (CPE) based on blind phase search with 32
test angles [36] are performed within the DD-LMS loop. The
block length of the phase tracking is either 128 for 20 Gbaud
signals or 256 for 10 Gbaud signals.

As mentioned previously, it should be noted that for the
achievable rate estimates, the DSP is part of the channel and
can affect the estimates. The adaptive equalizer and the phase
tracking algorithms assume additive white Gaussian noise
statistics of the noise which, as is explained in the next section,
is not the case for all of the systems investigated. Instead of
using a blind receiver, a pilot-symbol based approach could be
used [37]. This type of receiver poses an interesting question of
the trade-off between pilot overhead and FEC overhead. The
most notable part of the DSP that influences the channel is
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Fig. 5: WDM transmission of 20 Gbaud PM-16QAM with
30 GHz channel separation, without inline dispersion com-
pensation.

the phase tracking. For instance, we note that the block length
of the CPE influences the nonlinear memory of the channel
[38]. Further, we limit ourself to not incorporating digital back
propagation (DBP) in the DSP used in this study. It is known
that DBP can greatly reduce the nonlinear distortions [39] at
the cost of increased complexity. It has been shown that the
achievable rate when DBP is used is dependent on the number
of channels that are considered [40], and that its performance
is dependent on frequency stabilization between the WDM
channels [41]. Although interesting, we leave DBP for a future
study.

IV. EXPERIMENTAL RESULTS

In the following section, the achievable rates for different
link configurations are presented. We investigate single chan-
nel transmission and WDM transmission of 10 Gbaud and
20 Gbaud PM-16QAM with and without inline dispersion
compensation.

A. WDM transmission of 20 Gbaud PM-16QAM, no inline
dispersion compensation

In recent times, the majority of the fiber optical communica-
tion experiments reported are over transmission links without
inline dispersion compensation. The main reason for this is
that by accumulating the dispersion, in general the nonlinear
impairments have less impact on the achievable transmission
distances. Shown in Fig. 5 is the achievable rate using the
different estimates as a function of transmission distance for
different launch powers for WDM transmission of 20 Gbaud
PM-16QAM with 30 GHz channel spacing. The main finding
here is that the different assumptions on the distributions of
the achievable rate estimates have a negligible difference at the
optimal launch power of −3 dBm. This is also true for lower
launch power and slightly higher launch power. It is only in
the extreme case of 1 dBm and 3 dBm launch power that
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Fig. 6: WDM transmission of 20 Gbaud PM-16QAM with
30 GHz channel separation, with inline dispersion compensa-
tion.

significant difference between the estimates can be observed.
At 1280 km and 3 dBm launch power 2D-GMI, 4D-GMI, 1D-
iddG, and 2D-iidG give roughly the same achievable rate. 2D-
CG and 4D-iidG see a small gain over 2D-iidG and the highest
gain is seen by 4D-CG which has 0.13 bit/4D-symb higher
achievable rate than the lowest cases. However, note that this
is an unrealistically high launch power as the transmission
distance is only 30 % of that achieved with the optimal
power. We may thus conclude that for WDM transmission
links without inline dispersion compensation, the memoryless
noise statistics is iid Gaussian and a decoder working in
2D-iidG or even 1D-iidG should achieve as high rate as a
receiver working with the more complex noise statistics. This
is in good agreement with [25] where we showed that the
memoryless 2D-iidG channel distribution assumption is valid
for 28 Gbaud PM-QPSK and polarization-switched QPSK in
(WDM) transmission without inline dispersion compensation.

B. WDM transmission of 20 Gbaud PM-16QAM, with inline
dispersion compensation

Fig. 6 shows WDM transmission of 20 Gbaud PM-16QAM
signals with a channel spacing of 30 GHz. For this case, inline
dispersion compensation is used. Note that for clarity purpose,
the results for −7 dBm have been removed as this curve
is similar to that of −5 dBm. We note that for the optimal
launch power of −5dBm, the achievable transmission distance
is severely reduced for this scenario compared to the previous
case without inline dispersion compensation. Compared to the
non-dispersion managed link with the same WDM signals, at
an achievable rate of 7 bit/4D-sym, the transmission distance
is roughly halved. We note that for very low launch powers,
where nonlinear distortions can be neglected, there is no
apparent difference between any of the estimates. However,
for the optimal launch power there is a gain in the achievable
rate by considering more sophisticated distributions. For this
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Fig. 7: Single channel transmission of 20 Gbaud PM-16QAM
without inline dispersion compensation.

launch power, the difference between 2D-GMI, 4D-GMI, 1D-
iidG, and 2D-iidG is insignificant. However, 4D-iidG and 2D-
CG see a small gain, for instance at a distance of 1760 km
the achievable rate is roughly 0.08 bit/4D-sym higher than
the previously mentioned estimates. The largest gain is seen
by 4-CG which has a 0.16 bit/4D-sym higher achievable
rate compared to the lowest estimates. As the launch power
increases, the gain seen by the 4D-CG estimate increases.

C. Single-channel transmission of 20 Gbaud PM-16QAM,
without inline dispersion compensation

Shown in Fig. 7 are the achievable rates for all estimates
as a function of transmission distance for different launch
power for single-channel 20 Gbaud PM-16QAM without inline
dispersion compensation. We notice that compared to the
WDM case for the same link, the optimal launch power
is increased by 2 dB. For low launch powers, there is no
distinctive difference between the different estimates. In the
same way as for the WDM case without inline dispersion
compensation, for the highest launch powers, a difference
can be observed. However, in this case the difference is
significant already for launch powers that are close to the
optimal and even for the optimal launch power a small gain
can be observed for the 4D-CG estimate.

This means that for a single-channel system, even without
inline dispersion compensation, the noise statistics are no
longer iid Gaussian, especially for launch powers higher than
the optimal. However, since at the optimal launch power the
difference in achievable rate for the 4D-CG estimate and the
2D-iidG is less than 0.02 bit/4D-sym at 4000 km, it can
be argued that even for this scenario, assuming iid Gaussian
statistics of the channel transition distribution is a reasonable
trade-off between achievable rate and complexity.
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Fig. 8: Single channel transmission of 20 Gbaud PM-16QAM
with inline dispersion compensation.

D. Single-channel transmission of 20 Gbaud PM-16QAM,
with inline dispersion compensation

Presented in Fig. 8 is the achievable rate for single-channel
20 Gbaud PM-16QAM with inline dispersion compensation.
Note that the results for −7 dBm launch power has been
omitted for clarity. The optimal launch power is −5 dBm,
which is the same as for the WDM transmission over the same
link. Compared to the single-channel transmission of 20 Gbaud
PM-16QAM without inline dispersion compensation, we note
that the optimal launch power is 4 dB lower. We also note that
for this link, there is a big difference between the different
estimates at the optimal launch power. At 2400 km, the
4D-CG estimate has a gain in achievable rate of roughly
0.13 bit/4D-sym over 2D-iidG. Further, 4D-iidG and 2D-CG
see an intermediate gain of 0.07 bit/4D-sym and 0.06 bit/4D-
sym, respectively. For this link, the noise statistics are not iid
Gaussian except for low launch powers. For the optimal launch
power, compared at an achievable rate of 7 bit/4D-symb, 5%
increased transmission distance can be achieved by assuming
4D-CG instead of 2D-iidG statistics.

E. WDM transmission of 10 Gbaud PM-16QAM, without
inline dispersion compensation

In this part, the symbol rate is decreased to 10 Gbaud, while
the SE is kept constant by changing the channel spacing to
15 GHz. Shown in Fig. 9 is the achievable rate as a function
of transmission distance in this case and for the link without
inline dispersion compensation. For the optimal launch power
of −7 dBm we note, opposed to the 20 Gbaud scenario over
the same link, that a difference can be observed between the
different estimates. At 4000 km, 2D-CG and 4D-iidG see a
gain of roughly 0.03 bit/4D-sym over 2D-iidG. 4D-CG sees
the largest gain of 0.04 bit/4D-sym. While these gains are
not large, we however note that even if the WDM link is
without inline dispersion compensation, if the symbol rate is
low enough, the memoryless statistic of the received signal is
not perfectly described by 2D-iidG distributions.
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Fig. 9: WDM transmission of 10 Gbaud PM-16QAM with
15 GHz channel separation, without dispersion compensation.
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Fig. 10: WDM transmission of 10 Gbaud PM-16QAM with
15 GHz channel separation, with inline dispersion compensa-
tion.

F. WDM transmission of 10 Gbaud PM-16QAM, with inline
dispersion compensation

Depicted in Fig. 10 is the achievable rate for WDM trans-
mission with 15 GHz channel spacing for 10 Gbaud PM-
16QAM with inline dispersion compensation. Some measured
launch powers are not plotted for clarity reasons. Note that
this case has the same SE as the 20 Gbaud case with 30 GHz
channel spacing (Fig. 6). For the optimal launch power there is
a clear difference between the different estimates. At 1760 km,
2D-CG sees a gain of 0.07 bit/4D-sym and 4D-iidG have
a gain of 0.10 bit/4D-sym. 4D-CG has the largest gain of
0.17 bit/4D-sym.

V. DISCUSSION

First and foremost, we note that for the most realistic
scenario, i.e. 10 or 20 Gbaud WDM transmission without any
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TABLE II: Transmission distance difference in percentage compared to the commonly used
2D-iidG distribution at 7 bit/4D-symb.

System Setup 1D-iidG 2D-CG 4D-iidG 4D-CG 2D-GMI 4D-GMI
WDM 20 Gbaud PM-16QAM, w/o ILDC ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0%
WDM 20 Gbaud PM-16QAM, w ILDC ∼ 0% 1.8% 2.2% 3.9% ∼ 0% ∼ 0%

SC 20 Gbaud PM-16QAM, w/o ILDC† ∼ 0% 0.5% 0.9% 1.6% ∼ 0% ∼ 0%
SC 20 Gbaud PM-16QAM, w ILDC 0.2% 2.5% 2.8% 5.1% ∼ 0% ∼ 0%

WDM 10 Gbaud PM-16QAM, w ILDC ∼ 0% 4.6% 5.9% 11.2% ∼ 0% ∼ 0%
WDM 10 Gbaud PM-16QAM, w/o ILDC ∼ 0% 1.9% 2.3% 2.9% ∼ 0% ∼ 0%
† Measured at 7.35 bit/4D-symb instead of 7.00 bit/4D-symb.
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Fig. 11: Comparison between the achievable rates for two
WDM scenarios with the same SE, namely, 20 Gbaud PM-
16QAM on 30 GHz spacing and 10 Gbaud PM-16QAM on
15 GHz spacing for the link with inline dispersion compensa-
tion.

inline dispersion compensation, it is a good approximation to
assume 2D iid Gaussian noise distributions, which is most
commonly done in decoders. This is true also for single-
channel transmission over links without inline dispersion
compensation. Presented in Table II is the approximate gain
in transmission distance over a 2D-iidG channel distribution
assumption, for the optimal launch power at 7 bit/4D-sym
for all the different transmission scenarios considered in this
paper. We note that for the scenarios considered here, there
is never any significant difference between the 2D-iidG, 2D-
GMI, 4D-GMI, and 1D-iidG channel assumptions.

An interesting comparison is the WDM transmission of
20 Gbaud PM-16QAM with 30 GHz channel separation and
10 Gbaud PM-16QAM with 15 GHz spacing, as these two
cases have the same spectral efficiency. Shown in Fig. 11 are
these two cases for the 2D-iidG, 2D-CG, 4D-iidG, and 4D-
CG estimates at the optimal launch power. We first note that
for the 2D-iidG estimate, the longest transmission distance is
achieved by the 20 Gbaud case for achievable rates below
7.7 bit/4D-symb. We also note that the difference between the
estimates is small in the 20 Gbaud case while for the 10 Gbaud

Transmission Distance [km]

0 500 1000 1500 2000 2500 3000 3500 4000

A
c
h
ie

v
a
b
le

 R
a
te

 [
b
it
s
/4

D
-s

y
m

b
o
l]

6.8

7

7.2

7.4

7.6

7.8

8

2D-iidG

2D-iidG adaptive Mean

WDM | 10 Gbaud PM-16QAM 

w ILDC - opt. LP

WDM | 20 Gbaud PM-16QAM 

w/o ILDC - opt. LP

SC | 20 Gbaud PM-16QAM 

w ILDC - 1 dBm

Fig. 12: Comparison between 2D-iidG estimate with and
without adaptive mean values of the constellation points.

case, a large difference is observed. The 2D-CG and 4D-
iidG estimates for 10 Gbaud see roughly the same achievable
rates as for the 20 Gbaud case. For high achievable rates,
the 10 Gbaud system achieves a longer transmission distance
compared to the 20 Gbaud case for any estimate. This is most
likely due to the fact that the number of channels are kept the
same, i.e. the spectral width that the 10 Gbaud case occupies
is half of that of the 20 Gbaud case. More notably though is
that the 4D-CG estimate for 10 Gbaud achieves the longest
transmission distance for any achievable rate. We conclude
that for the system with inline dispersion compensation, there
seems to be different optimal symbol rates for a fixed SE,
depending on which distribution is assumed in the decoder.
This is a similar finding to that of [42], [43] where it is shown
that the nonlinear interference can be reduced by dividing a
signal into lower symbol rate subcarriers. However, a more
detailed study on several different symbol rates is required to
fully understand this effect. One possible explanation for the
higher achievable rate for the 10 Gbaud case is that all the
estimates in this paper are memoryless and in the 20 Gbaud
case the dispersion increases the nonlinear memory of the
channel more rapidly than in the 10 Gbaud case, hence there
is more loss of information for the 20 Gbaud signal. We also
investigated this for a system without inline compensation and
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Fig. 13: Comparison between 4D-CG with and without adap-
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no such effect is then observed.
The baseline measure in this paper is 2D-iidG with non-

adaptive means of the constellation points. We note that for
a nonlinear channel, some of the gain for the more complex
estimates are indeed from this adaptation and not only due
to the more sophisticated variance estimates. In Fig. 12, 2D-
iidG with fixed means is compared to the same case but with
adaptive means for three different transmission scenarios. We
note that for the optimal launch power for WDM transmission
of 20 Gbaud PM-16QAM without inline dispersion compen-
sation there is no distinctive difference, which is expected as
we saw no significant difference for any estimate for this case
(Fig. 5). For the optimal launch power of WDM transmission
of 10 Gbaud PM-16QAM in the link with inline dispersion
compensation, a small gain in the achievable rate can be
observed. The same is true for the high launch power of 1 dBm
for single-channel transmission of 20 Gbaud PM-16QAM over
the same link.

In Fig. 13 we compare the best performing estimate, 4D-
CG, with and without adaptive mean values of the received
constellation points for the same cases as for 2D-iidG in
Fig. 12. We also added 4D-iidG with adaptive means in this
comparison. Again, there is no difference for the WDM trans-
mission without inline dispersion compensation. However, for
the two cases with inline dispersion compensation we can
indeed conclude that some of the gain for this format comes
from the adaptation of the constellation points. However, if we
compare to the 4D-iidG with adaptive means, where each 4D-
constellation point is considered to have the same variance
in all dimensions, we can see that the achievable rate is
considerable lower than the 4D-CG case without adaptive
means. Hence, we can draw the conclusions that the gain seen
for the 4D estimates is dependent on both the fact that the
means are adapted in a 4D space and on the 4D estimates of
the variances.

Another interesting comparison regarding the adaptive mean
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Fig. 14: Achievable rates for 4D and 2D GMI, with and
without adaptive mean values of the received constellation.

of the received constellation points concerns the GMI esti-
mates. In this paper we have compared different MI estimates
to 2D and 4D GMI estimates, where we use a fixed received
constellation. The reason for this is that it corresponds to the
most conventional decoder structures. However, in Fig. 14
we compare the 2D and 4D GMI estimates to the case
where we allow adaptive estimation of the received con-
stellation points for WDM transmission of 20 Gbaud PM-
16QAM without inline dispersion compensation at the optimal
launch power, WDM transmission of 10 Gbaud PM-16QAM
with inline dispersion compensation at the optimal launch
power, and single-channel transmission of 20 Gbaud PM-
16QAM at a higher-than-optimal launch power of −1 dBm.
For WDM transmission of 20 Gbaud PM-16QAM without
inline dispersion compensation, no difference is seen between
the compared cases. For the systems without inline dispersion
compensation with either 10 Gbaud WDM transmission or
20 Gbaud single-channel transmission, we note that there is
no significant difference between 2D and 4D GMI without
adaptive mean values. However, the 4D-GMI estimate with
adaptive mean values sees a clear gain over the other GMI
estimates for these two cases. We also note that the 2D-GMI
with adaptive means sees an intermediate gain between not
estimating the mean values and estimating the mean values
in four dimensions. At 2400 km, 4D-GMI with adaptive
means sees a gain of 0.13 bit/4D-sym over 2D-GMI without
adaptive means. This shows that for the bit-wise decoder, for
certain transmission systems such as the WDM transmission
of 10 Gbaud PM-16QAM over transmission link with inline
dispersion compensation, there are possible gains by designing
decoders that can estimate the mean values of the received
constellation points in four dimensions. We note that this
should be a minor tweak to existing 4D decoders [30], [44].
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VI. CONCLUSIONS

We have experimentally investigated the achievable rate
using GMI and MI with different assumptions on the channel
distribution for single-channel and WDM transmission of
10 Gbaud and 20 Gbaud PM-16QAM signals for transmission
links with and without inline dispersion compensation. We
have shown that for most practical scenarios, assuming that
the transmission channel has independent and identically dis-
tributed Gaussian distribution of the noise in each dimension is
a good approximation. In other words, for a practical system,
decoders that are assuming fixed constellation means and the
same variance for all constellation points have no significant
penalty over decoders using more sophisticated distributions.
However, for systems with inline dispersion compensation, we
show that there is gain in using 4D distributions, most notably
using 4D correlated Gaussian distributions with adaptive mean
values which shows a small but significant gain even at the
optimal launch power. We also show that for all cases, the dif-
ference between GMI and MI estimates using 2D-iidG or 1D-
iidG distributions is negligible. For the more extreme cases, for
instance single-channel transmission with high launch powers,
the assumption that the channel is Gaussian with the same
variance in each dimension is no longer valid and large gains
are seen by assuming 4D correlated Gaussian distributions.
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