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Resonant second-harmonic generation in a ballistic graphene transistor with an ac-driven gate
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We report a theoretical study of time-dependent transport in a ballistic graphene field effect transistor. We
develop a model based on Floquet theory describing Dirac electron transmission through a harmonically driven
potential barrier. Photon-assisted tunneling results in excitation of quasibound states at the barrier. Under
resonance conditions, the excitation of the quasibound states leads to promotion of higher-order sidebands
and, in particular, an enhanced second harmonic of the source-drain conductance. The resonances in the main
transmission channel are of the Fano form, while they are of the Breit-Wigner form for sidebands. For weak
ac drive strength Z1, the dynamic Stark shift scales as Z4

1 , while the resonance broadens as Z2
1 . We discuss the

possibility of utilizing the resonances in prospective ballistic high-frequency devices, in particular frequency
doublers operating at high frequencies and low temperatures.
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I. INTRODUCTION

Already in the early years of graphene research, analog
high-frequency electronics was recognized as a potential niche
for applications [1–4]. Although many devices have probably
been limited by parasitics due to problems with developing
good recipes for making graphene transistors, the current speed
record [5] is already a cutoff frequency of over 400 GHz. At
the same time, we have seen a rapid improvement of graphene
material quality. Mobilities reaching 105 cm2/V s at room
temperature and larger than 106 cm2/V s at low temperature
have been achieved [4]. Promising paths towards improved
mobility include encapsulation of graphene between layers of
other two-dimensional (2D) crystals, notably hexagonal boron
nitride, or suspension of graphene between contacts. Using the
latter approach, ultrahigh-quality p-n junctions were recently
made [6]. Fabry-Perot resonances at zero magnetic field were
measured, and so-called snake states were possible to see
at small magnetic fields of order 20 mT. With such rapid
improvements of device quality, it has become increasingly
important to study in detail ballistic high-frequency devices.

One of the key ideas behind using 2D materials for
high-frequency electronics is the favorable scaling towards
short gate lengths without so-called short-channel effects [1].
Thin channels (2D is the extreme) allow for short gates, high
speed, and high-density integration. High speed, reaching THz
frequencies [7], is the ultimate goal. Another advantage of
graphene is the possibility of tuning the electron density, for
instance by means of a back gate: the Fermi energy can be
tuned from the electron to the hole band (through the so-called
Dirac point at charge neutrality). Such ambipolarity is very
advantageous, in that both n-type and p-type devices can in
principle be made at will across a single wafer.

A challenge is to capitalize on the unique properties of
graphene and derive device functionality directly from the
fact that electrons in graphene behave like massless Dirac
particles with linear spectrum and a pseudospin degree of
freedom. Several works in this direction show indeed that
ac transport in graphene is a rich subject. Studies include
quantum pumping [8–12], nonlinear electromagnetic response
[13–18], and photon-assisted tunneling phenomena [19–25].
In theoretical investigations for low doping (Fermi energy
EF close to the Dirac point) and high frequencies �, with

EF and � of comparable magnitude (we put � = 1), a
true quantum mechanical description becomes necessary. For
time-dependent transport in two-dimensional electron gases
(2DEGs) in semiconducting heterostructures, displaying a
quadratic dispersion relation, photon-assisted tunneling in
time-harmonic potentials is described well within a Floquet
theory framework and have been investigated for a long
time [26–29]. Here, we study theoretically a ballistic field
effect transistor with a harmonic drive applied to the top
gate, see Fig. 1(a), within a Floquet theory applicable to
graphene. The harmonic drive of frequency � supports
inelastic scattering from the Fermi energy EF , to sideband
energies En = EF + n�, where n is an integer. Near charge
neutrality, on the scale of the drive frequency, the barrier
is close to transparent due to Klein tunneling. At the same
time, a quasibound state on the barrier can be inelastically
excited through a resonant process (supported by the harmonic
drive) that interferes with direct elastic transmission. This
leads to a Fano resonance in direct transmission, as recently
found numerically [23–25]. Analogous Fano resonances were
earlier studied [26] for few-channel waveguides in 2DEGs with
attractive point scatterers (for a review of Fano resonances in
nanostructures, see Ref. [30]). For graphene, the ambipolar
band structure guarantees the existence of a bound state
and resonances for both attractive and repulsive scatterers of
arbitrary strength [see Eq. (B9) in Appendix B]. In this paper,
we show that higher-order sidebands are resonantly enhanced
simultaneously as the Fano resonance in direct transmission
develops. This leads to the possibility of building a frequency
doubler based on a ballistic graphene device that we study in
detail.

The paper is organized as follows. In Sec. II we specify
the model assumptions and outline the main steps in the
calculation. In Sec. III we present results for the electron
transmission functions for inelastic scattering at the barrier
from incidence energies E to outgoing sideband energies En.
We also analyze in detail the above mentioned resonances. In
Sec. IV we present results for the dc and ac conductances,
with a focus on the second ac harmonic that can be resonantly
enhanced. In Sec. V we discuss in detail the dynamic Stark
shift (resonance shift) and how it scales with the drive strength.
In Sec. VI we summarize the paper. Finally, the appendices
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FIG. 1. (a) A graphene field effect transistor, where the overall
doping level is controlled by a back gate (BG), and the source
(S)–drain (D) current is controlled by the top gate (TG) dc and ac
signals. (b) The harmonic ac signal of frequency � leads to inelastic
scattering that under resonance conditions excites an otherwise
unoccupied bound state in the top gate barrier potential at energy
Eb. This leads to a Fano resonance in the transmission to E0 due
to interference between processes (1) and (2) and a Breit-Wigner
resonance in the transmission to E2 [process (4)]. Process (4) leads
to higher-harmonic generation, in particular the 2� harmonic.

contain all details of the derivation outlined in Sec. II and all
formulas used to obtain the results in Secs. III and IV.

II. MODEL

We are interested in the intrinsic properties of the graphene
transistor in Fig. 1(a), and neglect parasitics. This allows us to
make a minimal model in terms of a Dirac Hamiltonian

H = −iσx∇x + σyky + [Z0 + Z1 cos(�t)]δ(x), (1)

where we have set the Fermi velocity in graphene equal to
unity, vF = 1. The Pauli matrices are as usual denoted σx and
σy . The top gate barrier potential is considered smooth on the
atomic scale and cannot induce scattering between the two
valleys in the band structure. In the end all observables will
contain an extra factor of 2 to account for valley degeneracy,
in addition to spin degeneracy. At the same time, on the Dirac
length scale (given by �vF /EF after reinstating � and vF ),
we consider the potential width D to be small but its height
V to be large, such that we can take the limits D → 0 and
V → ∞ keeping the product V D = Z constant. The strengths
of the time-independent component Z0 and the time-dependent
component Z1 can be different. The δ function in Eq. (1) is
therefore smooth on the atomic scale but sharp on the Dirac
length scale. We consider the barrier to be translationally
invariant along the transverse direction, which guarantees that
the corresponding wave vector component ky is conserved.
The spatial dependence then enters through the coordinate x

perpendicular to the barrier. We assume homogeneous doping

of the graphene sheet tuned by the back gate and that source
and drain contacts are sufficiently far away from the barrier
that evanescent waves from the contacts can be neglected; i.e.,
we avoid in this paper the so-called pseudodiffusive limit [31].

The methodology to solve the problem at hand is to first
solve the scattering problem for the wave functions satisfying
the Dirac equation

Hψ(x,ky,t) = i∂tψ(x,ky,t). (2)

The solution can be collected into a unitary scattering matrix
for reflection and transmission coefficients between incoming
waves at energy E and scattered waves at energies En =
E + n�. For the current, the Landauer-Büttiker approach [32]
is used to compute the current operator in terms of creation
and annihilation operators for incoming and scattered waves,
where the latter are related to the former through the scattering
matrix. A statistical average is performed to obtain the time-
dependent current that depends on the occupation factors of the
source and drain leads, which are given by the Fermi function
with chemical potentials shifted by the applied source-drain
voltage eV . Below, we shall give results for the conductance
in linear response to the applied source-drain voltage at zero
temperature.

For the scattering problem, since the Hamiltonian is
periodic in time, we use a general Floquet ansatz

ψ(x,ky,t) =
∑

n

ψn(x,ky,E) exp(−iEnt). (3)

When plugged into Eq. (2) it yields a set of coupled differ-
ential equations for the (formally infinitely many) sideband
amplitudes ψn(x,ky,E). In the following we do not write
the arguments x, ky , and E in order to keep the notation
compact. The sideband amplitudes can be arranged into a
vector � = [. . . ,ψ−1,ψ0,ψ1, . . . ]T , which then satisfies

∇x� = M̌td�, (4)

where

M̌td = [kyσz + iEnσx − iZ0σxδ(x)] ⊗ 1̌ − i
Z1

2
δ(x)σx ⊗ 2̌.

(5)
Here, M̌td is a tridiagonal matrix in sideband space with
(1̌)nm = δnm and (2̌)nm = δn,m+1 + δn,m−1. After integration
over x = 0 we obtain a boundary condition

�(x = 0−) = exp

[
iZ0σx ⊗ 1̌ + i

Z1

2
σx ⊗ 2̌

]
�(x = 0+)

≡ M̌�(x = 0+). (6)

This boundary condition can also be derived by solving a
square barrier problem first, and in the end let D → 0 and V →
∞ keeping the product V D = Z constant; see also Ref. [33].
This boundary condition gives an elegant view of scattering
off a potential in graphene in terms of pseudospin rotation.
For instance, the static barrier leads to a rotation around the
pseudospin x axis by an angle −2Z0. If the pseudospin is
aligned with σx , i.e., electron propagation along the x axis
with perpendicular incidence, the rotation has no effect (Klein
tunneling [34]). For other angles, transmission is nonperfect.
The formulas for the transmission amplitudes tn(ky,E) derived
from Eq. (6) are given in Eq. (B14).
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FIG. 2. Energy and incidence angle dependence of transmission
probabilities for (a) elastic scattering T0(E,ϕ) and (b) inelastic
scattering between energy E and E + 2�, T2(E,ϕ). The black regions
to the left of the white dashed lines in (b) are regions where the
second-sideband wave functions are evanescent waves decaying away
from the barrier. The barrier strengths are Z0 = 0.4π and Z1 = 0.45.
Inset: Transmission probabilities for fixed ϕ = π/9.

III. TRANSMISSION AMPLITUDES

In Fig. 2 we display the transmission probabilities
Tn(E,ϕ) = |tn(E,ϕ)|2 for n = 0 and n = 2, where Tn(E,ϕ)
denotes incidence on the barrier at energy E and transmission
at sideband energy En, keeping the parallel momentum ky =
|E| sin ϕ conserved (the angle ϕ is measured relative to the
barrier normal). In the main transmission channel T0(E,ϕ),
Klein tunneling is apparent in that the transmission is very
close to unity. Deviation from unity transmission is due to the
static barrier of strength Z0 and finite incidence angle (nonzero
ϕ) and, in addition, scattering to other sidebands with n �= 0.
The transmission probability to the second sideband T2(E,ϕ)
is in general very small. For certain energies there are Fano
resonances [23–25] induced by the time-dependent drive and
a bound state at the barrier, which give rise to a peak-dip
structure dispersing with ϕ, one feature at positive energies and
another one at negative energies. The Fano resonances occur in
a parameter range where the outgoing waves (from the barrier)
at a sideband En are evanescent (below we shall concentrate
on n = ±1, which are the most pronounced resonances in
Fig. 2). This happens when inelastic scattering from E2 =
kx(E)2 + k2

y to E2
n = kx(En)2 + k2

y (with conserved ky) causes
kx(En) to become imaginary. Resonant behavior occurs due
to the existence of a bound state on the barrier at energy
Eb(Z0,ky) = −sgn(Z0)|ky | cos Z0 [cf. Eq. (B9)] that can be
excited by the ac drive (in which case it becomes quasibound).

The Fano resonance at Er = Eb ± � is a quantum mechanical
interference between direct elastic tunneling and a tunneling
process involving excitation to the first sideband (for n = ±1
at Er = Eb ∓ �) and deexcitation back to energy E; see paths
(1) and (2) in the diagram in Fig. 1(b) for the E < 0 case.
On resonance, inelastic tunneling to the second sideband is
enhanced and T±2(E,ϕ) display Breit-Wigner resonance peaks
at Er = Eb ∓ �; see Fig. 2(b). The resonance in T2(E,ϕ) can
be viewed as due to transmission in energy space through
a double barrier structure with barrier heights proportional
to Z1.

To extract more information about the above numerical
results, we proceed with an analytic approximation. We can
expand the boundary condition in Eq. (6) to second order in
the ac drive strength Z1, assuming Z1 � 1,

M̌ ≈ eiZ0σx

[
1̌ + iZ1

2
σx ⊗ 2̌ − Z2

1

8
(2 · 1̌ + 3̌)

]
, (7)

where (3̌)nm = δn,m+2 + δn,m−2 in sideband space. To second
order in Z1, the transmissions to the first two sidebands can
be computed by solving a system of equations for t0, t±1, and
t±2; see Appendix C. We separate two cases: (i) off-resonant
transmission and (ii) on-resonant transmission. For case (i)
off-resonant transmission, the equation system can be inverted
directly and we get (for each ϕ; we suppress the argument ϕ

below for brevity)

t0(E) ≈
[

1 + Z2
1

4
+ Z2

1 t
(0)(E)A0,1(E)t (0)(E1)A1,0(E)

+ t (0)(E)A0,−1(E)t (0)(E−1)A−1,0(E)

]
t (0)(E),

t±1(E) ≈ −Z1t
(0)(E±1)A±1,0(E)t (0)(E), (8)

t±2(E) ≈ Z2
1[t (0)(E±2)A±2,±1(E)t (0)(E±1)A±1,0(E)

− t (0)(E±2)A±2,0(E)]t (0)(E),

where t (0)(En) is the transmission amplitude without ac drive
computed at energy En, and An,m(E) is a transition amplitude
in energy space between energies Em and En, which can be
related to off-diagonal matrix elements (in sideband space)
of the matrix M̌ in Eq. (7). The above expressions make the
inelastic tunneling processes at play explicit, see enumerated
processes in Fig. 1(b). For instance, the expression for t1(E),
read from right to left, has a transparent physical meaning. It
consists of transmission amplitudes at E and E1, separated by
a transition in energy space A1,0, corresponding to absorption
of one quantum �. Consequently, the process is of order Z1.
Direct transmission has corrections to the static transmission
amplitude due to excitation and deexcitation to neighboring
sidebands (processes of order Z2

1), while t2(E) consists of a
direct process of absorbing two quanta, 2�, and a sequential
process involving the first-sideband energy; both are of order
Z2

1. This tells us that the sideband amplitudes are in general
very small when Z1 is small.

The above picture changes for case (ii) on-resonant trans-
mission, for energies near Er = Eb ± � [we shall concentrate
on Eb − � in the following discussion, as in Fig. 1(b)]. In
this case, the equation determining the function t (0)(En,ky) at
energy En = Eb (here n = 1) has to be reconsidered. There is a
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pole in the matrix equation determining the scattering matrix at
this energy for fixed ky , corresponding to formation of a bound
state with evanescent waves decaying away from the barrier.
The bound state is unoccupied (decoupled from reservoirs)
in the absence of the ac drive. For case (ii) on-resonant
transmission, we get for energies δE around the resonance
energy Er

t0(Er + δE) ≈ δE − Z2
1h2(Er )

δE + iZ2
1h1(Er )

t (0)(Eb), (9)

t2(Er + δE) ≈ Z2
1h3(Er )

δE + iZ2
1h1(Er )

t (0)(Eb + 2�), (10)

where hj (Er ) ≡ hj (Er,ky,Z0), j = 1,2,3, are complex-
valued functions that can be read off from Eqs. (C9) and (C10)
[their explicit forms are not important in the discussion below,
except to note that h1(Er ) is purely real]. Note that t1 is not well
defined near resonance (it was eliminated in the calculation)
because it is related to the excitation of the bound state. The
conductance computed below will not get contributions from
this sideband energy [crossed process (3) in Fig. 1(b)]. For
the direct transmission probability T0(Er + δE), neglecting
for a while the second-sideband contribution (setting h2 = 0
above), there is a characteristic Fano resonance form T0(Er +
δE) ∝ (q
/2 + δE)/[δE2 + (
/2)2], where 
 ∝ Z2

1� and q

is of order unity, O[(Z1)0]. This is the blue dotted line
displayed in the inset of Fig. 2(b). Taking into account
tunneling (in energy space) to the second sideband (h2 finite
above) and higher, we obtain the corrected line shape, the
black solid line in the inset of Fig. 2(b). For the probability to
scatter inelastically to the second sideband, we obtain from the
above a Breit-Wigner resonance with the characteristic form
T2(Er + δE) ∝ (
/2)/[δE2 + (
/2)2], which is displayed as
the black dashed line in the inset of Fig. 2(b). Thus, in a
range δE ∝ Z2

1� around Er , the response is highly nonlinear
and higher-order harmonics can be resonantly enhanced, in
particular the second harmonic.

IV. DC AND AC CONDUCTANCES

To quantify the resonant generation of the second harmonic,
we present calculations of the linear conductances Gn, both
the time-averaged component (n = 0) in Fig. 3 and the first
two harmonics (n = 1, 2) in Fig. 4. Note that in the linear
response (small source-drain voltage), the source-drain ac
current I = ∑

n Ine
−in�t , with its harmonics In, naturally

defines ac conductance components Gn; see Appendix D. In
Fig. 3(a) we plot the angle resolved conductance G0(EF ,ϕ),
which reflects the sum over transmission functions, including
the ones displayed in Fig. 2. After angle integration, we obtain
the dc linear conductance; see the solid black line in Fig. 3(b).
Due to the ac drive, the dc conductance contains features not
present in the static case (included as thin green straight lines).
The Fano resonance is clearly visible as a peak-dip feature
in G0(EF ). Thus, it is enough to study the time-averaged
conductance to infer influence of the ac drive.

In Fig. 4 we present the real and imaginary parts of the
first and second harmonics, G1(EF ) and G2(EF ). For small
drive amplitude Z1, the harmonics generally scale as Zn

1 in
perturbation theory and the second harmonic is expected to

G (E F φ,  )0

F

F
4

Ω

(a)

(b)

FIG. 3. Zero-temperature source-drain dc linear conductance in
the presence of ac drive of strength Z1 = 0.45 on the top gate. Upper
panel: Impact angle resolved dc conductance G0(EF ,ϕ). Lower panel:
Angle integrated time-average dc conductance G0(EF ) (black solid
line). The green straight line is G0(EF ) in the static case, Z1 = 0, for
comparison. The dip-peak structures are related to the Fano and Breit-
Wigner resonances in the elastic and inelastic transmission functions.
The static barrier strength is Z0 = 0.4π .

be small. Near resonance, however, it is enhanced to order
unity, O[(Z1)0], within a window of doping ∼Z2

1� around
EF = Er . This results in the second harmonic becoming of the
same magnitude as the first harmonic already for weak driving
(Z1 = 0.45 in the figure). This leads us to the conclusion that
the device can operate as a frequency doubler.

Parameter regimes

Parameter regimes available experimentally will affect the
possibility of measuring frequency doubling. First we discuss
typical gate lengths and drive amplitudes. These two quantities
are connected by the dimensionless parameter Z1 = V1D/�vF

(reinstating � and vF ). For graphene, vF ∼ 106 m/s. For gate
lengths of order 100 nm, we obtain a drive amplitude of V1 ∼
6Z1 meV. For relatively weak driving as considered above,
Z1 ∼ 1, the required drive amplitude is a few meV, which is
reasonable [35]. If the source is weaker, the gate length has to
be increased. Typical gate lengths used in experiments today
are of order 1 μm, which with the help of nanowires have been
brought down to 170 nm [36].

Until today, graphene devices operating at room tem-
perature display frequency doubling in the frequency range
1–10 GHz [36]. Their operating principle is classical, only
relying on the bipolar gate voltage dependence of the dc
conductance [see thin green line in Fig. 3(b)]. With the
Fermi energy at dc operation aligned to the conductance
minimum, for instance by applying a suitable back gate
voltage VBG, an additional ac signal with frequency � on
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FIG. 4. Zero-temperature source-drain linear conductances for sideband currents with n = ±1 and n = ±2 in the presence of an ac drive
of strength Z1 = 0.45 on the top gate. Upper panels: Impact angle resolved average conductances Gn(EF ,ϕ). Lower panels: Angle integrated
real and imaginary parts of average conductances Gn(EF ). The static barrier strength is Z0 = 0.4π .

the top gate (locally modulating the Fermi energy) leads
to a source-drain conductance response at frequency 2�

simply because G(−EF ) = G(EF ). For our proposed device,
on the other hand, the operating principle is based on a
quantum mechanical resonance effect. For weak driving, low
temperature is therefore needed. For Z1 � 1, the resonance
width scales as Z2

1��. To avoid broadening, we must require
small temperature kBT � Z2

1��. For a frequency of order
50 GHz we get T ∼ 2 K for Z1 ∼ 1. For stronger drive, this
constraint is less restrictive. It remains to be experimentally
explored whether also room temperature operation and higher
frequency, 100 GHz to 1 THz, are possible to achieve for

stronger driving in a ballistic device. We note that another
quantum effect, the quantum Hall effect, has been observed at
room temperature in graphene devices [37].

V. DYNAMIC STARK SHIFT

As we have seen above, in the presence of the ac drive,
the barrier-induced bound state is excited and appears as
a quasibound state, which is broadened as well as shifted
in energy with respect to the original bound state. This
dynamic Stark shift can be investigated quantitatively by
computing the determinant of the matrix Ms defined in
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FIG. 5. Dynamic Stark shift as illustrated by plotting det[Ms] as
a function of complex energy E, where the matrix Ms is defined in
Eq. (B16). The points Ezero in the complex energy plane where this
function vanishes coincide with resonances in the Floquet scattering
matrix. (a) Without the ac drive, Z1 = 0, there is a true bound state
and the determinant vanishes at Re[E] = Eb and Im[E] = 0. (b) and
(c) Including the ac drive, Z1 > 0, the minimum moves out into the
complex plane. The dashed lines indicate the position of the bound
state in the absence of the ac drive. The static barrier strength is
Z0 = 0.4π and the impact angle is ϕ = π/9.

Eq. (B16). In the absence of driving, the matrix is diagonal
with the nth matrix element given by D(ky,En); cf. Eq. (B4).
The determinant therefore vanishes, det[Ms] = 0, if one of
the sideband energies equals the bound state energy Eb,
since D(ky,En = Eb) = 0 as explained in Appendix B 2.
Including drive, Z1 > 0, the zeros of the determinant move
into the complex energy plane [26,38], Eb → Ezero, signaling
a quasibound state. The resonance energy Er = Re(Ezero) is
then shifted from Eb. The resonance width can be related to
Im(Ezero). This effect is illustrated in Fig. 5, where we plot
det[Ms] as function of complex energy. In Fig. 6 we plot
the resonance energy shift and the broadening as a function
of drive strength. For weak drive, the shift is proportional
to Z4

1�, while the broadening scales as Z2
1�. For stronger

drive, higher-order contributions lead to a deviation from this
scaling. The resonance shift could be mapped out directly in
an experiment, since the Fermi energy of graphene is tunable
by the back gate.

VI. SUMMARY

In summary, we have investigated time-dependent transport
in a ballistic graphene field effect transistor with ac drive on its
top gate. We find resonances in inelastic scattering to sideband
energies related to excitation of a quasibound state in the top
gate barrier. This leads to substantial resonant enhancement of
the second harmonic of the source-drain conductance, that
could possibly be used in developing a frequency doubler
based on a ballistic device.
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FIG. 6. (a) The dynamic Stark shift scales with the drive strength
as Z4

1 for small Z1. (b) The broadening scales as Z2
1 . The static barrier

strength is Z0 = 0.4π and the impact angle is ϕ = π/9.

APPENDIX A: WAVE SOLUTIONS IN GRAPHENE

1. General solution

We start by introducing general wave solutions in graphene
without time-dependent perturbation. They are known (see,
e.g., Refs. [39,40]) and we write them down here to establish a
coherent notation for subsequent sections. As mentioned in the
main text, we consider only one valley (one K point) described
by the Hamiltonian

H0 = −iσ · ∇, σ = (σx,σy). (A1)

We have to solve the Dirac equation i∂tψ(x,y,t) =
H0ψ(x,y,t), which is done by the standard ansatz

ψ(x,y,t) ∝ eikxxeikyye−iEtψ(kx,ky,E). (A2)

We obtain the following eigenvalues and eigensolutions,

Eλ(kx,ky) = λ

√
k2
x + k2

y, λ = ±1, (A3)

ψλ(kx,ky,E) = 1√
2

(
1

kx+iky

Eλ

)
. (A4)

2. Scattering basis

Note that once we have found the spectrum, Eq. (A3), there
are only two independent parameters labeling eigenstates, e.g.,
(kx,ky) or (ky,E). Since we are going to build a scattering
theory following Büttiker [32,41] the latter choice is natural
because we assume translational invariance along the barrier
(y axis); cf. Eq. (1). In order to introduce the scattering basis we
have to find the group velocity of states propagating along the
x axis (perpendicular to the barrier). Using standard definitions
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we have

u(ky,E) = ∂E

∂kx

= ±v(ky,E),

v(ky,E) = κx(ky,E)

E
, (A5)

κx(ky,E) = sgn(E)
√

E2 − k2
y,

where the upper and lower signs describe particles moving in
the positive and negative directions along x, respectively. Then
we can introduce a scattering basis via

ψ→(x,ky,E) = 1√
2v(ky,E)

(
1

η(ky,E)

)
eiκx (ky ,E)x,

ψ←(x,ky,E) = 1√
2v(ky,E)

(
1

η̄(ky,E)

)
e−iκx (ky ,E)x,

(A6)
η(ky,E) = κx(ky,E) + iky

E
,

η̄(ky,E) = −κx(ky,E) + iky

E
,

where arrows indicate the direction of propagation. The
normalization in Eq. (A6) is chosen such that particles carry
unit probability flux along the x axis, defined as

jx(x,ky,E) = ψ†(x,ky,E)σxψ(x,ky,E). (A7)

This basis is used to find a scattering matrix and build the
scattering field theory below.

APPENDIX B: FLOQUET SCATTERING MATRIX
IN GRAPHENE WITH AC δ POTENTIAL

Let us now discuss the Floquet scattering matrix for
graphene in the presence of an oscillating line scatterer; i.e.,
we consider a system described by [cf. Eq. (1)]

H = H0 + [Z0 + Z1 cos(�t)]δ(x). (B1)

Before discussing the solution associated with the full time-
dependent Hamiltonian, it is instructive to consider the
stationary case, Z1 = 0.

1. Static δ barrier

For a static barrier, scattering is elastic, and it is easy to write
down a scattering ansatz, first assuming incoming particles
from the left,

ψ(x,ky,E) =
{

ψ→(x,ky,E) + r (0)ψ←(x,ky,E), x < 0,

t (0)ψ→(x,ky,E), x > 0.

(B2)

The superscript X(0) indicates functions X computed for a
static barrier. The unknown transmission t (0)(ky,E) and reflec-
tion r (0)(ky,E) coefficients are found through the boundary
condition at x = 0, which reads [cf. Eq. (6)]

ψ(0−,ky,E) = exp[iZ0σx]ψ(0+,ky,E). (B3)

It is straightforward to find a solution to Eq. (B3), but it is
convenient for what follows to write down an equation satisfied

by t (0),

D(ky,E)t (0) = 1,

D(ky,E) = 1

2v(ky,E)

(−η̄(ky,E) 1
)

(B4)

× exp[iZ0σx]

(
1

η(ky,E)

)
.

Using Eq. (A6) we can easily simplify Eq. (B4) and obtain

t (0)(ky,E) = D(ky,E)−1 =
(

cos Z0 + i
sin Z0

v(ky,E)

)−1

. (B5)

Let us introduce an incidence angle ϕ, measured relative to the
barrier normal, via ky = |E| sin ϕ. Equation (B5) can then be
rewritten as

t (0)(ky,E) = cos ϕ

cos ϕ cos Z0 + i sin Z0
. (B6)

2. Barrier-induced bound state

It is well known [42] that poles of the scattering matrix
correspond to bound states. In our case the static δ barrier
induces exactly one bound state as will be shown now. We
equate to zero the denominator of Eq. (B5), giving

κx(ky,E) = −iE tan Z0. (B7)

Equation (B7) is periodic in Z0 and we consider for defi-
niteness −π

2 < Z0 < π
2 . We then impose a condition that the

bound state solution has to be decaying away from the barrier,
which means

κx(ky,E) = i

√
k2
y − E2. (B8)

Collecting the above, the energy of the bound state is given by

Eb = −sgn(Z0)|ky | cos Z0. (B9)

It is interesting to note that the bound state plays no role in dc
transport in our model setup since it is disconnected from the
continuum of propagating waves connecting the contacts. This
circumstance changes as soon as we allow inelastic scattering
on the barrier, when Z1 �= 0.

3. Oscillating δ barrier

In the case when Z1 �= 0 the Hamiltonian, Eq. (B1),
is periodic in time, which enables us to use the Floquet
theorem[27–29] for finding eigenvectors,

ψ(x,ky,t) = e−iEt

+∞∑
n=−∞

e−in�tψn(x,ky,E). (B10)

We organize the (formally infinite) many sideband amplitudes
ψn(x,ky,E) into a column vector

�(x,ky,E) =

⎛
⎜⎜⎜⎜⎜⎝

. . .

ψ−1(x,ky,E)

ψ0(x,ky,E)

ψ1(x,ky,E)

. . .

⎞
⎟⎟⎟⎟⎟⎠, (B11)
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and write down the condition to be satisfied at x = 0 [cf.
Eq. (6)],

�(0−,ky,E) = M̌�(0+,ky,E),

M̌ = exp

[
iZ0σx ⊗ 1̌ + i

Z1

2
σx ⊗ 2̌

]
, (B12)

[1̌]n,m = δn,m, [2̌]n,m = δn,m+1 + δn,m−1.

Since the barrier is active only at x = 0, asymptotic solutions
are still given by a linear combination of the static solutions
in Eq. (A6). The barrier only scatters an incident particle
with quantum numbers (E,ky) into a linear combination of
states with quantum numbers (En,ky). In the end, for our
model, we have to consider only propagating outgoing waves,
En > |ky |, for calculating transport properties. Therefore we
use the following ansatz:

ψn(x,ky,E)

=
{

δn,0ψ→(x,ky,En) + rnψ←(x,ky,En), x < 0,

tnψ→(x,ky,En), x > 0.

(B13)

We can eliminate reflection coefficients rn(ky,E) and find a
system of equations for tn(ky,E) only, which reads∑

m

1

2
√

v(ky,En)v(ky,Em)
(−η̄(ky,En) 1)

×[M̌]nm

(
1

η(ky,Em)

)
tm = δn,0. (B14)

Equation (B14) must be solved numerically, in principle for
infinite number of sidebands. In practice, the number of
sidebands can be limited to n ∈ [−Nc,Nc], where the cutoff
Nc can be estimated by expanding Eq. (B12) and studying the
coupling to sidebands. In this way we find a tolerance measure
ε for the cutoff,

(Z1/2)Nc

[(Nc/2)!]2
< ε. (B15)

With the sideband cutoff, the above system of equations can
be collected into the matrix form

Ms · t = δn,0, (B16)

where Ms is a (2Nc + 1) × (2Nc + 1) matrix, t is a vector
of length 2Nc + 1 with the transmission functions tn(ky,E)
for n ∈ [−Nc,Nc], and δn,0 is a vector of length 2Nc + 1
with elements δn,0. The transmission functions are found by
inverting the matrix Ms.

APPENDIX C: ANALYSIS OF SIDEBAND TRANSMISSION
COEFFICIENTS: FANO AND BREIT-WIGNER

RESONANCES

For Z1 � 1, we expand M̌ up to terms of order O(Z2
1),

and consider five outgoing channels with n = {0, ± 1, ± 2}.
Then we obtain a system of five coupled equations which reads
[omitting the arguments (ky,E) for brevity]

(
1 − Z2

1

4

)
D2t2 + Z1A2,1t1 + Z2

1A2,0t0 = 0,

Z1A1,2t2 +
(

1 − Z2
1

4

)
D1t1 + Z1A1,0t0 + Z2

1A1,−1t−1 = 0,

Z2
1A0,2t2 + Z1A0,1t1 +

(
1 − Z2

1

4

)
D0t0 + Z1A0,−1t−1 + Z2

1A0,−2t−2 = 1, (C1)

Z2
1A−1,1t1 + Z1A−1,0t0 +

(
1 − Z2

1

4

)
D−1t−1 + Z1A−1,−2t−2 = 0,

Z2
1A−2,0t0 + Z1A−2,−1t−1 +

(
1 − Z2

1

4

)
D−2t−2 = 0,

where we have used the following notations:

Dn(ky,E) = D(ky,En),

An,m = (i/2)|n−m|

|n − m|
1

2
√

v(ky,En)v(ky,Em)
(−η̄(ky,En) 1)

× exp[iZ0σx]σ |n−m|
x

(
1

η(ky,Em)

)
, n �= m. (C2)

Note that from Eq. (C2) and Eq. (B4) it is obvious that
D−1

n (ky,E) ≡ t (0)(ky,En) provided the corresponding wave
is propagating, i.e., En > |ky |. On the other hand the new
functions An,m have a meaning of transition matrix between the
sidebands. Now we recall that the presence of a (static) δ barrier

implies the existence of a bound state, see Appendix B 2, which
now can be coupled to the propagating waves via inelastic
scattering. In this case one of the functions Dn(ky,E) vanishes
when En = Eb. This possibility leads to resonances in the
transmission spectrum of the sidebands (see Fig. 7), as will be
discussed in detail below.

1. Off-resonant transmission

We will first consider the rather trivial case of transmission
in different sidebands away from the resonances. In this case
we can straightforwardly estimate orders of magnitude for the
sideband transmission coefficients keeping only contributions
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T (E φ,  )2T (E φ,  )1

T  (E φ,  )-1 T  (E φ,  )-2

(a)

(c) (d)

(b)

FIG. 7. Energy and incidence angle dependence of transmission probabilities for inelastic scattering to the sidebands. The static barrier
strength is Z0 = 0.4π and the ac drive strength is Z1 = 0.45.

O(Z2
1),

t0 = t
(0)
0 + Z2

1τ0,

t±1 = Z1τ±1, (C3)

t±2 = Z2
1τ±2,

where we introduced for convenience t (0)
n (ky,E) ≡ t (0)(ky,En).

Keeping the same order of approximation in Eq. (C1) we can
easily solve it with the following results,

τ0 =
(

1

4
+ t

(0)
0 A0,1

A1,0

D1
+ t

(0)
0 A0,−1

A−1,0

D−1

)
t

(0)
0 ,

τ±1 = −A±1,0

D±1
t

(0)
0 , (C4)

τ±2 =
(

A±2,±1

D±2

A±1,0

D±1
− A±2,0

D±2

)
t

(0)
0 ,

which were also collected into Eq. (8). The transmission
coefficients, Eq. (C3), supplemented by Eq. (C4) have a physi-
cally transparent form if they describe propagating waves, i.e.,
waves with all En > |ky |. In this case we can identify D−1

n =
t (0)
n [see Eq. (B4)] and, reading the resulting expressions from

right to left, we can distinguish the transmission processes
depicted in Fig. 1(b) [except that E1 �= Eb in the process (3),
according to our assumption].

2. Close-to-resonance transmission

Now we will focus on the resonances associated with the
case when the energy of one of the n = ±1 sidebands hits

the bound state, E±1 = Eb, and the corresponding channel
is closed. They are observed as zeros in T±1 and maxima
in T±2, dispersing with the incidence angle ϕ (see Fig. 2).
For definiteness we will consider the resonance condition for
n = 1, but this analysis is straightforward to repeat for n = −1.
The resonance condition reads

D1(ky,Er ) = 0. (C5)

We expand the D1 coefficient in Eq. (C1) around the resonance
energy assuming

E = Eb − � + δE = Er + δE, |δE| � {�,|ky |},

D1(ky,E) ≈ δE

|ky | sin2 Z0
. (C6)

Evaluating all other functions in Eqs. (C1) at E = Er , we solve
the resulting system of equations keeping only terms of order
O(δE,Z2

1). The solution for t0 and t2 reads

t0 = δED2 − Z2
1A1,2A2,1|ky | sin2 Z0

δED0D2 − Z2
1(D2A0,1A1,0 + D0A1,2A2,1)|ky | sin2 Z0

,

(C7)

t2 = Z2
1A2,1A1,0|ky | sin2 Z0

δED0D2 − Z2
1(D2A0,1A1,0 + D0A1,2A2,1)|ky | sin2 Z0

.

(C8)

We note that for |ky | → 0, |t0|2 will be close to unity due to
Klein tunneling [34] and there is no resonance behavior. If
we consider the case when both the main channel n = 0 and
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-1.3 -1.2 -1.1 -1.0 -0.9
E/Ω

0.0

0.2

0.4

0.6

0.8
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T
T
Eq. (C9)
Eq. (C10)

FIG. 8. Energy dependence of transmission probabilities T0 and
T2 for incidence angle ϕ = π/9, Z0 = 0.4π , and Z1 = 0.45. The blue
dotted line is the result for T0 when neglecting scattering to the second
sideband at E2. In this case, the Fano resonance is fully developed
(peak at unit transmission and dip at zero transmission).

the second sideband n = 2 are propagating, then Eqs. (C7)
and (C8) can be rewritten as

t0 = δE − Z2
1A1,2t

(0)
2 A2,1|ky | sin2 Z0

δE − Z2
1

(
t

(0)
0 A0,1A1,0 + A1,2t

(0)
2 A2,1

)|ky | sin2 Z0

t
(0)
0 ,

(C9)

t2 = Z2
1A2,1A1,0t

(0)
0 |ky | sin2 Z0

δE − Z2
1

(
t

(0)
0 A0,1A1,0 + A1,2t

(0)
2 A2,1

)|ky | sin2 Z0

t
(0)
2 ,

(C10)

with the shorthand notation t
(0)
0 = t (0)(Er ) and t

(0)
2 = t (0)(Er +

2�). If we analyze these expressions we can see the following:
(1) if we compute the corresponding transmission proba-

bilities, T0 = |t0|2, and T2 = |t2|2, we clearly see that T0 has a
Fano-type resonance shape, while T2 is of Breit-Wigner type
with the width of the resonances ∝ Z2

1 |ky | sin2 Z0;
(2) exactly at the resonance, δE → 0, both t0 and t2 have

finite values independent of Z1 due to constructive interference
between the first and the second sidebands.

In Fig. 8 we compare the approximate solution we have
found with the exact numerical calculation [see inset of
Fig. 2(b) in the main text]. We clearly see that Eqs. (C9)
and (C10) correctly describe all the essential features of the
transmission probabilities discussed above.

Finally, in a more strict expansion of all functions in
Eq. (C1) to linear order in δE, more cumbersome expressions
are obtained, but the above conclusions will not change, as
also supported by the good agreement between the black and
red lines in Fig. 8.

APPENDIX D: SCATTERING FIELD THEORY
OF AC CURRENT

In this section we briefly describe the method we used
to compute ac electric current. The theory below is valid
as soon as a single-particle approach is justified, i.e., when
particle-particle interactions can be neglected. Without loss of
generality we assume particles incident on the barrier from the

contact α [e.g., the source contact; see Fig. 1(a) in the main
text]. Using the scattering basis, Eq. (A6), found above we
construct a field operator

�̂α(x,y,t) =
∫ +∞

−∞

dky√
2π

eikyy

∫
|E|>|ky |

dE√
2π

×e−iEt [γ̂α,in(ky,E)ψ→(x,ky,E)

+ γ̂α,out(ky,E)ψ←(x,ky,E)] (D1)

in the local coordinate system of the contact, where
γ̂α,in/out(ky,E) are the corresponding annihilation operators for
the incoming/outgoing particles, which satisfy

{γ̂α,in(ky,E),γ̂ †
β,in(k′

y,E
′)} = δα,βδ(ky − k′

y)δ(E − E′),

{γ̂α,in(ky,E),γ̂β,in(k′
y,E

′)} = 0, (D2)

{γ̂ †
α,in(ky,E),γ̂ †

β,in(k′
y,E

′)} = 0.

According to the scattering theory the outgoing operator
γ̂α,out(ky,E) is, via a scattering matrix, related to the incoming
one. For our case of an ac barrier and static contacts this
relation reads

γ̂α,out(ky,E) =
∑

β

∑
n,propag.

Sαβ(ky ; E,En)γ̂β,in(ky,En), (D3)

where we restrict the sum over sidebands to propagating
waves only, which is equivalent to setting the scattering matrix
elements to zero if an incoming/outgoing wave is evanescent.
Then we construct the current operator defined by the standard
expression [41]

Îα(x,t) = e

∫
dy �̂†

α(x,y,t)σx�̂α(x,y,t), (D4)

where e is the electron charge. Note that δ(ky − k′
y) in Eq. (D2)

must be understood in the sense of a Kronecker symbol
meaning that we use Born–von Kármán periodic boundary
conditions in the y direction. This means that there are
correspondences

δ(ky − k′
y) =

∫ +∞

−∞

dy

2π
ei(ky−k′

y )y (D5)

⇔ 1

Ly

∫ Ly

0
dy ei(kn

y −km
y )y = δn,m (D6)

and

2π

Ly

∑
kn
y

⇔
∫ +∞

−∞
dky. (D7)

To obtain an observable quantity Iα(x,t) we compute a
statistical average of Eq. (D4) with the help of

〈γ̂ †
α,in(ky,E)γ̂β,in(ky,E

′)〉 = δα,βδ(E − E′)fα(E), (D8)

where fα(E) is a Fermi-Dirac distribution in the contact α.
The resulting expression has the form

Iα(x,t) =
+∞∑

n=−∞
e−in�t Iα,n(x), Iα,−n(x) = I ∗

α,n(x), (D9)
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where

Iα,n(x) = e

∫ +∞

−∞
dky

∫
|E|>|ky |

dE

{
δn,0fα(E) + η∗(ky,E) + η̄(ky,En)

2
√

v(ky,E)v(ky,En)
e−i[κx (ky ,E)+κx (ky ,En)]xSαα(ky ; En,E)fα(E)

+ η̄∗(ky,E−n) + η(ky,E)

2
√

v(ky,E−n)v(ky,E)
ei[κx (ky ,E−n)+κx (ky ,E)]x[Sαα(ky ; E−n,E)]†fα(E)

+
∑

β

+∞∑
m=−∞

η̄∗(ky,E) + η̄(ky,En)

2
√

v(ky,E)v(ky,En)
ei[κx (ky ,E)−κx (ky ,En)]x[Sαβ(ky ; E,Em)]†Sαβ(ky ; En,Em)fβ(Em)

}
. (D10)

Using unitarity of the scattering matrix [43],∑
α

∑
n

[Sαβ(ky ; En,Em)]†Sαγ (ky ; En,E) = δβ,γ δm,0, (D11)

∑
β

∑
n

Sγβ(ky ; Em,En)[Sαβ(ky ; E,En)]† = δα,γ δm,0, (D12)

we can rewrite Eq. (D10) in the following form:

Iα,n(x) = e

∫ +∞

−∞
dky

∫
|E|>|ky |

dE

{
η∗(ky,E) + η̄(ky,En)

2
√

v(ky,E)v(ky,En)
e−i[κx (ky ,E)+κx (ky ,En)]xSαα(ky ; En,E)fα(E)

+ η̄∗(ky,E−n) + η(ky,E)

2
√

v(ky,E−n)v(ky,E)
ei[κx (ky ,E−n)+κx (ky ,E)]x[Sαα(ky ; E−n,E)]†fα(E) +

∑
β

+∞∑
m=−∞

η̄∗(ky,Em) + η̄(ky,En+m)

2
√

v(ky,Em)v(ky,En+m)

×ei[κx (ky ,Em)−κx (ky ,En+m)]x[Sαβ(ky ; Em,E)]†Sαβ(ky ; En+m,E)[fβ(E) − fα(Em)]

}
. (D13)

In contrast with the usual Büttiker theory [32], one cannot in general neglect the energy dependence of κx(ky,E) and v(ky,Em)
in Eq. (D13), because the Fermi energy EF in graphene can be tuned to the Dirac point. On the other hand, if we keep the first
two terms on the right-hand side of Eq. (D13), we see that the ac current components are formally determined by the full Fermi
sea rather than states close to the Fermi surface only.

APPENDIX E: AC DIFFERENTIAL CONDUCTANCE

In this section we present formulas that we use to compute
ac conductance for different sidebands in the main text. We
assume that our system [see Fig. 1(a)] is at low temperature
and compute a linear differential conductance with respect to
the source-drain bias voltage VS ,

fα(E) = f (E − eVα), − ∂f (E)

∂E
→ δ(E − EF ),

Gn(EF ) = ∂ID,n(x = 0+,VS)

∂VS

∣∣∣∣
VS→0

. (E1)

Note that in principle the current, Eq. (D9), is a function
of coordinate and we choose the point x = 0+ in our

calculations. If we use the results of the previous section we
obtain

Gn(EF ) = e2

h

∫ ∞

−∞
dky

+∞∑
m=−∞

η∗(ky,Em) + η(ky,En+m)

2
√

v(ky,Em)v(ky,En+m)

× t†m(ky,E)tn+m(ky,E)

∣∣∣∣
E=EF

, (E2)

where we have restored Planck’s constant h to obtain the well-
known conductance unit. This formula was used in Fig. 3.
Finally, in Fig. 4 we present more details of the results obtained
with the help of Eq. (E2) for sidebands with n = ±1, ± 2.
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