
Experiences with QuickCheck:
Testing the Hard Stuff and Staying Sane

John Hughes

Chalmers University/Quviq AB, Göteborg, Sweden

Abstract. This is not a typical scientific paper. It does not present
a new method, with careful experiments to evaluate it, and detailed
references to related work. Rather, it recounts some of my experiences
over the last 15 years, working with QuickCheck, and its purpose is as
much to entertain as to inform.
QuickCheck is a random testing tool that Koen Claessen and I invented,
which has since become the testing tool of choice in the Haskell com-
munity. In 2006 I co-founded Quviq, to develop and market an Erlang
version, which we have since applied for a wide variety of customers,
encountering many fascinating testing problems as a result.
This paper introduces Quviq QuickCheck, and in particular the exten-
sions made for testing stateful code, via a toy example in C. It goes on
to describe the largest QuickCheck project to date, which developed ac-
ceptance tests for AUTOSAR C code on behalf of Volvo Cars. Finally
it explains a race detection method that nailed a notorious bug plagu-
ing Klarna, northern Europe’s market leader in invoicing systems for
e-commerce. Together, these examples give a reasonable overview of the
way QuickCheck has been used in industrial practice.

1 Introduction

Here’s an interesting little experiment. Try asking a room full of software devel-
opers, “who really, really loves testing?” Very, very few will raise their hands. For
whatever reason, most developers see testing as more of a chore than a pleasure;
few go to work in the morning raring to write some test cases. And yet, testing
is a vital part of software development! Why should it be so unpopular?

To understand why, imagine writing a suite of unit tests for software with,
say, n different features. Probably you will write 3–4 test cases per feature. This
is perfectly manageable—it’s a linear amount of work. But, we all know you will
not find all of your bugs that way, because some bugs can only be triggered by a
pair of features interacting. Now, you could go on to write test cases for every pair
of features—but this is a quadratic amount of work, which is much less appealing.
And even if you do so, you will still not find all of your bugs—some bugs only
appear when three features interact! Testing for all of these would involve O(n3)
work, which is starting to sound very unappealing indeed—and this is before we
even start to consider race conditions, which by definition involve at least two

#include <stdlib.h>

typedef struct queue

{ int *buf;

int inp , outp , size;

} Queue;

Queue *new(int n)

{ int *buff =

malloc(n*sizeof(int));

Queue q = {buff ,0,0,n};

Queue *qptr =

malloc(sizeof(Queue));

*qptr = q;

return qptr; }

void put(Queue *q, int n)

{ q -> buf[q -> inp] = n;

q -> inp = (q -> inp + 1)

% q -> size; }

int get(Queue *q)

{ int ans = q -> buf[q -> outp];

q -> outp = (q -> outp + 1)

% q -> size;

return ans; }

int size(Queue *q)

{ return (q->inp - q->outp)

% q -> size; }

Fig. 1. A queue ADT, implemented as a circular buffer in C.

features interacting, and even worse, only manifest themselves occasionally even
in test cases that can provoke them in principle!

This is the fundamental problem with testing—you can never be “done”. No
wonder it’s not so popular. What is the answer to this conundrum? Simply this:

DON’T WRITE TESTS!

But of course, we can’t just deliver untested code to users. So the message is
actually more nuanced: don’t write tests—generate them!

This is how I have spent much of my time in recent years, working with a test
case generator called QuickCheck. QuickCheck was first developed in Haskell
by Koen Claessen and myself (Claessen and Hughes, 2000), and has become
the testing tool of choice among Haskell developers. The idea has been widely
emulated—Wikipedia now lists no fewer than 35 reimplementations of the basic
idea, for languages ranging from C to Swift. Thomas Arts and I founded a
company, Quviq, to market an Erlang version in 2006 (Hughes, 2007), and since
then we have made many extensions, and had great fun finding bugs for Ericsson
(Arts, Hughes, Johansson, and Wiger, 2006), Volvo Cars (Arts, Hughes, Norell,
and Svensson, 2015), and many others. In this paper I will sketch what Quviq
QuickCheck does, and tell a few stories of its applications over the years.

2 A Simple Example

Let us begin with a simple example: a queue, implemented as a circular buffer,
in C. The code appears in Figure 1. It declares a struct to represent queues,
containing a pointer to a buffer area holding integers, the indices in the buffer
where the next value should be inserted respectively removed, and the total
size of the buffer. The new function, which creates a queue of size n, allocates
memory for the struct and the buffer, initializes the struct, and returns a pointer
to it. get and put read and write the buffer respectively at the appropriate

index, incrementing the index afterwards modulo the size. Finally, size returns
the number of elements currently in the queue, by taking the difference of the
input and the output indices, modulo the size. The code is straightforward, and
obviously correct—it’s just a simple example to give us something to test.

Quviq QuickCheck provides a mechanism for testing C code directly from
Erlang. In the Erlang shell, we can call

1> eqc_c:start(q).

which compiles q.c (containing the code from Figure 1), and makes the functions
in it callable from Erlang. This is done by parsing the C code to extract the
types and functions it contains, generating a server that calls the C functions on
demand, generating client code in Erlang that passes a function and arguments
to the server and collects the result, and then running the server in a separate
OS process so that buggy C code cannot interfere with the OS process running
QuickCheck. The result is a safe test environment for C functions that might
behave arbitrarily badly.

We can now perform simple tests to verify that the code is working as it
should:

2> Q = q:new (5).

{ptr ,"Queue " ,6696712}

3> q:put(Q,1).

ok

4> q:put(Q,2).

ok

5> q:size(Q).

2

6> q:get(Q).

1

7> q:get(Q).

2

We create a queue with space for 5 elements, binding the pointer returned to Q.
Then we put 1 and 2 into the queue, test size, and take the elements out of the
queue again. All the results are as expected. We can even continue the test:

8> q:get(Q).

100663302

9> q:get(Q).

27452

10> q:get(Q).

6696824

11> q:get(Q).

1

12> q:get(Q).

2

which returns the contents of uninitialized memory, as expected, until we reach
the values 1 and 2 again. We really are running C code, which is just as unsafe as
ever, and the queue implementation does not—and is not intended to—perform
any error checking. If you abuse it by removing elements from an empty queue,
you will get exactly what you deserve.

Testing with QuickCheck

Like much of the code Quviq works with, this example is stateful. We test stateful
systems by generating sequences of calls to the API under test, just like the test
cases that developers write by hand. But we also model the state of the system
abstractly, and define model state transitions for each operation in the API. Using
these state transition functions, we compute the model state at every point in a
test. We define postconditions for each API call, relating the actual result of the
call to the model state—see Figure 2. A test passes if all postconditions hold.

Fig. 2. Adjudging a test based on a state machine model.

Fig. 3. A sample test case for the queue.

While the code we test can be in any programming language (such as C), the
model—the state transition functions, postconditions, etc.—is defined in Erlang.

In this case, we might model the state of the queue by a list of the integers
that should be in it; with this model, a sample test case might appear as in
Figure 3. Here we start with an empty queue (modelled by the empty list []),
each put operation appends an element to the model state, each get operation
removes an element from the state, and get’s postcondition checks that the
actual result (in red) was the first element of the model state before the call.

We will not present all the code of the model here, but to give its flavour, we
present the specification of get:

get_pre(S) -> S#state.ptr /= undefined andalso

S#state.contents /= [].

get_next(S,_Value ,_Args) ->

S#state{contents=tl(S#state.contents)}.

get_post(S,_Args ,Res) -> eq(Res ,hd(S#state.contents)).

Here the model state S is actually an Erlang record (state) with fields ptr

(pointer to the queue), contents (expected list of elements), and size (max-
imum size). get pre is the precondition: get may only be called if the ptr is
defined (i.e. new has been called), and the queue is non-empty. get next is the
state transition function: it replaces the list of elements in the model state by its
tail. get post is the postcondition, which checks that the actual result of get,
Res, is equal to the first element of the expected contents. QuickCheck recognises
these functions by virtue of their names (get followed by a particular suffix),
and uses them to generate and run random tests. The property tested is: if all
operation preconditions hold during a test run, then so do the postconditions.

Tests are run by invoking QuickCheck from the Erlang shell, giving this
property as a parameter. In this case, the tests fail almost immediately:

18> eqc:quickcheck(q_eqc:prop_q ()).

.... Failed! After 5 tests.

[{set ,{var ,1},{call ,q,new ,[1]}} ,

{set ,{var ,2},{call ,q,put ,[{var ,1},1]}} ,

...10 lines of output elided ...

q:new(1) -> {ptr , "Queue", 4003800}

q:put({ptr , "Queue", 4003800} , 1) -> ok

q:get({ptr , "Queue", 4003800}) -> 1

q:put({ptr , "Queue", 4003800} , -1) -> ok

q:put({ptr , "Queue", 4003800} , -1) -> ok

q:put({ptr , "Queue", 4003800} , 0) -> ok

q:get({ptr , "Queue", 4003800}) -> 0

Reason: Post -condition failed: 0 /= -1

After four successful tests (represented by a ‘.’ in the output), QuickCheck
generated a failing example, which appears next in a symbolic form—but in
this paper, we focus on the pretty-printed results that follow it (beginning with
the line q:new(1) ->. . .). These show the calls made and results returned—and
clearly, something is wrong, because the postcondition of the last call failed. 0,
the actual result of the call, was not equal to −1, the expected value.

Like most randomly generated failing tests, this one contains irrelevant calls
as well as those few that actually provoked the failure. So QuickCheck then
shrinks the test case to a simpler one, searching for the smallest similar test that
also fails. In this case,the output continues:

Shrinking xxxx..xx.xx.xxxx.xxx(5 times)

[{set ,{var ,1},{call ,q,new ,[1]}} ,

{set ,{var ,2},{call ,q,put ,[{var ,1},1]}} ,

{set ,{var ,3},{call ,q,put ,[{var ,1},0]}} ,

{set ,{var ,4},{call ,q,get ,[{var ,1}]}}]

q:new(1) -> {ptr , "Queue", 4009248}

q:put({ptr , "Queue", 4009248} , 1) -> ok

q:put({ptr , "Queue", 4009248} , 0) -> ok

q:get({ptr , "Queue", 4009248}) -> 0

Reason: Post -condition failed: 0 /= 1

During shrinking, each ‘.’ represents a smaller test that also failed—progress
towards the minimal failing test—while ‘x’ represents a smaller test that passed.
Shrinking not only removes unnecessary calls from the test case, but also simpli-
fies arguments where possible—in particular, −1 no longer appears in the test.

While randomly generated failing tests vary widely, the result after shrinking
is very consistent—always either the test case above, or this very similar one:

q:new(1) -> {ptr , "Queue", 4027504}

q:put({ptr , "Queue", 4027504} , 0) -> ok

q:put({ptr , "Queue", 4027504} , 1) -> ok

q:get({ptr , "Queue", 4027504}) -> 1

Reason: Post -condition failed: 1 /= 0

Debugging the model

But why does the test above fail? Inspecting the results, we see that first we
create a queue with space for one element, then we put a 0 into it, then we put a
1 into it—and at this point, the queue should contain [0, 1]—then finally we get
the first element, which should be 0, but was actually 1! Clearly this is wrong!

But why did the C code return 1? Tracing through the example, we see
that we allocated a buffer large enough to hold one integer, and then put two
integers into it! Since we implemented a circular buffer, then the second value (1)
overwrites the first (0). This is why get returns 1—the data has been corrupted
by putting too many elements into the queue.

This really is a minimal test case for this error: not only must we perform two
puts and a get, but we must put two different values—otherwise we overwrite a
value with an equal one, and the error is not detectable. This is why the values
put are 0 and 1—one of them is arbitrary, so can shrink to 0, while the other
must be different. The simplest value different from 0 is 1, so this is the value we
see. In retrospect, it was very informative that we did not see two zeroes—this
told us immediately that if we were to put two zeroes, then the test would pass.

So where is the error? Recall that the code is not intended to behave sensibly
when abused—and putting two elements into a queue of size one is surely abuse.
Arguably, there is nothing wrong with the code—this is a bad test. This means
that the fault is not in the implementation, but in the model. Inspecting the
precondition of put in the model we have been using so far, we find

put_pre(S) -> S#state.ptr /= undefined.

This allows tests to call put at any time, as long as the queue pointer is defined.
We should of course only allow calls of put if the queue is not already full:

put_pre(S) -> S#state.ptr /= undefined andalso

length(S#state.contents) < S#state.size.

With this change to the precondition, we can repeat the last failed test, and see

q:new(1) -> {ptr , "Queue", 4027648}

q:put({ptr , "Queue", 4027648} , 0) -> ok

q:put({ptr , "Queue", 4027648} , 1) -> !!! precondition_failed

Reason: precondition_failed

It still fails, but at an earlier point and for a different reason—the second call to
put can no longer be made, because its precondition is not satisfied.

Random tests now pass, and we see satisfying output from QuickCheck:

28> eqc:quickcheck(q_eqc:prop_q ()).

...

...

OK , passed 100 tests

53.5% {q,put ,2}

40.2% {q,get ,1}

6.3% {q,new ,1}

We usually collect statistics as tests are run; in this case we collect the names
of the functions called ({q,new,1} represents q:new/1, the new function with 1
argument in module q, and so on). Over 50% of the calls tested were to put,
around 40% were to get—which is not so surprising, since given our precondi-
tions, we cannot call get unless there is a corresponding call to put. However,
these statistics reveal that we have not tested the size function at all! There is
a simple reason for this—for simplicity, we omitted it from the model.

Debugging the code

It is easy to model the behaviour of size as well, but with this extension to the
model, tests fail immediately. The shrunk example is this:

q:new(1) -> {ptr , "Queue", 4033488}

q:put({ptr , "Queue", 4033488} , 0) -> ok

q:size({ptr , "Queue", 4033488}) -> 0

Reason: Post -condition failed: 0 /= 1

We create a queue with room for one element, put an element into it, then ask
how many there are—which of course should be 1, but size returns 0! This time
the model is not at fault—the C code is simply returning the wrong answer.

Using this example we can trace through the code in Figure 1 to find the
problem. new(1) initializes q->size to 1. size returns

(q->inp - q->outp) % q->size

But q->size is 1, and any value modulo 1 is zero! It follows that size always
returns 0 when the queue size is 1, no matter how many times we call put.
Likewise, put and get increment their respective indices modulo 1, so these
indices are also always zero. Putting an element into the queue does not change
its state—a full queue looks exactly the same as an empty one! This is the real
problem, and it is not limited to queues of size one. If we create a queue of size
n, and put n items into it, then the same thing happens—the input index wraps
around back to zero, and a full queue looks the same as an empty one. Our
representation of queues is inadequate—it cannot distinguish full from empty.

How to fix this? There are several possibilities—we could, for example, add
a boolean to the Queue struct to distinguish full queues, but this would lead to
special cases throughout the code. Much nicer is to modify the new function so
that, when asked to create a queue with space for n elements, we actually create
one with space for n + 1 elements!

Queue *new(int n)

{ int *buff = malloc ((n+1)* sizeof(int));

Queue q = {buff ,0,0,n+1};

Queue *qptr = malloc(sizeof(Queue));

*qptr = q;

return qptr;

}

Let this be our secret. Now, the only way for a caller to witness the ‘bug’ is by
putting n+ 1 elements into a queue with room for n—violating the precondition
of put, which means the problem is their fault! We successfully avoid blame, and
can go home happy.

Sure enough, with this change then repeating the last test succeeds:

32> eqc:check(q_eqc:prop_q ()).

OK, passed the test.

However, running random tests provokes another failure, which always shrinks
to the same test case:

q:new(1) -> {ptr , "Queue", 5844232}

q:put({ptr , "Queue", 5844232} , 0) -> ok

q:get({ptr , "Queue", 5844232}) -> 0

q:put({ptr , "Queue", 5844232} , 0) -> ok

q:size({ptr , "Queue", 5844232}) -> -1

Reason: Post -condition failed: -1 /= 1

We create a queue of size one (that’s really two!), and put a zero into it—now
it’s full. We get the zero—and now it’s empty, so we can put another zero in.
Now the queue should contain one zero. . . but when we ask the size, then −1 is
returned! This is clearly a bug in the C code—the size should never be negative.

Tracing this example through the code in Figure 1, we see that we really
created a queue with a q->size of 2, then called put twice, so the input index
q->inp wraps around back to zero. We called get once, so q->outp is 1, and in
size, (q->inp - q->outp) % q->size computes (-1) % 2—but (−1)mod 2 is
+1, as we all learned in school. Or is it? Trying it in Erlang:

34> (-1) rem 2.

-1

In Erlang, at least, rem is not the modulo operator—it computes the remainder
after integer division, rounding towards zero. Since (-1) div 2 is zero, then
(-1) rem 2 must be −1. The same is true in C.

With this in mind, we see that size returns a negative result whenever
q->inp has wrapped around, but q->outp has not—whenever

q->inp - q->outp

is negative. To fix the bug, we must ensure that this expression is never negative,
and a simple way to do so is to apply abs to it. We modify size as follows,

int size(Queue *q)

{ return abs(q->inp - q->outp) % q -> size;

}

and repeat the last test:

36> eqc:check(q_eqc:prop_q ()).

OK, passed the test.

Of course it passes, as we would expect.
Now, notice what we did. We found a subtle bug in our implementation. We

created a test case that provoked the bug. We fixed the code, and our test now
passes. All our tests are green! So. . . we’re done, right?

In practice, many developers would be satisfied at this point. But let us just
run a few more random tests. . . we find they fail immediately!

q:new(2) -> {ptr , "Queue", 6774864}

q:put({ptr , "Queue", 6774864} , 0) -> ok

q:put({ptr , "Queue", 6774864} , 0) -> ok

q:get({ptr , "Queue", 6774864}) -> 0

q:put({ptr , "Queue", 6774864} , 0) -> ok

q:size({ptr , "Queue", 6774864}) -> 1

Reason: Post -condition failed: 1 /= 2

What’s going on here? First, we create a queue of size two. Progress! The code
now works—for queues of size one. We put three items into the queue, and remove
one. Now there should be two items in the queue, but size returns 1.

This is actually very similar to the example we just fixed. The queue is size
two (really three!), so calling put three times makes the input index wrap around
back to zero. We called get once, so the output index is one. The correct answer
for size is thus (−1)mod 3, which is 2, but we computed abs(-1) % 2, which
is 1. Taking the absolute value was the wrong thing to do; it worked for the first
test case we considered, but not in general.

A correct implementation must ensure that the operand of % is non-negative,
without changing its value modulo q->size. We can do this by adding q->size

to it, instead of taking the absolute value:

int size(Queue *q)

{ return (q->inp - q->outp + q->size) % q -> size;

}

When we make this change, then this last failing test—and all the others we can
generate—pass. The code is correct at last.

Lessons from the queue example

What can we learn from this? Three lessons that apply in general:

– The same property can find many different bugs. This is the whole point of
test case generation: one model can provoke a wide variety of bugs.

– Errors are often in the model, rather than the code. Calling something a
specification does not make it right! QuickCheck finds discrepancies between
the model and the code; it is up to the developer to decide which is correct.

– Minimal failing test cases make debugging easy. They are often much smaller
than the first failing one found. We think of shrinking as “extracting the
signal from the noise”. Random tests contain a great deal of junk—that is
their purpose! Junk provokes unexpected behaviour and tests scenarios that
the developer would never think of. But tests usually fail because of just a
few features of the test case. Debugging a test that is 90% irrelevant is a

nightmare; presenting the developer with a test where every part is known
to be relevant to the failure, simplifies the debugging task enormously.

Property-based testing

I referred several times above to the “property” that is being tested, namely that
“if all operation preconditions hold during a test run, then so do the postcondi-
tions”. Properties are fundamental to QuickCheck: indeed, QuickCheck always
tests a property, by generating suitable test cases and checking that the property
holds in each case. Properties are often expressed in terms of a stateful model—
as in this section—but this is not always the case, and even for the same model,
the properties tested may differ. Since properties are fundamental here, we call
the general approach “property-based testing”, rather than “model-based testing”
which is a better-established term.

3 The Volvo Project

So far, we only considered a toy example—the reader could be forgiven for
wondering if the method really scales. After all, in this example, the specification
was actually larger than the code! QuickCheck would not be useful if this were
true in general. So, let us summarize the results of the largest QuickCheck project
so far—acceptance testing of AUTOSAR Basic Software for Volvo Cars (Arts,
Hughes, Norell, and Svensson, 2015).

Modern cars contain 50–100 processors, and many manufacturers base their
software on the AUTOSAR standard. Among other things, this defines the ‘Basic
Software’, which runs on every processor in the car. It consists of an Ethernet
stack, a CAN-bus stack (the CAN bus, or “Controller Area Network”, is heavily
used in vehicles), a couple of other protocol stacks, a routing component, and a
diagnostics cluster (which records fault codes as you drive). The basic software is
made up of many modules, whose behaviour is specified in detail, but there are a
number of suppliers offering competing implementations. Usually a car integrates
basic software from several different suppliers—which means that if they do not
follow the standard, then there is a risk of system integration problems. It is
not even easy to tell, if two processors cannot talk to each other, which of the
suppliers is at fault!

Volvo Cars wanted to test their suppliers code for conformance with the
standard, and funded Quviq to develop QuickCheck models for this purpose.

Most errors we found are confidential, but we can describe one involving the
CAN bus stack, which we tested using a mocked hardware bus driver. Now, every
message sent on the CAN bus has a CAN identifier, or message type, which also
serves as the priority of the message—the smaller the CAN identifier, the higher
the priority. QuickCheck found a failing test with the following form:

– Send a message with CAN identifier 1 (and check that the hardware driver
is invoked to put it onto the bus).

– Send a message with CAN identifier 2 (which should not be passed to the
driver yet, because the bus is busy).

– Send a message with CAN identifier 3 (which should also not be sent yet).

– Confirm transmission of message 1 by the bus (and check that the driver is
now invoked to send message 2).

Of course, the bug was that the stack sent the message with identifier 3 instead.

This is the smallest test case that can provoke the bug. We must first send a
message, making the bus busy, and then send two more with different priorities,
which are both queued. Then we must release the bus, and observe that the
wrong message is taken from the queue. This is just what the test does.

The source of the bug was this: the original CAN standard allowed only
11 bits for the message identifier, but today 2048 different message types is no
longer enough, so the current standard also allows an ‘extended CAN id’ of 29
bits. Both kinds have the same meaning—in particular, the priority does not
depend on the encoding—but when the stack sends a message, it must know
which format to use. This particular stack stored both kinds of identifier in the
same unsigned integer, but used bit 31 to indicate an extended identifier. In
this test, message number 2 used an extended CAN identifier, while message
number 3 used the original format. Of course, when comparing stored message
identifiers in order to decide which message to send, it is essential to mask off the
top bit. . . which the developer forgot to do in this case. So the second message
was treated as priority 231 + 2, and was not chosen for sending next.

The actual fault is a tricky mistake in low-level C code—nevertheless, it can
be provoked with a short sequence of API calls, and we can find this sequence by
generating a random one and shrinking it.

The fault is also potentially serious. Those priorities are there for a reason.
Almost everything in the car can talk on the CAN bus—the brakes, the stereo. . . .
Here’s a tip: don’t adjust the volume during emergency braking!

For this project we read around 3,000 pages of PDFs (the standards doc-
uments). We formalized the specification in 20,000 lines of QuickCheck code.
We used it to test a million lines of C code in total, from 6 different suppliers,
finding more than 200 problems—of which well over 100 were ambiguities or
inconsistencies in the standard itself! In the few cases where we could compare
our test code to traditional test suites (in TTCN3), our code was an order of
magnitude smaller—but tests more.

So, does the method scale? Yes, it scales.

4 Debugging a database

The last story (Hughes and Bolinder, 2011) begins with a message to the Erlang
mailing list, from Tobbe Törnqvist at Klarna.

“We know there is a lurking bug somewhere in the dets code. We have
got ‘bad object’ and ‘premature eof’ every other month the last year. We
have not been able to track the bug down since the dets files is repaired
automatically next time it is opened.”

The context: Klarna was a Swedish start-up offering invoicing services to web
shops1. They built their product in Erlang, and stored their data in Mnesia, the
database packaged with the Erlang distribution. Mnesia provides transactions,
distribution, replication, and so on, but needs a back end to actually store the
data. The back end for storage on disk is dets, which stores tuples in files. This
problem piqued my interest—it was quite notorious in the Erlang community,
and sounded as though it might involve a race condition.

To explain how QuickCheck tests for race conditions, let us consider a much
simpler example: a ticket dispenser such as one finds at delicatessen counters,
which issues each customer with a ticket indicating their place in the queue.
We might model such a dispenser in Erlang by two functions, take ticket()

and—because the roll of tickets needs to be replaced sometimes—reset(). A
simple unit test for these functions might look as follows:

ticket_test () ->

ok = reset(),

1 = take_ticket (),

2 = take_ticket (),

3 = take_ticket (),

ok = reset(),

1 = take_ticket ().

Here we use Erlang pattern matching to compare the result of each call with its
expected value (ok being an atom, a constant, in Erlang—conventionally used
as the result of a function with no interesting result). This test case is typical
of test cases written in industry: we make a sequence of calls, and compare the
results to expected values.

It is easy to create a QuickCheck state machine for testing the dispenser
also. We can model its state as a single integer, which is set to 0 by reset(),
incremented by take ticket(), and used in the postcondition of take ticket

to check the result.
However, running sequential tests of the ticket dispenser is not enough: the

whole point of the system is to regulate the flow of many concurrent customers
to one delicatessen counter. If we do not also run parallel tests of the API, then
we are failing to test an essential part of its behaviour.

Now, consider one simple parallel test:

reset()

take ticket() take ticket()

take ticket()

which represents first resetting the dispenser, then two customers taking tickets
in parallel—the left customer taking two tickets, the right customer taking one.
What are the expected results? Well, the left customer might get tickets #1 and
#2, and the right customer ticket #3. Or, the left customer might get tickets
#1 and #3, while the right customer gets ticket #2! But if both customers get
ticket number #1, then the test has failed.

1 They have since grown to well over 1,000 people, serving 8 countries and counting.

This poses a problem for the traditional way of writing test cases, because we
cannot predict the expected results. In this case, we could in principle compute
all three possibilities (in which the right customer gets ticket number #1, #2 or
#3), and compare the actual results against all three—but this approach does
not scale at all. Consider this only slightly larger test:

reset()

take ticket() take ticket() reset()

take ticket() take ticket()

This test has thirty possible correct outcomes! No developer in their right mind
would try to enumerate all of these—and anyone who tried would surely get at
least one wrong. The only practical way to decide if a test such as this has passed
or failed, is via a property that distinguishes correct from wrong results. Parallel
testing is a ‘killer app’ for property-based testing.

The way that QuickCheck decides whether a test like this has passed is
by searching for any interleaving of the calls which makes their results match
the model. If there is such an interleaving, then the test passes—but if there
is no such interleaving, then it has definitely failed. Here we are using the
same model as we used for sequential testing, to test a different property of
the implementation—namely, serializability of the operations.

Testing a buggy version of the dispenser, QuickCheck immediately reports:

Parallel:

1. dispenser:take_ticket () --> 1

2. dispenser:take_ticket () --> 1

Result: no_possible_interleaving

That is, two parallel calls of take ticket can both return 1—but no sequence of
two calls can return these results. In this case, there is a blatant bug in the code:
take ticket() reads and then writes a global variable containing the next ticket
number, with no synchronization at all—so no wonder there is a race condition.
But the point is that QuickCheck finds the bug very fast, and shrinks it to this
minimal example very reliably indeed.

Returning to dets, it stores tuples of the form {Key,Val1,Val2...} in a file,
and its API is unsurprising. For example,

– insert(Table,List) inserts a list of tuples into a table,
– delete(Table,Key) deletes all tuples with the given key from the table, and
– insert new(Table,List) is like insert, unless one of the keys to be inserted

is already in the table, in which case it is a no-op.

These operations are all guaranteed to be atomic.
A state machine modelling dets is easy to construct—it is almost enough just

to model the table by a list of the tuples that should be in it. My model of the
core of the dets API is less than 100 lines of code—which compares well to the
implementation, over 6,000 lines of code spread over four modules, maintaining
hash tables on the disk, supporting an old format for the files, and so on. Thus,
although dets is quite complex, its intended behaviour is simple.

I first tested the model thoroughly by running tens of thousands of sequen-
tial tests. This ensures that the model and the code are consistent—and it did
turn up a few surprises. There is no point running parallel tests of a system,
if inconsistencies can already be found using sequential tests. (I assumed that
dets behaves correctly in the sequential case—it is mature and well-tested code,
after all—so any inconsistencies indicate a misunderstanding of the intended
behaviour, i.e. a bug in the model).

Once the model was correct, I began to run parallel tests. This only required
writing a few lines of code, because we reuse the same model for sequential and
parallel testing. Almost immediately, a real bug appeared:

Prefix:

open_file(dets_table ,[{type ,bag}]) --> dets_table

Parallel:

1. insert(dets_table ,[]) --> ok

2. insert_new(dets_table ,[]) --> ok

Result: no_possible_interleaving

In the sequential prefix of the test, we open the dets file, then in parallel call
insert and insert new. Both insert an empty list of tuples—so they are both
no-ops—and they both return ok! At first sight this looks reasonable—but the
documentation for insert new says it should return a boolean! Indeed, in tens of
thousands of sequential tests, insert new returned true or false every time—
now, suddenly, it returned ok. Strange!

Another run of QuickCheck reported a second bug:

Prefix:

open_file(dets_table ,[{type ,set}]) --> dets_table

Parallel:

1. insert(dets_table ,{0 ,0}) --> ok

2. insert_new(dets_table ,{0 ,0}) --> ... time out ...

In this case, both insert and insert new try to insert the same tuple, which
means that insert new could succeed or fail. . . but it should not time out, and
we should not see the message

=ERROR REPORT ==== 4-Oct -2010::17:08:21 ===

** dets: Bug was found when accessing table dets_table

At this point I disabled the testing of insert new, which seemed not work
in parallel, and discovered a third bug:

Prefix:

open_file(dets_table ,[{type ,set}]) --> dets_table

Parallel:

1. open_file(dets_table ,[{type ,set }]) --> dets_table

2. insert(dets_table ,{0 ,0}) --> ok

get_contents(dets_table) --> []

Result: no_possible_interleaving

Here we first open the file, and then in parallel open it again, and insert a
tuple, then fetch the entire contents of the table. The test fails because process

2 sees an empty table, even though it just inserted a tuple! It may seem a little
suspicious to open the table twice, but it is not at all—Erlang is designed for
highly concurrent applications, so we expect many processes to be using the table
at the same time, and all of them need to make sure it is open.

I reported these bugs to Hans Bolinder at Ericsson, who was responsible for
the dets code, and next day he sent me a thank you and a fixed version. However,
he thought these were probably not the bugs that were plaguing Klarna, because
the symptoms were different. At Klarna, the file was being corrupted. Hans gave
me one line of code that could check for corruption, and I added it to the test
to check that, after executing a parallel test, the file was not corrupt.

This time it took around 10 minutes of testing to find a bug:

Prefix:

open_file(dets_table ,[{type ,bag}]) --> dets_table

close(dets_table) --> ok

open_file(dets_table ,[{type ,bag}]) --> dets_table

Parallel:

1. lookup(dets_table ,0) --> []

2. insert(dets_table ,{0 ,0}) --> ok

3. insert(dets_table ,{0 ,0}) --> ok

Result: ok

First we open, close, and open the file again, and then we do three things in
parallel: a lookup of a key that is not found, and two insertions of the same tuple.
All results are consistent with the model—but the corruption check encountered
a ‘premature eof’.

This is really the smallest test case that can provoke this error. It was ini-
tially hard to believe that the open–close–open sequence was really necessary. I
manually removed the first open and close, and ran the smaller test case tens of
thousands of times. It passed, every single time. Today I know why: the first call
to open creates the file, while the second call opens an existing file. It’s slightly
different, and dets enters a slightly different state—and that state is key to pro-
voking the bug. Three parallel operations are needed because the first makes
the dets server busy, causing the next two to be queued up, and then (wrongly)
dispatched in parallel by the server, once the first call is complete.

The final bug was found when preparing a talk on this experience soon after-
wards, whlie rerunning the tests in order to copy the output onto slides. Again,
after around ten minutes of testing, the following bug was found:

Prefix:

open_file(dets_table ,[{type ,set}]) --> dets_table

insert(dets_table ,[{1 ,0}]) --> ok

Parallel:

1. lookup(dets_table ,0) --> []

delete(dets_table ,1) --> ok

2. open_file(dets_table ,[{type ,set }]) --> dets_table

Result: ok

We open the file and insert a tuple, then, in parallel, reopen the file, and lookup
a key not in the table, then delete the key that is. All the results are consistent

with the model—but the corruption check encountered a ‘bad object’. Recall the
mailing list message:

“We know there is a lurking bug somewhere in the dets code. We have
got ’bad object’ and ’premature eof’ every other month the last year.”

So it seemed these might indeed be the Klarna bugs.
In each case, Hans Bolinder returned a fixed version of the code within a day

of receiving the bug report—and at Klarna, where the problem had meanwhile
begun to appear once a week, there has been only one ‘bad object’ error since
the new code went into production. . . when a reading a file last written before
the new code was installed.

Prior to this work Hans Bolinder had spent six weeks at Klarna hunting for
the bug, and the best theory was that it struck when the file was around 1GB,
and might be something to do with rehashing. Now we know the bugs could
be provoked with a database with at most one record, using only 5–6 calls to
the API. In each case, given the minimal failing test, it was less than a day’s
work to find and fix the bug. This really demonstrates the enormous value of
shrinking—and shows just how hopeless it is to try to debug this kind of problem
from failures that happen in production, where not only the five or six relevant
things have occurred, but also millions of irrelevant others.

5 In conclusion

This paper recounts some of our experiences of using an advanced testing tool
in real applications—its purpose is as much to entertain as to inform. Of course,
there is a wealth of other work in the area, that this paper makes no attempt to
cover—RANDOOP (Pacheco, Lahiri, Ernst, and Ball, 2007), DART (Godefroid,
Klarlund, and Sen, 2005), and their successors would be good starting points for
further reading.

I have also just touched the surface of the work that we have done. There
was far more to the Volvo project than could be described here. We needed to
develop a property-based approach to mocking (Svenningsson, Svensson, Small-
bone, Arts, Norell, and Hughes, 2014). We needed to develop ways to clus-
ter models of individual components into an integrated model of a subsystem,
because AUTOSAR subsystems are typically implemented monolithically, but
specified as a collection of interacting components. We found that QuickCheck’s
shrinking tended to isolate the same bug in each run—which is not ideal when
generating a test report on a component with several different bugs—so we de-
veloped methods to direct testing away from already-known problems towards
areas where unknown bugs might still lurk, and report all the bugs at once. We
were asked “does your model cover this test case?”, so we developed tools to an-
swer such questions—and when the AUTOSAR consortium released six “official”
test cases for the CAN bus stack, we used them to show that three of these test
cases were not covered by the model, because they were not consistent with the
standard (Gerdes, Hughes, Smallbone, and Wang, 2015). We were asked: “which
requirements have you tested?”, so we developed ways to collect requirements

coverage during testing—leading us to question what testing a requirement even
means (Arts and Hughes, 2016).

In other areas, we helped Basho test their no-SQL database, Riak, for the
key property of eventual consistency—and found a bug (now fixed, of course)
that was present, not only in Riak, but in the original Amazon paper (DeCandia,
Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall,
and Vogels, 2007) that kicked off the no-SQL trend. Recently we tested Drop-
box’s file synchronization service, with some surprising results there too (Hughes,
Pierce, Arts, and Norell, 2016). Both these applications were based in part on
the state machine framework presented here, but added additional properties to
express subtle correctness conditions.

Perhaps the most general lesson from all this experience is that formulating
specifications is hard—and many developers struggle with it. It may often be
easier to give examples of correct behaviour, than to define in general what cor-
rectness means. This should not come as a surprise, since mathematicians have
used examples for centuries—but it does suggest that starting from a specifi-
cation may not always be appropriate. Sometimes I am asked: “wouldn’t it be
great if we could just synthesize code from a specification?” It would not: we
would just replace buggy code with buggy specifications. A key insight from us-
ing QuickCheck is that we find bugs by comparing two independent descriptions
of the desired behaviour—the implementation, and the specification—and it is
the inconsistencies between the two that reveal errors.

The need for a specification is the real weakness of property-based testing—
not that we use testing, rather than static analysis or proof, to relate specifi-
cations and implementations. Testing works well enough! The real question is:
how can we make specifications more useable, and easier to construct—for real
systems with all their complex behaviours? There is much work to be done here—
perhaps future tools will even help developers construct specifications from ex-
amples.

In any event, there are many fascinating problems waiting to be addressed.
If this paper helps persuade the reader that testing is not a chore that must be
done, but a fascinating research area in its own right, then it will have fulfilled
its purpose.

And don’t forget,

DON’T WRITE TESTS, GENERATE THEM!

Acknowledgements

The work described here was partially supported by the EU FP7 project “PROWESS”,
and by the Swedish Foundation for Strategic Research grant “RAWFP”.

References

Arts, T., Hughes, J., Norell, U., Svensson, H.: Testing AUTOSAR software with
QuickCheck. In: Software Testing, Verification and Validation Workshops

(ICSTW), 2015 IEEE Eighth International Conference on. pp. 1–4 (April
2015)

Arts, T., Hughes, J.: How well are your requirements tested? In: Briand, L.,
Khurshid, S. (eds.) International Conference on Software Testing, Verification
and Validation (ICST). IEEE (April 2016), to appear

Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing Telecoms Software with
Quviq QuickCheck. In: Proceedings of the 2006 ACM SIGPLAN Workshop
on Erlang. pp. 2–10. ERLANG ’06, ACM, New York, NY, USA (2006)

Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. pp. 268–279. ICFP ’00, ACM, New
York, NY, USA (2000)

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Ama-
zon’s Highly Available Key-value Store. In: Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles. pp. 205–220. SOSP
’07, ACM, New York, NY, USA (2007)

Gerdes, A., Hughes, J., Smallbone, N., Wang, M.: Linking Unit Tests and Prop-
erties. In: Proceedings of the 14th ACM SIGPLAN Workshop on Erlang. pp.
19–26. Erlang 2015, ACM, New York, NY, USA (2015)

Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Test-
ing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 213–223. PLDI ’05, ACM, New
York, NY, USA (2005)

Hughes, J.: QuickCheck Testing for Fun and Profit. In: Proceedings of the 9th
International Conference on Practical Aspects of Declarative Languages. pp.
1–32. PADL’07, Springer-Verlag, Berlin, Heidelberg (2007)

Hughes, J., Pierce, B., Arts, T., Norell, U.: Mysteries of Dropbox: Property-
Based Testing of a Distributed Synchronization Service. In: Briand, L., Khur-
shid, S. (eds.) International Conference on Software Testing, Verification and
Validation (ICST). IEEE (April 2016), to appear

Hughes, J.M., Bolinder, H.: Testing a Database for Race Conditions with
QuickCheck. In: Proceedings of the 10th ACM SIGPLAN Workshop on Er-
lang. pp. 72–77. Erlang ’11, ACM, New York, NY, USA (2011)

Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-Directed Random Test
Generation. In: Proceedings of the 29th International Conference on Software
Engineering. pp. 75–84. ICSE ’07, IEEE Computer Society, Washington, DC,
USA (2007)

Svenningsson, J., Svensson, H., Smallbone, N., Arts, T., Norell, U., Hughes,
J.: An Expressive Semantics of Mocking. In: Proceedings of the 17th Inter-
national Conference on Fundamental Approaches to Software Engineering -
Volume 8411. pp. 385–399. Springer-Verlag New York, Inc., New York, NY,
USA (2014)

