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Abstract

The automated segmentation or labeling of individual tissues in magnetic resonance (MR) im-
ages of the human head is an essential first step in several biomedical applications. The resulting
segmentation yields a patient-specific labeling of individual tissues that can be used to quantita-
tively characterize these tissues (e.g. in the study of Alzheimers disease and multiple sclerosis)
or to assign individual dielectric properties for patient-specific electromagnetic simulations (e.g.
in applications such as electroencephalography source localization in epilepsy patients and mi-
crowave imaging for stroke detection). Automated and accurate segmentation of MR images is
a challenging task because of the complexity and variability of the underlying anatomy and the
noise and the bias field (spatial intensity inhomogeneities). Consequently, manual segmentation,
including both interactive segmentation and manual correction, is largely used in clinical research.
However, it is time consuming, subjective, tedious, and labor-intensive. This thesis presents new
segmentation methods for both the brain and whole-head that are both automatic and accurate. It
also presents empirical evaluations of these methods both directly in terms of segmentation accu-
racy and indirectly in terms of efficacy in electroencephalography (EEG) source localization and
stroke detection. The evaluations were performed using both synthetic and real MRI data. This
thesis makes four distinct contributions. The first is a novel unsupervised segmentation frame-
work for segmenting MR images of the brain into three tissue types: white matter, gray matter
and cerebrospinal fluid. It is a combination of Bayesian-based adaptive mean shift, incorporat-
ing an a priori tissue label probability maps, and the fuzzy c-means algorithm. The experimental
results —based on both synthetic T1-weighted MR images for different noise levels and spatial
intensity inhomogeneity levels, and real T1-weighted MR images —demonstrate its robustness
and that it has a higher degree of segmentation accuracy than existing methods. The second is a
novel automated unsupervised whole-head segmentation method for the purpose of constructing
a patient-specific dielectric or biomechanical head model. The method is based on a hierarchical
segmentation approach incorporating Bayesian-based adaptive mean shift. The experimental re-
sults demonstrate the efficacy of the proposed method, its robustness to noise and the bias field,
and that it has a higher degree of segmentation accuracy than existing methods. The third is an
evaluation of the proposed whole-head segmentation method in the context of EEG source lo-
calization. The experimental results show that the proposed method yields improved localization
accuracy over the commonly used method for constructing a realistic head conductivity model for
EEG source localization. The fourth is an evaluation of several existing unsupervised segmen-
tation methods including the proposed whole-head segmentation method in the context of stroke
detection using a microwave imaging system. The experimental results show that the proposed
method has higher image reconstruction accuracy for intracerebral hemorrhage compared to the
existing methods. The results also suggest that accurate automated segmentation can be used as
a surrogate for manual segmentation to obtain accurate image reconstruction of an intracerebral
hemorrhage and can assist in real time stroke detection.
Keywords: Image segmentation, magnetic resonance, brain, EEG source localization, stroke, re-
construction
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CHAPTER 1

Introduction

1.1 Background and problem definition

Medical imaging [1–3] is the visualization of body parts, tissues, or organs, for use in
clinical diagnosis, treatment and disease monitoring. It plays an important role in the
global healthcare system as it contributes to improved patient outcomes and more cost-
efficient healthcare across all major diseases.

Neuroimaging [4, 5] is an important branch of medical imaging. It encompasses
a range of techniques used to non-invasively image the brain at all levels of structure
and function, ranging from neurotransmitter and receptor molecules to large networks of
brain cells. Neuroimaging can be broadly classified into functional imaging and structural
imaging.

Functional imaging [6] is used to visualize/assess the neural activity in the brain. The
neural activity at a specific location in the brain is associated with localized vascular
changes (such as cerebral blood flow) and metabolic changes (such as glucose and oxy-
gen consumption). Functional imaging techniques include positron emission tomography
(PET) [7], functional magnetic resonance imaging (fMRI) [8], magnetoencephalography
(MEG) [9], and electroencephalography (EEG) [10].

Structural imaging [11] is used to visualize/assess anatomical structures in the brain
and the head and to diagnose/characterize tumors and injuries. Structural imaging tech-
niques include X-ray computed tomography (CT) [12] and magnetic resonance imaging
(MRI) [13].

MRI has an important advantage over CT in that it does not use ionizing radiation. It
generates a 3D image of the human head by exploiting the nuclear magnetic resonance
properties of the water (hydrogen) contained in the tissues. Because of its high spatial
resolution and good contrast for soft tissues, MRI is perfectly suited in many applications
in neuroscience. Examples include the study of brain development in normal and high
risk children [14, 15], the mapping of functional activation onto brain anatomy [16], and
the analysis of neuroanatomical variability among normal brains [17]. For these studies,
quantitative characterization of anatomical structures in the MR images is required. To
achieve this, segmentation (i.e. delineation or labeling) of the brain into three major tissue
types —white matter, gray matter and cerebrospinal fluid —in MR images is crucial.
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CHAPTER 1. INTRODUCTION

Segmentation of MR brain images is also helpful for neurosurgeons and physicians in
assessing the progress or remission of various neurological diseases such as Alzheimers
disease, epilepsy, multiple sclerosis, and schizophrenia [18] as well as in pre-surgical
evaluation and planning [16, 17].

Segmentation in MR head images also makes it possible to assign dielectric or biome-
chanical properties to the individual tissues to construct a dielectric or biomechanical head
model, crucial for electromagnetic or biomechanical simulations. Electromagnetic model-
ing finds use in applications such as non-invasive EEG source localization in epilepsy pa-
tients [19], microwave imaging for stroke detection [20], hyperthermia treatment planning
for head and neck tumors [21], the study of electric fields induced by transcranial mag-
netic stimulation (TMS) [22] and the study of deep brain simulation [23]. Biomechanical
modeling finds use in applications such as brain deformation simulation for image-guided
neurosurgery [24] and the study of head trauma in traffic accidents [25].

Accurate segmentation of tissues in MRI images is a challenging task because of sev-
eral factors including: (i) the complexity and variability of the underlying anatomy; (ii)
noise; (iii) the bias field (an unwanted low-frequency signal occurring due to inhomo-
geneities in the magnetic fields of the MRI scanner); (iv) scanner specificity of MRI; and
(v) the low contrast between the skull, cerebrospinal fluid and air in T1-weighted MRI
data. As a result many areas of the clinical research [19, 20, 22, 26–37] still largely rely
on expert manual correction or intervention for anatomical structure segmentation. How-
ever, this is time consuming, subjective, tedious, and labor intensive as well as requires
expert supervision and impractical for large-scale group study. Thus a fully automatic and
accurate segmentation method is highly desirable.

1.2 Aim and objectives

The aim of this thesis was to develop fully automatic and accurate patient-specific tis-
sue segmentation methods for the brain as well as for the whole-head for two impor-
tant neuroimaging applications: Non-invasive EEG source localization and intracerebral
hemorrhage detection in stroke patients using single and multi-modal MR images (MR
images of the same anatomy but acquired using different contrast mechanisms such as
T1-weighting, T2-weighting, and proton density weighting).
To this end the thesis had the following objectives:

1. To develop an unsupervised framework for segmenting the brain into individual
tissue types: white matter, gray matter and cerebrospinal fluid.

2. To evaluate the performance of the proposed framework using both synthetic and
real MR images of the brain.

3. To develop an unsupervised framework for segmenting the whole-head into indi-
vidual tissue types: white matter, gray matter, cerebrospinal fluid, fat, muscle, skin
and skull, or white matter, gray matter, cerebrospinal fluid, skin and skull.

4



1.3 SCOPE OF THE THESIS

4. To evaluate the performance of the proposed framework using both synthetic and
real MR images of the head.

5. To evaluate the performance of the unsupervised whole-head segmentation frame-
work in the context of non-invasive EEG source localization.

6. To evaluate the performance of the unsupervised whole-head segmentation frame-
work in the context of intracerebral hemorrhage detection in stroke patients using a
microwave-imaging system.

1.3 Scope of the thesis

Only unsupervised image segmentation techniques were considered in this thesis. Such
techniques [38] do not require training data but rather explore the intrinsic structure of the
image data using various statistics.

Supervised segmentation techniques [38,39] and multi-atlas based segmentation meth-
ods [40] were not investigated. The former requires labeled training data to extract the
features and train a classifier. The classifier is then used to label unseen pixels. The latter
requires many labeled images in order to define an atlas. For such methods, selection of
the atlas or atlases, is crucial for improving segmentation results, for a given pathology,
for instance [40, 41].

The real and synthetic MRI data sets used in this study comprised at most three differ-
ent MRI modalities. The use of additional imaging modalities, such as X-ray computed
tomography or ultrasound [42], was not investigated.

1.4 Overview of the thesis

The thesis is organized into two main parts.
Part I consists of chapters 2 through 8. Chapter 2 provides the basic anatomical and
methodological concepts needed for the remainder of the thesis. Chapter 3 describes
the reviewed literature for brain segmentation and addresses objectives 1 and 2. Chapter 4
describes the motivation for automated whole-head segmentation and addresses objectives
3 and 4. Chapter 5 evaluates the automated whole-head segmentation for EEG source
localization and addresses objective 5. Chapter 6 evaluates the automated whole-head
segmentation for stroke detection and addresses objective 6. A brief summary of the
appended papers is presented in chapter 7, while concluding remarks and discussions of
future work are presented in Chapter 8.
Part II comprises the published papers, arising from this research.
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CHAPTER 2

Theoretical Background

The purpose of this chapter is to acquaint the reader with the basic anatomical and the-
oretical concepts essential for an understanding of the material presented in subsequent
chapters. In particular, the next section presents an overview of the anatomy of the hu-
man head, section 2.2 provides an overview of magnetic resonance imaging, and finally
section 2.3 describes several segmentation techniques underlying existing approaches to
brain and whole-head segmentation.

2.1 Anatomy of the human head

This section provides an overview of the anatomy of the human head. The level of detail
provided is sufficient for the aim and objectives of this thesis. For a more detailed and
comprehensive treatment of the subject, the reader is referred to [43–45].

Figure 2.1: Axial slice through the human head showing the major tissue types: white
matter (WM) in white, gray matter (GM) in gray, cerebrospinal fluid (CSF) in
black, skull in red, fat in green, muscle in brown and skin in yellow.

7



CHAPTER 2. THEORETICAL BACKGROUND

The human head is made up of numerous complex tissue types and structures [28].
However it can be decomposed into the following major tissue types: white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF), skin, fat, muscle, and skull (as shown in
Fig. 2.1). These in turn can be classified as belonging to two major classes: brain and
non-brain.

2.1.1 Brain

The human brain is an important part of the central nervous system. Functionally, it can
be decomposed into three main parts (see Fig. 2.2):

1. Cerebrum: This is the largest part of the brain and is composed of left and right
hemispheres. Each hemisphere can in turn be divided into four lobes:

• Frontal Lobe: It is involved in functions such as reasoning, planning, parts of
speech, voluntary motor function of skeletal muscles, emotions, and problem
solving.

• Parietal Lobe: It is involved in functions such as movement, orientation,
recognition, and perception of stimuli.

• Occipital Lobe: It is involved in visual processing.

• Temporal Lobe: It is involved in functions such as perception and recognition
of auditory stimuli, memory, speech, and smell.

2. Cerebellum: It is located under the cerebrum and is involved in functions such as
regulation and coordination of movement, posture, and balance.

3. Brain Stem: It is responsible for regulating breathing, heartbeat, and blood pressure.

Structurally, the brain can be decomposed into three main tissue types (shown in Fig.
2.1):
Gray matter

The gray matter is located on the thin outer layer of the brain, called the cerebral
cortex, and also deeper in the brain underneath the white matter. It comprises neuronal
cell bodies. Gray matter is involved in various functions including muscle control, speech,
emotion, memory, vision and hearing.
White matter

The white matter lies underneath the cerebral cortex and is made up of glial cells and
bundles of myelinated axons. The white matter connects various regions of the gray mat-
ter, favoring communication between cortical-cortical or cortical-subcortical structures.
Cerebrospinal fluid (CSF)

The CSF is a colorless fluid. It is located in the subarachnoid space (space between the
two protective membranes that surround the brain: arachnoid membrane and pia mater),
the ventricles (large cavities inside the brain) and the spinal cord. It serves to protect the
brain, supply it with nutrition, and to remove waste.

8



2.2 MAGNETIC RESONANCE IMAGING (MRI)

!
Parietal((

Figure 2.2: Anatomy of the human brain.

2.1.2 Non-brain

The non-brain is composed of four main tissues:
Skull

The skull is a bony structure and has a thickness between 4 to 7 mm. It surrounds the
brain, eyes, nose and teeth and serves to protect them.
Skin

The scalp, neck and face surrounding the skull are composed of a soft tissue called
skin. The skin is made up of two primary layers: epidermis and dermis. The epidermis
layer is the outermost layer of the skin and acts as infection barrier. The dermis layer lies
underneath the epidermis and provides tensile strength and elasticity to the skin.
Fat

Fat is a soft tissue that lies beneath the skin. It is made up of adipose cells called
adipocytes.
Muscle

The term muscle describes another soft tissue located inside the skin. It is composed
of protein filaments that slide past one another enabling actions such as eating, blinking
and smiling.

2.2 Magnetic Resonance Imaging (MRI)

This section provides a brief overview of the principles of magnetic resonance imaging
(MRI). For a more detailed and comprehensive treatment see [46–49].

MRI is a non-invasive imaging technique. R. Damadian, in 1971, proposed MRI for
use as a medical imaging device. In 2003, P. Lauterbur and P. Mansfield received the
Noble prize in Physiology or Medicine for their pioneering work in the development of

9



CHAPTER 2. THEORETICAL BACKGROUND

MRI.
MRI is based on a physical phenomenon called nuclear magnetic resonance, which is

defined as the ability of magnetic nuclei to absorb energy from an electromagnetic pulse
and to radiate this energy back. The hydrogen nucleus or proton is positively charged
and possesses an angular moment called spin. This property causes it to behave as a tiny
magnet with a small magnetic field or magnetic moment.

In MR imaging the object to be imaged is placed inside a strong external magnetic
field B0 that causes the protons either to align with B0 or opposed to it. The small dif-
ference in the two populations yields a bulk magnetization M, which is the sum of the
individual magnetic moments of the individual protons, that depends linearly on the field
intensity and is aligned with the B0 field (illustrated in Fig. 2.3). This state of magnetiza-
tion is known as thermal equilibrium.

The magnetization vector M is the main source of the MR signal and is used to pro-
duce an MR image. It has two components called longitudinal and transverse magnetiza-
tion. The longitudinal magnetization (denoted as Mz) is parallel to the external magnetic
field B0 while the transverse magnetization (denoted as Mxy) is perpendicular to the B0.

Figure 2.3: Alignment of protons with the B0 field: (a) with no external magnetic field,
all the protons are oriented randomly (b) in the presence of external magnetic
field (B0), some of the protons align with the field (parallel to the external
magnetic field B0) whilst some of these oppose to the field (anti-parallel to
B0). As a result, a net magnetization M = Mz is produced parallel to the
external field B0. As a result, a net magnetization M=Mz is produced parallel
to the external field B0 (adapted from [49]).

When a radio frequency (RF) pulse BRF (having frequency equal to the Larmor fre-
quency) is applied, it gives energy to the protons. As a result, the magnetization vector M
flips in the transverse plane and the longitudinal component Mz becomes zero. Once the
RF pulse is turned off, another RF signal is generated by the protons due to the magnetic
resonance phenomena. This signal is decaying towards zero when the magnetization vec-
tor M = Mxy in the transverse plane starts to dephase. This state is known as transverse
relaxation or T2-relaxation. The dephasing of Mxy is due to the magnetic moments of pro-
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tons that are precessing with slightly different frequencies. The decaying signal is known
as free induction decay (FID) which is measured by a conductive field coil in the MR
scanner and then it is processed to get the MR image of the object. After T2-relaxation,
the protons build up the magnetization vector M = Mz again parallel to the original B0
field and the state is known as longitudinal relaxation or T1-relaxation. The illustration of
T2- and T1-relaxation are shown in Fig. 2.4 and Fig. 2.5 respectively.

Figure 2.4: T2- relaxation: (a) Flipping of Mz from longitudinal plane and dephasing of
Mxy in the transverse plane (b) Free induction decay (FID).

Figure 2.5: T1- relaxation: Application of 90◦ RF pulse causes longitudinal magnetiza-
tion Mz to become zero. Over time, the longitudinal magnetization Mz will
grow back in a direction parallel to the main B0 field.

Mathematically, the decaying of transverse magnetization Mxy during the T2-relaxation
and the growing of longitudinal magnetization Mz during the T1-relaxation can be ex-
pressed as

Mxy(t) = Mxy0e−t/T 2 (2.1)

Mz(t) = M0(1− e−t/T 1) (2.2)

where Mxy0 is the transverse magnetization at time t=0 and M0 is the longitudinal mag-
netization at time t=0.
The above equations are solutions of the Bloch equations, introduced by Felix Bloch [50].

11



CHAPTER 2. THEORETICAL BACKGROUND

2D and 3D MR imaging

In MRI, two approaches called 2D and 3D imaging can be used to acquire a 3D image
of an object. In 2D imaging, the RF pulse is used to excite only the selected slice of an
object. In this way the signal generated from that particular slice is used to construct the
image of that slice. In 3D imaging, the volume of an object that contains the stack of
slices is excited with the RF pulse to get the image of that particular volume of an object.

2.2.1 Contrast Mechanisms in MRI

In MRI, the contrast between tissues is based on the intrinsic properties of the tissues;
namely proton density (PD), T1 and T2.

T1 is defined as the time that it takes the longitudinal magnetization Mz to grow back
to 63% of its original value. It is related to the rate of regrowth of longitudinal magnetiza-
tion which is a fundamental source of contrast in T1-weighted images. Different tissues
have different rates of T1-relaxation, shown in Fig. 2.6.

T2 is defined as the time that it takes the transverse magnetization Mxy to decrease to
37% of its starting value. It is related to the rate of dephasing of transverse magnetization
that is a fundamental source of contrast in T2-weighted images. Different tissues have
different rates of T2-relaxation, shown in Fig. 2.7.

PD refers to the density of protons in the tissues. Different tissues have different
density of protons.

The weighting amount of T1 and T2 effects in the MR images, is controlled by two
basic scanning parameters known as echo time (TE) and repetition time (TR). TE is de-
fined as the time between the start of the RF pulse and the maximum in the FID response
signal. TR is defined as the time between the consecutive RF pulses.

The relative values of TE and TR to produce different contrast weighted images are
shown in Fig. 2.8. A T1-weighted image is produced by maximizing the T1-relaxation
and minimizing the T2-relaxation using short TE and intermediate TR. A T2-weighted
image is produced by maximizing the T2-relaxation and minimizing the T1-relaxation
using long TE and long TR. A PD-weighted image is produced by minimizing the both
T1- and T2-relaxation using short TE and long TR.

Figure 2.6: (a) T1: longitudinal magnetization increases to 63% of maximal Mz (b) Dif-
ferent tissues have different rates of T1-relaxation.
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Figure 2.7: (a) T2: transverse magnetization decreases to 37% of the starting value of Mxy

(b) Different tissues have different rates of T2-relaxation.

Figure 2.8: Scanning parameters: (a) short TE and intermediatory TR for T1-weighting
(b) long TE and long TR for T2-weighting (c) short TE and long TR for PD-
weighting.

Tissues of the human head visualized by magnetic resonance imaging

Fig. 2.9 shows three MR images of same axial slice through a human head. In these im-
ages the contrast between soft tissues can be seen clearly. The contrast in these images are
characterised as (a) T1-weighted (b) T2-weighted (c) PD-weighted. In the T1-weighted
image the CSF, skull, and fat appear dark and the gray matter, white matter, skin and
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muscle appear bright. In the T2-weighted image the CSF and skin appear bright, and the
skull, fat, muscle, white matter and gray matter appear darker than in the T1-weighted
image. In the PD-weighted image the fat, muscle, white matter, gray matter, and CSF
appear bright, and the skull appears dark.

Figure 2.9: Axial slice from an MRI scan of the human head ( [51]) (a) T1-weighted (b)
T2-weighted (c) PD-weighted image.

2.2.2 Basic pulse sequences for MRI

Two pulse sequences known as spin echo (SE) and gradient echo (GE) are commonly
used to generate MR images. These sequences are repeated many times during a scan to
generate the image of an object.

In a spin echo sequence, a 90◦ RF pulse is used to flip the magnetization vector M in
the transverse plane. As the protons go through the T1- and T2- relaxation, the transverse
magnetization Mxy is gradually dephased. A 180◦ RF pulse is applied to rephase it. As a
result, a signal (called spin echo) is generated and is used to reconstruct an MR image. In
order to generate the different contrast MR images, SE sequence is based on the TE and
TR scanning parameters.

In gradient echo sequence, an RF pulse is applied that partly flips the net magneti-
zation vector M into the transverse plane. A negative gradient pulse is used to dephase
the transverse magnetization Mxy and a positive gradient pulse is applied to rephase it.
As a result, a signal (called gradient echo) is generated. In a GE sequence, the scanning
parameters: flip angle, TE, and TR are used to produce different contrast MR images.
However, in this thesis the MR images were acquired by applying the gradient echo pulse
sequence.

2.2.3 Artifacts in MRI

The two major sources of artifacts that degrade MR image quality significantly and also
obfuscate the anatomical and physiological detail are noise and the bias field. The noise
in MRI is generally caused by the thermal agitation of electrons in the conductor. It is
usually modeled as Rician distribution [52]. The bias field is a low frequency smooth
undesirable signal which is caused by inhomogeneities in the magnetic field of the MR
scanner. It changes the intensity values of the image pixels so that the same tissue has
different gray level distribution across the image.
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2.3 Overview of the basic segmentation techniques underlying
existing approaches to brain and whole-head segmentation

Image segmentation refers to the process where every pixel in a digital image is assigned
a label and such that pixels sharing the same characteristics are given the same label. Nu-
merous techniques for image segmentation can be found in the literature [53]. No single
technique is applicable for all problems and no general theory exists for synthesizing a
segmentation solution for any given problem. The image analysis practitioner must there-
fore devise solutions based on one or more techniques and using experience and trial and
error.
In this section we give a brief description of the elementary segmentation techniques used
in the brain and whole-head segmentation methods presented/discussed in later chapters.

Mean Shift

Mean shift is a non-parametric mode seeking and clustering technique originally proposed
by Fukunaga and Hostetler [54]. Its application to image processing and computer vision
tasks such as filtering, image segmentation and real time object tracking was pioneered
by Comaniciu et al. [55].

Mean shift does not require any prior information concerning the number of clusters,
and does not constrain the size or shape of the clusters. Mean shift clustering is based on
an adaptive gradient ascent approach to estimate the local maxima or modes of multivari-
ate distributions underlying the feature space. Ultimately each feature point is associated
with a mode thereby defining clusters. The basic principle of mean shift clustering is
described below.

Let {xi ∈Rd |i = 1.....n} denote a set of feature vectors (data points) in d- dimensional
space. The kernel density estimate of the underlying multivariate probability function at
point x is given by

f̂K(x) =
1
n

n

∑
i=1
|H|−1/2K(|H|−1/2(x−xi)) (2.3)

where H is a d×d symmetric positive definite bandwidth matrix. For a radially symmetric
kernel, H = h2I which leads to

f̂K(x) =
ck,d

nhd

n

∑
i=1

k

(∥∥∥∥
x−xi

h

∥∥∥∥
2
)

(2.4)

where h > 0 is a scalar bandwidth and k : [0,1]→ R is the kernel profile of the radially
symmetric kernel K with bounded support defined as

K(x) = ck,dk
(
‖x‖2

)
‖x‖ ≤ 1 (2.5)

and ck,d is a normalizing constant ensuring that the kernel K integrates to 1. The typical
kernels used in the mean shift applications are Gaussian KG and Epanechnikov KE given
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as

KG(x) = ck,dkG = ck,d exp
(
−1

2
‖x‖2

)
(2.6)

KE(x) = ck,dkE = ck,d(1−‖x‖2) ‖x‖ ≤ 1 (2.7)

where kG and kE are the kernel profiles of KG and KE respectively. The derivative of the
sample point density estimator in eq. 2.2 leads to

5̂ fK(x)≡5 f̂K(x) =
2ck,d

nhd+2

n

∑
i=1

(x−xi)k′
(∥∥∥∥

x−xi

h

∥∥∥∥
2
)

(2.8)

=
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nhd+2

[
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∑
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g

(∥∥∥∥
x−xi
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2
)]
×


∑n

i=1 xig
(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi
h

∥∥2
) −x


 (2.9)

where g(x) = −k′(x) is the derivative of kernel profile k. The second factor in eq. 2.9
is called the mean shift vector. It points toward the direction of maximum increase in
density and also provides the basis for clustering. The mean shift vector can be written as

Mh,G(x) =
5 f̂K(x)

f̂G(x)
=

∑n
i=1 xig

(∥∥x−xi
h

∥∥2
)

∑n
i=1 g

(∥∥x−xi
h

∥∥2
) −x (2.10)

where G represents the kernel and is defined as

G(x) = cg,dg(‖x‖2) (2.11)

The kernel G starts from an initial position y1 and moves towards the position closer to
the higher density region. The update rule of kernel position is given by

y j+1 =

∑n
i=1 xig

(∥∥∥y j−xi

h

∥∥∥
2
)

∑n
i=1 g

(∥∥∥y j−xi

h

∥∥∥
2
) , j = 1,2, .... (2.12)

where {y j} j=1,2,... represents the successive locations of the kernel G. The guaranteed
convergence of the mean shift algorithm to the local maximum of a probability density
function is obtained by the adaptive magnitude of the mean shift vector Mh,G(x). In a
lower density region, the magnitude of Mh,G(x) is large, and in a high density region (i.e.
closer to a mode), the magnitude is small. The speed of convergence depends on the
kernel type. The feature (data) points that converge to the same mode constitute a cluster.

To apply the mean shift clustering to the problem of image segmentation, one rep-
resents each pixel as a feature point xi formed by concatenating its spatial coordinates
and range (intensity) values (e.g., T1 and T2-weighted) and employs the following joint
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spatial-range domain kernel Khs,hr(x) defined

Khs,hr(x) =
C

hp
s hd

r
k

(∥∥∥∥
xs

hs

∥∥∥∥
2
)

k

(∥∥∥∥
xr

hr

∥∥∥∥
2
)

(2.13)

where xs represents a vector of pixels spatial coordinates, xr represents a vector of pixels
range (intensity) values and hs and hr are their corresponding kernel bandwidths and C is
the normalization constant.

An example of mean shift (MS) clustering for 2D intensity feature space is illustrated
in Fig. 2.10.
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Figure 2.10: (a) The 2D feature space for data from a multi-modal MR image (T1- and
T2-weighted) (b) Estimated density distribution using a Gaussian kernel with
bandwidth h = 0.08 (c) Mean shift procedure trajectories for some feature
points. (d) Resulting clusters after applying mean shift (CSF in black, gray
matter in magenta and white matter in blue).
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k-means Algorithm

The standard k-means algorithm was introduced by MacQueen [56,57] in 1967 to describe
one of the simplest unsupervised clustering algorithms. In this algorithm, the partitioning
of n data points into k disjoint subsets S j is done by minimizing the following cost function

J =
k

∑
j=1

∑
i∈S j

‖xi−µ j‖2 (2.14)

where xi is a vector representing the ith data point and µ j is the centroid of the data points
in S j.

The standard k-means algorithm starts with random initialization of k centroids. Each
data point is then assigned to the closest centroid and the number of data points closest to
a centroid form a cluster. The new centroid is computed according to the data points in
the cluster. This process is continued until the data points stop changing their centroids
or clusters. The downside of this algorithm is that it is quite sensitive to the initialization
of the centroids of the clusters and it provides clustering in the intensity (range) domain
only.

Fuzzy c-means

Fuzzy c-means (FCM) was introduced by Dunn [58] and later improved by Bezdek [59].
It aims to categorize each pixel in the image using fuzzy memberships.

Let {xi ∈Rd |i= 1.....N} represent an image with N pixels to be divided into c clusters.
The FCM algorithm is an iterative optimization that minimizes the cost function given by

J =
N

∑
i=1

c

∑
j=1

pm
i j‖xi−µ j‖2. (2.15)

where pi j denotes the membership of pixel xi in the jth cluster, µ j is the jth cluster cen-
ter, ‖.‖ is a norm metric, and m is a constant that controls the fuzziness of the resulting
partition.

The cost function is minimized when pixels close to the centroid of their clusters
are assigned high membership values, and low membership values are assigned to pixels
far from the centroid. The membership function represents the probability that a pixel
belongs to a specific cluster. The membership functions and cluster centers are updated
as follows

pi j =
1

∑c
k=1

( ‖xi−µ j‖
‖xi−µk‖

) 2
m−1

(2.16)

and

µ j =
∑N

i=1 pm
i jxi

∑N
i=1 pm

i j
(2.17)
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FCM starts with random initialization of c centroids and converges to a solution for
µ j representing the local minimum of the cost function. The convergence is detected by
comparing the changes in the membership function or the cluster center at two sequential
iteration steps.

Parametric Statistical Methods

Parametric statistical methods assume some distributional form for the underlying prob-
ability distribution of the image and seek to estimate its parameters. For example, the
intensity of pixels in the image is typically modeled using a Gaussian mixture model
(GMM) [60], which is a weighted sum of several component Gaussian densities. The
GMM is parameterized by the mean vectors, covariance matrices and mixture weights
from all component densities and these parameters are estimated using the Expectation-
Maximization (EM) algorithm [61]. Finally, the segmentation is done by assigning every
pixel to the class label for which it has the highest a posteriori probability.

The majority of methods that have been proposed in the literature for automated seg-
mentation of brain tissues are based on parametric statistical models. For example, the
hidden Markov random field model and associated Expectation-Maximization (HMRF-
EM) algorithm is one of the state-of-the-art methods. In this algorithm, HMRF is a
stochastic model generated by a Markov random field (MRF) whose state sequence is
estimated indirectly through observations. The advantage of HMRF is derived from the
MRF theory in which the spatial information of an image is encoded through contex-
tual constraints of neighbouring pixels. The EM algorithm is used to fit this model. The
principle of the HMRF-EM method is described below.

Let y = (y1, ........,yN) represent a gray-scale image such that yi represents the inten-
sity of the i-th pixel. Let x = (x1, ........,xN) represent a label image such that xi ∈ L is the
label corresponding to pixel yi and L is the set of all possible labels.

According to the maximum a posteriori (MAP) criterion, the optimal labeling x̂ is
obtained as follows

x̂ = argmax
x
{P(y|x,Θ)P(x)} (2.18)

where x is a realization of an MRF and P(x) is its prior probability given by

P(x) = Z−1 exp(−U(x)) (2.19)

where Z is a normalizing constant and U(x) is an energy function of the form

U(x) = ∑
c∈C

Vc(x) (2.20)

where Vc(x) is the clique potential and C is the set of all possible cliques. In the image, a
clique c is defined as a subset of pixels in which every pair of pixels are neighbors.
P(y|x,Θ) represents the joint likelihood probability and is defined
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P(y|x,Θ) = ∏
i

P(yi|xi,θxi) (2.21)

where P(yi|xi,θxi) is a Gaussian distribution with parameters θxi = {µxiσxi}. Θ = {θl|l ∈
L} is the set of parameters which are estimated using the EM algorithm. In [62], the
iterated conditional modes (ICM) algorithm [63] (one of the optimization methods) is
used to obtain the optimal solutions of MAP.

Four widely used brain tissue segmentation toolboxes: SPM (Statistical Parametric
Mapping toolbox) [64, 65], PVC (Partial Volume Classifier) [66], FreeSurfer [67] and
FAST (FMRIB’s Automated Segmentation Tool) [62] are based on parametric statistical
methods. For example, in SPM, the underlying method is based on the parameter esti-
mations of a Gaussian mixture model (GMM), atlas registration and bias field correction
at the same time iteratively. In FreeSurfer, the underlying method includes registration
to a brain atlas, a Bayesian estimation theory framework, a Markov random field (MRF)
spatial model and the ICM algorithm [63]. In PVC, the underlying method includes a
maximum-a-posteriori (MAP) classifier and spatial prior model of the brain. In FAST, the
underlying method is based on the HMRF-EM algorithm.
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CHAPTER 3

MRI Brain Tissue Segmentation

This chapter addresses objectives 1 and 2 of this thesis (described in chapter 1) for seg-
menting the brain into three tissue types: white matter, gray matter and cerebrospinal
fluid. The chapter consists of three sections. Section 3.1 presents a review of existing
methods for brain tissue segmentation. The proposed unsupervised framework is pre-
sented in section 3.2. The empirical evaluation of the proposed method and the other
existing unsupervised methods is presented in section 3.3.

3.1 MRI brain tissue segmentation methods: A review

Automated and accurate tissue segmentation is an important and challenging task in the
quantitative analysis of brain MR images. In literature, a wide variety of automatic meth-
ods have been proposed for segmenting the brain tissues in MR images. From the perspec-
tive of machine learning, these can be broadly classified into two major types: supervised
and unsupervised segmentation methods.

Supervised segmentation methods [39, 68–72] need training datasets for feature ex-
traction and classifier training. The trained classifier is then applied to label pixels in
image. However, supervised methods have a major drawback in that they require suf-
ficiently large training dataset from a similar distribution as the data to be segmented.
Consequently, in practice these methods are not suitable for data acquired with a different
scanner or scanning protocol [73].

In contrast, unsupervised methods don’t need any training datasets for segmentation.
Various unsupervised methods have been proposed for brain tissue segmentation. Most of
them are based on parametric statistical methods [18, 62, 64, 74–80], which assume some
distributional form for the underlying probability distribution of the data and seek to es-
timate its parameters. Several of them [74–76] perform purely intensity based clustering.
However, a major drawback of these is that they may give poor tissue classifications in
the presence of additive noise and multiplicative bias field inherent in MR images [41].
To solve these problems, several parametric methods [18,62,64,77–79] employ a Markov
random field (MRF) statistical spatial model. However, the main downside of these ap-
proaches is that the MRF algorithm is computationally expensive and needs critical pa-
rameter settings in a high dimensional feature space [41].
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Mean shift (MS) [54,55] is one of the unsupervised clustering methods, which doesn’t
have this problem. It is an adaptive gradient approach to estimate the modes of the multi-
variate distribution underlying the feature space. The feature points that have a common
mode constitute a cluster. The kernel bandwidth is the only parameter of the MS that in-
fluences the clustering. For example, use of a small bandwidth can cause over-clustering
whilst use of a large bandwidth can cause under-clustering. Numerous approaches [81,82]
have been proposed to overcome this problem. These approaches employ adaptive band-
width of the kernel to estimate the modes or clusters.

The mean shift based on the adaptive bandwidth for estimating the modes is called
the adaptive mean shift (AMS) [81, 82]. AMS can perform clustering by taking both
the spatial and the intensity domain into account. This characteristic can make AMS
more robust to the MRI artifacts such as noise and spatial intensity inhomogeneity com-
pared to intensity-based clustering methods [41]. AMS yields a set of clusters or modes.
However, to get the desired number of clusters, merging is required. Mayer et al. [41]
proposed the first adaptive mean shift framework for segmenting brain tissues in MR im-
ages. This framework used a mode pruning and voxel-weighted k-means algorithm to
assign the clusters, obtained from the adaptive mean shift, into white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) tissue. However, mode pruning in the range
(intensity) domain ignores the spatial information of modes/clusters, which may cause
merging of the modes belonging to different tissue types. In addition, merging of pruned
modes into desired tissue types using the voxel-weighted k-means algorithm, initialized
by using prior knowledge of tissue intensity ordering in MR images [41], may also lead
to assigning the clusters to the wrong tissue type. These collective limitations motivated
the development of the new unsupervised segmentation framework presented in the next
section.

3.2 Proposed unsupervised segmentation framework

We here propose a new unsupervised framework for segmenting the brain into three tissue
types: WM, GM and CSF. The proposed framework is based on Bayesian adaptive mean
shift, a priori spatial tissue probability maps and the fuzzy c-means algorithm

Bayesian adaptive mean shift is a variant of the AMS method proposed in [41]. In
AMS, the adaptive bandwidth of the kernel is estimated in terms of the distance between
the current feature point and its k-th nearest neighbor. However, the estimation of the
kernel bandwidth using this approach can be biased by outliers [83].

In [83] a fixed (global) kernel bandwidth estimation approach is proposed to solve
this problem. In the proposed framework, we employ this approach locally to estimate the
adaptive bandwidth of the kernel for each feature point. The approach, called Bayesian
adaptive mean-shift, uses a Bayesian method that involves fitting the Gamma distribution
probability density function to the local variances of N sets of neighborhoods around the
current feature point xi (for more details see [83] and appendix A in paper B).
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Schematic of the proposed segmentation framework

A schematic of the proposed framework is presented in Fig. 3.1. The proposed framework
involves three pre-processing steps: (1) Extraction of the brain from the MRI data (T1-
weighted image) using a brain binary mask, obtained from the given ground truth. (2) Bias
field correction using the N3 bias field correction algorithm [84], and (3) Co-registration
of a priori spatial tissue probability maps, obtained from the ICBM [85], to the MRI brain
data (T1-weighted brain image) using Flirt registration tool in FSL [86]. The following
steps are then applied to segment the brain as follows:

1. Pre-clustering using Bayesian adaptive mean shift:

(a) The adaptive bandwidth hi for each feature point xi is estimated using the
Bayesian approach as described in paper B.

(b) The clusters of the brain tissue is then estimated, defined in Eq.2.12, using the
adaptive bandwidth hi, obtained from step 1(a). The clustering is performed
in the joint spatial-intensity domain using the joint kernel defined in Eq.2.13.

2. Final clustering to the desired number of clusters using fuzzy c-means: The fuzzy
c-means algorithm (as described in section 2.3) is applied to assign the clusters,
obtained from step 1(b), into the WM, GM, and CSF tissue using Eq.2.15. In the
fuzzy c-means algorithm, the center of the jth tissue µ j is initialized by incorporat-
ing the a priori spatial tissue probability maps pi j (obtained from the ICBM) using
Eq.2.17.

Pre-processing 
!  Brain extraction 
!  Bias field correction 

Bayesian adaptive mean 
shift 

Image registration 
Fuzzy c-means 

Input: T1-weighted 
image 

T1-weighted  
brain image 

Modes/Clusters 

Output: WM, GM, CSF 

a priori spatial tissue 
probability maps  

Registered a priori spatial tissue 
probability maps  

WM  

GM  

CSF  

Figure 3.1: Schematic of the proposed framework.
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3.3 Empirical evaluation of the proposed framework

This section summarizes the empirical evaluation, detailed in paper B, of the proposed
framework. The proposed framework was validated on a synthetic T1-weighted MR im-
age with varying noise characteristics and spatial intensity inhomogeneity, obtained from
the BrainWeb database as well as on 38 real T1-weighted MR images, obtained from
the IBSR repository. The performance of the proposed framework was evaluated rela-
tive to the three widely used brain segmentation toolboxes: FAST (FMRIBs Automated
Segmentation Tool) [62], SPM (Statistical Parametric Mapping) [64, 65] and PVC (Par-
tial Volume Classifier) [66], and the adaptive mean shift (AMS) [41] and classical Fuzzy
c-means (FCM) [59] methods. The performance was evaluated both quantitatively and
qualitatively.

Quantitative results

The quantitative performance of the proposed framework and each competing method
was measured using the Dice index/score.

The Dice index/score (DI) [87] measures the degree of overlap between the ground
truth and the segmentation result. It is defined as

DI =
2Vae

Va +Ve
(3.1)

where Vae is the number of voxels the segmentation result and the ground truth have in
common, and Va and Ve denote the number of voxels in the segmentation result and the
ground truth respectively. The DI yields one for perfect overlapping and zero when there
is no overlap between the segmentation result and ground truth.

The quantitative results (mean Dice index) over all the subjects for the synthetic
dataset and the IBSR18 dataset are presented in paper B; see figures 4, 5 and 7 respec-
tively. Herein, we present in detail, the quantitative results for the IBSR20 dataset with
20 subjects. The dataset was corrupted with strong intensity inhomogeneities (bias field).

The quantitative results for the IBSR20 dataset (shown in Fig. 3.2) show that across
the different subjects, for the GM, the proposed method yields higher or comparable seg-
mentation accuracy (Dice index/score) for each subject compared to all competing meth-
ods. However, for the WM, the proposed method has higher segmentation accuracy for
each subject compared to all competing methods except for the subjects 2 4, 15 3, 16 3
for which SPM has higher segmentation accuracy, and the subject 2 4 for which FAST
yields higher segmentation accuracy and the subject 191 3 for which FCM has higher
segmentation accuracy. Moreover, for the CSF, the proposed method yields higher seg-
mentation accuracy for each subject compared to all competing methods except for the
subject 202 3 for which SPM has higher segmentation accuracy and the subject 13 3 for
which AMS has higher segmentation accuracy.
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Figure 3.2: Dice index for each method for 20 subjects from the IBSR20 dataset for (a)
WM (b) GM and (c) CSF.

However, over all the subjects, the quantitative results for the IBSR20 dataset (shown
in Fig. 3.3) show that the proposed framework performs well (higher Dice index/score)
for each tissue compared to all the competing methods. Moreover, the results for the
competing methods, presented here are consistent with the results published in [88].

For the results shown in Fig. 3.2, several multiple comparison tests were done in
order to determine whether there exists a statistically significant difference in the voxel-
wise classification performance between the proposed framework and each of the other
methods.

Each multiple comparison test involved performing five McNemar tests [89]. Each
McNemar test involved computing a 2×2 contingency matrix

[
n11 n12
n21 n22

]
(3.2)

where n11 is the number of voxels correctly classified by both methods, n12 is the number
of voxels correctly classified by proposed framework but not the other method, n21 is the
number of voxels incorrectly classified by proposed framework but correctly classified by
the other method, and n22 is the number of voxels incorrectly classified by both methods.

For each McNemar test the null hypothesis was that the two methods have the same
performance, i.e. n11 = n22, versus the alternative hypothesis that they do not. The level
of significance for each multiple comparison test was taken to be α=0.05 and so, using
Bonferroni correction, the level of significance for each McNemar test was α =0.05/5
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=0.01.
The McNemar tests for the IBSR20 dataset results for each tissue (shown in Fig. 3.2)

provide evidence that the proposed framework is significantly different (p-values < 0.01)
to all competing methods.
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Figure 3.3: Mean Dice index for each method over the 20 subjects of the IBSR20 dataset
for (a) WM (b) GM and (c) CSF. The error bars show ±1 standard deviation.

Qualitative results

An illustration of segmentation for each method for coronal slice 31 of the subject 15 3
from the IBSR20 dataset is presented in Fig. 3.4.

It can be seen that relative to the ground truth, the proposed framework has less mis-
classification for the GM compared to all the competing methods. However, for the WM,
the proposed framework has higher misclassification compared to SPM, especially in a
region close to the ventricles.
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Figure 3.4: Example of segmentation results for each method from IBSR20 dataset (15 3
coronal slice 31): (a) T1-weighted (b) Ground truth (c) Proposed (d) AMS
(e) FAST (f) SPM (g) PVC (h) FCM (WM in white, GM in gray and CSF in
black).
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CHAPTER 4

MRI Whole-Head Tissue Segmentation

This chapter addresses objectives 3 and 4 of this thesis described in chapter 1. It includes
three sections. Section 4.1 presents the motivation for developing an automated unsuper-
vised method for whole-head segmentation. The proposed method is presented in section
4.2. An evaluation of the segmentation accuracy of the proposed method is presented in
section 4.3.

4.1 Automated head tissue segmentation: Motivation

Segmentation in MR head images can be useful for assigning individual tissues dielec-
tric or biomechanical properties to construct a patient-specific dielectric or biomechanical
head model, essential for electromagnetic or biomechanical simulations. Electromagnetic
modeling is of importance in applications such as non-invasive EEG source localization in
epilepsy patients [19], microwave imaging for stroke detection [20], hyperthermia treat-
ment planning for head and neck tumors [21], the study of electric fields induced by tran-
scranial magnetic stimulation (TMS) [22] and the study of deep brain simulation [23].
Biomechanical modeling is of importance in applications such as brain deformation sim-
ulation for image-guided neurosurgery [24] and the study of head trauma in traffic acci-
dents [25].

The accuracy of the MR head tissues segmentation necessarily impacts on the qual-
ity and fidelity of electromagnetic or biomechanical modeling. However, the accurate
segmentation of head tissues in MR images is a challenging task due to following major
reasons: (i) the complexity and variability of the underlying anatomy; (ii) noise; (iii) spa-
tial intensity inhomogeneities; and (iv) the low contrast between the skull, CSF and air in
conventionally-used T1-weighted images. This motivates to develop an accurate as well
as a fully automatic method for segmenting the head tissues in MR images, important for
accurate electromagnetic or biomechanical modeling.

4.2 Proposed whole-head segmentation method

Our proposed method is based on a hierarchical segmentation approach (HSA) incor-
porating our novel Bayesian-based adaptive mean shift (BAMS) segmentation algorithm
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(for more details see paper A). In common with several existing methods [19, 27, 32], the
approach includes first dividing the MRI data into brain tissue and non-brain tissue sub-
volumes and then independently segmenting each of these into multiple tissue classes.
The idea behind this HSA is that the detection of brain and non-brain tissue is a much
simpler initial problem than the problem of segmenting the whole head into multiple tis-
sue classes. For example the BET (Brain Extraction Tool, one of the state-of-the-art brain
extraction tools) [90] can be employed to robustly obtain a brain-tissue mask whilst sim-
ple thresholding and mathematical morphology operations [91, 92] can be employed to
obtain a whole-head mask, from which the non-brain tissue mask can then be trivially
acquired. What differentiates our method is that a single segmentation approach, BAMS,
is applied to segment both the brain tissue and non-brain tissue sub-volumes into multiple
tissue classes. The main advantage of BAMS is that it can make use of multiple MRI
modalities such as T1-weighted, T2-weighted, and PD.

Hierarchical Segmentation Approach (HSA)

A schematic of the HSA is presented in Fig.4.1. The HSA takes as input a single MR
image (T1-weighted) or multi-modal MR images (T1-weighted, T2-weighted and PD) of
the whole head. This data can be modeled as a single spatial volume (V ) with vector-
valued voxels. In the first level of the HSA the T1-weighted data is employed to obtain
both a brain mask and a whole head mask. The BET tool is applied to obtain the former
and a simple whole head segmentation algorithm (WHSA) is used to obtain the latter. The
WHSA comprises two simple steps: (i) Otsu thresholding [91] and (ii) hole filling using
morphological reconstruction and 26-connectivity [92]. The set difference between these
two masks then yields a mask of the non-brain head tissue. These masks effectively divide
the head volume (V ) into two disjoint sub-volumes: brain tissue (VBT ) and non-brain
tissue (VNBT ). In the second level of the HSA the multi-tissue segmentation algorithm
(MTSA) is employed independently to the brain tissue (VBT ) and non-brain tissue (VNBT )
volumes to segment them into individual tissue classes VBT1 , VBT2 ,...and VNBT1 , VNBT2 ,....
respectively.

4.3 Empirical evaluation of the proposed method

This section summarizes the empirical evaluation, detailed in paper E, of the proposed
method, HSA-BAMS. The evaluation was performed relative to a commonly used refer-
ence method BET-FAST, and four instantiations of the HSA using both synthetic MRI
data (obtained from the Brainweb [51]) and real MRI data from ten subjects. Each
HSA instantiation is based on a different multi-tissue segmentation algorithm: the hid-
den Markov random field model and associated Expectation-Maximization (HMRF-EM)
algorithm [62], the adaptive mean shift (AMS) algorithm [41], the improved Fuzzy c-
means algorithm with spatial constraints (FCM S) [93], and the simple k-means cluster-
ing algorithm [56]. Hereinafter these instantiations of the HSA are denoted HSA-FAST,
HSA-AMS, HSA-FCM S and HSA-kmeans.
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Figure 4.1: Schematic of the proposed hierarchical segmentation approach (HSA) for au-
tomated whole head segmentation.

The synthetic data include multiple realizations of four different noise levels, and
several realizations of typical noise with a 20% bias field level. For the synthetic MRI
data the ground truth was obtained from the nine tissue classes. This was reduced to seven
classes by merging tissues with similar conductivity values. Notably, the connective and
muscle tissue classes were merged, and the glial matter and GM classes were merged.

For the real data sets, an experienced radio-oncologist manually segmented each sub-
ject data into five tissue classes: WM, GM, CSF, skull and skin. This represented a trade-
off between the time required to manually segment the images and labeling the essential
classes for EEG source localization. The radio-oncologist included fat, muscle, and skin
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in the skin class. The manual segmentation took about 170 hours for 200 slices.

Quantitative results

The quantitative performance of the proposed framework and that of each competing
method was measured using the Dice index (defined in chapter 3) and the Hausdorff dis-
tance [94], which is defined as

H = max{HSG,HGS} (4.1)

where S and G are two sets of points that belong to the segmentation result and ground
truth respectively. HSG = max{dSG

i } is the maximum value of the surface distance (Eu-
clidian distance) of all surface voxels in S and dSG

i represents the minimum distance for
the ith surface voxel in S to the set of surface voxels in G. Similarly, HGS = max{dGS

i } is
the maximum value of the surface distance of all surface voxels in G and dGS

i represents
the minimum distance for the ith surface voxel in G to the set of surface voxels in S.

The quantitative results from paper E for the synthetic dataset with varying noise
characteristics are shown in Fig. 2 and 3 respectively and the synthetic data for a particular
noise (5%) with 20% bias field is shown in Fig. 4. They show that the segmentation
performance of HSA-BAMS is consistently better (higher mean Dice index and lower
mean Hausdorff distance) than that of all other instantiations of the HSA as well as the
reference method BET-FAST for WM, GM, fat, and muscle tissue especially at higher
noise levels (5%, 7%, and 9%). They also show that the segmentation accuracy of the
proposed method is comparable (similar mean Dice index and mean Hausdorff distance)
to the HSA-AMS and HSA-kmeans methods for the skin and skull tissue.

The quantitative results for the two real datasets (Data set 2 and Data set 3) for each
subject are presented in Fig. 6 and 7 respectively. They show that the proposed method
HSA-BAMS yields higher segmentation accuracy (higher mean Dice index and lower
mean Hausdorff distance) compared to all competing methods for the GM, skin, and skull.
However, the performance of the proposed method is comparable (similar Dice index) to
all competing methods for the WM (for Data set 2). Moreover, the methods BET-FAST
and HSA-FAST have lower Hausdorff distance (H) compared to the proposed method for
the CSF (for Data set 3).

Herein, we present in detail, the quantitative results for the real dataset (Data set 4)
with eight healthy subjects. The mean Dice index (DI) and mean Hausdorff distance (H)
values over the eight subjects for each method and each tissue are shown in Fig. 4.2.
They reveal that HSA-BAMS yields higher segmentation accuracy (higher mean Dice
index and lower mean Hausdorff distance) than the reference method BET-FAST as well
other variants of the HSA for all tissue types.
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Figure 4.2: Real Dataset: (a) Mean Dice index and (b) Mean Hausdorff distance (mm)
over the eight subjects for each tissue and method. In (a) the error bars repre-
sent±1 standard deviation of the Dice index and in (b) the error bars represent
±1 standard deviation of the Hausdorff distance.

Qualitative results

An illustration of segmentation for each method for a single sagittal slice (the face re-
gion has been excluded) of the subject (IXI040 Guys 0724 [95]) from the real dataset
is shown in Fig. 4.3. It can be observed that for the skull tissue, HSA-kmeans, HSA-
FCM S, HSA-FAST and HSA-AMS methods yield higher misclassification whilst for the
skin tissue BET-FAST has higher misclassification. For the WM, all the competing meth-
ods (HSA-kmeans, HSA-FCM S, HSA-FAST, HSA-AMS, and BET-FAST) yield higher
misclassification compared to the proposed method HSA-BAMS.
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Figure 4.3: Segmentation example for a sagittal slice of the subject from the multi-modal
real dataset: (a) T1-weighted image; (b) T2-weighted image; (c) PD im-
age; (d) Ground truth; (e) HSA-BAMS; (f) HSA-AMS; (g) HSA-kmeans; (h)
HSA-FAST; (i) BET-FAST; (j) HSA-FCM S (WM in white, GM in gray, CSF
in black, skull in red and skin in yellow).
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CHAPTER 5

MRI Whole-Head Tissue Segmentation: Application to EEG
Source Localization

This chapter addresses objective 5 of this thesis described in chapter 1. It includes three
sections. Section 5.1 presents the motivation for developing an automated unsupervised
segmentation method for electroencephalography (EEG) source localization. Section 5.2
describes the EEG source localization problem. An evaluation of the proposed method,
described in chapter 4, in the context of EEG source localization is presented in section
5.3.

5.1 Automated head tissue segmentation for EEG source local-
ization: Motivation

Epilepsy is one of the most common neurologic diseases, and is present in up to 1% of
the world’s population. For epilepsy patients who have not been helped by medication,
surgical therapy is often the only feasible intervention.

Source localization of epileptic activity is a tool to delineate cortical areas with abnor-
mal neuronal activity of cells and networks. However, correct and anatomically precise
localization of the epileptic focus is essential to decide if resection of brain tissue is pos-
sible [96].

Expert manual analysis is considered the gold standard for determining accurate lo-
calization of the source of epileptic seizures from electroencephalography (EEG) scalp
measurements. Nevertheless, it is a time consuming and laborious process [96]. Sev-
eral automatic non-invasive EEG source localization methods [97] have been proposed
to solve this problem. The accuracy of these methods is not only based on the methods
applied to solve the underlying forward and inverse problems [98] but also on the quality
and fidelity of the patient-specific head conductivity model used in the forward problem.
The construction of a realistic head conductivity model needs accurate segmentation of
MR images of the head into tissue types corresponding to different conductivity values.
It is usual practice to use five tissue classes: white matter, gray matter, CSF, skull, and
skin [27, 99] followed by manual correction for source localization, although improve-
ments in localization accuracy can be obtained with more tissue types [28]. Completely
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manual segmentation [26], normally performed by a clinical expert, is the gold standard.
However, it is laborious and time-consuming. Two variations that can be found in the liter-
ature are interactive segmentation/semi-automatic requiring user intervention [28–31,33],
and fully automatic segmentation followed by manual correction [19, 27, 32]. Neverthe-
less, these approaches are still labor intensive and time consuming. Additionally because
user interaction or intervention is needed they are, like completely manual segmentation,
subjective and reproducibility is an issue.

Therefore, the limitations of semi-automatic and manual segmentation (outlined above)
served as the motivation to develop a fully automatic method from multi-modal MR head
images suitable for EEG source localization.

5.2 The EEG Source Localization Problem

EEG source localization is a non-invasive tool applied to locate the source of epileptic
seizures in the brain. It involves the solution of two problems: (1) Forward problem
that deals with finding the scalp potentials for the given current sources and (2) Inverse
problem that deals with estimating the sources to fit with the given potential distributions
at the scalp electrodes [27].

5.3 Evaluation of the proposed whole-head tissue segmenta-
tion method: EEG source localization accuracy

The accuracy of EEG source localization is based on the quality and fidelity of the patient-
specific head conductivity model, which is in turn based on the accuracy of segmentation
of the patients head tissues.

Herein, we summarize an indirect empirical evaluation of our proposed segmentation
method HSA-BAMS (described in chapter 4) in the context of EEG source localization,
presented in paper E. The evaluation was performed relative to the ground truth (GT) and
the reference method BET-FAST using synthetic 2D multi-modal MR data with 3% noise
level and synthetic EEG, generated for a prescribed source.

In addition, in paper C, the performance of BET-FAST (FSL software) was evaluated
relative to the GT using the synthetic MRI data for 3% noise level with 20% bias field for
the EEG source localization. In paper D, the GT with five tissues was employed in order
to evaluate the modified particle swarm optimization method for EEG source localization
of somatosensory evoked potentials in a healthy subjects brain.

In paper E, a 2D GT with seven tissue types for the synthetic multi-modal MRI data,
obtained from the BrainWeb, was used and a synthetic EEG was generated by placing a
source in the GM of the GT image and calculating the EEG signals from 30 electrodes
placed equidistantly on the 2D scalp based on 10/10 system [27].

To solve the EEG source localization problems, a subtraction method was used for
modeling the source (dipole) in the forward problem [100] and a modified particle swarm
optimization [27] method was applied to solve the inverse problem.
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Quantitative results

The performance of EEG source localization was measured in terms of relative error be-
tween the measured and estimated source potential and localization error between the
actual source and estimated source distance.
The relative error (RE) is defined as

RE =
‖Umeasured−Uestimated‖

‖Uestimated‖
(5.1)

where Umeasured is a vector of the measured potential on the head and Uestimated is a vector
of the potential estimated using the simulated source.
The localization error (LE) is defined as

LE = ‖Xtrue−Xestimated‖ (5.2)

where Xtrue is the real source position and Xestimated is the estimated source position.
The quantitative results, presented in paper E, reveal that the relative error (RE) of the

potential and the localization error (LE) for the proposed method HSA-BAMS are 0.01
and 0.00 mm respectively and for the reference method BET-FAST are 0.04 and 4.20 mm
respectively. It suggests that using HSA-BAMS leads to better localization accuracy.

Qualitative results

Herein, we discuss the qualitative results of each method, presented in paper E. Fig. 5.1
shows the position of (a) real (simulated) source (in green) (b) estimated source using the
proposed method HSA-BAMS (in red) (c) estimated source using the reference method
BET-FAST (in blue), superimposed on the ground truth image. It can be seen that the
estimated position of the source obtained using HSA-BAMS is in good agreement with
the actual position of the source. However, the estimated position of the source obtained
using the reference method BET-FAST is not.
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Figure10. EEG source localization results: Ground truth superimposed with the location 
of the real (simulated) source (green), HSA-BAMS estimated source (red), and BET-

FAST estimated source (blue).!
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Figure 5.1: EEG source localization results: Ground truth superimposed with the location
of the real (simulated) source (green), HSA-BAMS estimated source (red),
and BET-FAST estimated source (blue).
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CHAPTER 6

MRI Whole-Head Tissue Segmentation: Application to
Hemorrhagic Stroke Detection

This chapter addresses objective 6 of this thesis described in chapter 1. It includes two
sections. Section 6.1 presents the importance of microwave imaging for stroke detection,
including image reconstruction procedure for intracerebral hemorrhage and an overview
of automated segmentation methods used for intracerebral detection. An evaluation of
segmentation methods, including the proposed method described in chapter 4, in the con-
text of intracerebral hemorrhage detection for a stroke patient is presented in section 6.2.

6.1 Application: Detecting Hemorrhagic Stroke with Microwave-
Imaging

Stroke is a neurological disorder that is caused by either a clot blocking an artery or a
burst blood vessel causing bleeding inside the cranium. The latter, called intracerebral
hemorrhage, is the most common type [101]. Worldwide, each year approximately 15
million people suffer a stroke. A third of these patients don’t survive [102].

Computerized Tomography (CT) is presently the gold standard for stroke diagnosis,
with MRI frequently being applied when CT fails to give a definitive answer [103]. The
major drawback of these imaging modalities is that they are rather bulky. Moreover,
they are not portable. Thus, stroke patients have to be brought to the hospital to confirm
that they don’t have intracerebral hemorrhage before thrombolytic treatment, a treatment
employed to dissolve blood clots in the brain, can be provided. Special, large ambulances
equipped with CT have been developed to address this problem [104]. Nevertheless, this is
an expensive solution and can only be used in heavily populated areas with well developed
traffic and telecommunications infrastructure. Ultrasound is a potential future alternative.
However, so far this is not applicable for detecting intracerebral hemorrhage [105]. A
fast, cost-effective and portable stroke detection imaging system for ordinary ambulances
is thus highly desirable.

To achieve this, several microwave systems have been proposed/developed in recent
years [20, 35, 36, 106]. The microwave systems proposed in [20, 35, 36], have been used
for numerical simulation for stroke detection while the one proposed in [106], has been
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applied to clinical measurements from stroke patients.
Microwave imaging uses several microwave antennas placed around the patient’s head

and measures the amplitude and phase for the propagated signal between all possible pairs
of antenna combinations. A single frequency or multiple frequencies in an interval around
1 GHz is often used. The dielectric properties of the brain tissues govern the microwave
scattering [107]. The high contrast between blood and brain tissue facilitates the detec-
tion of a hemorrhage. Microwave imaging is based on reconstructing dielectric images
that can be associated with physiological changes in the brain. To date, 3D reconstruc-
tion algorithms typically require several hours for image reconstruction. However, this
is not feasible in ambulances where immediate reconstructions are required. It has been
proposed [36] that fast reconstruction can be obtained by exploiting a priori information
about the patient’s brain in the healthy state (before stroke onset). In particular, a patient-
specific dielectric model of the head is required as starting point; the reconstruction can
then be estimated as an update to the prior head model, wherein the measured signals
from the patient’s head are compared to the corresponding simulations of the head model
and changes in the tissue related to the stroke can be localized.

The quality and fidelity of the dielectric head model are essential for the accuracy of
image reconstruction. However, the construction of a realistic dielectric head model in-
volves, as a first step, the segmentation of the patient’s head tissues from MRI images. The
segmentation can then be used to construct a dielectric head model by assigning each tis-
sue type its respective dielectric property (conductivity/permittivity) value. Importantly,
the accuracy of MRI tissue segmentation is critical for the construction of a realistic head
model required for accurate image reconstruction.

6.1.1 Image reconstruction for intracerebral hemorrhage

Herein, we describe the image reconstruction procedure for intracerebral hemorrhage
(shown in Fig. 6.1). The reconstruction involves the following steps:

1. Before the onset of stroke, a patient’s MRI data is segmented to generate a patient-
specific dielectric head model. The model is then applied for electromagnetic sim-
ulations to simulate the scattering parameters: transmission and reflection coeffi-
cients (see Fig. 6.1, left).

2. After the onset of stroke, the electromagnetic measurements are performed directly
from the patient’s head using the microwave antennas surrounding the head (see
Fig. 6.1, right).

3. Both measured and simulated scattering parameters are then used in the image re-
construction algorithm, wherein the reconstruction is performed based on the differ-
ence between the measured and simulated scattering parameters. The reconstruc-
tion represents the change in dielectric properties of the brain tissues associated
with intracerebral hemorrhage (see Fig. 6.1, center-bottom).
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Figure 6.1: Schematic of image reconstruction for intracerebral hemorrhage.

6.2 Evaluation of segmentation methods: Intracerebral hem-
orrhage detection

This section summarizes the empirical evaluation, detailed in paper F, of automated seg-
mentation methods in the context of intracerebral hemorrhage detection for stroke patient
using microwave imaging system.

The evaluation was performed using both synthetic MRI data and real data from four
healthy subjects. In the case of the synthetic data the labeled tissues used to generate the
MRI data were served as ”ground truth” segmentation. In the case of the real data manual
segmentation done by an experienced radio-oncologist, was used as ”ground truth”. The
segmentations were done on the full 3D data.

For computational reasons, in this study a 2D dielectric head model was used for elec-
tromagnetic simulation and image reconstructions. The 2D model was constructed from
a single 2D slice, obtained from the 3D segmented MRI data. Moreover, in this study, we
mimic the scenario for real stroke measurements by using simulations of an intracerebral
hemorrhage. The dielectric head model without intracerebral hemorrhage was generated
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from each automated segmentation methods (described in section 6.2.1) while the head
model with simulated intracerebral hemorrhage was generated only from the ground truth.
The intracerebral hemorrhage was simulated in the head model by placing a disk of pre-
scribed size in a prescribed position by assigning the pixels the dielectric properties for
blood. Eight different hemorrhages were simulated: two different sized disks and four
different positions. The radii for the large and small intracerebral hemorrhages were 20
mm and 10 mm (see Fig. 3 in paper F).

The antenna configuration for the microwave imaging system, used in this study for
electromagnetic simulations is presented in Fig. 4 (see paper F). The imaging system
comprises 20 antennas placed equidistantly around the dielectric head model. The an-
tennas are used both as transmitters and receivers. For each tomographic measurement,
one antenna at the time is used as transmitter while the others are used as receivers to
measure the scattered signals. This process is continued until all antennas have been used
as transmitters and all possible antenna combinations have been measured.

The electromagnetic simulations for the head model without and with hemorrhage
were done independently by employing a 2D finite-difference time domain (FDTD) method
[108, 109]. The FDTD method was used to simulate the electric fields inside the head
model as well as to simulate the scattering parameters from the head model. The electric
fields inside and the scattering parameters on the head model without hemorrhage, and
the measurements (measured scattering parameters) on the head model with hemorrhage
were then used as inputs to the image reconstruction algorithm in order to reconstruct the
intracerebral hemorrhage (see Fig. 6.1).

In this study, we applied a fast reconstruction algorithm, which is based on a Born
approximation [110] to find the difference between the simulated and measured signals,
obtained from the head model without and with hemorrhage respectively, in order to deter-
mine the change in dielectric properties of the brain tissues associated with intracerebral
hemorrhage.

6.2.1 Automated segmentation methods

We used six unsupervised segmentation methods (including the proposed method pre-
sented in chapter 4) for constructing the dielectric head model for use in simulated mi-
crowave tomography system for imaging intracerebral hemorrhage for the stroke patients.
The segmentation methods comprise the commonly used BET-FAST [62, 90] method,
and five variations on a hierarchical segmentation approach (HSA) wherein the MRI data
is initially divided into brain and non-brain and then the tissues are independently seg-
mented in each. The detail of HSA is presented in section 4.2 and paper F respectively.
Each HSA variant is based on a different multi-tissue segmentation algorithm: FAST [62],
Bayesian-based adaptive mean shift (BAMS) [111], adaptive mean shift (AMS) [41], k-
means method [56], Fuzzy c-means method [59]. These variants of the HSA are denoted
HSA-FAST, HSA-BAMS (the proposed method presented in chapter 4), HSA-AMS,
HSA-kmeans, and HSA-fuzzy cmeans.
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Quantitative results

The quantitative evaluation included the measurement of segmentation accuracy over all
tissues for a 2D slice, electromagnetic simulation accuracy, and image reconstruction ac-
curacy for simulated intracerebral hemorrhage with two different sizes and four different
positions in the brain.

The segmentation accuracy over all tissues, each method and each data was deter-
mined in terms of mean Dice score/index [87].

The electromagnetic simulation accuracy was estimated in terms of signal deviation
(F). The signal deviation was defined as the sum of squared difference between the scat-
tering signals obtained from the dielectric models with and without intracerebral hemor-
rhage, respectively. It is given by

F =
N

∑
k=1

n

∑
t=1
‖S′(k, t)−S(k, t)‖2 (6.1)

where N is the total number of antennas, n is the total number of signal samples and S
′
(k, t)

is the tth sample of the scattered signal received from the kth antenna, using the dielectric
head model with simulated intracerebral hemorrhage and S(k, t) is the tth sample of the
scattered signal received from the kth antenna, using the dielectric head model without
hemorrhage.

The reconstructed image accuracy for both conductivity and permittivity of intracere-
bral hemorrhage for each dataset and each method was estimated relative to the ground
truth in terms of relative error.

The relative error (RE) for the permittivity [108] is given by

RE =
∑S ‖ξGT −ξASM‖

∑S ‖ξGT‖
(6.2)

where S is the region of intracerebral hemorrhage being reconstructed, ξGT represents the
permittivity profile of the intracerebral hemorrhage reconstruction using the ground truth,
and ξASM is the permittivity profile of the intracerebral hemorrhage reconstruction using
the automatic segmentation method. The relative error for the conductivity is similarly
defined.

Moreover, the degree of overlap between the actual (simulated bleeding in the ground
truth brain) and reconstructed intracerebral hemorrhage was computed in terms of Dice
score for the image reconstruction accuracy.

The accuracy of electromagnetic microwave simulation is critical for the accurate
image reconstruction whilst the accuracy of segmentation is critical for the accurate elec-
tromagnetic microwave simulation. In this study we investigated, how the segmentation
accuracy influences the electromagnetic microwave simulation accuracy. For this, a re-
lationship between the segmentation accuracy and signal deviation (in logarithmic scale)
was evaluated.

In paper F, Fig. 7 shows the combined plots for the mean Dice score over all the tissues
and the mean signal deviation over the four different positions for both large and small
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intracerebral hemorrhages. Herein we present in detail the results for large intracerebral
hemorrhages, shown in Fig. 6.2. The results reveal that relative to the ground truth, the
method HSA-BAMS has lowest mean signal deviation and highest mean Dice score com-
pared to all competing methods except for the synthetic data wherein the HSA-BAMS
and HSA-AMS are comparable. The results also reveal that the mean signal deviation
measured using only the ground truth is negligible compared to that measured using the
automated segmentation methods. This indicates that tissue segmentation accuracy influ-
ences the simulated scattering signals higher than the intracerebral hemorrhage.

To quantitatively evaluate the accuracy of the reconstructions (shown in figures. 8-12,
in paper F), a threshold level ‘T’ for both normalized permittivity and conductivity images
was chosen to classify the intracerebral hemorrhage and the background. Three different
threshold levels (T = 0.6, 0.7, 0.8) were arbitrarily chosen for both permittivity and con-
ductivity images. The permittivity/conductivity values < T were defined as background
whilst the permittivity/conductivity values > T were considered as intracerebral hemor-
rhage in the reconstructed images. The Dice score/index was then calculated to measure
the degree of overlap between the actual and reconstructed intracerebral hemorrhage for
both permittivity and conductivity.

Fig. 12 in paper F shows the combined plots for the mean Dice score for T = 0.7
and the mean relative error for permittivity for both large and small intracerebral hemor-
rhage. Herein we present in detail the results for image reconstruction accuracy for large
intracerebral hemorrhages, shown in Fig. 6.3. The results for the synthetic data show
that relative to the ground truth, the method HSA-BAMS has improved reconstruction
accuracy (higher mean Dice score for image reconstruction and mean relative error for
permittivity) compared to the competing methods except for the synthetic data, wherein
HSA-BAMS and HSA-AMS have a similar reconstruction accuracy (similar mean Dice
score for image reconstruction and mean relative error for permittivity). The reason for
poorer reconstruction accuracy of other methods for this particular case is that they have
higher misclassification of tissues (see Fig. 5 in paper F), especially for the GM and
muscle or skin, compared to the HSA-BAMS and HSA-AMS methods.
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Figure 6.2: Mean Dice score over all the tissues and mean signal deviation (in logarithmic
scale) for large intracerebral hemorrhage. In the plot, the results for different
segmentation methods are shown along the x-axis, for every method a group
of data is shown with different colors, corresponding to different datasets.
Along the positive y-axis the bars show the mean Dice score and on the nega-
tive y-axis the mean signal deviation in logarithmic scale is shown.
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Clinical data4Figure 6.3: Mean Dice score for image reconstruction for T = 0.7 and mean relative er-

ror for permittivity for large intracerebral hemorrhage. In the plot, the re-
sults for different segmentation methods are shown along the x-axis, for every
method a group of data is shown with different colors, corresponding to dif-
ferent datasets. Along the positive y-axis the bars show the mean Dice score
and on the negative y-axis the mean relative error is shown.

Qualitative results

Sample reconstructions of the permittivity and conductivity profiles for a large intracere-
bral hemorrhage with radius size of 20 mm from the synthetic dataset are shown in Fig.
6.4 and 6.5 respectively. They show that both segmentation methods HSA-BAMS and
HSA-AMS have better reconstruction accuracy for intracerebral hemorrhage compared to
the HSA-kmeans, HSA-fuzzy c-means, HSA-FAST and the BET-FAST method, and have
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a similar reconstruction accuracy compared to the ground truth. These results corroborate
the results for the synthetic data presented in Fig. 6.2. In the figures, the contours in the
reconstructed images show the structures of the head tissues, wherein the actual intrac-
erebral hemorrhage is shown as a circular contour. The color bar represents the range
of intensity for the reconstructed images. In the reconstructed images, the white pixels
correspond to background and the yellow and red pixels correspond to the intracerebral
hemorrhage.
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Figure 6.4: Reconstruction of the permittivity profile for a large intracerebral hemorrhage
with radius size of 20 mm from the synthetic dataset obtained using the dif-
ferent segmentation methods.
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Figure 6.5: Reconstruction of the conductivity profile for a large intracerebral hemorrhage
with radius size of 20 mm from the synthetic dataset obtained using the dif-
ferent segmentation methods.
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CHAPTER 7

Summary of the papers

This chapter presents brief summaries of the enclosed papers, which are categorized into
three types; brain segmentation, MRI whole-head segmentation for EEG source localiza-
tion and MRI whole-head segmentation for intracerebral hemorrhage detection in stroke
patients.

7.1 Brain Segmentation

7.1.1 Paper A: A Novel Bayesian Approach to Adaptive Mean Shift Seg-
mentation of Brain Images

In this paper, we propose a novel adaptive mean shift algorithm for the segmentation of
multi-modal MR images of the brain into three tissue types: white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF). The novelty lies in the algorithm for the esti-
mation of adaptive bandwidth of the kernel. The algorithm is called a Bayesian adaptive
mean shift (BAMS) wherein the Bayesian approach is employed for adaptive bandwidth
estimation. The approach involves fitting the Gamma distribution probability density
function to the local variances of N sets of neighborhoods around the current feature
point. The accuracy of the proposed algorithm BAMS was evaluated relative to another
adaptive mean shift algorithm that is based on the k nearest neighbors (kNN) bandwidth
estimator as well as several other existing methods. The segmentation experiments were
performed on both multi-modal synthetic (T1-, T2-, PD-weighted) MRI data with differ-
ent levels of noise and real T1-weighted MRI data with varying levels of spatial intensity
inhomogeneities. The performance of the segmentation methods was measured using the
Dice and Tanimoto coefficient. The results demonstrate the efficacy and accuracy of the
proposed BAMS algorithm and that it performs well compared to the competing methods
especially when the noise and spatial intensity inhomogeneities are high.
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7.1.2 Paper B: Automated MRI Brain Tissue Segmentation based on Mean
Shift and Fuzzy C-Means using a Priori Tissue Probability Maps

In this paper, we propose a novel fully automatic unsupervised segmentation framework
for the segmentation of three tissue types from the MRI brain images. The framework
is based on the Bayesian-based adaptive mean shift to initially divide the brain into a
number of clusters and the fuzzy c-means algorithm, wherein the a priori spatial tissue
probability maps are incorporated, to classify the resulting clusters into WM, GM and
CSF tissue. The segmentation accuracy of the proposed framework was evaluated rela-
tive to three widely used brain segmentation toolboxes: FAST, SPM, and PVC and the
adaptive mean shift (AMS) and classical fuzzy c-means (FCM) methods. The evaluation
was done on a synthetic T1-weighted MR image for four different noise levels (3%, 5%,
7%, 9%) with two different spatial intensity inhomogeneity levels (20%, 40%), obtained
from the BrainWeb database as well as on 38 real T1-weighted MR images, obtained
from the IBSR repository. The experimental results, especially for the real datasets reveal
that for some cases, the proposed framework has less segmentation accuracy for some
tissue compared to the competing methods. However, overall the performance of the pro-
posed framework is better compared to all competing methods. Moreover, incorporation
of a priori spatial tissue probability maps in the proposed framework makes the tissue
segmentation objective and reproducible.

7.2 MRI Whole-Head Segmentation: EEG Source Localiza-
tion

7.2.1 Paper C: Investigation of Brain Tissue Segmentation Error and Its
Effect on EEG Source Localization

In this paper, the segmentation performance of two widely used brain segmentation tools:
FSL (FAST) and FreeSurfer were evaluated relative to the ground truth (gold standard
segmentation). The evaluation was performed using the synthetic MRI data with varying
noise and bias field levels, obtained from the BrainWeb. The segmentation results show
that FSL is more robust compared to FreeSurfer, especially for the CSF, one of the most
important tissues for EEG source localization. Based on the FSL segmentation, an electro-
conductivity head model was then constructed in order to investigate the effects of brain
tissue segmentation on EEG source localization. A combination of the subtraction method
and modified particle swarm optimization method was applied to solve the EEG source
localization problems. The experimental results show that the source estimated using the
FSL based electro-conductivity model has a 12 mm localization error in the z-direction of
the estimated source.
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7.2.2 Paper D: Particle Swarm Optimization Applied to EEG Source Lo-
calization of Somatosensory Evoked Potentials

In this paper, a modified particle swarm optimization method was applied for EEG source
localization of somatosensory evoked potentials in a healthy subject’s brain. This pa-
per provides an extension of the work presented in paper C, wherein it is shown that the
widely used brain segmentation tool: FSL has high misclassifications of skull and CSF
tissue. This might cause significant errors in source localization results. Herein, man-
ual segmentation of T1-weighted MRI data of the healthy subject, done by a radiologist,
was employed. The segmentation was then applied to construct a conductivity model for
source localization of somatosensory evoked potentials. The experimental results show
that using the expert manual segmentation of tissues, the modified particle swarm opti-
mization method yields the accurate source localization of somatosensory evoked poten-
tials in the healthy subject’s brain with respect to the clinical expert determined source
localization as well as to the exhaustive search source localization method.

7.2.3 Paper E: Unsupervised Segmentation of Head Tissues from Multi-
modal MR Images for EEG Source Localization

In this paper, we propose and present a new fully automatic unsupervised method for head
tissue segmentation from multi-modal MR images for use in the construction of a patient
specific model for EEG source localization. The method is based on a hierarchical seg-
mentation approach (HSA), wherein the MRI data are initially divided into brain tissue
and non-brain tissue sub-volumes and then each sub-volume is independently segmented
into multiple tissue classes. What differentiates our method is that a single segmentation
approach, Bayesian adaptive mean shift (BAMS), is used to segment both the brain tissue
and non-brain tissue sub-volumes into multiple tissue classes. Several evaluations of the
performance of the proposed method and of reference as well as variant methods were also
presented. This included direct evaluation in terms of segmentation accuracy and indirect
evaluation in terms of EEG source localization accuracy. The segmentation results show
that compared to the competing methods, the proposed method is more tolerant to the
noise and the bias field for the synthetic data. For the real datasets, the proposed method
also has higher segmentation accuracy for the tissue types essential for the EEG source
localization compared to each competing method. Moreover, multiple comparisons sta-
tistical tests (consisting of several McNemar tests) also show that the proposed method
HSA-BAMS performs differently (p-values < 0.016) to all other methods for each tis-
sue type, especially for the real datasets. For the case of EEG source localization, the
results show that the proposed method yields a better performance compared to the ref-
erence method BET-FAST, commonly used for the construction of a realistic head model
for EEG source localization. Overall the experimental results suggest that the proposed
method HSA-BAMS can be used as a surrogate for the reference method BET-FAST as
well as manual segmentation for the construction of patient-specific head models for EEG
source localization.
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7.3 MRI Whole-Head Segmentation: Intracerebral Hemorrhage
Detection in Stroke Patients

7.3.1 Paper F: A Comparative Study of Automated Segmentation Methods
for Use in a Microwave Tomography System for Imaging Intracere-
bral Hemorrhage in Stroke Patients

In this paper, we present an evaluation of several unsupervised segmentation methods in
the context of intracerebral hemorrhage detection in stroke patients using a microwave
imaging system. The evaluation was performed using both synthetic MRI data and real
data from four healthy subjects. In the case of the synthetic data the labeled tissues used
to generate the MRI data were used as ”ground truth” segmentation. In the case of the real
data expert manual segmentation was served as ”ground truth”. The segmentations were
done on the full 3D data, whereas the electromagnetic evaluation was performed using a
2D slice. For evaluation of methods, we calculated the segmentation accuracy over the tis-
sues relative to the ground truth. We also evaluated the effect caused by misclassification
of tissue on the electromagnetic wave propagation through the head and on the recon-
struction accuracy of hemorrhage. The segmentation accuracy was measured in terms of
the degree of overlap (Dice score) between the ground truth and the method segmenta-
tion. The electromagnetic simulation accuracy was measured in terms of signal deviation
relative to the simulation based on the ground truth. Finally, the image reconstruction
accuracy was measured in terms of the Dice score, the relative error of dielectric proper-
ties, and visual assessment between true and reconstructed intracerebral hemorrhage. The
experimental results reveal that accurate image reconstruction for the intracerebral hem-
orrhage in the subject’s brain can be achieved by accurate segmentation of tissues in the
MRI data. They also indicate that accurate automated segmentation (in this study, partic-
ularly HSA-BAMS) can be applied in lieu of manual segmentation and can assist in fast
diagnosing the intracerebral hemorrhage in stroke patients using the microwave imaging
system.
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CHAPTER 8

Conclusions and Outlook

In this chapter our contributions are summarized and directions for future work are dis-
cussed.

8.1 Conclusions

The contributions of this thesis are four-fold. First, we studied the brain segmentation
problem for three tissue types: WM, GM and CSF in MR images, wherein accurate seg-
mentation is a challenging task because of the two major artifacts: noise and spatial inten-
sity inhomogeneity (bias field). In chapter 3, we presented an unsupervised segmentation
framework, which is a combination of Bayesian adaptive mean shift, a priori spatial tis-
sues probability maps and the fuzzy c-means algorithm. The important characteristic of
the proposed framework is that it provides the segmentation of tissue by taking both the
spatial and intensity domain and the a priori spatial information using probabilistic atlas
into account. This makes the proposed method more robust to noise and spatial intensity
inhomogeneity. Overall the experimental results showed that the proposed framework
exhibited a higher degree of segmentation accuracy in segmenting both synthetic and 38
real T1-weighted MR images compared to the competing methods. However, over all the
subjects for each real dataset, the proposed framework has decreased in performance for
the CSF compared to the WM and GM.

Second, we studied the whole-head segmentation problem in the multi-modal MR
images for use in the construction of a patient specific dielectric model. In chapter 4, we
proposed an automated unsupervised MRI whole-head tissue segmentation method for
use in biomechanical or electromagnetic modeling. The method is based on a hierarchi-
cal segmentation approach (HSA) incorporating the Bayesian-based adaptive mean-shift
(BAMS), wherein the MRI data is first partitioned into brain tissue and non-brain tissue
sub-volumes and then each sub-volume is independently segmented.

Third, we studied the influence of MRI head tissue segmentation on the accuracy
of EEG source localization. In chapter 5, the proposed whole-head tissue segmentation
method HSA-BAMS is evaluated for the EEG source localization. The experimental re-
sults demonstrated the accuracy of the proposed method, and that it is more suitable than
the reference method BET-FAST commonly used for constructing the realistic head con-
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ductivity model for EEG source localization.
Fourth, we studied the influence of MRI head tissue segmentation on the accuracy

of image reconstruction for intracerebral hemorrhage detection in stroke patients using
a microwave imaging system. In chapter 6, we presented an evaluation of the proposed
whole-head tissue segmentation method HSA-BAMS for use in constructing a dielectric
head model for imaging intracerebral hemorrhage in stroke patients using a simulated
microwave imaging system. The experimental results demonstrated that the proposed
method yields a higher image reconstruction accuracy for intracerebral hemorrhage com-
pared to the existing methods. The results also revealed that accurate automated segmen-
tation can be used in lieu of manual segmentation for accurate image reconstruction and
can assist in real time stroke detection in the patient’s brain using the microwave imaging
system.

8.2 Future work

Based on the studies presented in this thesis, the following possibilities can be explored
in future research.

• The proposed framework for brain segmentation, presented in chapter 3, can be ap-
plied for segmenting MR images containing abnormal brain tissues like sclerotic
lesions and tumors. This will likely require additional MRI modalities and possi-
bly also imaging modalities. These can be readily accommodated in the proposed
method.

• The robustness of the proposed method, presented in chapter 4, can be investi-
gated for real time diagnosis of stroke patients in the ambulance equipped with a
microwave imaging system.

• The proposed method, presented in chapter 4, can also be investigated for hyper-
thermia treatment planning for head and neck tumors, wherein the accurate seg-
mentation for tumors and tissues surrounding the tumors are crucial for accurate
treatment.

• The proposed framework, presented in chapter 3, can be investigated for simulta-
neous tissue segmentation and bias field estimation of MR images. This can be
achieved by extending the fuzzy c-means objective function (Eq.2.15) for bias field
estimation [112].

• T1- and T2-weighted MR images contain low contrast between the air and the skull
tissue, which may cause misclassification of the skull. One potential solution to this
problem is to incorporate a priori anatomical information; e.g. using a probabilistic
atlas. This can be investigated for the proposed method, presented in chapter 4.

• It can also be possible to investigate other contemporary segmentation techniques
such as multi-atlas segmentation methods for EEG source localization and stroke
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8.2 FUTURE WORK

detection in the patient’s brain. Multi-atlas yields a better tissue segmentation for
the brain datasets with large anatomical variations than a single atlas [113].
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