

Applications of smart-contracts and
smart-property utilizing blockchains
Master of Science Thesis in Computer Science: Algorithms,
Languages and Logic

Erik Hillbom
Tobias Tillström

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2016

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Applications of smart-contracts and smart-property utilizing blockchains

ERIK HILLBOM

TOBIAS TILLSTRÖM

Copyright c© ERIK HILLBOM, February 2016

Copyright c© TOBIAS TILLSTRÖM, February 2016

Examiner: David Sands

Supervisor: Katerina Mitrokotsa

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering

Gothenburg, Sweden, February 2016

Abstract

Bitcoin, one of many cryptocurrencies, has in the last couple of years grown into a multi
billion dollar industry. It is fully decentralized and utilizes a public ledger (blockchain),
which allows for the currency to function without a central authority. As the Bitcoin
protocol contains a programming language, it has potential to be used for much more
than exchanging currency.

This thesis is about exploring the possibility of combining cryptocurrency with a
concept called ’smart-contracts’. The term smart-contracts was coined in a paper written
by Nick Szabo in 1997, thus predating Bitcoin by 12 years. In contrast to paper based
contracts, these are computer protocols facilitating an agreement between parties. We
have put extra emphasis on two types of contracts: a generic type called ‘Double-Deposit-
Escrow’ (DDE), and one involving ‘smart-property’. DDE achieves a double deposit
escrow within the blockchain, allowing users to perform business with untrusted parties
with minimum risk of losing money. Smart-property may be described as the ability of
property itself to be part of a contract.

By refining Szabo’s ideas using current technology, we have implemented a self-
enforcing smart-contract executing the trade of smart-property referred to as the Smart-
Property Ownership Exchange Protocol (SPOEP). It was implemented in Python and
supports anonymous trades using Bitmessage, as well as NFC. We have analyzed our
proposed protocol in terms of security and scalability, and compared it with related
projects such as Ethereum and Colored coins.

There are several viable approaches for creating smart-contracts using cryptocur-
rency. Albeit not perfect, we have deemed Bitcoin to be the currently most suited
cryptocurrency to be used for this purpose.

Keywords: Smart-contracts, Smart-property, Bitcoin, Colored-coins, Ethereum

ii

iii

Acknowledgements

First, we would like to thank our supervisors Kasper Karlsson and Martin Altenstedt
at Omegapoint for their help and support throughout the project, and giving us the
opportunity of performing this at Omegapoint.

We would also like to thank our supervisor Katerina Mitrokotsa and examiner David
Sands at Chalmers University of Technology for her help and feedback throughout the
project.

Erik Hillbom and Tobias Tillström, Gothenburg 2016-02-01

iv

v

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1
1.1 Background . 1
1.2 Problem description . 2
1.3 Limitations . 2
1.4 Related work . 3

1.4.1 Bithalo / Blackhalo . 3
1.4.2 Codius . 3
1.4.3 Counterparty . 3

2 Smart-Contracts 4
2.1 Objectives . 4

2.1.1 Observability . 5
2.1.2 Verifiability . 5
2.1.3 Privity . 5

2.2 Using cryptocurrencies . 5
2.2.1 Smart-Property . 5
2.2.2 Double Deposit Escrow . 5

3 Theory 8
3.1 Bitcoin . 8

3.1.1 Keys . 8
3.1.2 Transactions . 9
3.1.3 Signatures . 10
3.1.4 The blockchain . 11
3.1.5 Double spending . 14

3.2 Bitmessage . 16

vi

CONTENTS

3.2.1 Addresses . 16
3.2.2 Network structure . 16
3.2.3 Message transfer . 16
3.2.4 Security and privacy . 17
3.2.5 Spam prevention . 17
3.2.6 Average times . 18

3.3 Colored coins . 18
3.3.1 Assets . 18
3.3.2 Transactions . 19

3.4 Ethereum . 20
3.4.1 Accounts . 21
3.4.2 Messages . 21
3.4.3 Transactions . 21
3.4.4 Blockchain . 23

4 SPOEP: Smart-Property Ownership Exchange Protocol 24
4.1 The protocol . 24

4.1.1 Protocol overview . 25
4.1.2 Protocol analysis . 26

4.2 Test environment . 28
4.2.1 Bitmessage . 28
4.2.2 NFC . 28
4.2.3 How to run . 29

5 Results 30
5.1 Bitcoin . 30
5.2 Colored coins . 32
5.3 Ethereum . 32
5.4 SPOEP . 33

6 Discussion 34

7 Conclusion 36
7.1 Future work . 36

Bibliography I

A SPOEP-trading via Bitmessage IV
A.1 Example run . IV

A.1.1 Contract specifications . IV
A.1.2 Program output . IV
A.1.3 Final transaction . VI

vii

1
Introduction

This thesis is performed in collaboration with Chalmers University of Technology and
the Swedish consulting firm Omegapoint. The purpose of this thesis is to research
a concept called ‘smart-contracts’. Smart-contracts eliminate the need of trust when
entering agreements, and as will be shown, can be fully peer-to-peer.

1.1 Background

A smart-contract is a concept of a computer protocol facilitating an agreement between
different parties. The contract may be self-enforced; a third party cannot enforce or
interfere with the agreement. There are several areas of application for smart-contracts,
one of which being ‘smart-property’. Smart-property may be a car which knows its
owner, where ownership is based on a transferable but non-forgeable digital token. A
smart-contract can for example be set up to govern the transfer of ownership and ac-
companying rules; the digital token becomes a part of the contract itself.

While the idea of smart-contracts has been around for nearly two decades, little
progress has been made implementation-wise until recently. With the release of modern
cryptocurrencies, such as Bitcoin [1], this is starting to change.

Cryptocurrency is a form of digital money that relies on cryptography for security.
In contrast to traditional currency, it typically features decentralized control, removing
the need of a central issuer. Another implication of decentralization is that it removes
the need of relying on third parties (such as banks) when transferring funds.

The idea of cryptocurrency is believed to originate from Wei Dai, who published a
description of ‘B-money’ in 1998 [2]. B-money is described as an anonymous distributed
electronic cash system and was thought of as a conceptual idea, rather than practical.

In 2005, Nick Szabo wrote a blogpost1 where he proposed a new type of digital
currency named ”bit-gold”. Bit-gold relied on the idea that a participant would solve

1http://unenumerated.blogspot.se/2005/12/bit-gold.html

1

http://unenumerated.blogspot.se/2005/12/bit-gold.html

1.2. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

cryptographic equations, provide proofs of these solutions to other participants, and a
reward would be granted based on the amount of work that was needed. Each solution
would be part of the next challenge, effectively forcing participants to verify current so-
lutions before working on new ones. Apart from working as an incentive for participants
to verify each others work, all new coins would at the same time be given a timestamp.
While this proof-of-work scheme managed to assign value to computational power, it
never gained recognition as it left a lot of unanswered questions. A major issue was how
to value work, as different input data would require a varying amount of work. Bit-Gold
is commonly viewed as a precursor to Bitcoin.

Bitcoin was proposed by the pseudonym Satoshi Nakamoto in 2008 and released in
2009. It solved all issues of Bit-gold and is the most popular cryptocurrency today
[3]. The most notable contribution of Bitcoin is the blockchain (section 3.1.4), which
is a distributed public ledger. Being open source, Bitcoin has been copied and altered
numerous times and these projects are commonly known as ‘altcoins’.

It is possible to extend the functionality of Bitcoin by inserting metadata within
transactions. By writing protocols that interpret the metadata as ‘assets’, tokens of
smart-property may be defined. A generic name for these protocols is ‘Colored coins’
(see section 3.3).

Ethereum (section 3.4) is a cryptocurrency sometimes referred to as ‘Bitcoin 2.0’ and
is set to go live ‘sometime this year’. We believe it will suffer from enormous scalability
issues in regards to blockchain size, as smart-contracts are to be part of the blockchain
itself.

1.2 Problem description

As of today, entering an agreement requires a trusted third-party to enforce that which
was agreed upon. This requirement raises several issues; for instance, the third-party
might be malicious, or not have sufficient information in order to resolve a potential
dispute. A common problem arises when purchasing items online - who does a company
side with if a dispute arises and there is no proof of who is being honest?

Another interesting question is how to securely implement ownership control, once
again without the need of a trusted third-party.

In this thesis we investigate viable solutions to both problems by implementing smart-
contracts utilizing cryptocurrency. With Bitcoin being the most thoroughly researched
cryptocurrency, it has been selected as the basis for the implementations. Other ap-
proaches, such as using other types of cryptocurrencies, are analyzed as well.

1.3 Limitations

We limit ourselves to two types of smart-contracts: smart-property and Double Desposit
Escrow. Smart-property is demonstrated by a proof-of-concept (chapter 4), which is an
implementation that enables secure trading of cars by storing transferable tokens in a
blockchain. The Double Deposit Escrow contract is described in section 2.2.2.

2

1.4. RELATED WORK CHAPTER 1. INTRODUCTION

The frameworks we have chosen to analyze, in terms of viability of implementing
smart-contracts in, are Bitcoin, Ethereum and Colored coins.

1.4 Related work

There are multiple projects claiming to support smart-contracts 2015. Due to being
similar to the ones we have limited ourselves to, they will not be part of this thesis.

1.4.1 Bithalo / Blackhalo

In 2014, David Zimbeck released Bithalo2 and Blackhalo3. These are two coin clients that
have built-in support for Double Deposit Escrow contracts (section 2.2.2). Instead of
being cryptocurrencies by themselves, they use the blockchains of Bitcoin and Blackcoin
respectively. Zimbeck claims that his clients were the first to support smart-contracts,
but they are as of yet not released as open source and have so far gained small recognition.

The reason why Blackcoin was chosen, as an alternative to Bitcoin, is its superior
transaction times. Blackcoin uses a proof-of-stake protocol [4], which enables transac-
tions to go through within minutes, in contrast to Bitcoin where a single transaction
might require hours. The drawback is potential security issues, one being the ”nothing-
at-stake” problem [5].

1.4.2 Codius

At the start of writing this thesis, Codius [6] was an open source project in early stages
of development developed by Ripple Labs (mostly known for their cryptocurrency Rip-
ple). It provided both a smart-contract engine and the means to build a peer-to-peer
network consisting of multiple Codius hosts. As stated in the documentation, the imple-
mentation of smart-property was an anticipated application, and had thus not yet been
implemented.

Codius was discontinued during the course of writing this thesis4.

1.4.3 Counterparty

Counterparty5 is a cryptocurrency with full support for smart-contracts. Just as with
colored coins, it uses the Bitcoin blockchain to store metadata. Contract code is run
by Counterparty clients, and is said to be (mostly) compatible with Ethereum contract
languages.

2https://www.bithalo.org
3https://www.blackhalo.info
4https://codius.org/blog/codius-one-year-later
5http://counterparty.io

3

https://www.bithalo.org
https://www.blackhalo.info
https://codius.org/blog/codius-one-year-later
http://counterparty.io

2
Smart-Contracts

The term ’smart-contract’ was coined by Nick Szabo in his paper Formalizing and Secur-
ing Relationships on Public Networks [7]. The idea behind smart-contracts is described
as moving existing contractual clauses, such as collateral and bonding, into embedded
hardware and software in such a way that breaching a contract becomes expensive.

While Szabo did not have a specific system for implementing smart-contracts, trust
in a central authority was assumed to be required to some extent. With the release of
cryptocurrencies, the idea of smart-contracts has rapidly regained momentum, as they
provide a secure way of proving performance in a decentralized manner.

2.1 Objectives

Szabo’s proposed design of a smart-contract is based on a two-phase model schema used
in legal theory: ex-ante and ex-post1. The contractual phases are structured as:

Ex-Ante — “Before the event”

Search — “Gather information”

Negotiation — “Agree on terms”

Commitment — “Execution of obligations”

Ex-Post — “Actual result”

Performance — “What transpired”

Adjudication — “Verdict”

Szabo focuses mostly on performance. He assumes intermediaries may be used and
defines three main objectives of a smart-contract in terms of the the phases listed above:
observability, verifiability and privity.

1Legal terms: http://lsolum.typepad.com/legal theory lexicon/2003/09/legal theory le 2.html

4

2.2. USING CRYPTOCURRENCIES CHAPTER 2. SMART-CONTRACTS

2.1.1 Observability

It must be possible for the principles to observe each other’s performance, or to prove
their performance to other principals. A lack of observability may allow hidden knowl-
edge to be utilized in the search and negotiation phases, and in combination with the
inability to drop out of a contract during the performance phase, hidden actions may
occur during the performance phase.

2.1.2 Verifiability

To evaluate performance, it must be possible for an adjudicator to verify that a contract
has been performed or breached. This is only possible if a proof is provided by a principal,
or if it is possible to find out by other means.

2.1.3 Privity

Privity is a term mostly used in contract law, referring to the connection between parties
to a particular transaction. Szabo defines privity in this context to mean ‘the principle
that knowledge and control over the contents and performance of a contract should
be distributed among parties only as much as is necessary for the performance of that
contract’. This implies that a third party should be limited in terms of knowledge and
control. Thus, achieving privity is in conflict with the use of third parties as a mean of
adjucation.

2.2 Smart-contracts using cryptocurrencies

By basing smart-contracts on cryptocurrencies, the need of a trusted third-party may be
eliminated altogether. In the following subsections, three types of smart-contracts are
described proving this point.

2.2.1 Smart-Property

Amongst several proposed smart-contract applications by Szabo, one involves a digi-
tal security system for property. The idea is to embed security protocols in property
involving actual contractual terms (turning it into ’smart-property’).

One example of such property is a car, where a contract would give control of the
cryptographic keys for operating the vehicle to a person based on the terms of the
contract. Implementing this scheme using a cryptocurrency has been suggested [8], and
is the basis for our proposed protocol SPOEP (chapter 4).

2.2.2 Double Deposit Escrow

In 2014, a white-paper named Two Party double deposit trustless escrow in cryptographic
networks and Bitcoin [9] was released by David Zimbeck. Zimbeck proposes a smart-
contract which sets up a multi-signature transaction stored in the Bitcoin blockchain,

5

2.2. USING CRYPTOCURRENCIES CHAPTER 2. SMART-CONTRACTS

which is used as a deposition account. Two parties agree on some terms prior to com-
mitting their deposits, and unless both parties agree that the terms have been met, the
funds are automatically donated to the Bitcoin mining network.

Both parties are thus incentivized to fulfill the predetermined terms, or they both
lose their deposits. The generality of the protocol makes it suitable for any type of
commitment. The only requirement is that the size of the deposit must be notably
greater than the value of the involved item or service. Below follows a technical rundown
of Alice and Bob using the protocol.

1. Bob creates a transaction, tx1, which spends funds into a temporary funding ac-
count of his (but does not broadcast it). A hash representation of tx1, H(tx1), and
a newly generated Bitcoin address, pB, is sent to Alice:

B → A : {H(tx1), pB}

2. Similarly, Alice creates a transaction, tx2, spending funds into a temporary account
of hers and generates a new Bitcoin address, pA. She proceeds by generating a
multisignature address, pAB, based on pA and pB, which will used as the deposition
account. She creates and signs a transaction tx3, which spends tx1 and tx2 into
pAB.

She also creates a transaction, txtimeout, which spends tx3 with a 99,9 % mining
fee. It is constructed using a feature called locktime, which dictates the earliest
time a transaction may be added to the blockchain. The time has been agreed
upon in advance. Transaction txtimeout is used as a penalty to both parties if the
contract terms are not met in time. She signs all transactions and sends the now
partially signed transactions tx3 and txtimeout to Bob:

B → A : {tx3, txtimeout}

3. Bob reviews the transactions and, if everything is correct, signs. Both parties now
have a fully signed txtimeout, which guarantees that when the depositions are in
place, both parties may enforce the penalty if the contract is breached.

He sends all transactions, including the non-hashed tx1, back to Alice:

B → A : {tx1, tx3, txtimeout}

4. Alice is now able to broadcast all the transactions and the depositions are then
stored in the blockchain.

Using temporary funding accounts avoids the possibility of early broadcasts; since Alice
does not have the raw format of tx1, and it is not yet funded, she cannot broadcast it
(or any transaction that uses tx1 as an input) prematurely.

When a party has fulfilled the terms of the contract, a transaction tx4 may be created
which returns the depositions. Thus, the two possible outcomes after establishing the
deposition account are:

6

2.2. USING CRYPTOCURRENCIES CHAPTER 2. SMART-CONTRACTS

• Both participants sign tx4 to return the deposition (contract has been performed)

• At least one participant chooses not to sign tx4 (contract has been breached)

7

3
Theory

This chapter aims to describe the technical workings of cryptocurrencies (Bitcoin and
Ethereum), existing smart-property implementations (Colored coins) and the communi-
cation protocol Bitmessage.

3.1 Bitcoin

Bitcoin is fully decentralized and runs on a peer-to-peer network. Anyone with a Bitcoin
client is a node in the network and every node exchanges addresses, transactions and
blocks with other nodes. A signed transaction gets broadcasted to known nodes, who in
turn relay it to their known nodes. Participants known as miners pick up transactions,
attempts to generate a block, and eventually the block becomes part of the blockchain.
As every node has a copy of the blockchain1, all clients see that the transaction has been
processed. The details of these steps are further explained in the following subsections.

3.1.1 Keys

The first key that needs to be generated is a random 256-bit private key Kpriv which is
used for signing transactions:

Kpriv ∈ {0,1}256

It is crucial that a cryptographically strong random number generator is used; in 2013
it was revealed that all Android Bitcoin wallets were susceptible to attacks due to a flaw
in the pseudo-random number generator SecureRandom. The default Bitcoin client uses
RAND bytes, which is part of the OpenSSL library2, and is considered to be secure.

1With the exception of lightweight clients who fetch blockchain information remotely
2OpenSSL Github repository: https://github.com/openssl/openssl

8

3.1. BITCOIN CHAPTER 3. THEORY

A 512-bit public key is generated by using the private key as an input to the Elliptic
Curve DSA algorithm:

Kpub = ECDSA512(Kpriv)

The public key is not revealed until a transaction gets signed. Instead, using the hash
functions RIPEMD160 and SHA256, a 160-bit public key hash is shared and used as a
recipient address of bitcoins:

Kaddress = RIPEMD160(SHA256(SHA256(Kpub)))

As a consequence, the security is reduced from 256 bits to 160. Assuming RIPEMD160

is a perfect oracle (it has no known security flaws[10]), the most efficient way to find a
collision would be to perform a Birthday attack, requiring an average of 280 tries before
one is found. If an adversary would possess enough hashing power to make such an
attack feasible, it would still be more profitable to use it for mining3.

Bitcoin supports multisignature addresses as well. Instead of requiring a single pri-
vate key to sign a transaction, m-of-n (0 < m ≤ n < 15) keys may be required. One
application of this scheme is the Double Deposit Escrow contract described in chapter
2.

3.1.2 Transactions

A transaction moves bitcoins between one or many inputs and outputs. An input may
be seen as a previous transaction supplying bitcoins, and an output as a destination for
said bitcoins.

txA

in1
out1
4 BTC

out2
. . .

txB

in1
out1
. . .

out2
2 BTC

txC

in1

in2

out1
5 BTC

out2
0.99 BTC

Figure 3.1: Outputs of both txA and txB are referred to as inputs 1 and 2 of txC

Consider figure 3.1 as an illustratory example of Alice sending 5 bitcoins to Bob by
broadcasting transaction C. As inputs, she references two previous transaction outputs

3http://bitcoin.stackexchange.com/a/31

9

http://bitcoin.stackexchange.com/a/31

3.1. BITCOIN CHAPTER 3. THEORY

(Aout1 , Bout2) where she was the recipient of 4 + 2 bitcoins. When referencing a previous
output, the entire value must be spent, which is why she creates two outputs Cout1 and
Cout2 . The value of Cout1 is 5 bitcoins and is directed to Bob. The value of Cout2 is the
change amount directed back to herself. The difference between the value of the inputs
and outputs is considered a mining fee, which is rewarded to the miner who incorporates
the transaction into a block.

The Bitcoin protocol contains a stack-based scripting language called Script4. Script
contains approximately 80 operation codes including hash functions, stack manipulation
and arithmetic. Constructing a transaction, one may choose whether a pay-to-pub-key-
hash (p2pkh), or a pay-to-script-hash (p2sh) script is to be used. In the previous example,
a p2pkh script could be used, implying that ”the owner of the included public key hash
must sign in order to spend these bitcoins in a future transaction”. By adding a public
key hash belonging to Bob in Cout1 , Bob is considered to be the owner of the 5 bitcoins.
This illustrates the fact that there are no bitcoins per se, but rather transactions stating
which keys may sign for bitcoins to belong to someone else.

By using a p2sh script, far more complex transactions are possible by combining the
various operation codes of the Script language. The most common use case is when a
multisignature scheme is desired; in section 2.2.2, a transaction is constructed stating
that two out of two signatures are required to move bitcoins.

Every transaction includes a unique5 id txid, which is needed for tracking purposes
as well as for security reasons. A txid is a double SHA256 hash digest of the binary
representation of the transaction involved:

txid = SHA256(SHA256(transaction))

From an endpoint user’s perspective, not much is required to send a regular transaction
if using the standard Bitcoin client. It includes a graphical interface, where all that needs
to be specified is an address to send bitcoins to and the amount. The client finds unspent
outputs to spend from and creates a change address automatically. For advanced trans-
actions, the included Bitcoin daemon (bitcoind) may be used via a command prompt or
suitable programming library.

3.1.3 Signatures

The signatures of transactions are located in the scriptSig field of the inputs. The data
that gets signed is the hash of the entire transaction, which makes the process quite
complex; a signature must be present before signing. Below is a simplified6 summary of
the signing process:

1. Use the scriptPubKey in the referenced output as a temporary signature:

scriptSig = scriptPubKey′

4https://en.bitcoin.it/wiki/Script
5https://en.bitcoin.it/wiki/Transaction Malleability
6The full process of creating a transaction: http://bitcoin.stackexchange.com/a/5241

10

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Transaction_Malleability
http://bitcoin.stackexchange.com/a/5241

3.1. BITCOIN CHAPTER 3. THEORY

2. The data to be signed is a hash of the entire transaction tx:

data = SHA256(SHA256(tx))

3. Sign the data using the private key matching the public key hash of the referenced
output:

signature = ECDSA512(data,Kpriv, . . .)

4. Replace the temporary signature with the signature concatenated with the public
key:

scriptSig = signature ‖ Kpub

A signature serves two purposes. Firstly, it proves that a user has bitcoins to spend.
Secondly, as the data signed includes the current transaction, it prevents man-in-the-
middle attacks; if an adversary intercepts the transaction and redirect outputs elsewhere,
the signature becomes invalid. Similarly, the signature scheme also ensures safe multi-
signature transactions; when a transaction has been signed by one participant, others
may not alter the content prior to signing, or the first signature would become invalid.

3.1.4 The blockchain

Blockx−1

Version Timestamp

Previous block MerkleRoot

Difficulty Proof-of-work

{tx1, tx2, . . . , txn}

Blockx

Version Timestamp

Previous block MerkleRoot

Difficulty Proof-of-work

{tx′1, tx′2, . . . , tx′n}

Figure 3.2: Bitcoin blockchain

The blockchain is a series of blocks that are linked together; each block has a reference
to the hash of its predecessor. As a consequence, it is impossible to change the content
of a block without affecting every subsequent block.

A block is created by a miner and consists of a block header (metadata), and a list of
transactions. The full content of a block is depicted in figure 3.2. In the block creation
process, miners receive transactions broadcasted by regular Bitcoin users. The miner
must then solve a computationally hard problem and provide a proof-of-work (section
3.1.4.2) before the block may be accepted by the network. To improve scalability, the
block header includes a merkle root.

11

3.1. BITCOIN CHAPTER 3. THEORY

3.1.4.1 Merkle Trees

The merkle root included in the blockheader produces an overall digital signature of the
list of transactions included in the block. This gives a very efficient method to verify
whether or not a transaction actually is included in a block [11].

HA

Hash(txA)
HB

Hash(txB)
HC

Hash(txC)
HD

Hash(txD)

HAB

Hash(HA + HB)
HCD

Hash(HC + HD)

Merkle Root

HABCD

Hash(HAB + HCD)

Figure 3.3: Node calculation in a merkle tree.

The merkle tree (figure 3.3) is constructed by first hashing each individual transaction,
creating the leaf nodes in the tree. These nodes are then hashed together pairwise,
resulting in a set of nodes one step up in the tree. The process repeats until there is
only one node left, which becomes the merkle root.

The inclusion of a merkle root in blocks enables light-weight clients, clients that
only store the blockheaders, to still be able to verify transactions. If Alice wishes to
prove to Bob that transaction txK is included in Blockx, she can simply supply the
set {txK , HL, HIJ , HMNOP , HABCDEFGH} (see figure 3.4) to Bob. Bob can then easily
verify that txK is indeed included in Blockx by calculating the merkle root himself and
compare with the one found in the blockheader. Since the structure of a merkle tree is
the same as for a binary search tree, this verification would on average take O(log n)
time, and at most O(n) time (where n is the number of transactions). By only storing
block headers, the required storage space of the blockchain is reduced by up to 99,9 %;
the current maximum block size is 1 MB out of which 80 bytes constitute the header.

12

3.1. BITCOIN CHAPTER 3. THEORY

HA HB HC HD HE HF HG HH HI HJ HK HL HM HN HO HP

HAB HCD HEF HGH HIJ HKL HMN HOP

HABCD HEFGH HIJKL HMNOP

HABCDEFGH HIJKLMNOP

Merkle Root of Blockx

HABCDEFGHIJKLMNOP

Figure 3.4: Only the elements highlighted in blue are needed to prove the inclusion of
element HK in the merkle root of Blockx.

3.1.4.2 Proof-of-work

The proof-of-work problem consists of finding an integer (nonce), such that when hashed
together with the rest of the block header data, the resulting output has at least a given
amount of leading zeros. The amount of zeroes depends on the current mining difficulty,
which is dynamically changed every 2016th block. It is based on the total amount of
hashing power in the entire mining network. The goal of the mining difficulty is that
it should always take ten minutes on average to solve every problem and its purpose is
to prevent double spending (section 3.1.5). The proof-of-work algorithm is depicted in
figure 3.5.

header ← version ‖ prevBlock ‖ merkleRoot ‖ timeStamp ‖ target
nonce ← hash ← 0
while target > hash do

nonce ← nonce + 1
hash ← SHA256(SHA256(header ‖ nonce))

end
return nonce

Figure 3.5: The proof-of-work algorithm used by Bitcoin [12].

The incentive for a miner to carry out the work is monetary reward. The miner who
is first to present a valid block to the network receives all the transaction fees7 of the
transactions included in the block. Additionally, the miner has included a coinbase
transaction in the transaction list, which gives the miner a fixed amount of Bitcoins
(a block reward). As the coinbase transaction is unique to each miner, every miner is
working on a unique problem. The blockreward was originally 50 bitcoins and is halved
every 210 000 th block (≈ 4 years). These rewards is the only point where new coins
are introduced in Bitcoin. Thus, the maximum amount of Bitcoins to ever come into

7Transaction priority is based on optional transaction fees.

13

3.1. BITCOIN CHAPTER 3. THEORY

existence is:
∞∑
n=0

50 · 210 000

2n
= 21 · 106

A miner is incentivized (but not required) to validate the transactions included in a block
prior to attempting to find the proof-of-work. If the block contains invalid transactions,
other nodes will reject it. The validation is a security measure in place to prevent double
spending.

3.1.5 Double spending

Double spending is the result of the same Bitcoins being spent more than once. It is
made possible by a criteria used by nodes to accept new blocks; if multiple blocks are
candidates to be added to the blockchain, the one that has the longest chain is selected.
There are three well-known attacks that enable double spending: the majority attack8,
the race attack and the Finney attack.

3.1.5.1 Majority attack

The way the Bitcoin network is constructed makes it vulnerable to what is called a
majority attack. This attack is based on the assumption that there might exist a possible
user, who is in possession of more than half of the total hashing power in the network.

Assume malicious Malie is such a powerful user. Malie has the possibility to control
whether or not a transaction will be added to the blockchain. Malie can commit to
buying an item from Alice by broadcasting a transaction txi, which gets added to the
blockchain in the block Bn, whereupon Alice grants Malie the item. The current state
of the blockchain is illustrated in figure 3.6.

B0 B1 · · · Bn−1 Bn Bn+1

{tx0, tx1, . . . , txi, . . . }

Figure 3.6: A blockchain where transaction txi exist within the list of block Bn

Malie proceeds by creating her own version of the blockchain where Bn−1 is the latest
block. Malie may now include tx′i, which has the same input as txi but the output is
redirected somewhere else, in a new block as its input has not been spent in the new
version of the blockchain. (see figure 3.7).

8A majority attack is often referred to as a 51 % attack

14

3.1. BITCOIN CHAPTER 3. THEORY

B0 B1 · · · Bn−1 Bn Bn+1

B′n B′n+1 B′n+2

{tx0, tx1, . . . , txi, . . . }

{tx′0, tx′1, . . . , tx′i, . . . } 63 txi

Figure 3.7: A forked blockchain where transaction txi gets replaced with tx′
i

Malie will as always need to provide a proof-of-work for every new block until her
blockchain is longer than the real blockchain. This is bound to happen at some point
since she is in control of the majority of the hash power of the network. At that point,
she broadcasts her blockchain and has now successfully created a fork of the blockchain
where txi is not included. This fork will be accepted by the rest of the network since
the Bitcoin network will always choose to follow the longest blockchain [13].

It is highly unlikely that there exists such a user due to the fact that it would require
an enormous amount of computing power, but if there exist one, that user would succeed
in removing txi from the blockchain [12].

In order to avoid a potential majority attack, it is recommended that one should wait
for at least six transaction confirmations9 before being fairly sure that the transaction is
secure. The probability of succeeding the attack decreases exponentially for every new
block that the attacker has to catch up with [1].

3.1.5.2 Race attack

If a merchant accepts a payment immediately, without seeing any confirmations on the
transaction tx1, she will be susceptible to a double-spending attack from the buyer. The
buyer can simply create another transaction tx2 with the same inputs, but with other
outputs, and broadcast it to the network. The buyer can hope that the some miner will
create a valid block which includes tx2 and adds it to the blockchain before any other
block containing tx1 gets added [14].

The merchant should always be well connected to the Bitcoin network so that she
can broadcast the new transaction to a large amount of miners. This way, the transac-
tion should get added before the buyer is be able to race his new transaction into the
blockchain. These precautions will of course not always prevent double spending, so in

9One transaction confirmation equals one reference to the transaction in the blockchain. A transaction
included in block Bn will have 3 confirmations in block Bn+2.

15

3.2. BITMESSAGE CHAPTER 3. THEORY

order for the merchant to be sure that she will receive her funds, she should always wait
for some confirmations on the transaction before releasing her goods to the buyer.

3.2 Bitmessage

Bitmessage is a secure peer-to-peer communications protocol used to send encrypted
messages between people. Like Bitcoin, Bitmessage is both decentralized and trustless.
Bitmessage applies strong authentication, implying that one cannot spoof the identity
of a sender, and it also hides the metadata of a message (such as sender and receiver)
from wiretapping systems [15].

In the implementation of SPOEP (see chapter 4), Bitmessage is used to ensure in-
tegrity and confidentiality.

3.2.1 Addresses

Elliptic Curve Cryptography is the scheme used to generate the private and public key
pairs by the Bitmessage protocol. The address used by the client is a double SHA512

hash of the public key encoded in Base58 [16]. The private key can either be randomly
produced, or deterministically generated using a passphrase, where the former is recom-
mended for security, and the latter is for example used in multiple system applications.

3.2.2 Network structure

Each client connects to what is referred to as a stream. A stream is a subset of the
total number of clients within the network. The purpose of a stream is simply to not
overwhelm the client. Once a client starts exceeding comfortable processing thresholds,
it will merge into a new child stream, and thus it need only to maintain connections with
the peers that are also members of this current child stream.

Unless the client is part of the root stream of the network, it should occasionally
connect to clients in its parent stream in order to advertise its existence. Each client will
thus maintain a list of peers in the current stream, and the client is also aware of peers
within its two child streams. Furthermore, the client will also keep track of a couple of
peers within the root stream in order to make sure that it will be able to send messages
across the network even if the recipient stream is unknown to the client.

3.2.3 Message transfer

To send a message, the client connects to the recipient stream encoded within the re-
cipient address. If the client is unaware of any peers within the recipient stream, it will
instead connect to closest parent stream for which it knows any active node, and from
this node it will download a list of active peers within its child streams.

This process is then done iteratively until the client reaches the recipient stream, into
which it can send the message. The client will now await an acknowledgement from the
intended recipient, and it can now disconnect from the peers of this stream.

16

3.2. BITMESSAGE CHAPTER 3. THEORY

3.2.4 Security and privacy

When sending a message over the Bitmessage network, the client encrypts both the
message and its metadata with the recipient’s public key before it is broadcasted to the
network. None of the nodes within the network knows to whom the message is intended
since the metadata is encrypted. Instead, all clients will try to decrypt every message.
This way, the recipient is hidden from view, and only the intended recipient will be able
to read the content of the message.

3.2.5 Spam prevention

A client cannot broadcast just any message to the network, or more precisely, the network
will not further relay just any message. This is because Bitmessage uses a proof-of-work
(PoW) schema similar to the one of Bitcoin (see section 3.1.4.2). This means that
the client always needs to provide a valid proof-of-work with every message it tries to
broadcast to the network. A message that does not have a correct proof-of-work attached
will be dropped and ignored. This way, the client cannot spam the network with messages
since the proof-of-work problem takes a considerable amount time to solve for each new
message. The problem to solve is defined as finding a hash value of a nonce concatenated
with the payload, which is less than the target:

target = 264

nonceTrialsPerByte
(
payloadLength + extraBytes +

TTL(payloadLength + extraBytes)

216

)
The variables nonceTrialsPerByte and extraBytes are user-defined; since a client may
wish to ignore messages that are too small or with proofs that were too easy to calculate,
the sender may want to increase these variables. TTL (Time To Live) is defined as the
number of seconds texpires − tnow.

All messages are in the form of nonce ‖ payload, and the algorithm used to generate
the correct nonce is depicted in figure 3.8. To verify the proof-of-work, one simply
repeats the process of hashing the nonce (the first 8 bytes) and the payload (bytes 9-)
and checks if the resulting integer is less than the defined target.

initialHash ← SHA512(payload)
trialValue ← 99999999999999999999
nonce ← 0
while trialValue > target do

nonce ← nonce + 1
resultHash ← SHA512(SHA512(nonce ‖ initialHash))
trialValue ← the first 8 bytes of resultHash converted into an integer

end
return nonce

Figure 3.8: The proof-of-work algorithm used by Bitmessage [17].

17

3.3. COLORED COINS CHAPTER 3. THEORY

3.2.6 Average times

According to the Bitmessage documentation10, the average time (for an average com-
puter) of the various processes in Bitmessage are:

Action Time

Address generation 1 second †

1-2 characters shorter address generation 5 minutes †

Do work necessary to send broadcast 2 minutes

Do work necessary to send message 4 minutes

Message propagation through the network 10 seconds
† The client then continues doing work to send out the public

key to the network (≈ 2 minutes).

Figure 3.9: Average Bitmessage times.

3.3 Colored coins

‘Colored coins’ is a generic name for protocols that are used to issue assets into the Bit-
coin blockchain. A selection of colored coins implementations are Coinprism11, Coinspark
12 and Bitcoinx13. A common denominator for these protocols is that they all work di-
rectly on top of the Bitcoin protocol by using an instruction called OP RETURN. If
OP RETURN is found in a transaction output script, the subsequent instructions will
not be executed. Thus, the remaining bytes of the script may be used as store space for
metadata.

A popular basis for colored coins is the Open Assets Protocol14 (OAP), which will
be used as a representative for colored coins throughout the rest of this section.

3.3.1 Assets

Issuing an asset is almost identical to generating addresses in Bitcoin. The first step is
to generate a private key:

Kpriv ∈ {0,1}256

The corresponding public key is calculated:

Kpub = ECDSA512(Kpriv)

10https://bitmessage.org/wiki/PyBitmessage Help
11Coinprism website: https://www.coinprism.com
12Coinspark website: http://coinspark.org/
13Bitcoinx Github repository: https://github.com/bitcoinx
14OAP Github repository: https://github.com/OpenAssets/open-assets-protocol

18

https://www.coinprism.com
http://coinspark.org/
https://github.com/bitcoinx
https://github.com/OpenAssets/open-assets-protocol

3.3. COLORED COINS CHAPTER 3. THEORY

The pubkeyhash (address) is calculated:

Kaddress = RIPEMD160(SHA256(SHA256(Kpub)))

A standard pay-to-pubkey-hash script15 is constructed:

scriptPub = OP_DUP OP_HASH160 Kaddress OP_EQUALVERIFY OP_CHECKSIG

The asset id is generated by converting the hash of the script to a more human readable
format (a Base58 string). OAP uses a different checksum for Base58 (version byte 23) in
order to have all asset ids begin with an ‘A’ 16.

assetid = Base58(RIPEMD160(SHA256(scriptPub)))

Issuing and transferring assets is done by broadcasting transactions that contain meta-
data describing asset ids and quantities. Each output of a transaction that is to be
considered ‘colored’ must include a non-null asset id and a positive asset quantity.

3.3.2 Transactions

An OAP transaction can either issue new assets or transfer existing ones and is identified
by a marker output. The full content of such an output is depicted in figure 3.10.

15Script documentation: https://en.bitcoin.it/wiki/Script
16Example asset id: AHthB6AQHaSS9VffkfMqTKTxVV43Dgst36

19

3.4. ETHEREUM CHAPTER 3. THEORY

Field Description Size

OP RETURN opcode The OP RETURN opcode (0x6a). 1 byte

PUSHDATA opcode The PUSHDATA opcode required to push the
full payload onto the stack (0x01 to 0x4e, de-
pending on the size of the payload).

1-5 bytes

OAP Marker A tag indicating that this transaction is an Open
Assets transaction. It is always 0x4f41.

2 bytes

Version number The major revision number of the Open Assets
Protocol. For this version, it is 1 (0x0100).

2 bytes

Asset quantity count A var-integer representing the number of items
in the asset quantity list field.

1-9 bytes

Asset quantity list A list of zero or more LEB128-encoded unsigned
integers representing the asset quantity of every
output in order (excluding the marker output).

Variable

Metadata length The var-integer encoded length of the metadata
field.

1-9 bytes

Metadata Arbitrary metadata to be associated with this
transaction. This can be empty.

Variable

Figure 3.10: Marker output as summarised on the OAP github repository.

Outputs in a transaction placed prior to the marker are used for asset issuance (anyone
in possession of the private key that was used to create an asset may use it for reissuing).

Outputs placed after the marker are assigned the asset id referenced by the first
input of the transaction, if they have a non-zero asset quantity. Any remaining outputs
are considered to be uncolored (regular outputs).

Assigning asset ids to outputs is done by order-based coloring. The transaction inputs
are interpreted as a sequence of asset units and asset ids that will be assigned to the
outputs. Each input and output is selected in order, and each adds the number specified
in the asset quantity list. The protocol proceeds by assigning the asset ids of the inputs
to the outputs of the same index.l

3.4 Ethereum

Ethereum is an ongoing project striving to become much more than a cryptocurrency
in its traditional sense. As with Bitcoin, it may be used to exchange monetary value.
Its purpose is however to be used as a platform for running decentralized applications
and smart-contracts. It features a turing-complete programming language, which makes
it possible to create any type of contract. These contracts have no restrictions in terms
of size and are stored on the blockchain. A measure to prevent the blockchain to grow

20

3.4. ETHEREUM CHAPTER 3. THEORY

unfeasible large is the requirement that contracts are ‘paid for’, using an internal currency
named ‘ethers’. The contract code is executed as a part of the block validation process
performed by the miners.

Ethereum was originally proposed in 2014 by its co-creator V. Buterin [18]. The
following subsections provide an overview of the Ethereum documentation [19].

3.4.1 Accounts

There are two types of accounts in Ethereum. One being ‘externally owned’, meaning
it is controlled by private keys (just as with Bitcoin); a transaction may be sent by
providing a correct signature. The other type is having the account be controlled by
contract code; when the contract account receives a message, the code is executed. The
account may communicate with other accounts, create new accounts and read/write
within the storage field.

An account contains a 20-byte address as well as four fields: a nonce (incremented
with every transaction made), the current ether balance, contract code (optional), and
data storage.

3.4.2 Messages

Contracts may communicate with other contracts. This is achieved by sending messages,
that contain five fields: a sender address, a recipient address, an ether amount, a data
field (optional), and a startgas value. Obviously enough gas needs to be sent to comply
with the requirement of the contract at hand.

3.4.3 Transactions

A transaction is a signed message containing six fields: a recipient address, an ether
amount to be sent, a data field (optional), a startgas value (restricting the maximum
number of computational steps allowed), and a gasprice value (the fee paid for each
computational step). The startgas and gasprice variables are used as a measure against
denial-of-service attacks; without them infinite loops would be possible. In addition, five
ethers must be paid for every byte of the datafield in order to prevent the blockchain
from growing too large. Thus, a potential attacker would need to pay for every resource
consumed.

3.4.3.1 State transitions

Transfers of value or information between accounts may be defined in terms of state
transitions. Depicted in figure 3.11 is the Ethereum state transition function, which is
to be applied to every transaction included in a block:

• Check if the transaction is well-formed17, else return an error.

17Well-formed transaction if: correct number of values, signature is valid and nonces match.

21

3.4. ETHEREUM CHAPTER 3. THEORY

• Calculate transaction fees and verify that there is enough balance in the sender’s
account to spend, if not, return an error.

• Initialize GAS to the supplied STARTGAS minus storage costs.

• Transfer the payment to the recipient. If the receiving account is a contract, then
execute the contract code, either to completion or until the execution runs out of
GAS.

• If the sender did not have enough ethers, or if the execution of the contract ran
out of GAS, all state changes are reverted (except the payment of fees). Else, the
remaining GAS fees are refunded to the sender, and the fees paid for the GAS
consumed is rewarded to the miner.

Transaction

Well-formed

Calculate
transaction fees

Balance ≥ fees

Gas = StartGas

Pay recipient

Storage cost > Gas

Revert changes
(except for fees)

Collect fees

ERROR

FINISH

isContract

Execute Contract

Out of Gas

Remaining Gas

Return fees of
remaining gas

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

Figure 3.11: Flowchart visualising the Ethereum state transition function.

22

3.4. ETHEREUM CHAPTER 3. THEORY

3.4.4 Blockchain

As with Bitcoin, Ethereum blocks contain transactions, proof-of-works, timestamps, ref-
erences to previous blocks etc. The major difference is that included in every Ethereum
block, is a copy of the global state. The global state contains all existing accounts, in-
cluding contract code, data storage and balances. A special type of tree data structure
has been implemented to make storing that much data viable: a Merkle Patricia Tree18.
The tree structure allows for O(log n) efficiency for look-ups, insertions and deletions.

In terms of scalability, the developers claim that the tree structure should make
Ethereum comparable to Bitcoin and is motivated by two reasons. Firstly, only a small
part of the tree needs to be modified between adjacent blocks. Thus, data can be stored
once and referenced by by pointers to subtrees. Secondly, the entire blockchain is not
needed; only the latest block needs to be stored, as it contains all of the state information.

18Merkle Patricia Tree: https://github.com/ethereum/wiki/wiki/Patricia-Tree

23

4
Smart-Property Ownership

Exchange Protocol

This chapter describes the proposed smart-contract (protocol) for secure ownership ex-
change of smart-property referred to as SPOEP. The goal of the smart-contract is to
construct a transaction, which in one atomic step pays the seller and reassigns own-
ership to the buyer. Ownership change is defined as a Bitcoin transaction where the
last ownership transaction is used as an input in a new transaction. Ownership itself is
represented as a public key hash used in the transaction, which differs from the current
ownership hash.

4.1 The protocol

In the following sections, a basic notation of encryption and decryption of the secure
Bitmessage communication between each participant is denoted with index e and d
respectively:

B → S : {m,mdB}eS
In the example above, the buyer B sends a message m via Bitmessage to the seller S.
The buyer also signs (decrypts) the message m using his private key, denoted as mdB .
The message and its signature are both encrypted using the seller’s public key, denoted
as {. . . }eS .

24

4.1. THE PROTOCOL CHAPTER 4. SPOEP

4.1.1 Protocol overview

Buyer Car Seller

(1)
buyRequest

(2)
buyerInfo

(3)
carData

(4)
tradeData

(5)
partialTx

(6)
signedTx

(7)
changeOwner

Figure 4.1: Communication scheme of SPOEP

The buyer starts by generating a 128 bit random nonce N , and a new public key Knew,
which is to become the new owner key of the car after the transaction is complete.

(1) B → S : {buyRequest = {N,Knew}}eS

The seller relays the buyRequest to the car.

(2) S → C : {buyRequest, buyRequestdS}eC

The car verifies that the request originates from its current owner. If so, the car replies
with a message containing internal data (such as its unique identifier, its public key,
and a digital certificate issued by the car manufacturer) together with buyRequest and
a signature. The car is now also actively awaiting an owner change request.

(3) C → S : {carData = {internalData = {. . . },buyRequest}, carDatadC}eS

The seller relays the carData to the buyer.

(4) S → B : {carData, carDatadC}eB

The buyer verifies that the carData corresponds to the predetermined conditions of the
contract. If so, the buyer constructs and signs a transaction partialTx reassigning the
ownership of the car, based on what was agreed upon in the contract specification. It is
not complete until both parties have signed, and is thus named partial.

(5) B → S : {partialTx}eS

25

4.1. THE PROTOCOL CHAPTER 4. SPOEP

The seller verifies that the partial transaction created by the buyer contains the correct
information (such as the correct price). If so, the seller also signs the partial transaction,
creating the complete transaction signedTx, which the seller broadcasts to the network.

(6) S → B : {signedTx}eB

The buyer has the transaction needed to prove to the car that he is its new owner, and
thus passes the transaction to the car.

(7) B → C : {signedTx}eC

4.1.2 Protocol analysis

Stage 1

Random number generation is performed using OpenSSL. The protocol implements a
cryptographically secure pseudo-random-number-generator (PRNG). The seed used by
the PRNG is consists of a system-specific entropy source, in Linux-based based systems
this is usually the /dev/urandom [20].

The new ownerkey is generated in two steps. A 256-bit Bitcoin public key generated
by feeding the Elliptic Curve Digital Signature Algorithm (ECDSA512) a 512 bit random
number [21]. The public key is then hashed using RIPEMD160 in order to reduce key to
a more manageable size of 160 bits.

The first message transferred consists of an encrypted message containing the new
ownership key, a randomly generated nonce, a Bitmessage recipient address, and a signa-
ture. The message is encrypted by using the public Bitmessage-key of the current owner,
and is signed using the private Bitmessage-key of the buyer. The message is broadcasted
to all known Bitmessage nodes, that all try to decrypt the message in order to find out
if they are the intended recipient (by successfully decrypting and parsing the recipient
address).

So in order for an adversary to claim ownership of the car, a private key must be
found that corresponds to the 160 bit hash. In order for an adversary to eavesdrop
on the message content throughout the communication, the private Bitmessage keys of
the two parties must be found. Calculating these keys is currently infeasible [21]. The
security aspects of encrypting, decrypting and signing messages are to be implied in the
following stages.

Stage 2-3

Once the seller has received the first message, he signs it using the private key corre-
sponding to the current ownerkey. After verifying the signature, the car responds with a
signed message containing its current ownership status, together with a certificate issued
by the car manufacturer. If this is a trusted certificate, the buyer can be sure of the
validity of the car.

26

4.1. THE PROTOCOL CHAPTER 4. SPOEP

Stage 4-5

The seller decrypts the received message, encrypts it with the public key of the buyer,
and sends it to the buyer. The message now contains the car message, signed by the
private key of the car.

The buyer verifies the certificate and compares the car message with the content of the
pre-determined contract specification (see appendix A.1.1 for a specification example).
If everything checks out, the process of creating an ownership change in the form of a
Bitcoin transaction is begun.

The transaction includes two inputs and two outputs, representing the transfer of a
token amount of bitcoins moving from the current ownerkey to the new ownerkey, as
well as the price in bitcoins moving from the new ownerkey to the old. The logic of
determining the new owner is simply choosing the public key that is not the current
ownerkey.

The buyer can only sign the part of the transaction that is to move bitcoins from
the new ownerkey to the new. Once this signature is in place, any modifications to the
transaction, other than adding a signature for moving the token amount from the current
ownerkey, would invalidate the signature, leading to the transaction being rejected by the
Bitcoin network. Thus, the seller can only choose whether or not to sign the transaction;
the amount received by the seller cannot be modified in order to cheat the buyer. An
example of a partially signed transaction may be found in appendix A.1.2 beginning at
row 158.

Once the (now partially signed) transaction has been created, it is sent via Bitmessage
to the seller.

Stage 6-7

The seller verifies that the correct amount of bitcoins are to be moved between the
correct addresses, and if so adds the final signature to the transaction. It is now up to
the seller to broadcast the transaction to the Bitcoin network in order to actually move
the funds. An example of a finalised ownership transaction may be found in appendix
A.1.3.

Possible outcomes

• The seller decides not to broadcast the transaction: The seller gets to keep
the car but cannot claim the funds of the buyer. The buyer can still spend his
funds elsewhere, as the transaction input (see section 3.1.2) used for moving the
funds is still spendable.

• The buyer spends the bitcoins marked for buying the car before the
seller has broadcasted the transaction: The ownership change transaction is
rejected by the Bitcoin network, as the input used for moving funds to the seller
becomes invalid. The seller gets to keep the car.

27

4.2. TEST ENVIRONMENT CHAPTER 4. SPOEP

Thus, the only two possible outcomes are either that the transaction goes through,
or the funds and the car remain with its original owners.

4.2 Test environment

The protocol was implemented in Python 2.7 using the Bitcoin library bitcoin-rpc. We
added three different choices for communication: Bitmessage, a custom Bitmessage sim-
ulation, and Near Field Communication (NFC) using a pair of Android phones. Instead
of using real bitcoins, a private testnetwork was set up by using the bitcoin-core client
with the regtest-flag set. A Raspberry Pi 2+ running Ubuntu Mate was used to rep-
resent the car. The Bitmessage implementation was tested using Ubuntu 14.04, and
the Android implementation using a Google Nexus 4 and a Oneplus One. Support for
Windows was deemed unnecessary, but would only require minor changes in the code if
desired.

4.2.1 Bitmessage

The scripts communicate with Bitmessage via Remote Procedure Calls (RPCs). This
feature needs to be enabled in the configuration file by adding:

1 ap ienab led = true
2 ap ipor t = xxxx
3 a p i i n t e r f a c e = 1 2 7 . 0 . 0 . 1
4 apiusername = username
5 apipassword = password

Figure 4.2: Additions in the Bitmessage configuration file in order to enable RPC calls.

As stated in chapter 3.2, sending messages is a time consuming process, whereas gen-
erating an address is done in a second. For initial testing purposes we implemented a
hybrid version of the contract, which uses Bitmessage to generate addresses but relies
on file-IO for sending / receiving messages locally. This enables quick testing; multiple
scenarios of running the contract may be tested in a matter of seconds.

4.2.2 NFC

Two android phones running an API version of at least 15 is required, as well as a NFC-
reader connected to the Raspberry Pi. The code was tested using the reader ACR122U1.

For consistency purposes, we ported the Python code directly to Android using
python-for-android. The logic of the contract is exactly the same, but obviously a GUI

1http://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader

28

http://www.acs.com.hk/en/products/3/acr122u-usb-nfc-reader

4.2. TEST ENVIRONMENT CHAPTER 4. SPOEP

and communication alterations were needed. To compile the code we recommend using
Buildozer2.

4.2.3 How to run

For the Android version, four python scripts were implemented and converted to Android
APKs; two for the initialisation process (assign the first owner key to the car), and two
for the buyer and seller respectively.

We begin by setting up a new car, and proceed by pairing the phones either with each
other or the car depending on where we are in the protocol. A button for ‘unlocking’
the car is available in both the Buy and the Sell application. Below is a full run of the
protocol:

• The seller runs firstSeller, which creates a newly funded Bitcoin address, which
is presented to the car.

• The car runs carSetup and waits for a Bitcoin address that is to become the initial
owner key.

• The seller runs Sell and follows the instructions on the screen.

• The buyer runs Buy and follows the instructions on the screen.

For the Linux version, three scripts were implemented. The car is initialised by
running carSetup, a script that has access to the Bitcoin client of the car as well as
the seller’s client3. The buyer runs Buy and the seller runs Sell. As the scripts are
implemented as state machines, the scripts will pick up wherever they left off in case
they get interrupted at any point.

2https://github.com/kivy/buildozer
3Giving access to the seller’s client is purely for convenience purposes; in real life it should rather be

set up as in the Android version.

29

5
Results

In this chapter the result of comparing different approaches to implementing smart-
contracts is presented. As we concluded that using the raw Bitcoin protocol for imple-
menting smart-contracts would be the most resource efficient approach, we also imple-
mented the SPOEP-protocol described in chapter 4.

5.1 Bitcoin

As stated in chapter 3.1, Bitcoin was deemed secure due to using strong cryptography
and its large consensus network. However, due to its long transaction times, it is arguably
not optimal for smart-contracts. A transaction should be confirmed every ten minutes
(but as seen in figure 5.1, it is usually somewhat faster). To ensure that a transaction
does not get reversed, six confirmations are actually recommended (see section 3.1.5.1),
leading to unfeasible long waiting times in many types of contracts.

In terms of scalability, the growth rate and size of the blockchain must be taken into
consideration. As seen in figure 5.2, the size of the blockchain grows exponentially and
is currently 36 GB.

30

5.1. BITCOIN CHAPTER 5. RESULTS

Figure 5.1: Average Bitcoin transaction confirmation time [22].

Figure 5.2: Bitcoin blockchain size [23].

31

5.2. COLORED COINS CHAPTER 5. RESULTS

5.2 Colored coins

Colored coins (CCs) implementations rely on using the ‘OP RETURN’ instruction in
Bitcoin to insert metadata into transaction outputs. Many CC implementations, such as
Coinprism, are based on the Open Assets Protocol (OAP). OAP transactions are identi-
fied by the byte sequence representing the ASCII string ‘OP RETURN OA’. Other CC
implementations, such as Coinspark, use the same logic but other identifiers. Coinspark
transactions use the identifier ‘OP RETURN SPK’.

We scanned the last 10 000 blocks1 in the Bitcoin blockchain for these two identifiers
and compared the daily average transaction sizes. These blocks contained 8 489 812
transactions, 34 497 had an OAP identifier (0,41 %) and 9 339 a Coinspark identifier
(0,11 %). The result is shown in figure 5.3.

Figure 5.3: Daily average transaction sizes.

The results suggest that today’s usage of colored coins has less of an impact on the
Bitcoin blockchain size than regular types of transactions.

5.3 Ethereum

At the time of writing, Ethereum has not yet been released. The only obtainable data
comes from analysing performance within the Ethereum test-network. As the currency

1Scanned blocks: #356602 - #366601

32

5.4. SPOEP CHAPTER 5. RESULTS

within this network holds no value, the current blockchain growth rate gives no indication
of how the real network will perform once online; participants lose nothing by creating
expensive transactions. However, test data does indicate that the average transaction
time correlates to the intended 12 seconds in the current version [24].

5.4 SPOEP

We implemented a protocol for securely transferring ownership of smart-property (a car)
peer-to-peer using the Bitcoin protocol. The only footprint in the blockchain is a regular
transaction where the buyer receives a valid owner key of the car and at the same time
the seller gets funded. Instead of utilising metadata for asset creation and contract
details, assets are defined in terms of regular Bitcoin keys and outputs, and contracts as
code running independently of Bitcoin.

The size of the transaction is 373 bytes. If instead metadata would be used, an extra
output would need to be included, adding a maximum of 80 bytes.

The code is hosted at our Github repository2 and the output of a full run of the
Bitmessage version may be found in appendix A.

2Code repository: https://github.com/hillbom/smart-contracts

33

https://github.com/hillbom/smart-contracts

6
Discussion

The results clearly shows that Bitcoin suffers from issues in terms of scalability, in regards
to its blockchain size, as well as slow transaction times. Today, the size of the Bitcoin
blockchain is around 40 GB and is growing exponentially. If Bitcoin would gain wide
adoption, this would quickly rise to unrealistic proportions. To make things worse, the
block size would have to be increased in order to reduce bandwidth usage and to allow
for more transactions to be able to get processed per minute. The increase of blockchain
size is a much debated topic and one of its advocates is Bitcoin Foundation chief scientist
Gavin Andresen1.

The data collected for Colored Coins is a bit surprising. Adding metadata within
transactions should of course lead to larger transaction sizes. We have two possible
explanations for the contradicting result. First, colored coins is still a new concept
and we believe the majority of these transactions are created for testing the protocols.
Second, we believe the reason as to why an average bitcoin transaction size is large is that
the majority of Bitcoin holders use the currency for trading on exchanges; the contents
of exchange transactions usually include thousands of inputs and outputs.

By basing SPOEP on the Bitcoin protocol, it inherits the problems with scalability
and transaction times. It should however leave a smaller footprint in the blockchain
when compared to Colored Coins. All that gets added to the blockchain is a regular
transaction, as the the contract details are kept separate.

By not relying on metadata, some assumptions had to be made regarding the iden-
tification of an asset and the notion of ownership. Instead of issuing assets within the
blockchain, SPOEP interprets one of possibly many output addresses to be the new
owner. As a result, it is important that the buyer does not tamper with the code that
constructs the ownership transaction unless being aware of the consequences. For in-
stance, adding multiple inputs and outputs will randomly assign the new ownership to
one of the output addresses, which may or may not be a sought-after contract.

1Increasing the blocksize: http://www.coindesk.com/gavin-andresen-bitcoin-hard-fork/

34

http://www.coindesk.com/gavin-andresen-bitcoin-hard-fork/

CHAPTER 6. DISCUSSION

SPOEP has a very specific area of application. The question is if storing data in the
blockchain is completely unavoidable when designing other types of contracts. In most
cases where goods or services are to be exchanged, we do believe that the double deposit
escrow scheme described in section 2.2.2 may be applied. Where a person used to have
something to gain by being dishonest, everyone now has an incentive to be honest. The
obvious drawback is that a large deposition might be needed in order for this incentive
to exist.

35

7
Conclusion

It is viable to form smart-contracts using cryptocurrency without the need of changing
existing protocols. A standard practice of today is to accomplish this by adding metadata
within the blockchains. As we have shown, this leads to worsening the scalability issues
from which Bitcoin already suffers.

By comparing Bitcoin to Colored Coins implementations and Ethereum, it is clear
that each approach has its own advantages and disadvantages in regard to implementing
smart-contracts. Using the raw Bitcoin protocol (as we did in our SPOEP implemen-
tation) we do at least not worsen scalability or transaction time issues already present.
It does however require a lot of effort when designing contracts. Colored coins make
it easier to create assets, and thus creating smart-property, with the downside being
a worsening of scalability. In terms of transaction times, Ethereum stands out as the
average time is merely 12 seconds. By supporting multiple high level programming lan-
guages, designing any type of smart-contract should be possible without too much effort.
But since contract code is stored in the blockchain, it is predicted to suffer from even
worse scalability issues when compared to other cryptocurrencies.

If Ethereum developers manage to solve the scalability problem, Ethereum should be
the ideal platform on which to create smart-contracts. As of today, we believe Bitcoin
is still the best option.

7.1 Future work

• Bitcoin relies on a time consuming proof-of-work schema in order to prevent double
spending. As an alternative, we recommend looking into cryptocurrencies based on
the proof-of-stake schema. These feature significantly faster transaction times and
eliminate the need for dedicated mining hardware. As a result, smart-contracts
should execute much faster and the networks should be prone to become more
decentralised.

36

7.1. FUTURE WORK CHAPTER 7. CONCLUSION

• Proper certificate handling needs to be implemented in SPOEP. The manufacturer
of the car should act as a central authority and issue a certificate for each car in
order to be able to verify that a given public key corresponds to a specific car.

• When a stable release of Ethereum becomes available, a proper re-evaluation should
be conducted in order to get an accurate measurement of the blockchain growth
rate and its performance.

• When researching Bitmessage it became apparent that it may be used to imple-
ment decentralised markets via smart-contracts. Bitmessage has a feature called
‘channels’, which we believe could be combined with the Double Deposit Escrow
contract to create trust-less decentralised markets.

37

Bibliography

[1] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system [2008].
URL: https://bitcoin.org/bitcoin.pdf

[2] Dai, W. B-money [1998]. Retrieved: 29 April 2015.
URL: http://www.weidai.com/bmoney.txt

[3] Coinmarketcap.com. Crypto-currency market capitalizations [2015]. Retrieved: 15
January 2015.
URL: http://www.coinmarketcap.com

[4] Vasink, P. Blackcoin’s proof-of-stake protocol v2 [2014]. Retrieved: 04 May 2015.
URL: http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

[5] Houy, N. It will cost you nothing to ‘kill’ a proof-of-stake crypto-currency [2014].
URL: http://papers.ssrn.com/sol3/papers.cfm?abstract id=2393940

[6] Thomas, S. and Schwartz, E. Smart oracles: A simple, powerful approach to smart
contracts [2014]. Version: 17 July 2014.
URL: http://github.com/codius/codius/wiki/Smart-Oracles:-A-Simple,-Powerful -
Approach-to-Smart-Contracts

[7] Szabo, N. Smart contracts: Formalizing and securing relationships on public net-
works. First Monday [1997] vol. 2(9).
URL: http://dx.doi.org/10.5210/fm.v2i9.548

[8] Bitcoin.it. Smart property [2014]. Retrieved: 29 April 2015.
URL: https://en.bitcoin.it/wiki/Smart Property

[9] Zimbeck, D. Two party double deposit trustless escrow in cryptographic networks
and bitcoin [2014]. Retrieved: 04 May 2015.
URL: http://blackhalo.info/wp-content/uploads/2014/06/whitepaper twosided.pdf

I

https://bitcoin.org/bitcoin.pdf
http://www.weidai.com/bmoney.txt
http://www.coinmarketcap.com
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2393940
http://github.com/codius/codius/wiki/Smart-Oracles:-A-Simple,-Powerful-Approach-to-Smart-Contracts
http://github.com/codius/codius/wiki/Smart-Oracles:-A-Simple,-Powerful-Approach-to-Smart-Contracts
http://dx.doi.org/10.5210/fm.v2i9.548
https://en.bitcoin.it/wiki/Smart_Property
http://blackhalo.info/wp-content/uploads/2014/06/whitepaper_twosided.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Florian Mendel, Norbert Pramstaller, C.R. and Rijmen, V. On the Collision Resis-
tance of RIPEMD-160. Tech. rep., Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010
Graz, Austria [2006].
URL: https://online.tugraz.at/tug online/voe main2.getvolltext?pCurrPk=17675

[11] Antonopoulos, A.M. Mastering Bitcoin. O’Reilly Media [2014]. Chapter 7.7: Merkle
Trees.
URL: http://chimera.labs.oreilly.com/books/1234000001802

[12] Juan A Garay, A.K. and Leonardos, N. The bitcoin backbone protocol: Analysis
and applications [2014].
URL: https://eprint.iacr.org/2014/765.pdf

[13] Bitcoin.it. Block chain [2014]. Retrieved: 07 July 2015.
URL: https://en.bitcoin.it/wiki/Block chain

[14] Bitcoin.it. Double-spending [2015]. Retrieved: 07 July 2015.
URL: https://en.bitcoin.it/wiki/Double-spending

[15] Warren, J. Bitmessage: A peer-to-peer message authentication and delivery system
[2012]. Retrieved: 29 April 2015.
URL: https://bitmessage.org/bitmessage.pdf

[16] Bitmessage. Wiki: Public key to bitmessage address [2013]. Retrieved: 23 June
2015.
URL: https://bitmessage.org/wiki/Public key to bitmessage address

[17] Bitmessage. Wiki: Proof of work [2014]. Retrieved: 9 July 2015.
URL: https://bitmessage.org/wiki/POW

[18] Buterin, V. Ethereum: A next-generation cryptocurrency and decentralized appli-
cation platform [2014]. Retrieved: 04 May 2015.
URL: https://bitcoinmagazine.com/9671

[19] Buterin, V. A next generation smart contract & decentralized application platform
[2014].
URL: http://www.ethereum.org/pdfs/EthereumWhitePaper.pdf

[20] Kallal, J.S. Linux programmer’s manual: Random [2015]. Retrieved: 30 August
2015.
URL: http://man7.org/linux/man-pages/man4/random.4.html

[21] MS, A. Elliptic curve cryptography - an implementation guide [2007].
URL: http://www.infosecwriters.com/text resources/pdf/Elliptic Curve AnnopMS.pdf

[22] Blockchain.info. Bitcoin average transaction confirmation time [2015]. Retrieved:
03 July 2015.
URL: https://blockchain.info/charts/avg-confirmation-time?timespan=2year

II

https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=17675
http://chimera.labs.oreilly.com/books/1234000001802
https://eprint.iacr.org/2014/765.pdf
https://en.bitcoin.it/wiki/Block_chain
https://en.bitcoin.it/wiki/Double-spending
https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/wiki/Public_key_to_bitmessage_address
https://bitmessage.org/wiki/POW
https://bitcoinmagazine.com/9671
http://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
http://man7.org/linux/man-pages/man4/random.4.html
http://www.infosecwriters.com/text_resources/pdf/Elliptic_Curve_AnnopMS.pdf
https://blockchain.info/charts/avg-confirmation-time?timespan=2year

BIBLIOGRAPHY

[23] Blockchain.info. Bitcoin blockchain size [2015]. Retrieved: 03 July 2015.
URL: https://blockchain.info/charts/blocks-size?timespan=all

[24] Etherchain.org. Ethereum - basic statistics [2015]. Retrieved: 14 July 2015.
URL: https://etherchain.org/statistics/basic

III

https://blockchain.info/charts/blocks-size?timespan=all
https://etherchain.org/statistics/basic

A
SPOEP-trading via Bitmessage

A.1 Example run

The following subsection shows the output
given from a run of the SPOEP-protocol
using an illustrative contract specification.

A.1.1 Contract specifications

1 [seller_data]

2 price = 7.97061008298

3 bm = BM-2cXM6hE8D7XwgGyZEouLDDuXcKPGqWJpbc

5 [car_data]

6 car_id = s712

7 car_pk = mnLCAYXccLj2Y7Rxhc4U8u6cUwdYAqYvxg

8 car_model = Forrrd

9 car_owner = mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx

11 [man_cert]

12 pk = forrrd

A.1.2 Program output

2 Car: Entered new state

3 waitForBuyRequest

5 Car: Waiting for buyer_info

6 buyer_info

8 Seller: Entered new state

9 waitForNonce

11 Buyer: Entered new state

12 sendBuyRequest

14 Buyer: Sending buy_request to Seller

15 "buy_request": {

16 "nonce": "197293679455728155344879880342230494756",

17 "new_owner_key": "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD",

18 "car_id": "s712"

19 }

22 Buyer: Waiting for trade_data

23 trade_data

25 Seller: Waiting for buy_request

26 buy_request

28 Seller: Entered new state

29 hasBuyRequest

31 Seller: Sending buyer_info to Car

32 "buyer_info": {

33 "seller_sign": "IIfM245zcus4mhwQD2AFp3dECWnjRULM4lqOmo8o

X7KRPm9fNpFzf219cUDsnsaDUTZJ5ZhVHpmK4oDr

pFZTKls=",

34 "buyer_info": {

35 "nonce": "197293679455728155344879880342230494756",

36 "new_owner_key": "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD"

37 }

38 }

40 Seller: Waiting for car_data

41 car_data

43 Car: Entered new state

44 hasBuyerInfo

46 Car: Signing car_data

47 "car_sign": "H0ZMw66eIiPYRfbTqWlWF2JtmSvnJKQ7tR+jbr/r34Sv

dysBwpWd8V0MVEVVXs9nc5B8vU6bh1QHqJXObBGpOOk=",

49 Car: Sending car_data to Seller

50 "car_data": {

51 "car_sign": "H0ZMw66eIiPYRfbTqWlWF2JtmSvnJKQ7tR+jbr/r34Sv

dysBwpWd8V0MVEVVXs9nc5B8vU6bh1QHqJXObBGpOOk=",

52 "signed_data": {

53 "nonce": "197293679455728155344879880342230494756",

54 "car_data": {

55 "last_tx": "3836bb7925226dc6c11c60de5e1de860e5fe4b68

7db11f6768b223679ba401d2",

56 "previous_owner": "mvTNu3U71efmpdN1x1ZPSu1he3Dkv1toDt",

57 "car_model": "Forrrd",

58 "man_cert": "forrrd",

59 "car_pk": "mnLCAYXccLj2Y7Rxhc4U8u6cUwdYAqYvxg",

60 "car_owner": "mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx",

61 "car_id": "s712"

62 },

63 "new_owner_key": "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD"

64 }

65 }

IV

A.1. EXAMPLE RUN APPENDIX A. SPOEP-TRADING VIA BITMESSAGE

68 Car: Entered new state

69 sentCarData

71 Car: Waiting for change_owner

72 change_owner

74 Seller: Car signature valid

75 Signature valid

77 Seller: Entered new state

78 hasCarData

80 Seller: Sending trade_data to Buyer

81 "trade_data": "car_data"

83 Seller: Entered new state

84 sentTradeData

86 Seller: Waiting for partial_tx

87 partial_tx

89 Buyer: Entered new state

90 hasTradeData

92 Buyer: Received last transaction

93 "last_tx": "3836bb7925226dc6c11c60de5e1de860e5fe4b687db11f

6768b223679ba401d2"

95 Buyer: Found output in lastTx to spend from

96 0

98 Buyer: Change amount to Seller

99 9.99

101 Buyer: Creating raw transaction from

102 {

103 "inputs": [{

104 "vout": 1,

105 "txid": "db007ae36daef5f65993e930c5fcf068b92cee22a0f

9241f30800c4f803d63a3"

106 },

107 {

108 "vout": 0,

109 "txid": "3836bb7925226dc6c11c60de5e1de860e5fe4b687db

11f6768b223679ba401d2"

110 }],

111 "to": {

112 "mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx": 17.96061008298,

113 "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD": 0.01

114 }

115 }

117 Buyer: Created raw_tx

118 0100000002a3633d804f0c80301f24f9a022ee2cb968f0fcc530e99359

f6f5ae6de37a00db0100000000ffffffffd201a49b6723b268671fb17d

684bfee560e81d5ede601cc1c66d222579bb36380000000000ffffffff

0250b70d6b000000001976a914a50e50f70a796c461bacbb5a8bab4d5d

7088e94288ac40420f00000000001976a914a8dd826230d10f6ca9fdf1

6c9db8788fe0707a9588ac00000000

120 Buyer: Sending partial_tx to Seller

121 "partial_tx": {

122 "hex": "0100000002a3633d804f0c80301f24f9a022ee2cb968f0fc

c530e99359f6f5ae6de37a00db010000006b483045022100

e8804d004d36f610ea311c3555df47c1dcd44a4a44f0aacb

9430168f2b07c6b9022049f5be798b016c1e18ebc589f687

70c8a1d061dee65de33a909b701d9f784268012103ea8965

807d3e6e3e2c10e06192c45bc85d734d9b8d00e44a490a9b

29eea635f7ffffffffd201a49b6723b268671fb17d684bfe

e560e81d5ede601cc1c66d222579bb36380000000000ffff

ffff0250b70d6b000000001976a914a50e50f70a796c461b

acbb5a8bab4d5d7088e94288ac40420f00000000001976a9

14a8dd826230d10f6ca9fdf16c9db8788fe0707a9588ac00

000000",

123 "complete": false

124 }

126 Buyer: Entered new state

127 sentPartial

129 Buyer: Waiting for signed_transaction

130 signed_transaction

132 Seller: Last amount

133 10.0

135 Seller: Change amount

136 9.99

138 Seller: Expected amount to receive

139 17.96061008

141 Seller: Partial transaction is valid

142 {

143 "scriptPubKey": {

144 "reqSigs": 1,

145 "hex": "76a914a50e50f70a796c461bacbb5a8bab4d5d7088e942

88ac",

146 "addresses": ["mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx"],

147 "asm": "OP_DUP OP_HASH160

a50e50f70a796c461bacbb5a8bab4d5d7088e942

OP_EQUALVERIFY OP_CHECKSIG",

148 "type": "pubkeyhash"

149 },

150 "value": Decimal("17.96061008"),

151 "n": 0

152 }

154 Seller: Entered new state

155 hasPartialTx

157 Seller: Decoded and verified partial raw transaction

158 {

159 "locktime": 0,

160 "version": 1,

161 "vin": [{

162 "sequence": 4294967295,

163 "scriptSig": {

164 "hex": "483045022100e8804d004d36f610ea311c3555df47

c1dcd44a4a44f0aacb9430168f2b07c6b9022049f5

be798b016c1e18ebc589f68770c8a1d061dee65de3

3a909b701d9f784268012103ea8965807d3e6e3e2c

10e06192c45bc85d734d9b8d00e44a490a9b29eea6

35f7",

165 "asm": "3045022100e8804d004d36f610ea311c3555df47c1

dcd44a4a44f0aacb9430168f2b07c6b9022049f5be

798b016c1e18ebc589f68770c8a1d061dee65de33a

909b701d9f7842680103ea8965807d3e6e3e2c10e0

6192c45bc85d734d9b8d00e44a490a9b29eea635f7"

166 },

167 "vout": 1,

168 "txid": "db007ae36daef5f65993e930c5fcf068b92cee22a0f

9241f30800c4f803d63a3"

169 },

170 {

171 "sequence": 4294967295,

172 "scriptSig": {

173 "hex": "",

174 "asm": ""

175 },

176 "vout": 0,

177 "txid": "3836bb7925226dc6c11c60de5e1de860e5fe4b687db

11f6768b223679ba401d2"

178 }],

179 "vout": [{

180 "scriptPubKey": {

181 "reqSigs": 1,

182 "hex": "76a914a50e50f70a796c461bacbb5a8bab4d5d7088

e94288ac",

183 "addresses": ["mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx"],

184 "asm": "OP_DUP OP_HASH160

a50e50f70a796c461bacbb5a8bab4d5d7088e942

OP_EQUALVERIFY OP_CHECKSIG",

185 "type": "pubkeyhash"

186 },

187 "value": Decimal("17.96061008"),

188 "n": 0

189 },

190 {

191 "scriptPubKey": {

192 "reqSigs": 1,

193 "hex": "76a914a8dd826230d10f6ca9fdf16c9db8788fe070

7a9588ac",

194 "addresses": ["mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD"],

195 "asm": "OP_DUP OP_HASH160

V

A.1. EXAMPLE RUN APPENDIX A. SPOEP-TRADING VIA BITMESSAGE

a8dd826230d10f6ca9fdf16c9db8788fe0707a95

OP_EQUALVERIFY OP_CHECKSIG",

196 "type": "pubkeyhash"

197 },

198 "value": Decimal("0.01000000"),

199 "n": 1

200 }],

201 "txid": "1478e825e72fb5e1b08dec90a092abb8d6f4044b52c98a0

a10311b7a34fe36ce"

202 }

204 Seller: Signing partial transaction

205 {

206 "hex": "0100000002a3633d804f0c80301f24f9a022ee2cb968f0fc

c530e99359f6f5ae6de37a00db010000006b483045022100

e8804d004d36f610ea311c3555df47c1dcd44a4a44f0aacb

9430168f2b07c6b9022049f5be798b016c1e18ebc589f687

70c8a1d061dee65de33a909b701d9f784268012103ea8965

807d3e6e3e2c10e06192c45bc85d734d9b8d00e44a490a9b

29eea635f7ffffffffd201a49b6723b268671fb17d684bfe

e560e81d5ede601cc1c66d222579bb3638000000006a4730

4402203c85a71b84d87c65c27b1e282c3f793f57c786f7c9

716ad54fa5ca20313204c102206603a210ca859d5694292d

08090f8a5295e4c392d84f30478f4bd7b5aac5ce9e012102

e4d1eab90dba0e79b1b1ad379e2dd1da0f90721881295eb3

14876d87139a2be2ffffffff0250b70d6b000000001976a9

14a50e50f70a796c461bacbb5a8bab4d5d7088e94288ac40

420f00000000001976a914a8dd826230d10f6ca9fdf16c9d

b8788fe0707a9588ac00000000",

207 "complete": True

208 }

210 Seller: Broadcasting transaction

211 "txid": "f4bd3ad455acb1ea919915380e94137f8e0117c872df848b0

23621818b7fc58e"

213 Seller: Sending signed_transaction to Buyer

214 "signed_transaction": {

215 "txid": "f4bd3ad455acb1ea919915380e94137f8e0117c872df848

b023621818b7fc58e"

216 "carBM": "BM-2cWJYYT8DqWGdNXKKif7zQ21tpXLC9VMET"

217 }

219 Buyer: Entered new state

220 hasTranscation

222 Buyer: Sending change_owner to Car

223 "txid": "f4bd3ad455acb1ea919915380e94137f8e0117c872df848b0

23621818b7fc58e"

225 Car: Verifing transaction in blockchain

226 Exploring blocks...

228 Car: Transaction found in block 417

229 [

230 "a61a002de09e9a4fb660ccaa17687e57

d05bba742b60d0d0495960e59cd5d6c8",

231 "db007ae36daef5f65993e930c5fcf068

b92cee22a0f9241f30800c4f803d63a3",

232 "f4bd3ad455acb1ea919915380e94137f

8e0117c872df848b023621818b7fc58e"

233]

235 Car: Entered new state

236 changeToNewOwner

238 Car: Changed owner

239 "car_owner": "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD"

241 Car: Entered new state

242 hasNewOwner

A.1.3 Final transaction

1 {

2 "txid" : "f4bd3ad455acb1ea919915380e94137f8e0117c872df84

8b023621818b7fc58e",

3 "version" : 1,

4 "locktime" : 0,

5 "vin" : [{

6 "txid" : "db007ae36daef5f65993e930c5fcf068b92cee22a

0f9241f30800c4f803d63a3",

7 "vout" : 1,

8 "scriptSig" : {

9 "asm" : "3045022100e8804d004d36f610ea311c3555df47c

1dcd44a4a44f0aacb9430168f2b07c6b9022049f5

be798b016c1e18ebc589f68770c8a1d061dee65de

33a909b701d9f78426801 03ea8965807d3e6e3e2

c10e06192c45bc85d734d9b8d00e44a490a9b29ee

a635f7",

10 "hex" : "483045022100e8804d004d36f610ea311c3555df4

7c1dcd44a4a44f0aacb9430168f2b07c6b9022049

f5be798b016c1e18ebc589f68770c8a1d061dee65

de33a909b701d9f784268012103ea8965807d3e6e

3e2c10e06192c45bc85d734d9b8d00e44a490a9b2

9eea635f7"

11 },

12 "sequence" : 4294967295

13 }, {

14 "txid" : "3836bb7925226dc6c11c60de5e1de860e5fe4b687

db11f6768b223679ba401d2",

15 "vout" : 0,

16 "scriptSig" : {

17 "asm" : "304402203c85a71b84d87c65c27b1e282c3f793f5

7c786f7c9716ad54fa5ca20313204c102206603a2

10ca859d5694292d08090f8a5295e4c392d84f304

78f4bd7b5aac5ce9e01 02e4d1eab90dba0e79b1b

1ad379e2dd1da0f90721881295eb314876d87139a

2be2",

18 "hex" : "47304402203c85a71b84d87c65c27b1e282c3f793

f57c786f7c9716ad54fa5ca20313204c102206603

a210ca859d5694292d08090f8a5295e4c392d84f3

0478f4bd7b5aac5ce9e012102e4d1eab90dba0e79

b1b1ad379e2dd1da0f90721881295eb314876d871

39a2be2"

19 },

20 "sequence" : 4294967295

21 }

22],

23 "vout" : [{

24 "value" : 17.96061008,

25 "n" : 0,

26 "scriptPubKey" : {

27 "asm" : "OP_DUP OP_HASH160

a50e50f70a796c461bacbb5a8bab4d5d7088e942

OP_EQUALVERIFY OP_CHECKSIG",

28 "hex" : "76a914a50e50f70a796c461bacbb5a8bab4d5d708

8e94288ac",

29 "reqSigs" : 1,

30 "type" : "pubkeyhash",

31 "addresses" : [

32 "mvZgwRC2NtsKYCnxnJr7E8DCkZWuNfhoDx"

33]

34 }

35 }, {

36 "value" : 0.01000000,

37 "n" : 1,

38 "scriptPubKey" : {

39 "asm" : "OP_DUP OP_HASH160

a8dd826230d10f6ca9fdf16c9db8788fe0707a95

OP_EQUALVERIFY OP_CHECKSIG",

40 "hex" : "76a914a8dd826230d10f6ca9fdf16c9db8788fe07

07a9588ac",

41 "reqSigs" : 1,

42 "type" : "pubkeyhash",

43 "addresses" : [

44 "mvuqB21gj2LYMujksYpYZKXMJHLKugL9iD"

45]

46 }

47 }]

48 }

VI

	Abstract
	Acknowledgements
	Introduction
	Background
	Problem description
	Limitations
	Related work
	Bithalo / Blackhalo
	Codius
	Counterparty

	Smart-Contracts
	Objectives
	Observability
	Verifiability
	Privity

	Using cryptocurrencies
	Smart-Property
	Double Deposit Escrow

	Theory
	Bitcoin
	Keys
	Transactions
	Signatures
	The blockchain
	Double spending

	Bitmessage
	Addresses
	Network structure
	Message transfer
	Security and privacy
	Spam prevention
	Average times

	Colored coins
	Assets
	Transactions

	Ethereum
	Accounts
	Messages
	Transactions
	Blockchain

	SPOEP: Smart-Property Ownership Exchange Protocol
	The protocol
	Protocol overview
	Protocol analysis

	Test environment
	Bitmessage
	NFC
	How to run

	Results
	Bitcoin
	Colored coins
	Ethereum
	SPOEP

	Discussion
	Conclusion
	Future work

	Bibliography
	SPOEP-trading via Bitmessage
	Example run
	Contract specifications
	Program output
	Final transaction

