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Summary

A prediction scheme is presented that uses a small number of pre-calculated data
to predict the energy scattered by the turbulence and the diffracted energy for a
large variety of situations with a thin, hard screen in the absence of a ground
surface. This is done by applying transformations for variations in frequency and
in geometrical scale, for both the scattered and the diffracted energies.

The influence of the turbulence scattering on the sound reduction by a screen
is shown to grow when the geometry is increased in scale or when the frequency is
increased. Moreover, the influence of the scattering grows when the screen-
receiver distance is increased, and the weak scattering at angles near 90° leads to a
dip in the influence of the scattering when the screen height is increased.

An example calculated for one geometry and with a typical traffic noise
spectrum as input shows that taking onto account atmospheric turbulence can
significantly reduce the performance of a noise barrier, not only at high
frequencies, but also when measured in dB(A).

A three-dimensional integration of the scattered energy is shown to be
simplified by an analytical integration in one dimension, which makes the
numerical solution far quicker.

1. Introduction
To correctly predict the sound reduction by a noise barrier in an outdoor
environment, the fact that the atmosphere is never homogeneous cannot be
ignored. Wind and temperature gradients cause curved ray paths and the
atmospheric turbulence causes scattering and decorrelation of the sound waves.
The scattering has been shown to cause an increased sound energy in the acoustic
shadow formed by upward refraction (e.g. [1]). In a similar way the scattering
reduces the performance of a noise barrier [2, 3]. Especially for high frequencies
and large scale geometries, the turbulence scattering will significantly influence



the sound reduction by a noise barrier. A situation of interest with a large scale
geometry is when using large buildings as road traffic noise barriers.

For predicting the effects of a turbulent atmosphere on sound reduction by a
thin, hard screen, a model developed by Daigle [2] is used. In the model the energy
scattered by the turbulence is calculated using the sound scattering cross-section
by Tatarskii [4] and then added to the diffracted energy in the shadow of the
screen. With this model Daigle investigated five different geometries and the
predictions were compared with measured data [2]. The comparison showed a
fairly good agreement between predictions and measurements, and that neglecting
the turbulence scattering would yield a poor prediction, especially at higher
frequencies.

To determine when the atmospheric turbulence significantly influences the
sound reduction by a screen, a large set of situations need to be investigated, i.e.
many parameters need to be varied. The model used does allow the results
predicted for one situation to be straight forwardly transformed to other situations
and thereby the number of parameters used in the calculations can be reduced.
Using the physically based Kolmogorov spectrum for the representation of the
turbulence allows a straight forward transformation of the results for one
frequency to other frequencies. In this study no ground effects are taken into
account, leading to a straight forward frequency dependence of the diffraction as
well. Moreover, the results when enlarging or diminishing the geometry in scale
can also be predicted using straight forward transformations, both for the
scattering and the diffraction. Considering all these transformation properties of
the model, the predictions of the scattering and the diffraction for all situations of
interest can be compactly presented as a small amount of data, as shown in the
following.

When omitting the ground surface in the predictions the barrier insertion loss
will in general be overestimated. For instance, if the receiver is placed on a hard
ground, the overestimation will be 6 dB (the scattered level relative to the
diffracted field will, however, be the same). If the receiver is placed above the
ground, the insertion loss will be more difficult to predict since it will be
determined by the interference between direct and ground reflected waves. For
high enough frequencies, however, the direct and ground reflected waves, from
both diffraction and scattering, will add energy wise, since the waves will be
uncorrelated due to the randomness of the medium as well as of the ground
surface. Then, the insertion loss will be overestimated by about 3 dB for an
elevated receiver, and the scattered level relative to the diffracted field will be the
same as without ground.

For future work a model similar to the one used here can be developed to take
into account a finite impedance ground surface, thick barriers of finite length, a



non-constant sound speed profile, and locally homogeneous turbulence. More-
over, it should be possible to include the decorrelation between a direct and a
ground reflected wave that is due to the atmospheric turbulence.

2. Theory
The acoustic energy scattered into the shadow of the screen is calculated using the
sound scattering cross-section by Tatarskii [4]. The diffracted energy is calculated
separately and then added to the scattered energy, according to the model
developed by Daigle [2].

2.1 Diffraction

The diffraction is calculated for a thin, hard screen using uniform theory of
diffraction [5, 6]. When no ground is present the diffracted energy is inversely
proportional to the frequency. Analogously, if the geometry is increased in scale,
by some scaling factor, the diffracted energy relative to free field is inversely
proportional to the scaling factor.

The main restriction of the uniform theory of diffraction is that it is only
applicable when the source and receiver are located more than a quarter of a
wavelength away from the screen [7]. For a more extensive description of the
uniform theory of diffraction, see e.g. [5].

2.2 Sound scattering cross-section

The sound scattering cross-section is a single scattering approximation where the
field incident on a scattering object is assumed to be well approximated by the
field calculated for a non-turbulent atmosphere. The energy scattered from each
object will be added to the total field and thus the model is not energy conserving.
This means that it is restricted to small perturbations of the sound field, which
implicates that the propagation distance cannot be too large. Also the fluctuations
of the medium have to be small, so that the acoustic field inside a scattering object
can be approximated by the incident field, i.e. the Born approximation.

The atmospheric turbulence is approximated as homogeneous and isotropic,
which means that it is described by the same statistics in all points and in all
directions.

Furthermore a far field condition has to be fulfilled,

r >> l2 l  , (1)

where l is the correlation length of the turbulence (about 1 m),l  the acoustic
wavelength, and r  the distance from a scattering elementary volume to the
receiver (see Figure 1). Condition (1) justifies an uncorrelated summation of the



contribution from different elementary scattering volumes and the total received
scattered energy can be written as [2]

    
ES = p0

2 s (q )

r2
V
Ú dV , (2)

where p0  is the amplitude of the incident pressure, s(q)  the scattering cross-
section, and q  the scattering angle. The volume of integration V  consists of all
points in line of sight from both source and receiver (i.e. the striped area in
Figure!1).

Figure 1. Geometry for the sound scattering cross-section.

Following Tatarskii [4, p. 160] the scattering cross-section is written
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where F(k )  and F(k)  are the spectral densities of the temperature and the wind
velocity fluctuations respectively, T0  the mean temperature, c0  the mean sound
velocity, and k  the wave number of the turbulence, fulfilling the Bragg condition

    
k = 2k sin

q
2

 . (4)

It can be noted in equation (3) that for right angles   cos2 q !=!0, and the scattering
cross-section will be zero.

The incident pressure p0  in equation (2) is calculated without taking into
account the field diffracted by the screen. This will lead to an overestimation of the
scattered energy since the strongest scattering will come from parts of the



scattering volume that are near the shadow boundary, where the incident pressure
is weakened by diffraction. A more accurate prediction of the scattered energy can
be obtained by considering the diffracted field in the entire scattering volume.

Equation (2) describes the time average of the energy scattered by the
turbulence. The turbulence can be seen as a composition of Bragg planes with
separation distance 2p k  causing scattering of energy proportional to the spectral
density at k .

According to this model the scattered energy will, relative to free field, change
with the same factor as the geometry is scaled. To see this let the height of the
screen, as well as its distance from source and receiver, be doubled. Substituting
for these new variables in the integral (2) will cause an increase by a factor eight in
  dV  and a factor four in r2 , whereas p0

2  will stay constant relative to free field. As a
result the scattered energy will be doubled, i.e. increased by 3!dB, relative to free
field. This dependence of the scattered energy on the scaling of the geometry is,
due to the single scattering approximation, restricted to short ranges, as stated
above. It is, however, assumed here that, for frequencies of interest for road traffic
noise situations, the single scattering approximation is realistic up to at least a few
hundred meters in range. Measurements or further theoretical work is needed to
confirm the validity of this assumption.

Both F(k )  and F(k)  in equation (3) are assumed to be described by the
Kolmogorov spectrum (see Figure 2), with amplitudes     CT

2  and     Cv
2 respectively.
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Figure 2. Kolmogorov spectrum of the turbulence.



In the inertial range, where the spectrum amplitude is proportional to   k -11 3 , the
scattering cross-section can be written as

s(q) = 0.38k1 3 cos2 q
2sin(q 2)( )11 3 0.13 CT

2

T0
2 +

Cv
2

c0
2 cos2 q

2
È 

Î Í 
˘ 

˚ ˙ . (5)

In equation (5) it can be seen that the scattered energy changes with frequency as
    f

1 3 .
The strength of the turbulence in the source range, i.e. for     k < 2p L0 , will

depend on the large structures of the terrain and is not easily determined. In this
study the spectrum amplitude in the source range is assumed to be constant, at a
value equal to the amplitude at     k = 2p L0  for the inertial range. When calculating
the integral (2) the constant value of the spectrum in the source range has to be
considered if the scattering angle theta is small or if the frequency is low,
according to the Bragg condition (4). This leads to that only in the situations when
a negligible part of the scattered energy comes from the source range can the
straight forward frequency scaling according to equation (5) be applied.

The value of     l0  is as small as 1-2!mm and therefore the dissipation range will
not be of importance in the audio range.

2.3 Implementation

When calculating the integral (2) numerically, the volume of integration V  is
increased until further contribution to the scattered energy is negligible. For flat
geometries, i.e. when the source and receiver are located far away from a low
screen, a sufficient volume of integration is from the source to the receiver about L
high and 2L wide, where L  is the distance between the source and receiver.
However, for less flat geometries there will be significant back scattering, i.e.
scattering at angles greater than 90°, and then the volume of integration has to be
increased.

The integral (2) can be solved analytically in one dimension by taking
advantage of the angle dependence of the integrand, as shown in Appendix 1. This
makes the numerical solution far quicker.



3. Results
In the calculations the values of the parameters for the strength of the turbulence
are chosen with guidance from Daigle’s measurements [2] so as to represent a
strong but not unrealistically strong turbulence:     Cv

2!=!1,     CT
2 !=!10, and     L0 !=!1.1 m.

In the first subsection the general results are presented and in the second
subsection the influence on a typical road traffic noise spectrum is calculated for
one geometry.

3.1 General results

The results are presented in two sets of tables. The variables are the screen height
H and the screen-receiver distance   xr , in meters. Each set of tables consists of one
table with the diffracted level relative to free field     LD 0  and one table with the
scattered level relative to the diffracted field     DLS0 . The results are presented for the
frequency     f0 !=!2000!Hz, and for a distance     xs0 !=!40!m from the source to the
screen. The first set of tables (Tables 1 and 2) describes the situation where the
receiver is on the same height as the source (see Figure 3). The second set of tables
(Tables 3 and 4) describes the situation where the receiver is half the screen height
above the source (see Figure 4).

The results can be transformed for another value of the frequency f or of the
source-screen distance   xs . If   xs  is changed, the tabulated results at the screen
height     H ⋅ xs0 xs  and at the screen-receiver distance     xr ⋅ xs0 xs  should be used.
Then, to the results for the scattering     10 ⋅ log(xs xs0)  is added, and to the results for
the diffraction     10 ⋅ log(xs xs0)  is subtracted. For a change in frequency
    10 3 ⋅log( f f0 )  is added to the scattered level and     10 ⋅ log( f f0 )  is subtracted from
the diffracted level. Hence, the scattered level relative to the diffracted field will
increase by 6 dB if the geometry is enlarged in scale by a factor two. For a doubling
of frequency the increase will be 4 dB. The resulting levels using the above
transformations can also be formulated as

    DLS = DLS0 +10 ⋅ log( xs xs0 ) +10 3 ⋅ log( f f0 ) (6)

and

    LD = LD 0 -10 ⋅ log( xs xs0 ) -10 ⋅ log( f f0 )  , (7)

where   DLS  is the scattered level relative to the diffracted field and   LD  the diffracted
level relative to free field. The total level   LD + S  can then be written

    
LD + S = 10 ⋅ log 10LD 10 +10(LD + DLS ) 10( )  . (8)
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Figure 3. Geometry with the receiver at the same height as the source.

  xr =10 20 30 40 50 60 70 80 90 100

H =5 -26.4 -25.0 -24.2 -23.7 -23.3 -23.0 -22.8 -22.6 -22.5 -22.4
10 -31.1 -30.0 -29.3 -28.9 -28.6 -28.3 -28.1 -28.0 -27.9 -27.8
15 -33.9 -32.9 -32.3 -31.8 -31.5 -31.3 -31.1 -31.0 -30.8 -30.7
20 -36.1 -35.1 -34.4 -33.9 -33.6 -33.4 -33.2 -33.0 -32.9 -32.8
25 -38.0 -36.9 -36.1 -35.6 -35.3 -35.0 -34.8 -34.6 -34.5 -34.3
30 -39.6 -38.5 -37.6 -37.1 -36.7 -36.4 -36.1 -35.9 -35.8 -35.6
35 -41.1 -39.9 -39.0 -38.4 -37.9 -37.6 -37.3 -37.1 -36.9 -36.7
40 -42.5 -41.2 -40.2 -39.5 -39.0 -38.6 -38.3 -38.1 -37.9 -37.7

Table 1. Diffracted level relative to free field,     LD 0  (dB), at the same height as the source.

  xr =10 20 30 40 50 60 70 80 90 100

H =5 -7.1 -3.0 -0.6 1.0 2.2 3.1 3.9 4.5 5.1 5.6
10 -6.3 -4.4 -2.5 -0.9 0.4 1.4 2.3 3.0 3.7 4.2
15 -5.0 -3.8 -2.6 -1.5 -0.5 0.4 1.2 1.9 2.6 3.1
20 -4.1 -2.9 -2.0 -1.1 -0.4 0.3 1.0 1.6 2.1 2.6
25 -3.4 -2.1 -1.2 -0.5 0.1 0.7 1.3 1.8 2.3 2.7
30 -2.9 -1.6 -0.6 0.1 0.7 1.3 1.8 2.2 2.7 3.1
35 -2.5 -1.2 -0.2 0.6 1.2 1.8 2.3 2.7 3.1 3.5
40 -2.2 -0.8 0.2 1.0 1.7 2.2 2.7 3.1 3.5 3.9

Table 2. Scattered level relative to the diffracted field,     DLS0  (dB), at the same height as the source.
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Figure 4. Geometry with the receiver half the screen height above the source.



  xr =10 20 30 40 50 60 70 80 90 100

H =5 -22.7 -21.9 -21.6 -21.4 -21.3 -21.2 -21.2 -21.2 -21.2 -21.1
10 -27.7 -27.1 -26.9 -26.7 -26.7 -26.6 -26.6 -26.6 -26.6 -26.6
15 -30.5 -30.0 -29.8 -29.7 -29.6 -29.6 -29.6 -29.6 -29.6 -29.6
20 -32.5 -32.1 -31.9 -31.8 -31.7 -31.7 -31.6 -31.6 -31.6 -31.6
25 -34.2 -33.7 -33.5 -33.3 -33.3 -33.2 -33.2 -33.2 -33.1 -33.1
30 -35.6 -35.1 -34.8 -34.6 -34.5 -34.5 -34.4 -34.4 -34.4 -34.4
35 -36.9 -36.3 -35.9 -35.7 -35.6 -35.6 -35.5 -35.5 -35.4 -35.4
40 -38.0 -37.3 -37.0 -36.7 -36.6 -36.5 -36.4 -36.4 -36.3 -36.3

Table 3. Diffracted level relative to free field,     LD 0  (dB), at half the screen height above the source.

  xr =10 20 30 40 50 60 70 80 90 100

H=5 -6.0 -2.0 0.1 1.5 2.6 3.4 4.1 4.7 5.3 5.7
10 -7.3 -3.8 -1.6 -0.0 1.2 2.1 2.9 3.6 4.1 4.7
15 -6.6 -4.5 -2.6 -1.1 0.0 1.0 1.8 2.5 3.1 3.6
20 -5.7 -4.1 -2.7 -1.5 -0.4 0.4 1.2 1.8 2.4 2.9
25 -4.9 -3.4 -2.3 -1.3 -0.4 0.4 1.1 1.7 2.2 2.7
30 -4.3 -2.8 -1.7 -0.8 -0.0 0.7 1.3 1.9 2.4 2.8
35 -3.8 -2.3 -1.2 -0.3 0.4 1.1 1.6 2.2 2.7 3.1
40 -3.4 -1.9 -0.8 0.1 0.8 1.5 2.0 2.5 3.0 3.4

Table 4. Scattered level relative to the diffracted field,     DLS0  (dB), at half the screen height above the source.

From the tabulated results it can be seen that the influence of the scattering grows
when the distance from the screen to the receiver   xr  is increased. When the screen
height H  is increased, it can be seen that the influence of the scattering first
decreases and then increases, which is due to the weak scattering near 90°. Hence,
when the screen height is large, the dominating scattering is at angles larger than
90°. When the screen height is further increased, also the influence of the scattering
will increase. This dependence would be different for other spectral densities of
the turbulence. For instance, a Gaussian spectral density would lead to a faster
decrease of the scattered energy relative to free field when the height of a high
screen is further increased.

As already discussed above, the transformation of the scattered level when
changing the frequency is only valid within the inertial range of the turbulence
spectrum. To get a rough estimate of when this transformation is valid one can use
the Bragg condition (4) for the smallest scattering angle (i.e. at the screen edge) and
thereby find a lower frequency limit. For example, if the receiver is half the screen
height above the source (see Figure 4) and if H =!10!m and   xr !=!100!m, the smallest
scattering angle is about 17°. Inserting q!=!17°,     k = 2p / L0 , and     k = 2pf c  in the
Bragg condition (4) leads to a lower frequency limit     f = c (2L0 sin q

2
) ª 1050!Hz,

with c!=!340!m/s. For even lower frequencies the scattering will be overestimated



using this prediction scheme. For many situations, however, the dominating
scattering will be produced at higher frequencies, and the contribution at low
frequencies can be omitted.

3.2 Influence on road traffic noise

The geometry in the example above, with H =!10!m,   xr !=!100!m,   xs !=!40!m, and
with the receiver half the screen height above the source, can be seen as a model
for a building along the road side (see Figure 4). The tabulated results, for this
geometry and the frequency     f0 !=!2000!Hz, are     LD 0 !=!-26.6!dB and     DLS0 !=!4.7!dB. By
applying the formulas (6-8) for transformation of the results to other frequencies,
the influence on a traffic noise spectrum can be estimated for the geometry. For
this example a reference traffic noise spectrum according to ISO 717-1:1886(E) is
used (see Figure 5). The spectrum is for a car speed of 90!km/h and has been
normalised to 0 dB(A). Not to overestimate the scattering at low frequencies, the
scattered energy is assumed to be zero up to the third octave band 800!Hz.
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Figure 5. A-weighted reference traffic noise spectrum in third octave bands, normalised to 0 dB(A).

The resulting spectra for the diffraction   LD  and for the total level, including the
scattering by the turbulence,   LD + S  are shown in Figure 6. The diffracted level is
about -22!dB(A), and it can also be seen that the screen causes an increased
influence of the low frequency components of the traffic noise. (It can be noted
again that, for a hard ground surface directly beneath the receiver, the sound
reduction by the barrier would decrease by 6!dB, i.e. from -22!dB(A) to -16!dB(A).)
The difference between the total level   LD + S  and the diffracted level   LD  show, at the



frequencies above 800!Hz, a decrease in insertion loss of about 5-7!dB due to the
scattering by turbulence. The resulting A-weighted contribution by turbulence
scattering is about 2.5!dB for the situation. This will be even increased taking into
account the scattered energy in the third octave bands at 800!Hz and below. In
order to compensate for the decreased sound reduction due to turbulence
scattering, the screen height must be increased by almost 5!m (see Tables 3 and 4).
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Figure 6. Contribution by turbulence scattering on screened traffic noise.

Conclusions
The presented prediction scheme uses a small number of pre-calculated data to
efficiently predict the turbulence scattering and the diffraction for a large variety
of situations. This is done by applying transformations for variations in frequency
and in geometrical scale, for both the scattered and the diffracted energies.

The influence of the turbulence scattering on the sound reduction by a thin,
hard screen grows when the geometry is increased in scale or when the frequency
is increased. The results when changing the screen height or the screen-receiver
distance show a more complex pattern. What can be concluded is that the
influence of the scattering grows when the screen-receiver distance is increased,
and that the weak scattering at angles near 90° leads to a dip in the influence of the
scattering when the screen height is increased. Moreover, the influence of the
turbulence scattering can be strong for both high and low screens. However,
measurements have to be carried out for a large variety of situations in order to
verify the model and determine its limitations in applicability. Moreover, more



measurements of the strength of the turbulence are needed in order to ensure that
values appropriate for the situations are used in the predictions.

The calculated example for one geometry and with a traffic noise spectrum as
input shows that taking onto account atmospheric turbulence can significantly
reduce the performance of a noise barrier, not only at high frequencies, but also
when measured in dB(A).

For future work a model similar to the one used here can be developed to take
into account a finite impedance ground surface, thick barriers of finite length, a
non-constant sound speed profile, and locally homogeneous turbulence. Including
the decorrelation, due to the atmospheric turbulence, between a direct and a
ground reflected wave should also be possible.
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Appendix 1

 
Figure A1.    Figure A2.

Figures A1 and A2 show the geometry for the scattering cross-section calculations
(see also Figure 1). The r axis passes through both the source and receiver (in
Figure A2 the r axis is pointing down into the paper). Along the circle arc (dashed
curve in Figure A2), drawn by the radius vector x, the scattering angle q is constant
as well as the distance to the source and receiver. Therefore the integration along
the arc is simply a multiplication by the arc length s which is determined by the
length of the radius vector x and by the limiting height, i.e. the shadow boundary.
Hence the volume integral in equation (2) can be rewritten as an area integral over
the surface A above the shadow boundary,

    

p0
2 s (q )

r2
V
Ú dV = p0

2 s (q )

r2
A
Ú sdA  , (A1)

where now all variables depend only on r and z.
If a ground surface is introduced, the calculation of the ground reflected

scattered energy can be performed in a similar way. Then x will be perpendicular
to the r axis through the mirror image point of the elevated receiver (or of the
source if the source is elevated).


