
Thesis for the Degree of Licentiate of Philosophy

Theory Exploration and
Inductive Theorem Proving

Dan Rosén

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden 2016

Theory Exploration and
Inductive Theorem Proving
Dan Rosén

© 2016 Dan Rosén

Technical Report 151L
ISSN 1652-876X
Department of Computer Science and Engineering
Research group: Functional Programming

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2016

Abstract

We have built two state-of-the-art inductive theorem provers named
HipSpec and Hipster. The main issue when automating proofs by
induction is to discover essential helper lemmas. Our theorem provers
use the technique theory exploration, which is amethod to systematically
discover interesting conclusions about a mathematical theory. We use
the existing theory exploration system QuickSpec which conjectures
properties for a program that seem to hold based on testing. The idea is
to try to prove these explored conjectures together with the user-stated
goal conjecture. By using this idea and connecting it with our previous
work on Hip, the Haskell Inductive Prover, we were able to take new
leaps in field of inductive theorem proving.

Additionally, we have developed a benchmark suite named TIP,
short for Tons of Inductive Problems, with benchmark problems for
inductive theorem provers, and a tool box for converting and manip-
ulating problems expressed in the TIP format. There were two main
reasons to this initiative. Firstly, the inductive theorem proving field
lacked a shared benchmark suite as well as a format. Secondly, the
benchmarks that have been used were outdated: all contemporary prov-
ers would solve almost every problem. We have so far added hundreds
of new challenges to the TIP suite to encourage further research.

Contents

Introduction 1
1 Example proof . 2
2 Theory exploration . 4
3 HipSpec . 6
4 Hipster . 7
5 Benchmarks for inductive theorem provers 7
6 Bridging different formats and provers 9
7 Related work . 10
8 Future work and conclusions 13

Paper 1 HipSpec: Automating Inductive Proofs using
Theory Exploration 19

1 Introduction . 19
2 Implementation . 23
3 Examples . 26
4 Evaluation . 29
5 Related Work . 34
6 Conclusion and Further Work 36

Paper 2 Hipster: Integrating Theory Exploration in a
Proof Assistant 39

1 Introduction . 39
2 Background . 42
3 Hipster: Implementation and Use 44
4 Dealing With Partial Functions 51
5 Related Work . 53
6 Further Work . 54
7 Summary . 55

Paper 3 TIP: Tons of Inductive Problems 59

1 Introduction . 59
2 The Benchmark Format 60
3 Sample Benchmarks 62
4 Contribute to TIP . 63
5 Conclusion and Further Work 63

Paper 4 TIP: Tools for Inductive Provers 67
1 Introduction . 67
2 The TIP format . 69
3 Transforming and translating TIP 70
4 Rudimentocrates, a simple inductive prover 74
5 Related work . 75
6 Future work and discussion 76
A Rudimentocrates source code 77
B Example run of Rudimentocrates 79

Bibliography 83

Acknowledgements

I would like to thank Koen Claessen for being a great supervisor, bom-
barding me with crazy ideas which keeps me enthusiastic about our
research. I want to thank Moa Johansson for many reasons, such as
pushing me to make this text actually resemble a thesis rather than
unassorted ramblings. And I thank Jasmin Blanchette for being my
discussion leader and the excellent and honest comments on this text.
Nick Smallbone deserves to be showered with compliments for being
such a kind friend while helping me in a myriad of ways. Irene Lobo
Valbuena and Víctor López Juan should receive thanks for their helpful
feedback on this text. I want to thank my family and my friends from
in and out of the department for their encouragement and company, in
particular Malin Ahlberg for her friendship during this time.

Introduction

Here is an example property of a functional program:

(1) ∀ xs · sorted (sort xs)

It specifies the correctness of a sorting function. How can we automati-
cally prove and discover such properties? This is the topic of this thesis.

There are several ways to determine the validity of property (1). It
can be tested on some input lists to check that it always returns true.
These input lists can be made by hand or generated randomly with, for
example, QuickCheck [21]. The absence of a counterexample will give
us some confidence that the property holds.

However, to be certain that the property holds for all inputs requires
a proof. Since there are infinitely many lists induction is needed to prove
(1). Induction gives us a way to mathematically reason about infinite
structures. One way to prove (1) could be structural induction on the
list xs. This can be done using pen and paper, but this is error-prone and
tedious. Another alternative would be to work inside a proof assistant
such as Isabelle [51], which checks each step of the proof for flawed
reasoning. Writing a proof in an assistant, however, can also be tedious
and laborious.

Our approach is to instead automate proofs by induction. We auto-
mate proofs by induction to make producing and maintaining proofs
less time-consuming for specialists, as well as enabling non-specialists
to use formal methods by lowering the bar to using it. We developed
two state-of-the art automated inductive theorem provers: HipSpec and
Hipster. They work on functional programs with definitions of recur-
sive functions and algebraic data types, and optionally some property
to be proved.

1

2 Introduction

This thesis is a collection of four papers that describe our inductive
theorem provers and our initiative to collect and standardise a bench-
mark suite for inductive theorem provers. The papers are:

1. Automating Inductive Proofs using Theory Exploration, describ-
ing HipSpec, our prover for Haskell, summarised in Section 3.

2. Hipster: Integrating Theory Exploration in a Proof Assistant, de-
scribing Hipster, our prover for Isabelle, summarised in Section 4.

3. TIP: Tons of Inductive Problems, describing the benchmark suite,
summarised in Section 5.

4. TIP: Tools for Inductive Provers, describing tools for converting
the benchmarks to different formats, summarised in Section 6.

This chapter introduces inductive proving with an example (Sec-
tion 1) and theory exploration (Section 2). After the sections summaris-
ing the papers, this introductory chapter is concluded with related work
(Section 7) and future work and conclusions (Section 8).

1 Example proof

As an introductory example, we will look at the rev–qrev property
about list reversal, a classic example in inductive theorem proving. This
is a property about an efficient tail-recursive reversing function qrev (q
for quick), and an inefficient but straightforward version rev using the
list append function ++. Their definitions are:

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs++ ys)

rev :: [a] → [a]
rev [] = []
rev (x : xs) = rev xs++ [x]

qrev :: [a] → [a] → [a]
qrev [] ys = ys
qrev (x : xs) ys = qrev xs (x : ys)

The rev–qrev property states that the functions produce the same result
when the accumulator of qrev is initialised with the empty list:

(1) ∀ xs · qrev xs [] = rev xs

1. Example proof 3

Trying to prove (1) directly by structural induction on xs fails. We have
to show qrev as [a] = rev as++ [a]. No progress can be made because
the induction hypothesis is qrev as [] = rev as ++ [], which does not
match the goal.

The way to go forward is to instead prove this generalisation lemma:

(2) ∀ xs ys · qrev xs ys = rev xs++ ys

In induction it is often easier to prove a more general statement like (2)
rather than (1) as we get a stronger induction hypothesis. It is stronger
since proving (2) by induction on xs allows us to requantify over ys in
the step case. For clarity, the two proof obligations look like this:

• Base case (xs = []):

∀ ys · qrev [] ys = rev [] ++ ys

• Step case (xs = a : as):

(∀ ys ′ · qrev as ys ′ = rev as++ ys ′) (IH)
⇒ ∀ ys · qrev (a : as) ys = rev (a : as) ++ ys

In the step case, we have indicated the induction hypothesis with IH.
This is the formula preceding the implication. We call the formula
after the arrow the induction conclusion. In the hypothesis we may
instantiate the second argument of qrev, namely ys ′, freely. This is an
important improvement from trying to prove (1), where this second
argument to qrev had to be the empty list.

The base case is immediate. The step case can be proved as follows
by instantiating ys ′ in the induction hypothesis with (a : ys):

qrev (a : as) ys
= qrev as (a : ys) {qrev definition}
= rev as++ a : ys {IH with ys ′ 7→ a : ys}
= rev as++ ([a] ++ ys) {++ definition}
= (rev as++ [a]) ++ ys {++ associativity}
= rev (a : as) ++ ys {rev definition}

However, some important steps actually remain. When letting ys in (2)
be the empty list we do not get (1) as hoped for, but this:

(1∗) ∀ xs · qrev xs [] = rev xs++ []

4 Introduction

Obviously another lemma is needed, namely the right identity property
∀ xs · xs++[] = xs. Simple as it may look, this also requires induction to
be proved. Furthermore, we overlooked that we needed associativity of
append in the proof of (2) above. This is also a lemma since it requires
induction to be proved.

Here is a summary of the entire proof of (1) using associativity (a)
and right identity (ri). The formulas are implicitly ∀-quantified.

(ri) xs++ [] = xs by induction on xs
(a) xs++ (ys++ zs) = (xs++ ys) ++ zs by induction on xs
(2) qrev xs ys = rev xs++ ys by induction on xs

and using (a)
(1) qrev xs [] = rev xs using (ri) and (2)

This example illustrates the crucial dependencies on lemmas which is
typical in proofs by induction. Suitable lemmas must be invented. They
must be proved by induction themselves, which might in turn require
another set of lemmas, and so on. The major difficulty in inductive
theorem proving is discovering lemmas. Our theorem provers invent
lemmas using a technique called theory exploration, described in the
next section.

2 Theory exploration

A theory exploration system is a program that invents new concepts
and properties about a problem or theory. One way to see it is as a
theorem prover that has no particular goal to prove, but rather wants
to create an intuition of interesting truths that can be established from
the axioms. In our setting of inductive theorem proving, we do (usually)
have a goal property to be proved, but we use theory exploration to
find additional properties that hold in the current set of axioms together
with induction. This is a way to try to figure out which lemmas to
use. As we saw in the previous section, finding the right lemmas is the
cornerstone problem of inductive reasoning. Our theorem provers do
theory exploration using the already existing system QuickSpec [23].

QuickSpec-style theory exploration

QuickSpec does theory exploration by enumerating terms and testing
them against each other to find candidate conjectures. Its input is an
executable program. To describe its operation, we will continue the

2. Theory exploration 5

example from Section 1 and giveQuickSpec the programwith definitions
of rev, qrev and ++, and tell QuickSpec to build well-typed terms from
these functions, the list constructors and free variables. Some example
terms that it would generate are:

(1) qrev xs ys
(2) rev xs++ ys
(3) xs++ ys
(4) qrev (rev xs) ys
(5) rev (rev xs) ++ ys

Of course, many more terms would be generated. The default is to
generate terms up to depth three. QuickSpec proceeds by generating
random values for the variables using QuickCheck, and then evaluating
the terms. Suppose xs 7→ [1, 2] and ys 7→ [3, 4]. The terms above
evaluate to the following under these assignments:

(1) qrev xs ys = qrev [1, 2] [3, 4] = [2, 1, 3, 4]
(2) rev xs++ ys = rev [1, 2] ++ [3, 4] = [2, 1, 3, 4]
(3) xs++ ys = [1, 2] ++ [3, 4] = [1, 2, 3, 4]
(4) qrev (rev xs) ys = qrev (rev [1, 2]) [3, 4] = [1, 2, 3, 4]
(5) rev (rev xs) ++ ys = rev (rev [1, 2]) ++ [3, 4] = [1, 2, 3, 4]

Based on the evaluation the terms are divided into two equivalence
classes, as indicated by the separating line. The testing goes on until the
equivalence classes seem to be stable: that none of them has been further
divided for some pre-defined amount of tests. Upon reaching this state,
equations are extracted from the classes. The following equations can
be extracted from the second equivalence class with terms (3), (4) and
(5):

∀ xs ys · xs++ ys = qrev (rev xs) ys
∀ xs ys · xs++ ys = rev (rev xs) ++ ys
∀ xs ys · qrev (rev xs) ys = rev (rev xs) ++ ys

We can now conjecture that these equations hold universally, even
though they have only been tested it on finitely many values. Based
on experimental results, for many programs there are no or very few
erroneous conjectures. Nevertheless, there is no guarantee of truth so a
theorem prover cannot assume them without first proving them.

All lemmas needed to prove the rev–qrev property from Section 1
are found by QuickSpec. In fact, more properties than needed are

6 Introduction

discovered. One such redundant conjecture is ∀ xs · rev (rev xs) = xs.
This over-generation can be a drawback of this approach of theory
exploration. The theory exploration that QuickSpec offers is not goal-
oriented. Rather, it tries to discover everything that is true about the
program, regardless of what would be useful in proving the conjecture.

3 HipSpec

This section summarises the paper 1, Automating Inductive Proofs using
Theory Exploration.

HipSpec is an inductive theorem prover based on theory exploration
that sprung out of a fusion of two systems:

1. Hip [57] (the Haskell Inductive Prover), which proves Haskell
properties by translating the program to first-order logic, by ap-
plying induction on the property, and using off-the shelf theorem
provers to discharge the proof obligations.

2. QuickSpec [23], introduced in the previous section, is used to
discover extra properties that are proved and then used as lemmas.

A schematic overview of the HipSpec architecture and its proving loop
can be seen in Figure 1. HipSpec maintains a set of open conjectures,
initialised with the user-stated properties and conjectures from Quick-
Spec. We also keep a first-order theory of the translated program as
well as a background theory of already proved lemmas.

Haskell
Source

Conjec-
tures

First-Order
Theory

Theorem
Prover

Induction (Hip)

QuickSpec

Translation
(Hip)

Timeout

Open conjecture

Theorem

Extend theory

Figure 1: An overview of HipSpec.

The loop begins by carefully choosing one of the open conjectures,
applying induction to it and asking a theorem prover to prove it using
the current first-order theory. A success promotes the conjecture to a

4. Hipster 7

lemma which is added to the background theory. Failure is indicated by
a timeout (since provers will in general only terminate on theorems), in
which case the conjecture is left open and can be retried later. HipSpec
terminates by either giving up if no progress is made in the current
theory or by succeding when the user-stated properties are proved.

In the evaluation of HipSpec, we showed that it could prove more
properties than any other prover on the difficult benchmark suite from
Ireland et al. [35]. In particular, it was the first prover to fully automate
the rotate–length challenge from [18].

4 Hipster

This section summarises the paper 2, Hipster: Integrating Theory Ex-
ploration in a Proof Assistant.

Hipster is HipSpec’s sibling and works similarly to it. But instead
of starting from a Haskell program, it works within the proof assistant
Isabelle [51], and operates on an Isabelle theory with function definitions
and data types. The Isabelle code is translated to Haskell using the
Isabelle code generator [29]. Hipster automatically adds QuickCheck
generators for arbitrary values (which QuickSpec needs) to this code
and transforms the program to handle Isabelle functions that are not
total such as taking the head of a list. After this post-processing of
the generated code, theory exploration is provided by QuickSpec. Its
conjectures are fed back into a loop similar to HipSpec’s. Hip is not used;
we instead use an induction tactic followed by first-order reasoning using
for example simplification or Isabelle’s trustworthy prover Metis [33].
All proofs are carried out in Isabelle, which guarantees that Hipster is
sound.

One interesting aspect of working inside a proof assistant is that it
enables interacting in a natural way with the theory exploration system.
For example, one can use Hipster when stuck in a failed proof attempt.
It is also possible to use Hipster in exploratory mode, without any user-
stated properties, only function definitions, and Hipster will find and
prove properties about them, effectively building a background theory
to be used for human-created proofs.

5 Benchmarks for inductive theorem provers

This section summarises paper 3, TIP: Tons of Inductive Problems.

8 Introduction

To compare provers or configurations of a prover one needs to have
a set of benchmarks. For evaluation of provers in the last years the
benchmarks have come from two sources, 86 problems from Johansson
et al. [37] and 50 problems from Ireland et al. [35]. The benchmarks
from [37] were written in Isabelle, and those from [35] were provided
only as conjectures without function definitions.

To use these benchmark suites to evaluate new provers, their devel-
opers had to translate the problems into their formats. This was done
by hand, a tedious process with little guarantee that everyone ends up
with the same function definitions. As a research community this is
a big problem: we were lacking a shared set of benchmarks. There
was not even an appropriate format available that could communicate
benchmarks.

We designed a simple format for expressing inductive problems
named TIP, short for Tons of Inductive Problems, to signal the intent
to gather a vast corpus of problems. We translated the problems from
[37] and [35] into this format, and gave definitions in the case they were
missing. The format itself is based on the well-established SMT-LIB
format [5], which already included data types and recursive functions
definitions, two necessary features. On top of SMT-LIB we added two
extensions: rank-1 polymorphism and first-class functions, including
lambda expressions.

Basing it on an already established format such as SMT-LIB has
immediate advantages over starting from scratch: it saves time, it is
already well-thought out and already supported in many systems. Fur-
ther, there are many builtin-theories of SMT-LIB waiting to be used
in TIP when the need arises within inductive theorem proving. So far
benchmarks are only using integer theories, if any. Basing TIP on an-
other format than SMT-LIB was judged to not be as well-suited in com-
parison: TPTP [59] has no way of expressing data types, Why3 [27]
requires more effort to parse and enforces structural termination of all
functions, and Isabelle [51] is also more difficult than SMT-LIB to parse,
and typically expresses pattern matching not by case-expressions but by
left-hand side fall-through pattern matching which is more complicated
to manipulate.

We noticed another issue with the problems from [37] and [35]:
only a small fraction are not solved by the state-of-the-art provers,
making them much too easy. For instance, many of the problems do not
need any auxiliary lemmas, and all function definitions are structurally
recursive. To advance and keep interest up in this field, more challenges
are needed. As part of our effort of the TIP benchmark suite, we also

6. Bridging different formats and provers 9

added hundreds of new problems with varying difficulty beyond the
capabilities of the provers of today. To solve these benchmarks, provers
will need to use stronger induction techniques, handle modules with
many more functions, invent lemmas with conditionals and synthesise
functions to express lemmas.

6 Bridging different formats and provers

This section summarises paper 4, TIP: Tools for Inductive Provers.

It is perhaps unrealistic to assume that all provers will start sup-
porting TIP directly. In particular for unmaintained provers. How can
we evaluate provers that do not support TIP natively? We provide a
toolbox, the TIP tools, for solving these incompabilities. It includes
transformations that translate them into logically equivalent (or weaker)
versions. Some important transformations are defunctionalisation for
removing higher-order functions, monomorphisation for instantiating
polymorphic definitions, and replacing data types with first-order ax-
iomatisations.

In fact, these are essentially the transformations that were devel-
oped for Hip and HipSpec. This is because HipSpec already had to
translate to other logics to use the back end theorem provers. However,
with the tools these transformations are modularised and can be used
independently of HipSpec. The TIP tools can already output to a hand-
ful of formats, including TPTP, WhyML, Isabelle/HOL, Waldmeister,
simplified SMT-LIB and Haskell, and adding a new printer is a small
effort.

In the long run, it is better if most inductive provers have built-in
support for the same format. However, for many problems it will not
be important to have sophisticated (complete) ways of dealing with for
example polymorphism and higher-order functions. In these (common)
cases, a solver could use our transformations to simplify the problem.
This allows prover developers to focus on specific areas: such as in
this example first-order simply-sorted problems. By providing these
transformations modularly, we provide opportunities for code reuse.

We also supply transformations that call QuickSpec and apply in-
duction, which are taken from HipSpec. Using all these components,
the TIP tools can be used as a foundation for new experimental induc-
tive theorem provers.

10 Introduction

7 Related work

Lemma invention has been identified as the key problem in inductive the-
orem proving. There are several ways to invent lemmas. The main con-
temporary approaches can be divided into two: top-down approaches
that examine a proof state syntactically, and bottom-up theory explo-
ration.

Proof critics Proof critics [35] are heuristics concerning what to do
when the proof is stuck (no more rewrite rules apply). Broadly speaking,
these are lemma discovery techniques in top-down provers. Rippling
[18] is a heuristic specifically designed to guide rewriting of the induction
conclusion to the hypothesis, with a specific measure that ensure that
this process terminates. Critics are used in case the proof gets stuck
rather than ending up in the induction hypothesis. Examples of rippling
provers are CLAM [35], INKA [6, 34] and IsaPlanner [26]. The names
of the critics below are from [35].

The most straightforward critic is lemma calculation. This is appli-
cable when the proof is stuck after the induction hypothesis is applied.
Another round of induction can then be applied. Common subterms are
generalised if there are any. For example, in the step case of the proof
of rev (rev xs) = xs, after applying the induction hypothesis on the left
hand side, the goal is stuck at rev (rev xs++ [x]) = x : rev (rev xs). The
rev xs subterms are now are generalised to ys, obtaining rev (ys++[x]) =
x : rev ys. This new equation can be proved by induction on ys.

Lemma calculation is the main lemma discovery technique in Zeno
[58] as well as ACL2 [40] and its predecessor Nqthm (also known as
the Boyer/Moore Theorem Prover) [13]. Zeno, which like HipSpec
operates on terminating and finite Haskell programs, does not support
inventing or using any lemmas besides those found by this critic.

The two stronger critics lemma speculation and the generalisation
critic augment the conjecture or the inductive conclusion with “holes”
represented by higher-order meta variables to be solved by higher-order
unification. Both techniques are implemented in CLAM. The gener-
alisation critic can find generalisations for tail recursive accumulator
functions, such as the generalisation in the qrev–rev property (but only
when appropriate lemmas about list append are manually provided.)
Lemma speculation can find lemmas such as (xs++[y])++zs = xs++y :zs
from a stuck inductive step of rev (rev xs++ ys) = rev ys++ xs. In the
evaluation of implementing these critics in IsaPlanner [38], it was con-

7. Related work 11

cluded that lemma speculation is seldom applicable and that a theory
exploration system would find the lemmas with less effort.

HipSpec never applies a new round of induction inside an inductive
proof, which is what the lemma calculation and lemma speculation
critics do. Theoretically, this is not necessary as all induction can be on
“the top level” (as in the Peano axioms), but it can be more natural and
provide opportunities to syntactically discover lemmas during proof
search.

Bottom-up theory exploration Theory exploration was defined in the
context of the interactive system Theorema [16, 17]. It has since been
used to explore mathematical theories in MATHsAiD [48]. In the
context of automated inductive theorem proving, theory exploration
was first implemented in IsaCoSy [39]. HipSpec, and especially Hipster
because it is also based in Isabelle, are in many ways a continuation of
IsaCoSy. However, IsaCoSy’s theory exploration is not as efficient.

Theory exploration inside SMT The SMT solver CVC4 has support
for structural induction over datatypes [55]. Induction is integrated into
its SMT loop: the quantifier instantiation is modified to also instantiate
induction schemas and generate lemmas to be added to the theory.
This is done by enumerating equations in a similar way to QuickSpec.
The search space is pruned by filtering heuristics: for example, it tries
to falsify candidate lemmas by checking for counterexamples in the
current ground model. This way of searching for counterexamples also
works when functions are not fully defined, unlike QuickSpec which
needs executable functions. Although only induction on data types is
supported, it can be used in conjunction with the rest of its SMT theories.

Schematic theory exploration In IsaScheme [50], a predefined set of
property schemas are instantiated with the function symbols in the
program to create conjectures. For example, there is a schema about
distributivity, so for each pair of binary operators it is conjectured that
they distribute over each other. Invalid conjectures are filtered out by
searching for counter examples. One drawback is that it only works at
conjecturing properties in these particular simple and elegant shapes.
This makes completeness suffer since some important lemmas do not
have a simple shape. On the other hand, it is efficient when lemmas do
have these exact shapes.

12 Introduction

Non-structural induction The semi-automatic theorem prover Dafny
[44] does all inductive reasoning using only strong induction. There are
default orders given for builtin-types and the order for datatypes is size.
However, the order can be chosen manually by the user. Dafny does
not have any lemma discovery techniques.

The newest version of Hipster [47] has a tactic for instantiating the
automatically derived Isabelle recursion-induction schemas [41]. It has
been evaluated on structurally recursive functions and is stronger than
using induction on one variable. It is not yet thoroughly evaluated on
non-structurally recursive functions.

Proof by consistency Without using an induction schemas, a theory
together with a conjecture can sometimes be shown to be consistent,
effectively showing that it is an inductive theorem. This approach is
called proof by consistency or inductionless induction. For examples
using Knuth-Bendix completion for showing consistency, including
showing rev being an involution, see [32]. Unfortunately, the technique
seldom works since showing that a theory is consistent is very difficult.

Contract-style induction Annotating functions with pre- and post-
conditions gives rise to an inductive technique. The idea is to make a
well-formedness check for each function. The pre-condition is assumed,
and the post-condition has to be proved. Further, the pre-condition
must hold at each recursive call, and then the post-condition is asserted,
analogous to an induction hypothesis. This is the technique used in for
example Leon [60], Liquid Haskell [36] (with contracts expressed in
the type system as refinement types), Dafny [43] (as an alternative to
quantifiers), and HALO [62] (as fix-point induction). Some drawbacks
are that not all properties can be expressed this way, and it is unclear
how to combine several contracts for the same function.

Other techniques The higher-order prover Agsy [45, 46] can find in-
ductive proofs using the search technique narrowing over Agda [52]
terms. Proofs are structural over inductive families, but those can en-
code for example well-founded induction.

In cyclic proofs [14], proofs are allowed to contain cycles as long as
the goal to be proved decreases in each cycle according to some well-
founded ordering. This has been implemented in the Cyclist prover [15]
which allows induction over inductive predicates. It does not offer any
solutions to lemma discovery.

8. Future work and conclusions 13

The optimization technique equality saturation [61] has been adapt-
ed to functional programming as an inductive theorem prover named
GraphSC [28], where proving amounts to bisimulation. The experimen-
tal version Pirate of the superposition prover SPASS has been extended
with support for induction over data types [65]. Machine learning has
been used to find lemmas by looking for analogies to existing lemmas
and function definitions [31].

HipSpec allows induction on several variables, with strictly smaller
subterms as induction hypotheses. There are more sophisticated ways
to compute and combine induction hypotheses [63, 64] or they can be
generated lazily [54].

8 Future work and conclusions

This section outlines some unsolved questions in doing proofs by in-
duction. Additionally, these are some issues that must be addressed in
order to progress on the benchmark suite.

Conditional properties

Many important properties are conditional: they have preconditions.
QuickSpec is currently optimised to conjecture equations only. An
example of a conditional property is that inserting an element at the
correct position in it preserves the list being sorted:

∀ xs · sorted xs ⇒ sorted (insert x xs)

Other examples include injectivity, ordering properties such as symmetry,
asymmetry, antisymmetry, transitivity, totality and functions that are
only well-behaved when some invariant is assumed on their arguments:
sorted is an invariant preserved by insert.

The latest version of Hipster [47] used a modified version of Quick-
Spec which allowed the user to interactively choose one unary or binary
predicate as a precondition, such as sorted or <. The data generators
were not adapted to satisfy the preconditions, leading to many false
conjectures unless the number of tests was greatly increased. Gener-
ating values that makes the precondition true, such as sorted lists, is
partly what makes conditional theory exploration difficult. Another
reason is that the search space is huge with many uninteresting truths.

14 Introduction

Beyond structural induction

So far, we have only focused on structural induction. This works well
for reasoning about functions that are structurally recursive, but many
interesting functions are not. One example is quicksort, and a non-
inplace version can be written tersely in Haskell in this way:

qsort [] = []
qsort (x : xs) = qsort (filter (< x) xs) ++ [x]

++ qsort (filter (> x) xs)

Attempting to prove a property about qsort using structural induction
is hopeless, since the induction hypothesis will talk about the tail of the
list whilst the recursive calls are through filter.

One technique to prove properties about this is to use recursion-
induction [41], which creates an inductive schema based on the recursive
structure of a function, which is sound only if the function terminates.
Here is the recursion-induction schema generated from qsort:

P([]) ∀ y ys · P(filter (<y) ys) ∧ P(filter (> y) ys) ⇒ P(y : ys)
∀ xs · P(xs)

qsort

Another method is to use the strong induction over natural numbers.
A decreases measure can be used, such as length for lists. Here is the
strong induction schema built from length:

∀ zs · (∀ ys · length ys< length zs ⇒ P(ys)) ⇒ P(zs)
∀ xs · P(xs)

length

The length schema implies the recursion-induction schema qsort
since length (filter p xs) < length (x : xs) (though this is an inductive
truth). The qsort schema is incomparable with structural induction,
whilst the length schema implies also structural induction, making it
the most versatile of the three.

Neither of these techniques are yet available in HipSpec. Research
questions include when to use which function schema, and what de-
creases measure to use. Above we used length, but any function f
returning a natural number can be used. (Proof: assume we have an
infinite descending chain a1, a2, ... in the domain of f . Then f a1, f a2, ...
is an infinite descending sequence of natural numbers, which is absurd.)
In the most general case any well-founded ordering can be used.

8. Future work and conclusions 15

Synthesis of new functions to express lemmas

Theory exploration using only the functions available in the program
has its limitations, since lemmas can only be expressed by using these
very functions. An example of a property that cannot be proved when
a function is missing is the rotate–length property. The standard defini-
tions are given in Paper 1, but here we will define rotate using a snoc
function that adds one element to the end of a list:

snoc :: a → [a] → [a]
snoc x [] = [x]
snoc x (y : ys) = y : snoc x ys

This is how the alternative rotate function is defined using snoc:

rotate ::Nat → [a] → [a]
rotate Zero xs = xs
rotate (Succ n) [] = []
rotate (Succ n) (x : xs) = rotate n (snoc x xs)

The rotate–length property is:

∀ xs · rotate (length xs) xs = xs

This cannot be proved without lemmas. One way to prove it is by the
following generalisation, which however requires the use of ++:

∀ xs ys · rotate (length xs) (xs++ ys) = ys++ xs

Without adding any new functions to the program (such as ++), this
crucial generalisation cannot be expressed, and I conjecture that no
lemmas exist which prove the property under this assumption. This is
thus an example where a function must be synthesised for an inductive
proof to be found.

We do not currently have any function synthesis component in
HipSpec, and it is unclear how to synthesise functions in a goal-oriented
way. Naturally, ++ could always be added if lists occur, but it is not a
very satisfactory heuristic.

Proofs

HipSpec does not yet produce proofs. Being able to transport proofs
produced by inductive theorem provers into other systems would be

very beneficial. One example is to import them into interactive the-
orem provers since making interactive proofs can be laborious and
time-consuming. Inductive provers could give a proof sketch with infor-
mation such as induction variables and lemmas used, and let a routine
prover in the target system fill in the details. Ideally for portability, tools
should output proofs or stubs in a common format based on the TIP
format.

We believe that being able to leverage the strengths of inductive
theorem provers into other systems is key for broader success and
adoption of this research area.

8.1 Conclusions

We developed two inductive theorem provers, HipSpec and Hipster.
They both use theory exploration for lemma discovery, which was iden-
tified as the main issue in inductive theorem proving. We advanced the
state of the art in inductive theorem proving by automatically prov-
ing important properties such as rev–qrev and rotate–length. We have
identified key areas for further improvements, including theory ex-
ploring conditional equations and using more sophisticated induction
techniques. To be able to scientifically evaluate upcoming inductive
theorem provers, we created a benchmark suite TIP with hundreds of
new challenge problems and an accompanying tool box for converting
it to different formats.

