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Abstract 
To feed Earth’s growing population, microalgae have been proposed as a source of protein and 
long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs). Currently, microalgae are mainly sold 
either as whole biomass, or the economically valuable LC n-3 PUFA fraction is extracted with 
organic solvents. As an alternative to solvent extraction, pH-driven protein solubilization in water 
followed by isoelectric precipitation, known as the pH-shift process, has been proposed to recover 
both lipids (i.e. oils) and functional proteins, while removing insoluble material. 

In this project, the pH-shift process was applied to Nannochloropsis oculata, a marine microalga 
containing LC n-3 PUFA and essential amino acids in more than adequate amounts for human 
nutrition. It was hypothesized that the pH-shift process would render separate lipid and protein 
fractions. A pH-shift process for Nannochloropsis was developed based on documentation of its 
pH-dependent protein solubility: Nannochloropsis proteins were solubilized at pH 7, insoluble 
material was removed by centrifugation at 4 000×g and the proteins were then recovered by 
precipitation at pH 3. By using seawater, a process in which algal culture medium was used directly 
in the pH-shift process was simulated, thus reducing freshwater consumption.  

Contrary to the hypothesis, the developed process did not result in two fractions, but in a combined 
product of 2.3% LC n-3 PUFA and 23% protein per dry weight, compared to 1.9% and 19% 
respectively in the initial material, suggesting that the product had potential as a functional food 
ingredient. However, nutrients need to also be accessible for uptake by the gastrointestinal tract. To 
assess the link between processing and accessibility of Nannochloropsis fatty acids and proteins, a 
static in vitro digestion model was applied to whole Nannochloropsis, and various products of the 
pH-shift process. The results indicated that whole Nannochloropsis cannot be digested by 
mammalian enzymes at all, hence the lipids and proteins cannot be absorbed. However, in cell-
disrupted Nannochloropsis ca. 35% fatty acids and protein were hydrolyzed, with hydrolysis 
somewhat increased with further pH-shift processing.  

This project indicates that the nutritional profile of Nannochloropsis oculata is favorable for human 
consumption, but that cell disruption is paramount to make the lipids and proteins accessible to the 
digestive enzymes. The pH-shift process applied here provided such cell disruption, slightly 
increased the concentration of proteins and lipid digestibility, and demonstrated a scalable process. 

  

 

Keywords: microalgae, pH-shift process, acid, alkaline, solubilization, precipitation, lipids, 
proteins, n-3 polyunsaturated fatty acids, Nannochloropsis oculata, food processing, in vitro 
digestion. 
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För att kunna förse jordens växande befolkning med näringsrik mat, så har mikroalger föreslagits 
som en källa till protein och långkedjiga fleromättade omega-3 fettsyror (LC n-3 PUFA). I dagsläget 
säljs mikroalger antingen som hel biomassa, eller som LC n-3 PUFA-rik olja efter extraktion med 
organiska lösningsmedel. Som ett mer miljövänligt alternativ till att använda lösningsmedel har den 
så kallade pH-skift processen föreslagits, för samtidig isolering av både lipider (olja) och proteiner. 
Processen är baserad på att proteinerna löses upp i vatten vid ett specifikt pH, varefter olösligt 
material avlägsnas och proteinerna fälls ut vid dess isoelektriska punkt genom att skifta pH’t. 

I detta projekt har pH-skift processen applicerats på Nannochloropsis oculata, en marin mikroalg 
som innehåller LC n-3 PUFA-rika lipider och proteiner rika på essentiella aminosyror som gör den 
väl anpassad som livsmedel. En processversion utvecklades baserat på proteinernas 
lösningsegenskaper vid olika pH. Nannochloropsisproteinerna löstes upp vid pH 7, olösligt material 
avlägsnades genom centrifugering vid 4 000×g, och proteiner fälldes sedan ut vid pH 3. Genom att 
använda havsvatten simulerades en process där själva algkulturen användes, vilket minskade 
sötvattensåtgången. Förhoppningen var att extraktionen skulle resultera i separata lipid- och 
proteinfraktioner, men extraktionen resulterade istället i en kombinerad produkt med 2.3% LC n-3 
PUFA och 23% protein på torrviksbasis, jämfört med 1.9% och 19% i utgångsmaterialet. Denna 
sammansättning indikerar att produkten har potential som funktionell livsmedelsingrediens. 

För att näringen från algerna ska vara till nytta för konsumenten krävs att de är tillgängliga för 
upptag i mag- tarmkanalen. Sambandet mellan processning och tillgängligheten av lipider och 
proteiner från Nannochloropsis undersöktes in vitro i en digereringsmodell. Resultaten visar att 
upptaget av dessa näringsämnen från hela algceller är obefintligt, vilket antyder att nedbrytning av 
Nannochloropsis inte sker i mag- tarmkanalen hos människan. Från de sönderdelade cellerna var 
däremot ca 35% av proteinerna och fettsyrorna  hydrolyserade, med en ytterligare ökning efter 
fortsatt pH-skift process. 

Detta arbete visar att den näringsmässiga sammansättningen av Nannochloropsis oculata gör att 
denna alg passar som livsmedel, men att cellerna måste sönderdelas för att tillgängliggöra lipiderna 
och proteinerna. pH-skift processen som appliceras här inkluderar en sådan sönderdelning och 
innefattar steg vilka underlättar för uppskalning.  Processen ökade koncentrationen av protein och 
tillgängligheten av lipider från algbiomassa; slutprodukten visar god potential för framtida 
applikation som livsmedel. 
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1. Introduction 
Our planet with its limited resources faces a considerable challenge: in the next decade alone, the 

global human population is expected to increase by 1 000 000 000 individuals1. We humans are 

challenged to find ways of feeding and increasing the affluence of everyone. To survive, we need 

energy, building blocks for our own cells and various micronutrients. Fish is an excellent source of 

energy, proteins and micronutrients including long-chain n-3 polyunsaturated fatty acids 

(colloquially “omega-3s”, here abbreviated “LC n-3 PUFAs”)2. LC n-3 PUFAs are in demand for 

their health effects, including maintenance of cardiovascular health3. LC n-3 PUFAs are consumed 

by humans in the form of fish, dietary supplements and functional foods4. However, the largest 

consumer of LC n-3 PUFA-rich fish oil is aquaculture: most aquacultured species require LC n-3 

PUFAs in their diet, which originates from captured, wild fish5. In 2014, 29% of the marine fish 

stocks were fished in a non-sustainable manner, further threatening the livelihood of humans5 and 

by extension, their very existence.  

Instead of emptying the oceans of fish, microalgae have been proposed as a way of converting 

sunlight and carbon dioxide into biofuels, feed, and food ingredients6, including proteins and LC 

n-3 PUFAs. However, few species of algae are currently consumed as they are: many species are 

surrounded by cell walls which cannot be degraded by human digestive enzymes, leaving nutrients 

in the interior of the algae inaccessible7. The microalgae which are currently cultured for their LC 

n-3 PUFAs e.g. for use in infant formulas, are usually extracted to render a pure oil fraction, rich in 

LC n-3 PUFAs8. Although industrial extraction procedures are proprietary, it is likely that methods 

rely heavily on organic solvents. In keeping with the aim of finding more sustainable solutions, the 

herein presented work investigates a water-based separation process – known as the pH-shift 

process – on a microalga, enabling the recovery of a functional food or feed ingredient. 

The pH-shift process is patented for the recovery of animal protein: i) proteins are solubilized in 

water at either high or low pH, ii) insoluble material (such as skin and bones) is removed by 

centrifugation and iii) proteins are precipitated at their isoelectric point9, 10. One of the advantages 

of the pH-shift process is that it is mild and leaves the protein in a state where it has good techno-

functional properties, which is to say that it e.g. has good gelling properties or good emulsification 

properties9. In contrast, when hot organic solvent is applied to biomass to extract oils, proteins tend 

to denature irreversibly, resulting in poor techno-functional properties. The pH-shift process may 

also be applied to biomass to recover crude oil: when the biomass contains enough fat, the first 

centrifugation may render a floating oil layer9.  

Thus, we hypothesized that the pH-shift process could be applied to microalgae to recover 

oil rich in LC n-3 PUFA and then a separate protein fraction. 



Fractionation of lipids and proteins from the microalga Nannochloropsis oculata 

2 
 

This work details the development of a pH-shift process on Nannochloropsis oculata (in the 

following referred to simply as Nannochloropsis), the characterization of the process’s product and 

the accessibility of the nutrients in an in vitro digestion model. An overview of the four studies 

included in this thesis is given in Figure 1 and the specific aims follow in chapter 2. Chapter 3 

presents a background to microalgae: their celebrated diversity and proposed applications including 

human food, with special emphasis on microalgae as a source of dietary lipids and proteins. 

Chapter 4 introduces the pH-shift process in general and explains the pH-shift process as developed 

on Nannochloropsis and published in Paper I. Having developed a pH-shift process for 

Nannochloropsis, the product was characterized in regard to lipids, proteins, carbohydrates, water, 

ash and color. Although the product showed potential as a functional food ingredient, the question 

remained whether the nutrients were accessible for uptake by the human digestive system. 

Chapter 5 details the in vitro digestion model applied to Nannochloropsis in various stages of the 

pH-shift process, as reported in Paper II. In this study, the necessity of breaking open the algal cells 

was demonstrated: when whole algae passed through the model, neither lipids nor proteins were 

digested, while the lipids and proteins of pH-shift processed cells (broken) showed good 

digestibility. For the reader interested in methods, the analytical tools used to assess lipids and 

proteins in Papers I and II are described in chapter 6 and include those published in Papers III and 

IV. For the impatient reader, the major findings of Papers I-IV can be found in chapter 7, and the 

future outlook in chapter 8. 

 

Figure 1 Overview of presented papers. SPE stands for Solid Phase Extraction. 
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2. Aims  
The overall aim of this project was to process microalgal biomass into a nutritious and digestible 

food ingredient, without the application of organic solvents. Considering the retail value of food 

and feed, processing steps need to be scalable, i.e. it is an advantage if the applied unit operations 

are already present in large-scale food processing. One process fitting the requirements of using 

non-toxic solvents, economic viability, scalability and nutritional feasibility, is the pH-shift process. 

The pH-shift process was applied and modified in the present work to fractionate whole 

Nannochloropsis oculata biomass. To achieve the overall objective, investigations were carried out 

to:  

• Map the pH-dependent solubility of Nannochloropsis proteins in seawater (addressed in 

Paper I). 

• Use the protein solubility curves to establish a pH-shift process for Nannochloropsis 

biomass (Paper I). 

• Characterize the fractions obtained by the pH-shift process in respect to total fatty acids, 

protein, total carbohydrates and residual ash (Paper I). 

• Investigate how the pH-shift process influences the in vitro accessibility of Nannochlo-

ropsis proteins and lipids (Paper II). 

• Establish an analytical approach to quantify fatty acids in different LC n-3 PUFA- 

containing microalgal strains (Paper III). 

• Determine the source of analytical contamination noted during solid phase extraction-based 

separation of lipid classes (Paper IV). 
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3. Microalgae and their potential in human nutrition 

3.1. Microalgae: general definition and potential 
applications 
The term “microalgae” can be drawn wide enough to include both cyanobacteria and several 

divisions of eukaryotic organisms11-14. Generally, microalgae are in the size range of several µm15 

and grow as single cells or form simple colonies11, 16. Here, microalgae will be defined as small 

organisms, which are either capable of photosynthesis or closely resemble photosynthetic 

organisms12, 14. The first photosynthetic microalgae, cyanobacteria, appeared roughly 2.8 billion 

years ago14, 17 and – in the time since – have evolved to inhabit virtually every ecosystem on the 

planet: seawater and freshwater, hot springs, desert sands, snow and ice have all been found to 

harbor microalgae14. Although their small size implies that microalgae usually go unnoticed by 

humans in everyday life, these organisms have profound impact on the planet, contributing roughly 

half of the atmospheric oxygen and forming the prolific base of the aquatic food web, while ancient 

microalgae provide fossil fuels and thus a cornerstone of the economy15.  

Microalgae are a diverse group of organisms. They exist in unicellular form or simple colonies but 

do not form differentiated organs (e.g. the roots and leaves of land-based plants), though some 

cyanobacteria grow in simple chains which contain cells dedicated to nitrogen-fixation14, 16. Some 

microalgae appear as single-cell plants, complete with a cell wall and chloroplast, harnessing light 

energy to fix carbon (Figure 2), while other microalgae are motile and ingest organic material to 

supply their main energy and carbon requirements14.  To harvest light, the various species of 

microalgae employ a variety of pigments consisting of different types of chlorophyll, phycobilins, 

carotenes and xanthophylls14. Once the light energy has been stored in chemical bonds, microalgae 

may store excess energy in different molecules including various polysaccharides14 and lipids11, 18. 

To add to the already bewildering diversity of microalgae, these organisms may go through different 

morphologies according to their life cycle and environmental conditions19, 20 and surround 

themselves with a variety of different barriers: naked cell membranes, mucilages, scales of organic 

or inorganic material, silica frustules, or rigid, multi-layered cell walls16. Given their diversity and 

the fact that they are adapted to many different conditions, microalgae have been proposed as 

solutions to various challenges. 
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Figure 2 General cell structure of a eukaryotic microalga (based on 21-23) 

 

Some of the global challenges facing humanity in which microalgae have been proposed as a 

solution follow below:  

• Capture of carbon dioxide to reduce atmospheric greenhouse gases, e.g. in connection to 

coal-fired power plants and cement-production industry 

• Wastewater remediation, i.e. removal of nitrogen and phosphorus from sewage24  

• Biofuel production such as biodiesel11, 18, 24, 25, bioethanol26, 27 and hydrogen28, thereby 

closing the carbon cycle instead of relying on fossil fuels 

• Feed production, e.g. for aquaculture and land-based animal husbandry29-32, reducing 

pressure on fish stocks and freeing up agricultural land used for feed production 

• Food production30, 33-35 and fortification36, 37 

• Production of nutraceuticals such as LC n-3 PUFA, vitamins, pigments and antioxidants38-

47 

• Production of vaccines and cosmeceuticals6, 48-52 

• … and many other applications53-62 

From low-value, high volume applications (such as biofuel production), to high-value, low volume 

applications (such as pharmaceutical production), microalgae evoke sustainable solutions to a wide 

range of current issues. 
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3.2. Microalgae in human nutrition 
Certain microalgal species are consumed by humans as food. Historically, the cyanobacteria of 

Arthrospira species have been eaten after being gathered from lakes in present-day Mexico and 

Chad; also, various species of Nostoc (sphaeroides, flagelliforme, and commune) found growing on 

land in Asian countries were – and still are – part of local diets16, 63, 64. Current large-scale cultivation 

of whole microalgal biomass for human consumption is dominated by Arthrospira and Chlorella16, 

57, 65. Additionally, Dunaliella and Haematococcus are cultivated for β-carotene and astaxanthin, 

respectively50, 65, 66. Various species are also cultivated heterotrophically (i.e. they are cultured in 

dark fermenters) for docosahexaenoic acid (DHA), which is added to infant formula and other 

foods67-70. Generally, studies suggest that certain microalgae could be processed into food or food 

ingredients for human consumption based on i) the amino acid profile and ii) the presence of LC n-

3 PUFAs. The amino acid profiles of microalgae are often found to contain higher amounts of 

essential amino acids than most land plants; in other words microalgal amino acid profiles can be 

comparable to those of soy or egg 7, 71. As for the fatty acids, some microalgae are capable of 

producing the LC n-3 PUFAs, notably eicosapentaenoic acid (EPA) and DHA, which land plants 

cannot synthesize, and which are associated with certain health benefits. Apart from energy, well-

balanced protein and LC n-3 PUFAs, microalgae can provide e.g. minerals and micronutrients50. 

Some microalgae are added to conventional foods in attempts to create functional foods. Functional 

foods lack a legal definition in Europe, but can be interpreted as a food (natural or processed) with 

clinically proven and documented health benefits beyond basic nutritional effects72-74. In Europe 

such foods for which a health claim is made, must conform to the European Food Safety Authority’s 

(EFSA’s) regulation. Several accepted health claims apply to nutrients found in microalgae, e.g. 

EPA and DHA3. However, studies on adding microalgae to foods are often focused on consumer 

acceptance and technical properties36, 37, 75-79, while ignoring if the product provides true nutritional 

benefits. For example, one study added Spirulina to ice cream, replacing as much as half of the 

stabilizer (glycerol monostearate) and increasing the iron content of the ice cream76; however, since 

the amount of Spirulina added only comprised 0.15% of the ice cream in total, the ice cream was 

still not a good source of iron: roughly 10 liters of ice cream would be needed to reach the 

recommended daily intake of iron. Furthermore, the form of the iron and its bioaccessibility was 

not assessed. So, in spite of enthusiasm for microalgae, there is a major gap between adding 

microalgae to food and creating a functional food. 
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3.2.1. Lipids 
Lipids are a heterogeneous group of molecules, defined by their extractability into non-polar 

solvents and their limited solubility in water80, 81. Lipids are often divided into three classes82: 

i) fatty acids, which are part of most neutral and polar lipids, ii) neutral lipids, in which the entire 

molecule is hydrophobic and iii) polar lipids, which have hydrophilic and hydrophobic regions 

within the same molecule. While all lipid classes can be found in microalgae, some species of 

microalgae are adept at storing excess energy in the form of neutral lipids83. 

3.2.1.1. Fatty acids 
A fatty acid is a hydrocarbon chain with a –COOH group (carboxylic acid) at one end80, as 

illustrated in Figure 3. As such, fatty acids are relatively uncommon in their free form in nature, 

but are an important component of most triacylglycerols and polar lipids (discussed below). Fatty 

acids exist at various lengths. Generally, the fatty acids present in plant and animal triacylglycerols, 

are 12-20 carbons long, with an even number of carbons80, 82. In this dissertation, fatty acids longer 

than 18 carbons are referred to as “long chain”. Most fatty acids are linear (i.e. they do not branch), 

though kinks can be present in the chain as a result of double bonds80. Fatty acids with double bonds 

are referred to as unsaturated fatty acids; a single double bond results in a monounsaturated fatty 

acid, and further desaturation results in a polyunsaturated fatty acid22, 84. Contrary to the convention 

of organic chemists, who number the carbon atoms starting at the acidic head group, those who are 

interested in the physiological effects of fatty acids, start counting at the methyl terminus when 

describing the position of the double bond: a fatty acid with a double bond between the third and 

fourth carbon from the end is referred to as an n-3 fatty acid85, 86. Similarly, fatty acids in which the 

first double bond occurs between the sixth and seventh carbon from the end, are n-6 fatty acids, 

with distinct physiological properties from n-3 fatty acids85. Fatty acids are often referred to in 

shorthand, e.g. “C18:1 n-9” with the numbers indicating (from left to right) the number of carbon 

atoms (18), the number of double bonds (1) and the location of the first double bond from the methyl 

end (carbon 9). 
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Figure 3 a) stearic acid, C18:0, a saturated fatty acid, with all carbon and hydrogen atoms shown; b) oleic 
acid, C18:1 n-9, a monounsaturated fatty acid, presented in a reduced structure with only key carbon and 
hydrogen atoms shown; c) α-linolenic acid, C18:3 n-3, a polyunsaturated n-3 fatty acid, shown in an 
attenuated structure; d) linoleic acid, C18:2 n-6, a polyunsaturated n-6 fatty acid. 

 

3.2.1.2. Neutral lipids  
The vast majority of lipids found in food are neutral lipids in the form of triacylglycerols22, 80, 81: 

three fatty acids esterified to glycerol form an excellent molecule in which to store energy, as these 

can be packed densely as an intracellular lipid droplet87, see Figure 4. Triacylglycerols are found 

as constituents of many foods, such as meat, nuts and cheese or are present in nearly pure form e.g. 

in various oils and fats such as olive oil, butter and lard81. Though microalgae are not necessarily 

considered to be food, some species are known to contain 20-50% of the cells’ dry weight as 

triacylglycerols83. 



Microalgae and their potential in human nutrition 

9 
 

Another type of lipid molecule for which algae are known are pigments, a small but visible fraction. 

Carotenoids are pigments synthesized mainly in plants and algae as part of their light-harvesting 

complexes and serve not only to broaden the spectrum which can be absorbed by the chloroplasts12, 

but also have a photoprotective function, by scavenging free radical species50, 81. Carotenes can be 

considered neutral lipids since they contain only carbon and hydrogen atoms. Carotenes are one 

type of carotenoid, the other type of carotenoid is xanthophylls. Xanthophylls are structurally very 

similar to carotenes but contain oxygen atoms, making them slightly polar. Although they are not 

necessarily true neutral lipids, carotenoids and other pigments often partition with the bulk neutral 

lipid during lipid extraction. 

 

 

Figure 4 Three fatty acids condense with glycerol to form a triacylglycerol, the main constituent of fats and 
oils, with three molecules of water formed in the reaction. The ester bonds formed in the reaction are 
highlighted. R stands for the fatty acid acyl chain and can be different for all three fatty acids. 

 

 

3.2.1.3. Polar lipids 
Polar lipids are a diverse group of molecules, but share the characteristic that there are hydrophilic 

and hydrophobic regions within the same molecule, i.e. they are amphiphilic88, see Figure 5. 

Separating the aqueous environment of each cell from the surrounding environment is a lipid 

bilayer, composed of polar lipids arranged so that polar head groups are in contact with water while 

the hydrophobic tails associate to form a water-repelling barrier88. Many polar lipids contain a 

glycerol backbone, with up to two fatty acids esterified to the backbone, forming a hydrophobic 

tail81. Esterified to the third position of the glycerol is a hydrophilic head group. The hydrophilic 

head group may be charged, as is the case in phospholipids, or highly water-soluble, such as a sugar 
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moiety in the cases of glyceroglycolipids88. Glyceroglycolipids, such as monogalactosyl-

diacylglycerol and digalactosyldiacylglycerol, are of special interest in this work, since they are 

lipids found in plants and microalgae as part of their photosynthetic membranes89-91.  

 

 

Figure 5 a) Phosphatidylcholine, an example of a phospholipid. Note that both the phosphorus and the 
nitrogen atom carry a charge, making that part of the molecule hydrophilic, while the two fatty acid residues 
are hydrophobic. b) monogalactosyldiacylglyerol, an example of a glyceroglycolipid which, analogous to the 
phospholipids, has a two hydrophobic fatty acid residues and a hydrophilic sugar moiety. 

 

3.2.1.4. LC n-3 PUFA-production by microalgae 
Various genera of microalgae have been investigated for their production of LC n-3 PUFAs, see 

Table 1. Most of the listed genera grow photoautotrophically, i.e. they use sunlight as their energy 

source and carbon dioxide as their carbon source17. Since fixing carbon in itself requires energy and 

the microalgae tend to shade each other, there have been attempts to boost the LC n-3 PUFA yield 

and/or productivity by culturing some species heterotrophically92, i.e. in dark fermenters to which 

an organic carbon source such as sugar is supplied93-96. Although this approach has proven 

successful for Crypthecodinium cohnii39, 70, it has not been successful in all cases, possibly because 

the LC n-3 PUFAs are part of the photosynthetic membranes of some species90, 97, a fraction which 

can be expected to be reduced under heterotrophic fermentation. Other strategies for increasing the 

LC n-3 PUFA yield or productivity include optimization of any or several of the following: light 

intensity and length of the light cycle98-101; temperature100-105; rate of carbon dioxide supply98, 105; 

source and concentration of various nutrients104 (including nitrogen100, 102, 105, 106, phosphorous100, 106, 

107, sulfur106 and silica106); pH of the medium108; salt concentration of the medium105, 108; and dilution 

rate in continuous cultures98, 109, 110. Currently, no single strategy is known to increase the yield or 

productivity of LC n-3 PUFA in all microalgae; instead culture conditions need to be tailored to 

each species.   
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Table 1 Some microalgae investigated for production of EPA and/or DHA. The yield is given in fatty acids 
per liter of culture; n.d. stands for no data; note that culture conditions vary between references. 

Genus EPA % 
(of dry 
biomass) 

DHA % 
(of dry 
biomass) 

EPA 
yield 
(mg/L) 

DHA 
yield 
(mg/L) 

Reference(s) 

Amphidinium sp. 0.4-2.2 0.3-2.4 4.0-8.3 2.0-4.4 95, 107, 111 
Aplanochytrium sp. n.d. n.d. 0 1 96 
Asterionella sp. (tentative) 0-0.5 0-0.2 n.d. n.d. 111 
Aurantiochytrium spp. n.d. n.d. 1-2 14-18 96 
Biddulphia sinensis 1.8 0 3.0 0 107 
Chaetoceros spp. 0-2.4 0-0.4 0-4.2 0 112-115 
Chlorella spp. 0-4.4 0 0-37 0 42, 100, 107, 112 
Chroococcus sp. 0 0 n.d. n.d. 116 
Chroomonas salina <0.1 0.3 <1 0.7 69, 73 
Coccolithus huxleyi 1.5 0 3.8 0 107 
Criccosphaera carteri 2.0-2.2 0 3.7-4.4 0 107 
Crypthecodinium cohnii 0 0.8-1.3 0 15-20 112 
Cryptomonas sp. 0.2-1.6 <0.1-0.6 <1-3.8 <1-2.0 69, 70, 73 
Dunaliella spp. 0-1 0 0-14 0 100, 107, 111, 115 
Emiliania huxleyi 2.4 0 5.1 0 70, 76 
Fragilaria familica 1.3 <0.1 n.d. n.d. 113 
Heteromastrix rotunda 1.8 <0.1 3.1 <1 107 
Isochrysis sp. 0-0.9 0-4.7 <1-8.0 0-40 73, 75-79, 115, 117, 118 
Monochrysis lutheri 2.1 0 4.7 0 107 
Monodus subterranaeus 0-3.8 0 0-96 0 112 
Nannochloropsis spp. 0-8.2 0-0.7 0-14 0-2.6 42, 107, 112, 116, 118-120 
Nitzschia spp. 1.1-1.5 n.d. n.d. n.d. 92, 100 
Oblongichytrium n.d. n.d. 0-3 1-4 96 
Oocystis sp. 0.1 0 n.d. n.d. 116 
Pavlova sp. <0.1-3.2 0-1.3 <1-4.0 0-1.2 42, 98, 107, 112-116, 119 
Phaeodactylum tricornutum 0.2-5.5 0-0.4 1.3-130 0-11 42, 107, 112, 115, 116, 119 
Porphyridium spp. <0.1-3.8 0 <1-69 0 42, 100, 107, 112, 116 
Prorocentrum spp. <0.1-0.6 0.2-0.8 <1-2.3 <1-1.5 71, 73 
Prymnesium parvum <0.1 <0.1-0.2 n.d. n.d. 111 
Pseudokirchneriella sp.  0 <0.1 n.d. n.d. 116 
Pseudopedionella sp. 2.5 <0.1 4.9 <1 107 
Rhodomonas sp. 0.4-1.4 0-0.6 1.8-7.8 <1-4.0 116, 118 
Schizochytrium aggregatum 1.0-1.2 0-0.3 6.1-9.3 0-<1 112 
Synechococcus sp. 0 0 n.d. n.d. 100, 116 
Tetraselmis spp. 0.2-0.5 <0.1 <1-5.1 0 113, 116, 118 
Thalassiosira spp. 0.3-1.7 0.1-0.5 <1-1.2 <1 112, 113, 115, 119, 121 
Thraustrochytrium spp. 0.3 0.5-1.0 0-3 1-16 72, 73, 95 

Tribonema sp. 0.3 0 n.d. n.d. 116 
 



Fractionation of lipids and proteins from the microalga Nannochloropsis oculata 

12 
 

3.2.1.5. Health effects of LC n-3 PUFAs 
Although humans are capable of de novo fatty acid-synthesis (therefore, excess energy from sugary 

foods is stored as fat)84, we cannot form n-6 and n-3 fatty acids. Human enzymes cannot insert a 

double bond at the n-6 and n-3 positions and are also inefficient at elongating 18-carbon fatty 

acids85, 122-124. The efficiency of conversion of n-3 PUFA (α-linolenic acid, shown in Figure 3) to 

LC n-3 PUFAs (such as EPA and DHA shown Figure 6) is further reduced by the presence of n-6 

fatty acid (linoleic acid, Figure 3), which competes for the same enzymes125, 126. The ratio of n-6:n-3 

PUFAs in a standard Western-style diet is considered to be high (about 16:1) and is implicated in 

many common diseases; ratios between 1:1 to 1:4 have been suggested to be beneficial in the 

prevention of the implicated diseases47, 127-132. There are several suggested mechanisms for the 

physiological effects of LC n-3 PUFAs, including alteration of membrane fluidity, alteration of 

gene transcription and the formation of signaling molecules, eicosanoids47, 85, 122, 123, 125, 127, 129, 133, 134. 

The eicosanoids are involved in the processes of inflammation and its resolution, vasodilation, 

platelet aggregation, pain and fever85, 122, 123, 129, 135. Since the listed processes are part of many human 

disorders, LC n-3 PUFAs – or lack thereof – may be involved in a plethora of diseases134. Amongst 

the abundance of health effects attributed to LC n-3 PUFAs, the European Food Safety Authority, 

with its stringent demand for documentation, recognizes only a few health claims for LC n-3 

PUFAs3:  

• EPA and DHA contribute to the normal functioning of the heart (at 250 mg/day) and normal 

blood triacylglycerol levels (2 g/day) and maintenance of normal blood pressure (3 g/day)3  

• DHA contributes to the maintenance of normal brain and eye function in adults (250 

mg/day)3  

• DHA contributes to the normal development of brain and eye in fetuses (maternal intake 

350 mg/day) and infants (100 mg/day)3 

Given the health effects of LC n-3 PUFAs and the inefficiency with which they are formed in 

humans, many consumers are eager to get 250 mg dietary LC n-3 PUFAs daily, as recommended 

by EFSA136.  

COOH

COOH

a)

b)

 

Figure 6 The 
structure of 
LC n-3 PUFAs:  
a) EPA 
b) DHA 
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3.2.2. Proteins 
Apart from lipids, proteins are the other major nutrient which make microalgae an interesting source 

of human nutrition: some species of microalgae contain all essential amino acids in proportions as 

they are required by humans, unlike most crop plants which tend to be deficient in at least one 

amino acid137.  

3.2.2.1. Amino acids and peptides 
Amino acids are small molecules with a central carbon atom which in most cases connects i) a 

hydrogen atom, ii) a carboxylic acid group, -COOH, iii) an amino group, -NH2 and iv) a side chain 

–R 88, see Figure 7. The side chain gives each amino acid its unique physiochemical properties. For 

example, the branched hydrocarbon side chain of leucine is hydrophobic, while the alcohol group 

of serine is hydrophilic88. Humans can synthesize roughly half of the amino acids, while the so 

called essential amino acids must be provided in the diet88. The carboxylic acid and amino group of 

two amino acids can form a covalent bond, known as a peptide or amide bond, forming a dipeptide; 

adding a third amino acid results in a tripeptide, etc.88. In summary, individual amino acids can 

form links to other amino acids, with the side chains conferring unique properties on the 

polypeptide. 

 

Figure 7 a) the general structure of an amino acid, where R can be any of ca. 20 side-chains; b) two amino 
acids condense to form a dipeptide; the peptide bond is also known as the amide bond. 

 

3.2.2.2. Proteins 
Proteins are long polymers of amino acids. The different properties of the amino acids’ side chains 

give proteins an amphiphilic character. Interactions of side chains of similar character (in the case 

hydrophobic interactions) or complimentary character (in the case of electrostatic interaction) along 

the length of the polypeptide cause proteins to fold into complex three-dimensional structures88. A 

protein’s tertiary structure is key to its biological function, e.g. enzymatic, structural, signaling, 
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etc.88, 138. Change to the native conformation of a protein is known as denaturation and can be 

induced by heat, pressure and shear, extremes in pH, and the binding of detergents or small 

molecules such as urea88. When denaturation is irreversible, such as when an egg is boiled, it results 

in permanent loss of biological function88. However, in the context of food, denaturation can be 

desirable, e.g. by inactivating protease inhibitors (a group of anti-nutrients found in legumes) or 

increasing the emulsification properties of proteins138. 

3.2.2.3. Proteins in microalgae 
Relatively little is known about microalgal proteins, contrary to the comparatively advanced 

knowledge on plant, human and microbial proteins139. As for other organisms, the synthesis of 

specific proteins depends on the physiological state of the cell, e.g. the amount of available 

nitrogen140. According to Schwenzfeier et al. (2011), microalgae do not accumulate distinct storage 

proteins, but rather contain many different types of protein141. Since microalgae are 

phylogenetically diverse, it is difficult to generalize about their proteins. However, studies of 

various microalgae mention proteins which probably apply to most cells, namely protein involved 

in catalysis, signal transduction, structure, movement and electron transfer as well as transporters 

and chaperones142, 143. As for RuBisCO, an important enzyme of carbon-fixation which can 

dominate the protein profile of some plants, investigated microalgae have not been found to contain 

an overwhelming amount of RuBisCO, i.e. less than 6% of the total protein144. In the thermophilic 

microalga Galdieria sulphuraria the proteins were reported to be strictly associated with 

polysaccharides, hindering enzymatic protein extraction34. Unlike muscle protein, which is 

dominated by myofibrillar proteins which form structures of the sarcomere filaments145, microalgae 

are likely to be dominated by globular and membrane-associated proteins. 

3.2.2.4. Protein nutritional quality 
Different sources of protein have different nutritional quality. For protein to be considered high-

quality, it must contain the essential amino acids at or above concentrations as determined by the 

World Health Organization146 and a digestibility equal or greater to that of milk protein or egg 

whites138. While protein from animal sources generally contains essential amino acids in 

concentrations corresponding to the reference values, many plants lack at least one amino acid, e.g. 

cereals have low amounts of lysine137, 138. Digestibility describes how much of the food’s nitrogen 

is absorbed relative to the total nitrogen138. Digestibility of animal protein tends to be high (> 90%), 

while the digestibility of protein from plant sources ranges from high (96% for wheat flour) to low 

(70% for corn cereal). Factors which decrease the digestibility are i) processing (which can either 

be detrimental, as in the case of the Maillard reaction, or beneficial, as when denatured protein 

becomes more accessible to proteases) and ii) the presence of various compounds which either 

hinder the action of enzymes (anti-nutrients such as trypsin inhibitors, tannins, or dietary fibers) or 
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hinder the absorption of nutrients (anti-nutrients such as lectins)138. Microalgae may have long been 

proposed as a protein source based on the general composition of the dry biomass, in which as much 

as 60% may be crude protein30. The amino acid profiles of microalgal proteins are often known to 

correspond to or exceed the reference values30, 147-153. Fewer studies have addressed microalgal 

protein digestibility, though these generally indicate that microalgae proteins are not as digestible 

as a reference protein such as casein30. In other words, while microalgae appear to be a promising 

source of protein, based on the amount of total protein and the protein’s amino acid composition, 

the proteins’ digestibility must also be studied to determine if the protein is of high nutritional 

quality. 

 

3.3. Sustainability aspects of microalgae as a source of 
nutrients 
3.3.1. Microalgal cultivation 
Many non-dietary advantages for using microalgae as a food source have been suggested. 

Microalgae are touted as having a higher photosynthetic efficiency than land-based plants, i.e. they 

are capable of converting more of the incoming sunlight into biomass32, 154, 155. As for cultivation, 

microalgae may be grown with less consumption of freshwater, especially the marine species154, 156. 

Furthermore, culture of microalgae does not require arable land, thus competition with food 

production may be avoided11, 156, 157: microalgae may be cultured in photobioreactors or open ponds 

placed on marginal land  or even in the ocean32, 158. Furthermore, depending on the prevalent climate 

at the culture location, it may be possible to culture algae all year around156, 157, thereby improving 

food security11. In other words, microalgal culture has been proposed as alternative or supplement 

to traditional agriculture, requiring less resources while potentially producing more biomass per 

hectare.  

In spite of the advantages mentioned above, some resources will still be needed to culture 

microalgae. Depending on the culture system, freshwater may be needed to compensate for 

evaporative losses154 or as cooling water159. Other operations associated with algal culture may also 

require freshwater, such as harvest, downstream-processing and cleaning of equipment. 

Furthermore, nutrients including nitrogen, phosphorous and carbon will need to be supplied. While 

these elements are present in abundance in municipal wastewater11, it is highly unlikely that such 

wastewater would be used in the production of food160. Possibly, food grade process waters, e.g. 

from food industry could be used as a source of nitrogen, carbon and phosphorous in algae 

cultivation. Otherwise, nitrogen and phosphorous – with energetically demanding production or 

mining methods – will need to be supplied in purified form. Depending on the source (e.g. glucose 
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or purified, compressed carbon dioxide), even carbon represents a significant energy investment32. 

Finally, energy will also be required for such operations as mixing, aerating, auxiliary lighting161, 

temperature control, harvesting, cell disruption, etc.; this energy is only as sustainable as its source. 

Thus, there are resources beyond light and carbon dioxide which must be supplied to microalgae in 

order for them to produce molecules useful to humans. 

3.3.2. Downstream processing of microalgae to recover lipids and 
proteins 
3.3.2.1. Solvent extraction 
When microalgal lipids are sold in purified form, it follows that the biomass must have been 

fractionated. Exactly how the biomass is fractionated industrially is not clear, since processes are 

proprietary, but extraction with organic solvents is a likely method39. Although chloroform-

methanol methods are popular for analytical purposes95, 99, 107, 111, 117, 120, 162-171, the presence of 

residual chlorinated solvent cannot be tolerated in food applications6, 172, 173. It is likely that 

industrial extraction of microalgae is carried out with solvents such as isopropanol, ethanol, hexane 

or mixtures thereof6, 25, 39, 165, 172-177. Supercritical fluid extraction has been suggested as an 

alternative extraction method39, 174, 178, 179, but requires costly equipment which is difficult to scale 

up180. The application of any organic solvent is likely to denature the protein fraction181. 

Furthermore, whatever the exact method of the solvent extraction, the fact remains that organic 

solvents are hazardous for workers and environment, since they tend to be flammable and toxic. 

Solvent-free methods, with less impact on both the environment and denaturation-prone proteins in 

the residual biomass would thus be preferable to traditional solvent extraction. The solvent used in 

the pH-shift process is water, which is non-toxic and safer than organic solvents and easier to handle 

than supercritical carbon dioxide. Since freshwater is a limited resource in many parts of the world, 

it may be possible to further reduce the amounts of water utilized when processing microalgae by 

using culture medium in the pH-shift process. 

3.3.2.2. The pH-shift process 
Although the pH-shift process (explained below in section 4.1) was primarily developed to recover 

proteins with good techno-functional properties, it has also been suggested as a lipid fractionation 

method9, 182. In a related procedure, comprising a single acidic pH-adjustment to roughly 5.5 on a 

fish muscle-water homogenate, the oil yield was reported to be 60-74%, depending on the type of 

acid added (the highest yield was achieved with tartaric acid)182. It has been pointed out that the 

pH-shift process does not achieve pure fractions183, as is common after solvent extraction and 

refinement of the oil. However, it is not always necessary to spend the energy to achieve pure 

fractions since foods tend to be complex mixtures. Furthermore, a partial fractionation could be an 

advantage if it leads to more of the biomass being utilized directly as human food. In keeping with 
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the principle of the European waste hierarchy184, it would be preferable to use as much of the 

biomass as possible for human food48. Thus, although the pH-shift process does not achieve pure 

fractions, it does not use toxic solvents, and might lead to a larger fraction of the biomass being 

used by humans directly.  

3.3.3. Fish, the current major source for LC n-3 PUFA  

3.3.3.1. The state of the world’s fisheries and aquaculture 
Like humans, fish are very inefficient at producing LC n-3 PUFAs: instead, fish bioaccumulate the 

LC n-3 PUFAs originating from microalgae185. It follows that although aquacultured fish in 2014 

accounted for half of the fish consumed on the planet5, the aquacultured fish must be fed LC n-3 

PUFAs. Currently, the main source of LC n-3 PUFAs is fish oil, with 75% of the produced fish oil 

going into aquaculture4, 5.  The fish used to make fish oil are mainly (roughly  90% in 2011) captured 

marine species5. Of the marine fish stocks, 29% were overfished in 2014, while 61% were being 

harvested at the maximum biologically sustainable yield5. The world’s marine fisheries have been 

in a state of slow decline since 1996, though the price of fish oil has increased as aquaculture has 

expanded5. As the world’s population is projected to grow in coming years, the per capita fish 

consumption is also predicted to increase5. Concurrently, with growing affluence, the demand for 

LC n-3 PUFA-containing nutraceuticals and functional food can also be expected to grow. It will 

be necessary to utilize the available fish resources more efficiently5, but to surpass the upper limit 

set by the currently available fish resources, alternative biomasses, such as microalgae, will need to 

be developed to cover the demand for LC n-3 PUFA.  

3.3.3.2. Something is fishy about the fish  
Although fish is an excellent source of protein, vitamins, minerals and LC n-3 PUFAs, fish may 

also contain various harmful substances including heavy metals and dioxins2. Experts agree that in 

general the benefits of eating fish overweigh the risks2, 186, but consumers may be confused by local 

recommendations to avoid fish (e.g. fish from the Baltic Sea187). Additionally, consumers may 

choose not to eat fish for moral reasons or personal preferences. In this context, microalgae have 

been suggested as a vegetarian alternative to fish oil69, and possibly even to fish79. Furthermore, by 

tightly controlling the culture medium and carefully selecting strains which do not produce toxins, 

it should be possible to culture microalgae free from toxicants. Thus, microalgae might be able to 

augment and replace fish as a source of LC n-3 PUFAs, without the environmental pollutants 

associated with fish.  
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4. Development of a pH-shift process for 
Nannochloropsis 
The pH-shift process is an established method for fractionating animal or plant biomass and is 

applied in industrial scale both to recover muscle protein and to refine defatted soy meal. The 

general process is explained in section 4.1. Section 4.2 explains how the processes was developed, 

with section 4.2.3 detailing the process for Nannochloropsis in seawater, as published in Paper I. 

Finally, in section 4.3, the product of the process is characterized.  

 

4.1. General introduction to the pH-shift process for 
protein separation 
The pH-shift process is applied to various proteinaceous raw materials to fractionate soluble 

proteins from non-soluble components9, 10, 188-194; another name for the process is “isoelectric 

solubilization/precipitation”195. A schematic representation of the process is given in Figure 8. 

Generally, the process starts by adding water to the biomass and homogenizing the slurry, allowing 

the intracellular content to come into contact with the water. Solubilization of the proteins is then 

carried out, usually at high pH by adding alkali, e.g. sodium hydroxide, but it is also possible – 

depending on the initial raw material – to solubilize some proteins at low pH by adding acid, e.g. 

hydrochloric acid9, 10. Centrifugation encourages non-soluble material to sediment into a pellet, 

while the majority of proteins remain in solution. After separating the supernatant from the pellet, 

the proteins in the supernatant are precipitated at their isoelectric point. The majority of the proteins 

are recovered after a second centrifugation which yields a watery supernatant, and the proteinaceous 

pellet, which can then be processed further. 
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Figure 8 The general pH-shift process. Raw materials and products of the process are shown in white; process 
operations are shaded. 
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4.1.1. Common raw materials used in the pH-shift process 
Both plant and animal raw materials are subjected to the pH-shift process at industrial scale. The 

common aim for both plant and animal raw material is to recover proteins with good sensory quality 

(i.e. a product which looks and smells appetizing) and good techno-functional properties (e.g. the 

capability to retain water, or to form a gel)196, 197. For plant material, e.g. for soy188 and wheat 

germ189, it is common that the raw material is defatted before subjecting it to the pH-shift process. 

Fats and oils are commonly removed from food raw materials by extraction with hexane, a process 

which may cause (at least part) of the proteins to denature irreversibly197. Conversely, the whole 

animal raw material is usually processed without prior extraction of the oils, to recover muscle 

protein9 from e.g. fish frames10, 192-194, 198. When subjecting fish with a high lipid content to the 

pH-shift process, it is under some circumstances possible to recover a third fraction, beyond the 

insoluble material and aqueous proteins: a floating fat layer has been observed in several studies182, 

199. The details of the pH-shift process differ for plant and animal raw materials. The pH-shift 

process on animal material is generally carried out refrigerated (1-15 °C), to repress the growth of 

food spoilage organisms, reduce lipid oxidation as well as protein denaturation9. In contrast, pH-

shift processing on dry, defatted plant material does not have the same concerns and is therefore 

often carried out at room temperature or is even heated to increase protein recovery190, 191, 197, 200. 

Thus, any proteinaceous raw material can be treated with the pH-shift process, with adaptions made 

to the process to suit the raw material.  

4.1.2. Microalgae in the pH-shift process and related processes 
4.1.2.1. Microalgae in classic pH-shift processes 

The pH-shift process and variations thereof, has been applied to various microalgae, as is briefly 

detailed below. An early report201 from 1978 used sodium hydroxide (pH 11.5) and the reducing 

agent β-mercaptoethanol (0.5%) to extract proteins from Scenedesmus acutus with subsequent 

precipitation at the isoelectric point (pH 3.5)201. A few years later (1981), the same group 

investigated defatted Spirulina platensis flour, determining that the proteins had high solubility 

(> 80%) above pH 6 and an isoelectric point of pH 3202; furthermore, a rudimentary in vitro 

digestion model indicated the produced isolate had high (> 70%) protein digestibility202. The same 

authors later studied techno-functional properties of defatted Spirulina subjected to pH-shift 

processing, namely water and fat sorption capacity, emulsification capacity, foam capacity and 

foam stability203. In a further development of this early work, whole Spirulina biomass (i.e. non-

defatted) was subjected to the pH-shift process and the product’s techno-functional properties 

studied in detail204-207. More recently, proteins were recovered from defatted Nannochloropsis spp. 

with solubilization at pH 11 at 60 °C for 5 h and precipitation at pH 3.2 and 5 °C176: when the 

defatted Nannochloropsis raw material was compared to non-defatted Nannochloropsis, more 
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proteins were extracted from the non-defatted biomass176. The authors hypothesized that polar lipids 

acted as surfactants, aiding the proteins’ extraction of the non-defatted Nannochloropsis; an 

alternative explanation could be that during the lipid extraction process, proteins denatured in such 

a way that they became permanently insoluble. In another recent study, Nannochloropsis proteins 

were recovered by solubilization at pH 12, and precipitation at pH 4, followed by removal of salts 

(by dialysis) and lipids (by hexane-extraction)208. Although the pH-shift process has been applied 

to microalgae of different taxonomic groups, with and without defatting, the listed studies share 

similarities in the protein-solubility curves, with high solubility above neutral pH and low solubility 

in the acidic range. 

4.1.2.2. Microalgae in pH-shift related processes 
While the studies listed above can be considered “classic” pH-shift processes, other studies report 

on processes reminiscent of the pH-shift process. In one such study, the total nitrogen of whole, 

defatted cells of Porphyridium cruentum, Nannochloropsis oculata and Phaeodactylum 

tricornutum were extracted at wide range of pH values for analytical purposes; as above, a high 

nitrogen solubility was noted above pH 6209. Schwenzfeier et al., 2011 reported on a sophisticated 

protein purification of Tetraselmis sp.: the process included bead-milling of the biomass, 

centrifugation of mildly alkalized algae homogenate at 40 000×g, dialysis of the supernatant, 

subjection of the dialysate to ion-chromatography, dialysis of the eluate, de-colorization of the 

eluate by lowering the pH, recovery of the precipitated proteins by centrifugation and subsequent 

washing and re-solubilization of the proteins141. The same authors went on to study various techno-

functional properties of the isolated Tetraselmis proteins in detail210-212. Meanwhile, Safi et al., 

2014, used a variation of the pH-shift method to extract proteins from whole microalgae 

(Arthrospira platensis, Chlorella vulgaris, Haematococcus pluvialis, Porphyridium cruentum and 

Nannochloropsis oculata) at pH 12 and 40 °C for 2 h213. The authors concluded that the warm 

alkaline extraction was more successful in recovering proteins than ultrasonication and manual 

grinding, but less successful than high-pressure homogenization of the microalgae in distilled 

water213. In summary, the pH-shift process and similar processes have been applied to various 

microalgae, for various purposes, though recovery of proteins has been the overall goal. 

4.1.2.3. Motivations for applying the pH-shift process to microalgae 
The greater context of the pH-shift process, of course, has a major impact on both the process 

conditions and the product. Generally, the motivation for developing a particular process is not 

explicitly stated. For example, Gerde et al., 2013, reports on treating defatted Nannochloropsis with 

a pH-shift process176; presumably, defatting was done to simulate a process in which a pure lipid 

fraction (oil) was first removed from the algae and the remaining biomass required upgrading. 

Meanwhile, other studies141, 210-212 aim for the recovery of highly purified proteins with good techno-
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functional properties, possibly as replacement for soy protein, with the intention of recovering 

biodiesel from the remaining biomass. In both examples, authors strive to utilize as much of the 

biomass as possible with different applications, an approach which aims to add value to the 

biomass18, 181. Although side-streams from algal processing may still find a use e.g. as animal feed, 

our motivation was to apply as few processing steps as possible, to minimize dependence on fresh 

water and to utilize as much of the algal material as possible directly as human food.  

 

4.2. pH-shift processing of wet Nannochloropsis in 
seawater  
4.2.1. Raw materials 

4.2.1.1. Microalgae used in Papers I & II 
For the overall project, microalgae were chosen which were i) known to produce the LC n-3 PUFAs 

EPA and/or DHA (cf. Table 1), ii) not known to produce toxins, iii) were commercially available 

and iv) well-studied. Three species of microalgae fitted the requirements: Isochrysis galbana104, 114, 

116, 118, 165, 167, 177, 214-218, Nannochloropsis oculata99, 104, 116, 118-120, 167, 177, 218-222 and Phaeodactylum 

tricornutum42, 103, 105-107, 109, 110, 112, 116, 119, 172, 177, 214, 218, 223-226. For Papers I & II, wet microalgae were 

desirable, since drying may have an effect on the proteins and thus also the pH-shift process227. At 

the onset of the study, Nannochloropsis was the only of the three aforementioned microalgae which 

were found commercially available as a wet paste. Thus, for Papers I & II, the same lot of wet 

Nannochloropsis oculata biomass at 33% dry weight of aquaculture grade was purchased in frozen 

form from PhytoBloom228, Portugal, and stored at -80 °C.  

4.2.1.2. Composition of Nannochloropsis used in Papers I & II 
On a dry weight basis, the Nannochloropsis used in Papers I & II consisted of 11% total fatty acids, 

19% protein, about 37% carbohydrates and 34% ash, see Figure 9 and Paper I. The fatty acid profile 

was dominated by palmitic acid (C16:0, accounting for 28% of all fatty acids), palmitoleic acid 

(C16:1 n-7; 31%) and EPA (C20:5 n-3; 18%). Other fatty acids present at 1-8% of the total fatty 

acids were myristic acid (C14:0), oleic acid (C18:0), linoleic acid (C18:2 n-6) and arachidonic acid 

(C20:4 n-6); this fatty acid profile falls within the range of values reported previously for 

Nannochloropsis112, 116, 119. Of the fatty acids, 66% were found in the neutral lipid fraction, 20% in 

the glycolipid fraction, and 14% in the phospholipid fraction, comparable to values previously 

reported for nitrogen-depleted Nannochloropsis229. The amino acid profile of the Nannochloropsis 

suggested that the microalga is a good source of protein since all the essential amino acids were 

present at a percentage higher than as recommended by the World Health Organization146; the 
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amino acid profile agreed reasonably well with a previously published profile148. Thus, the presence 

of significant amount of LC n-3 PUFA and protein in Nannochloropsis was confirmed. 

 

 

 

Figure 9 Composition of Nannochloropsis biomass mixed with seawater, used in the pH-shift experiments 
(Papers I & II). Of the 10% dry weight, roughly a third each was ash and carbohydrate, with 19% protein and 
11% FA, fatty acids. Palmitic acid, palmitoleic acid and EPA dominated the fatty acids, with smaller amounts 
of myristic, oleic, linoleic and arachidonic acid. Preliminary data indicates that the fatty acids partitioned into 
NL, neutral lipids (about 66%), GL, glycolipids (about 20%) and PL, phospholipids (about 14%). 

 

4.2.1.3. Seawater 
The water used in the pH-shift process was seawater (filtered and autoclaved, with a conductivity 

of 44 mS/cm) collected at the Sven Lovén Centre for Marine Sciences at Tjärnö, Sweden. The 

rational for using seawater was to reduce the amount of freshwater and energy used in the pH-shift 

processing of the marine microalgae Nannochloropsis: the dewatering step of harvesting a 

microalgae culture is energetically costly and it seemed counterproductive to remove water in one 

step of the process, just to add it back in the next step. Thus, seawater was added to the wet 

Nannochloropsis biomass to simulate a culture, which had been dewatered to 10% dry weight 

(instead of 33% as in the purchased Nannochloropsis biomass, or 100% as in dried biomass). 

However, autoclaving of the seawater was done for reasons of storage stability alone and was not 

intended to be part of the process. The seawater’s salt can be expected to have an impact on the 

protein solubility141, 209: anions, such as chloride, can interact with proteins’ positively charged side 

groups, thereby shifting the isoelectric point towards a lower pH-value230. 
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4.2.2. Processing steps considered in the developed Nannochlo-
ropsis pH-shift process  
4.2.2.1. Cell disruption 
Homogenization is the first step of the pH-shift process. Homogenization of Nannochloropsis cells 

is complicated by the cells’ small diameter (2-4 µm231), and the cell wall containing cellulose and 

algaenan232. See Table 2 for some previously investigated methods for breaking microalgal cell 

walls. The choice of disruption method depends in part on the desired outcome82, 180, 233. For pH-shift 

processing, the intracellular content needed to come into contact with the surrounding solution, 

demanding a method which broke open the majority of the cells. The development of heat was 

unwanted during the process, since heat can denature proteins and increase lipid oxidation; thus 

methods such as microwaving and autoclaving were excluded. Of the disruption methods tested in 

the presented work, the following gave no visible cell disruption, as assessed by phase-contrast 

microscopy: sonication with a probe (Branson sonifier 250, 50% duty cycles, up to 30 min), 

mechanical blending (Ultra Turrax, speed 6 for 5 min), Potter-Elverhjem homogenizer (piston 

worked by hand for 5 min), and grinding cells in liquid nitrogen in a mortar (7 min). The only 

method, which visibly disrupted the cells, was bead-beating. Beat-beating was developed for faster, 

more complete disruption by firstly decreasing the bead size and secondly increasing the tube’s 

headspace to roughly 50%*. Heat which evolved in the vigorous shaking was removed by 

periodically cooling the sample on ice. One disadvantage of bead-beating yet to be addressed is that 

suspension adheres to the glass beads, resulting in significant loss. As an alternative to bead-beating, 

high-pressure homogenization might allow cell disruption in a continuous setup, with less loss. 

However, in spite of some biomass loss, bead-beating was chosen since it was the only available 

in-house method which resulted in cell disruption.  

                                                      
* The design of the MP Bio FastPrep bead-beater results in frequent breakdowns and expensive repairs; the 
Retsch MM400 bead-beater has performed more reliably and allows larger sample volumes to be processed. 
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Table 2 Some cell disruption methods applied to microalgae at the lab-scale. See 234-236 for disruption 
specifically on Nannochloropsis. 

Method Reference(s) 
Sonication 6, 162, 168, 213, 234-239 
Microwave heating 236-238 
Pulsed electric field 235 
High voltage electric discharge 235 
High-pressure homogenization 213, 235 
Autoclaving 237, 240 
Hot water bath treatment 213, 236 
Bead-milling and bead-beating 6, 178, 237 
Osmotic shock 237 
Laser treatment 236 
Mechanical blending 236 
French press 201 
Spray-drying 240 
Enzymatic treatment 205, 206 
Chemical disruption e.g. with hydrochloric acid or 
sodium hydroxide 

213, 240 

Combination methods, e.g. warm water incubation 
followed by high-pressure homogenization 

241 

 

4.2.2.2. Protein solubilization- and precipitation-pH 
Nannochloropsis proteins were found to be highly soluble in seawater already at the native pH of 

the lysate, pH 7. More than 80% of the initial protein was detected in the supernatant after the first 

centrifugation at pH 6-10, with a gradual decline in solubility as the pH was raised towards pH 12, 

as is shown in Figure 10. Below pH 5, the protein solubility was < 15% and below pH 4 the 

solubility was < 8%. The obtained solubility curve’s shape and scale is comparable to that reported 

previously for Tetraselmis141, and Spirulina202, suggesting that considerable similarities exist 

between various microalgal proteins, even though they belong to distinct taxonomic groups231, 242, 

243. The solubility curves were used to develop a process (see section 4.2.3) with solubilization at 

pH 7. 

The pH at which protein solubilization is carried out may have an impact on the outcome of the pH-

shift process: at more extreme pH-values the proteins become more unfolded, influencing the 

refolding pattern and subsequently down-stream processing244. Thus, to investigate the impact of 

the solubilization pH, another process version was carried out with solubilization at pH 10 by 

adding sodium hydroxide. At pH 10, the proteins were still highly soluble (about 90%, as shown in 

Figure 10), however, the pellet from the first centrifugation was larger: about 20% of the initial 

volume, compared to 10% at pH 7. Since the larger pellet trapped more of the aqueous phase with 

the soluble proteins, less supernatant was recovered in the first separation, resulting in a lower yield 
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for both proteins (70% vs. 80%) and lipids (81% vs. 90%). The solubilization pH did not appear to 

affect the precipitation pH: For both versions, the protein solubility was < 8% at pH 4 and below 

(Figure 10). Thus, the same precipitation pH (3) was used to compare the solubilization at pH 7 to 

solubilization at pH 10. The pellet of the second centrifugation was slightly more compact for the 

pH 10 process, making it slightly easier to decant the watery supernatant and thereby remove more 

water (about 60% of the pre-centrifuge volume, instead of 50% as in the pH 7 process). The 

product’s overall composition with respect to protein, amino acid profile, total fatty acids and fatty 

acid profile was nearly the same for both processes, irrespective of the solubilization pH (see section 

4.3 for the macronutrient profile of the pH 7-process). In summary, although the second 

centrifugation of the pH 10-process allowed more water to be removed, there was a trade-off in the 

form of a yield reduction for both lipids and proteins in the first centrifugation. Thus, pH 7 was 

chosen as the solubilization pH to reduce unnecessary loss of yield and addition of sodium 

hydroxide. 

 

 

 

 

  

Figure 10 Protein solubility of 
Nannochloropsis in seawater in the 
solubilization step (blue circles) and 
precipitation step (yellow triangles for 
pH 7 solubilization, orange diamonds 
for pH 10 solubilization). Solubility is 
expressed as the protein concentration 
of supernatant (sup.) 1 divided by the 
protein concentration of the lysate for 
the solubilization step. The native pH 
of Nannochloropsis in seawater was 
pH 7 from where the pH was adjusted 
from 1-12 to determine the solubility.  
In the second part of the experiment, 
the proteins were solubilized at pH 7 
or 10 and then precipitated at pH 1-5. 
Solubility is expressed as protein 
concentration of sup. 2, divided by 
protein concentration of sup. 1. 
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4.2.2.3. Solubilization time 
Some of the previous studies, in which the pH-shift process was applied to microalgae, included 

extraction times of 1 – 5 h176, 203, 213, presumably to allow dissolved protein to reach equilibrium 

with the aqueous phase, maximizing the protein solubilization. Other studies either did not 

purposely consider time as a factor in the extraction process141, 204 or failed to specify it201, 202. In a 

pilot experiment (no replicates), Nannochloropsis was disrupted by bead beating and the pH 

adjusted to 11.4. With one-hour intervals, aliquots were withdrawn which were centrifuged at 

4 000×g and the protein concentration of the supernatant was quantified. Over an interval from 0 to 

5 h, no change in protein concentration was observed. Since added time appeared to have no effect 

on the outcome, the process as presented in Paper I does not purposely include a time factor. 

However, for the pH to remain stable, it was necessary to wait a few (5-10) minutes after adding 

acid or alkali (alkali in particular) since the algae biomass buffered strongly around pH 9. It is 

possible that we did not observe a time effect protein solubilization of Nannochloropsis biomass in 

contrast to a previous report176, because the study used defatted and dried Nannochloropsis176; 

presumably, the proteins denatured irreversibly under the influence of organic solvents and drying. 

In summary, the developed process does not contain extended extraction times, though the pH 

adjustments can be expected to take a few minutes due to buffering. 

4.2.2.4. Centrifugal force during separation 
Centrifugation is applied during the pH-shift process to first separate non-soluble matter from 

soluble proteins and then again to separate insoluble proteins from the surrounding water. The speed 

with which the insoluble material sinks depends on its density and mass, the soluble phase’s density 

and its frictional coefficient and the centrifugal force applied to the system245. In practical terms, 

the factors which are easy to adjust are the magnitude of the centrifugal force and the time it is 

applied. Envisioning that the pH-shift process might be applied in large scale, we aimed to keep 

centrifugation time below 30 min and centrifugal force below 10 000×g. In pilot experiments, the 

effect of centrifugal force from 800 to 18 600×g for 10 min was investigated during the first 

separation step of the pH-shift process. Disrupted Nannochloropsis separated into two distinct 

layers at 4 000×g, with the proteins remaining in suspension at alkaline pH (pH 7-12), forming a 

dark green, opaque supernatant. Since 4 000×g for 10 min i) was sufficient to create two phases in 

both separation steps of the pH-shift process, ii) is achievable in an industrial decanter246 and iii) is 

the upper limit of “low-speed” centrifugation as defined by the original patent9, it was the condition 

chosen for the pH-shift process as presented in section 4.2.3 and Papers I & II.  
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4.2.3. A pH-shift process suitable for Nannochloropsis  
Following documentation of maximum and minimum solubility points for wet Nannochloropsis 

biomass in seawater (Figure 10), the final version of the pH-shift process on Nannochloropsis was 

developed (Figure 11): Nannochloropsis microalgae, 10% dry weight in seawater (20% on wet 

weight basis), were disrupted by bead beating. The pH-adjustments were carried out on ice. At the 

native pH (7) of the resulting lysate, the proteins showed good (> 80%) solubility, see Figure 10. 

Centrifugation was carried out at 4 000×g, 4 °C, and 10 min, resulting in a small pellet, about 10% 

of the initial volume. The supernatant, containing the majority of the solubilized proteins was 

recovered by pouring it off. Next, the supernatant’s proteins were precipitated by adding 

hydrochloric acid. Precipitation at pH 3 was chosen since it was well into the low solubility range, 

and since it represented a compromise between volume of acid added and the pellet volume: at 

pH 3, roughly 50% of the water could be removed in the supernatant by decantation after 

centrifugation at 4 000×g, 4 °C, for 10 min. Further addition of acid resulted in a more compact 

pellet, but below pH 3, large additions of 1.0 M hydrochloric acid resulted in only small changes in 

pellet volume. In summary, the key process operations for the developed pH-shift process 

developed on Nannochloropsis in seawater were: solubilization of the proteins at pH 7, removal of 

insoluble material by centrifugation at 4 000×g, and recovery of the proteins by precipitation at 

pH 3 and centrifugation at 4 000×g.  
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Figure 11 The pH-shift process developed for Nannochloropsis in seawater. 
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4.3. Macronutrient partitioning during the pH-shift 
process 
The pH-shift process effected a slight concentration of lipids and protein to 12% and 23%, 

respectively, on a dry weight basis. In total, the process recovered 86% lipids and 85% of the 

protein. Thus, the developed pH-shift process could represent a method for converting 

Nannochloropsis biomass to a functional food containing both high-value LC n-3 PUFAs and 

proteins with fewer processing steps than conventional processing of fractions after solvents 

extraction. An overview of the lysate composition and the pH-shift process’s product is given in 

Figure 12. However, the initial hypothesis, namely that the pH-shift process could be used to 

recover separate lipid and protein fractions, was not confirmed. Instead of forming a distinct floating 

lipid layer, the lipids partitioned into the same fractions as the proteins. Details of the distribution 

of individual macronutrients are given in the following sections.  

Figure 12 Basic composition of the lysate and product of the pH-shift process (with solubilization at pH 7). 

 

4.3.1. Lipids in the pH-shift process 
Lipids did not form a separate oil layer in the first centrifugation, but were instead found to be 

present in the same fractions as the proteins. Although the fact that the lipids and proteins were 

found in the same fraction does not necessarily imply chemical interaction between the two, it does 

remain plausible. Preliminary data on lipid class composition (Figure 9) indicates that one-third of 

the fatty acids were present in glycolipids and phospholipids, molecules which are inherently 

amphiphilic. Amphiphilic lipids may stabilize emulsions by surrounding droplets of neutral lipids. 

This system further contained protein. Cytoskeletal protein has been proposed to interact with 

membrane phospholipids, thus partially remaining in solution with the proteins in the first 

centrifugation of the pH-shift process247. Beyond cytoskeletal proteins, this system contained 

chloroplast proteins. Proteins of the light-harvesting complexes are embedded in the chloroplast 
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membrane248 and thus, in their natural state, associate with phospholipids and glycolipids present 

in the chloroplast membrane90. In the presence of both amphiphilic proteins (light-harvesting, 

cytoskeletal and other) and amphiphilic lipids (glycolipids and phospholipids), neutral lipids may 

be kept in solution, which could explain why no separate lipid layer was obtained in the first 

centrifugation step of the pH-shift process, and likewise why the lipids were recovered with the 

precipitated protein in the second separation. 

4.3.1.1. Total fatty acids: partitioning and yield 
The pH-shift process increased the concentration of total fatty acids in the product marginally. The 

material entering the process contained 11% (range = 0.6%, n = 3) fatty acids by dry weight, while 

the pH-shift process product contained 12% (range = 1.5%, n = 2) fatty acids. In the first separation, 

no clear fractionation of the fatty acids was observed: both the pellet and the supernatant contained 

10-11% fatty acids by dry weight. However, the pellet volume was small in comparison to the 

supernatant, thus 90% of the total fatty acids remained in the supernatant and continued on to the 

next processing step. In the second separation, little lipid remained in the supernatant, with the 

majority of the total fatty acids being present in the pellet, i.e. the product. Over the entire process 

as a whole, 85% of the ingoing fatty acids were recovered in the pellet.  

4.3.1.2. Fatty acid profile 
The pH-shift process did not observably change the fatty acid profile of the raw material. In the raw 

material as well as the product, the major fatty acids C16:1 n-7, C16:0 and C20:5 n-3 represented 

31%, 28% and 18% of the total fatty acids; neither was any change noted in the distribution of 

minor fatty acids. However, on a dry matter basis, the amount of most fatty acids increased slightly, 

with the change for C20:5 n-3 being 1.9% to 2.3%. These results indicate that i) the pH-shift process 

did not selectively fractionate the fatty acids and ii) that the product is a source of LC n-3 PUFA 

comparable to the content found in cod fillet249. To achieve the daily intake of 250 mg of LC n-3 

PUFAs, as recommended by EFSA136, 84 g of wet product (Figure 12) would be needed.  

 

4.3.2. Proteins in the pH-shift process 

4.3.2.1. Protein solubility 
The material entering the pH-shift process was 19% (range 0.7%, n = 4) protein on a dry weight 

basis. In the first separation step, both the pellet and the supernatant were about 17% protein (range 

= 2.0% and 1.9%, respectively, n = 2), indicating that proteins were evenly distributed through the 

pellet and supernatant. After precipitation at pH 3 and the second separation step, the supernatant 

was only about 1% protein (range = 0.1%, n = 2), while the pellet was 23% protein (range = 1.0%, 

n = 2), indicating that the process concentrated protein relative to the initial lysate.  
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4.3.2.2. Protein yield 
The protein yield in the first separation of the pH-shift process, in which the supernatant is 

recovered and further processed, was 80% of the initial protein. Possibly, the yield could be 

increased by diluting the raw material further, e.g. by running the process at 5% dry weight instead 

of 10% dry weight: less protein might then be entrapped in a more diluted pellet, thereby reducing 

the loss183. Alternatively, the pellet could be washed and re-centrifuged to recover more of the 

proteins204, 207. However, in the processes as described in section 4.2.3, the remaining 20% of protein 

were not detectable, instead about 15% of the protein remained unaccounted for. Given that most 

of the fatty acids were accounted for (see section 4.3.1), the unaccounted protein suggests that the 

discrepancy was due to the protein quantification method (see section 6.2.1, below) rather than 

sampling errors and general losses during the process. This hypothesis is further supported by a 

measured increase in overall protein yield for the pH-shift process compared to the yield over step 1: 

the overall yield increased from 80% to 86%. In spite of an incomplete mass balance, the overall 

recovery of protein in the pH-shift process was good. 

4.3.2.3. Amino acid and polypeptide profile 
The amino acid profile (% of individual amino acids per total amino acids) of the raw material and 

the pH-shift processed Nannochloropsis was found to be nearly identical. The amino acid profile 

also agreed with Nannochloropsis profiles previously published120, 148. When comparing the initial 

material to the pH-shift process product the only difference noted was that the relative amount of 

proline dropped from 10% to 8.5%. It is unclear why proline would be selectively removed by the 

pH-shift process. However, since proline is not an essential amino acid, its removal by the pH-shift 

process is not crucial from a nutritional point of view. Although the digestibility needs to be 

assessed to determine the protein quality, the relative amount of essential amino acids per total 

amino acids in Nannochloropsis exceeded the values recommended by the WHO146, thus suggesting 

that Nannochloropsis is a source of balanced protein.  

The polypeptide profile was not changed significantly by the pH-shift process, as assessed by 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) see Figure 13. Major 

bands present in the initial lysate were also present in later fractions of the pH-shift process, such 

as supernatant 1 (S1) and the product (P2). When comparing the lysate and S1 to the product and 

supernatant 2 (S2) two differences emerged: i) P2 and S2 gave bands which were slightly more 

diffuse than the initial material and ii) P2 and S2 gave darker bands at shorter polypeptide length. 

In combination, these two observations suggest that mild proteolysis took place during pH-shift 

process, though this was not detectable when the protein degree of hydrolysis was addressed 

specifically (see Figure 17). Nonetheless, there was no major change in band pattern, confirming 

that the pH-shift process did not selectively remove distinct protein fractions. 
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4.3.3. Other nutrients and aspects of the pH-shift process 

4.3.3.1. Carbohydrates 
The initial Nannochloropsis biomass was determined to be about 37% (range = 3.3%, n = 2) total 

carbohydrates, on a dry weight basis. Although the method for carbohydrate quantification250 

showed considerable variation, the product was found to be about 42% carbohydrates (range = 

4.5%, n = 2). These results suggest that the pH-shift process increased the concentration of total 

carbohydrates. The types of carbohydrates were not analyzed, but previous research determined 

that cells walls of Nannochloropsis contain algenan and cellulose232, which is not degradable by 

human digestive enzymes251. Thus, Nannochloropsis could provide dietary fibers to a functional 

food. 

4.3.3.2. Ash 
The initial Nannochloropsis biomass was determined to be about 36% (range = 4.8%, n = 3) ash, 

on a dry weight basis. The product of the pH-shift process was 25% (range = 2.4%, n = 3) ash, 

indicating that inorganic matter was removed in the pH-shift process.  

4.3.3.3. Color 
Most fractions of the pH-shift process were intensely green and opaque. The green color of the 

product diminished over time, turning beige. The color change is thought to be caused by Mg2+ 

leaving the porphyrin ring of chlorophyll, a reaction which takes place at low pH and is known as 

pheophytinization252, 253. If the product is left at pH 3, the green color slowly degrades, even at 

frozen storage. Although further study is needed to confirm that the green color can be stabilized 

by neutralizing the product, it may be possible to choose if the color of the product should be beige, 

by keeping the product at low pH, or green, by raising the pH of the product. 
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Figure 13 The SDS-PAGE polypeptide profile of 
Nannochloropsis proteins at the beginning of the pH-
shift process (Lys), the supernatant of the first 
centrifugation (S1) and both pellet and supernatant 
after the second centrifugation (P2 and S2, 
respectively). Fragment size is indicated in kDa to the 
right of the protein ladder. Note that different 
amounts of protein were loaded in the various wells. 
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Judging by previous work, green color is not always desired in algae protein isolate34, 141, 

presumably because green color limits the potential application of the protein isolate. Green color 

is a disadvantage, if the algae protein isolate is intended for a wide range of applications analogous 

to soy protein isolate. Soy protein is wide-spread in processed foods, including products such as 

cereals, meat products, dairy products, dessert cakes and baked goods254, none of which are usually 

associated with a green color. However, other studies have added whole microalgae to food without 

attempting to remove the green color36, 37, 75, 76, 78. In these cases, the microalgae are added to enhance 

the nutritive value of the product. Indeed, some studies have added algae specifically to give the 

product color77, 79. Thus, the pH-shift process product’s color may be chosen to be either green or 

beige, depending on the application.  
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5. In vitro digestion of Nannochloropsis  
While the lipid and protein content of Nannochloropsis holds potential as human nutrition, it is not 

enough for nutrients to be present: the nutrients in any food also need to be accessible for uptake. 

Accessibility is defined as “the fraction of the component that is released from the food matrix into 

the juices of the gastrointestinal tract”255. Accessibility is distinct from bioaccessibility, a measure 

of how much of a component is absorbed, measured for example in cell-models or as concentration 

in the bloodstream. Paper II investigates the accessibility of lipids and proteins of Nannochloropsis 

both before and after pH-shift processing.  

 

5.1. General introduction to the digestive tract and the 
process of digestion 
The function of the gastrointestinal tract is to digest macromolecules in food into small molecules 

which can be absorbed84. In simplified terms, the gastrointestinal tract is a tube running through the 

body from mouth to anus84. An overview is given in Figure 14. Although the tube is within the 

body, the tube’s content is technically part of the outside environment84. The major compartments 

of the gastrointestinal tract are the mouth, stomach, small intestine and large intestine84. Secretory 

organs, namely the salivary glands, pancreas, gallbladder and liver excrete solutions including 

enzymes and bile acid, to facilitate the degradation and absorption of nutrients84.  

Food tends to be a complex mixture of lipids, proteins, digestible carbohydrates and indigestible 

fibers255. Dietary fibers have been proposed to affect lipid digestion, e.g. by increasing the viscosity, 

adsorbing lipids and bile acid, and interacting with the lipases255. Insoluble dietary fibers, such as 

cellulose, are present in many microalgae30, 44, but are resistant to human digestive enzymes251. 

Since Nannochloropsis itself is surrounded by a cellulosic cell wall232, it is unlikely that any of the 

intracellular lipids or proteins are available for digestion or absorption in the human digestive tract, 

unless the cell walls are disrupted, warranting a study of Nannochloropsis in an in vitro digestion 

model. 
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Figure 14 The simplified digestive tract: major compartments and digestion of lipids and proteins; note that 
structures are not to scale. Left panel: the major compartments and organs of the digestive tract. Center 
panel: Lipid digestion, which in adults starts in the stomach when triacylglycerol (TAG), present in lipid 
droplets, is converted by gastric lipase to diacylglycerol (DAG) and free fatty acids (FFA); in the small 
intestine, hydrolysis of TAG and DAG to monoacylglycerol (MAG) and FFAs is catalyzed e.g. by pancreatic 
lipase, anchored to the surface of lipid droplets by co-lipase; a pool of MAGs and FFAs diffuses in and out 
of mixed micelles (stabilized by bile acids from the liver) before being absorbed by enterocytes. Right panel: 
Protein digestion, which starts in the stomach by the action of pepsin, which hydrolyzes the long chains of 
proteins into polypeptides at acidic pH; hydrolysis continues in the small intestine, where polypeptides are 
cleaved into tripeptides, dipeptides and amino acids, which in turn are absorbed by enterocytes. 
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5.1.1. General lipid digestion 
Lipid digestion takes place by the action of gastric lipase in the stomach and various lipases secreted 

by the pancreas in the small intestine. The main dietary lipid being triacylglycerols84, 256, it is the 

most studied lipid molecule in terms of its digestion. When two of a triacylglycerol’s three fatty 

acids have been hydrolyzed into one monoacylglycerol and two free fatty acids, these remaining 

molecules can be absorbed257, 258. In other words, triacylglycerols are usually hydrolyzed to a total 

of 67%. Of this 67% hydrolysis, about 10-25% takes place in the stomach, with the remaining 

hydrolysis occurring in the small intestine259, 260. Human pancreatic lipase is the main hydrolyzer of 

triacylglycerols and diacyglycerols in the small intestine259, although gastric lipase also makes a 

continued contribution261. Pancreatic lipase is a water-soluble enzyme, therefore it can only act on 

the surface of lipid globules84. The larger lipid globules are emulsified by mechanical disruption 

and they are stabilized by bile acids and other amphiphilic molecules84, 255. However, emulsified 

lipid droplets are inaccessible to pancreatic lipase, therefore amphiphilic co-lipase is required to 

anchor pancreatic lipase to the lipid droplet84, 255, 259, 261. As fatty acids are hydrolyzed from their 

parent molecule, they tend to associate with other hydrophobic molecules (including 

monoglycerides) into micelles, from where they diffuse into intestinal epithelial cells (a.k.a. 

enterocytes)84. Other enzymes, notably pancreatic-related lipase protein 2 and carboxyl ester 

hydrolase, are thought to have broad substrate specificity, removing one fatty acid from 

galactosyldiacylglycerols and phospholipids89, 259, 262. Acting together, the various lipases remove 

fatty acids from dietary lipids, allowing the fatty acids and monoacylglycerols to be absorbed by 

enterocytes84. 

 

5.1.2. General protein digestion 
Physiological protein digestion is effected by pepsin in the stomach as well as a suite of enzymes 

in the small intestine84. An empty stomach is a highly acidic environment, at pH 2 or even lower263. 

As food from the mouth enters the stomach, the pH of the stomach rises, which causes cells lining 

the stomach to secrete hydrochloric acid and pepsin in its inactive form84. At low pH, pepsin is 

activated and hydrolyzes peptide bonds of proteins, forming shorter polypeptides and thus 

providing about 20% of the protein digestion84. In the small intestine, the partially digested protein 

is joined by excretions of the pancreas: bicarbonate which raises the pH and the proteolytic enzymes 

trypsin and chymotrypsin84, 264. These enzymes further hydrolyze the protein into peptides, and the 

peptides in turn are hydrolyzed by exopeptidases, forming amino acids and short oligopeptides84. 

Amino acids, dipeptides and tripeptides are absorbed into enterocytes by active transport84.  
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5.1.3. Microalgae digested in various models 
Microalgae have been subjected to various digestions and digestion models, in order to study the 

availability of a range of nutrients in a number of different models. Static models are popular since 

they are reproducible, ethically uncomplicated and cheaper than the alternatives such as dynamic 

models, animal studies, and clinical trials265, 266. Static in vitro digestion models consist of a test 

tube containing the studied material, to which digestive enzymes and fluids are added, simulating 

various parts of the gastrointestinal tract. However, there is a wide variety of modeled digestive 

compartments, the amounts and more importantly the activities of the enzymes added, volumes and 

composition of the digestive fluids, residence time, etc. Since a plethora of in vitro digestion models 

exist, comparison of the studies’ results is difficult. 

5.1.3.1. Previously published studies on microalgal lipids 
Relatively few studies have investigated the digestion of lipids and lipid-soluble compounds from 

microalgae specifically. In one in vitro study, Nannochloropsis oculata or carotenoid- and 

tocopherol-extracts thereof were subjected to stomach and small intestine simulations of 30 min 

each267. The authors concluded that although the digestion model was not physiologically accurate, 

results suggested that extracts had higher accessibility, possibly a result of matrix disruption during 

extraction267. The authors raise an important point: although microalgal lipids are often touted as 

beneficial for human health, some proposed applications75, 77, 78 of microalgae (e.g. delivery of 

carotenoids or LC n-3 PUFAs) would benefit from demonstrating that the lipids are accessible for 

uptake: nutrients might otherwise remain inaccessible within the capsule of the cell wall. 

Indications that the cell wall may hinder the uptake of both intracellular and other dietary nutrients 

comes from animal studies in which addition of Nannochloropsis to the feed resulted in lower 

apparent lipid digestibility150 and intestinal damage268, possibly a result of the microalgae acting as 

dietary fiber. While no human studies have been conducted on whole Nannochloropsis, one clinical 

study assessed the bioaccessibility of LC n-3 PUFAs: Nannochloropsis oil, rich in glycolipids, was 

compared to krill oil, containing predominantly phospholipids269; over ten hours, the appearance of 

LC n-3 PUFAs in blood plasma was monitored, with both sources resulting in a significant increase 

of EPA and demonstrating that the polar lipid-rich Nannochloropsis oil can be an effective source 

of EPA269. In summary, although fatty acids from microalgal oils have good bioavailability, there 

are indications that the oil may remain inaccessible inside the cell walls of some microalgae, such 

as Nannochloropsis, warranting closer investigation. 

5.1.3.2. Previously published studies on microalgal proteins 
Microalgae have long been proposed as a source of protein30, 270. As stated above, both the amino 

acid profile as well as the digestibility determine the protein quality138, 146. Since studies of protein 

balance (with feces collection) require expensive animal or clinical studies, a common starting point 
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is to evaluate the protein accessibility by in vitro digestion studies. However, comparison of results 

from in vitro studies is often difficult, since nearly every study uses its own method and often fails 

to note the activity of the proteolytic enzymes used63, 149, 152, 202, 271, 272. Nonetheless, in vitro studies 

suggest that drying Spirulina reduces the amount of protein available for digestion202. Furthermore, 

extracting the lipids with ethanol from dry, disrupted Nannochloropsis granulata was found to 

increase the amount of digestible protein compared to the disrupted, non-extracted microalgae152. 

There is reason to believe that the protein of whole microalgae remain encapsulated by the cell 

walls of some species30, 273: when Nannochloropsis oceanica, Isochrysis galbana and 

Phaeodactylum tricornutum replaced 24% of mink feed, the crude protein digestibility dropped 

from 90% to 70% for Nannochloropsis, but only marginally for Phaeodactylum150. Thus previous 

studies show that many microalgae species have amino acid profiles indicative of high nutritional 

value, though the accessibility of the protein may be dependent on microalgal species and the degree 

of cell disruption. 

 

5.2. The in vitro digestion model of Paper II 
In Paper II, the accessibility of pH-shift processed Nannochloropsis lipids and proteins was studied 

in a static in vitro digestion model. The digestion model was based on that of the Infogest consensus 

model, but with some modifications. The Infogest digestion model is a recent (2014) attempt by an 

international consortium of scientists to standardize static in vitro digestion models and thereby 

permit results from different studies to be compared264. The standardized method allows for some 

variation: e.g. if only lipids or proteins are being digested, there is no need for an oral step. However, 

in Paper II, an oral amylase digestion was included since the algal cell wall contains carbohydrates, 

and the possibility to digest these could affect the subsequent digestion of lipids and proteins of 

Nannochloropsis. Also for reasons of physiological relevance, the standard method was altered to 

include gastric lipase, purchased from Germe, France. Although the standard Infogest method 

recognizes the importance of gastric lipase, the final protocol does not contain gastric lipase since 

it was not commercially available at the time of print264. With gastric lipase available, Paper II 

presents a gastric step as a hybrid between two established protocols264, 274, with details of the 

digestion given in Figure 15. Although lipolysis has not been compared specifically with and 

without gastric lipase, there is preliminary data suggesting that when gastric lipase is used, more 

acid needs to be added in the simulated intestinal step in order to keep the pH at 7. According to 

experts on gastric lipase, the enzyme can remain active also in the small intestine261. Thus, gastric 

lipase was included in the digestion model, to make the method and results more physiologically 

accurate. 
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Figure 15 The in vitro digestion model used to assess the accessibility of fatty acids and proteins.  The 
simulation of the mouth and small intestine are according to the Infogest protocol, while the gastric step is a 
hybrid between Capolino et al.274 (phase 1) and the Infogest protocol264 (phase 2). 

 

5.3. Accessibility of Nannochloropsis macronutrients 
before and after pH-shift processing 
5.3.1. Accessibility of Nannochloropsis fatty acids 
The accessibility of Nannochloropsis lipids was assessed by measuring free fatty acids after in vitro 

digestion of various products of the pH-shift process. Whole algae (before pH-shift processing) 

were compared to i) lysate (after cell disruption), ii) the products of the pH-shift process, and iii) 

the product after a heat-treatment at 72 °C for 15 s, simulating a down-stream pasteurization of the 

product. The fatty acids present in intact Nannochloropsis were not accessible: less fatty acids were 

detected in digested whole algae than in the digested negative control sample (only seawater), see 

Figure 16, suggesting that Nannochloropsis acted as dietary fiber, adsorbing other nutrients in the 

digestion mix. Breaking the cells open by bead-beating greatly increased the accessibility: 36% 

(standard deviation = 2.5%, n = 3) of total fatty acids were hydrolyzed in the digestion of broken 

cells. However, up to 46% (± 2.8%) of the fatty acids were hydrolyzed in the digested product of 

the pH-shift process, suggesting that further processing of the disrupted cells improves the fatty 

acid accessibility. The heat-treatment did not cause a statistically significant change in the amount 

of free fatty acids. The lipid hydrolysis of the pH-shift process product can be interpreted as being 

good, considering that at most, 67% hydrolysis (representing cleavage of two out of three fatty acids 

from a molecule of triacylglycerol) was expected.  
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The fatty acid profiles pre- and post-digestion were compared. Chemical modification of lipids 

during digestion was observed previously255, as well as in Paper II: while C9:0 was not detected in 

the raw material, it was present in the digested samples. The digestive enzymes and bile acid were 

checked for the presence of C9:0, but none was found, thus, C9:0 must have been formed during 

digestion. The presence of C9:0 suggests that fatty acids were not only hydrolyzed from their parent 

molecule but they were also cleaved by oxidation. Conversely, less EPA was present in the free 

fatty acid fraction of the digested samples than the raw material, though this is not necessarily an 

indication that EPA was being oxidized: this could also be an indication that lipolysis of EPA was 

low. Low lipolysis might occur if the bond of the esterified EPA is inaccessible to the lipase, which 

might occur if EPA is predominantly present in the sn-2 position of triacylglycerols, phosopholipids 

and glycolipids. Gastric and pancreatic lipase are known to preferentially attack the sn-1 and sn-3 

positions of triacylglycerols, leaving a monoacylglycerol with a fatty acid attached at the sn-2 

position259. However, in vivo the monoacylglycerols are absorbed into micelles and from there by 

enterocytes84; in other words, the presence of free fatty acids in the digested samples is an 

incomplete measure of accessibility, since it misses the monoacylglycerols. An alternative method 

for determining accessibility could be to recover the micellar fraction of the aqueous phase by ultra-

centrifugation267. Conversely, the micellar fraction may contain molecules which are not absorbed 

by enterocytes: for example, galactosylmonoacylglycerol is thought not to be absorbed by 

enterocytes, though it may be present in mixed micelles89, 275. Thus, while C9:0 is formed during 

the digestion, the fate of other fatty acids such as EPA requires further investigation. 

 

 Figure 16 Lipolysis of fatty acids of 
Nannochloropsis in various stages of 
the pH-shift process: Nannochlo-
ropsis before pH-shift processing 
(whole algae), after cell disruption 
(lysate), after the entire process 
(product) and the product after heat-
treatment. Error bars show standard 
deviation, with n = 3 for all treatment 
types, except the product, where n = 6. 
In all samples, 2-3% of the total fatty 
acids were found to be non-esterified 
before digestion (non-digested). For 
all of the digested values, the negative 
control (digested seawater) has been 
subtracted, leading to a negative value 
of digested whole algae. 
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5.3.2. Accessibility of Nannochloropsis proteins 
The accessibility of Nannochloropsis protein was assessed by measuring degree of hydrolysis, i.e. 

the amount of broken peptide bonds, after in vitro digestion of various products of the pH-shift 

process. Casein, a protein known to have good digestibility, was compared to i) whole algae (before 

pH-shift processing), ii) lysate (after cell disruption), iii) the product of the pH-shift process, and 

iv) the product after a heat-treatment at 72 °C for 15 s. Proteins in intact Nannochloropsis were not 

accessible to the digestion enzymes used in the in vitro model, see Figure 17. Only 3.3% (standard 

deviation = 5.2%, n = 3) of peptide bonds were hydrolyzed in the whole Nannochloropsis cells 

subjected to the mammalian enzymes in the in vitro digestion. Cell disruption increased the 

hydrolysis to 36% (± 21%) of the peptide bonds, with further processing allowing up to 49% (± 

9.4%) hydrolysis, comparable to the casein control (40% ± 12%). Given the large variance in the 

determination of the degree of protein hydrolysis, the only statistically significant difference is 

between whole Nannochloropsis and pH-shift processed Nannochloropsis, demonstrating the 

necessity to break open the cells for the intracellular content to become accessible to digestive 

enzymes and for uptake. These results are in line with a previous study271 on Scenedesmus spp., 

another microalgae with a recalcitrant cell wall. The effect of different cell disruption methods on 

in vitro protein accessibility was assessed, and the study concluded that the more thoroughly the 

microalgae were disintegrated by bead-milling, the higher the protein digestibility was271. 
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 Figure 17 Protein degree of hydro-
lysis of Nannochloropsis in various 
stages of the pH-shift process: 
Nannochloropsis before pH-shift 
processing (whole algae), after cell 
disruption (lysate), after the entire 
process (product) and the product after 
heat-treatment. Casein, a protein with 
good digestibility was included as a 
positive control. Error bars show 
standard deviation, with n = 3 for all 
treatment types, except the product, 
where n = 6. Before digestion, 5-9% 
of the microalgal amino acids were 
not associated with a peptide bond. All 
digested values are presented with the 
negative control (digested seawater) 
subtracted, leading to a negative value 
for digested whole algae. 
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6. Analytical considerations 
The main substances of interest in Papers I & II, were lipids and proteins. Sections 6.1 and 6.2 detail 

the rationale for choosing certain methods of lipid and protein analysis over other alternatives, and 

various experiences gained from working with the detailed methods, including advantages and 

disadvantages.  

 

6.1. Lipid quantification and separation methods 
Early work (Paper III) was used to develop a method for quantification of individual and total fatty 

acids, which was then used throughout Papers I, II & IV and is detailed in section 6.1.1. However, 

the developed direct transesterification method does not distinguish between esterified and free 

fatty acids, therefore a different method was needed for quantification of fatty acids released during 

digestion in paper II and is detailed in section 6.1.2.  

 

6.1.1. Total fatty acids and fatty acid profile 
6.1.1.1. Previously published methods  
There is no shortage of methods for analyzing lipids in microalgae276: NMR277, staining with 

lipophilic dyes43, 278, 279, IR-spectroscopy280, 281, Raman spectroscopy282, non-linear microscopy283, 

284 are techniques which have been reported, but require either sophisticated instruments or only 

give information about the total lipid content and insufficient information about the fatty acid 

profile. Extraction of lipids by various methods using chloroform-methanol as solvents are widely 

used for total lipid determination 6, 95, 99, 101, 105, 111, 117, 118, 120, 162-170, 215, 234, 238, 285-287, but these methods 

suffer two major draw-backs: i) gravimetric determination is imprecise when sample sizes are small 

and other compounds are co-extracted with the lipids173, 288, 289 and ii) the fatty acid profile requires 

a separate analysis290, 291.  

To determine the fatty acid profile of a lipid extract, transesterification is applied, which transfers 

fatty acids from their parent ester to methanol80, 292. The resulting fatty acid methyl esters (FAMEs) 

are relatively volatile compounds and thus separable by gas chromatography293-296. By omitting the 

extraction step and applying the transesterification directly to dry biomass, time can be saved219, 297. 

The resulting data can be used to identify and quantify individual fatty acids and by summing the 

individual fatty acids, the total fatty acids can be quantified.  
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6.1.1.2. Development of a direct transesterification method for microalgal 
fatty acids 
Paper III compares several methods for fatty acid extraction and transesterification in three species 

of microalgae. The results provide indications that several common methods used in 

transesterification, yield essentially the same results. Furthermore, the results demonstrate that for 

species with recalcitrant cell walls such as Nannochloropsis oculata, the Bligh & Dyer method298 

extracts less fatty acids than the direct transesterification methods. The direct transesterification 

method developed in-house was based on that of Lepage & Roy (1986)299 and used hydrochloric 

acid as a transmethylation catalyst in methanol. Transmethylation took place at 70 °C for 120 min. 

Compared to Christie’s (1989) sulfuric acid method294, the hydrochloric acid method requires less 

reaction time. Compared to boron trifluoride297, hydrochloric acid is less toxic and cheaper. 

Drawbacks of the hydrochloric acid method are firstly that it is sensitive towards water (though 

acid catalysts are less sensitive than basic catalysts), requiring drying prior to analysis and secondly 

that no information about lipid classes can be gained unless these are extracted and separated before 

transmethylation. In spite of the drawbacks, the in-house method with hydrochloric acid was an 

improvement over extraction and gravimetric determination, which takes more time, requires more 

biomass, uses greater volumes of toxic solvents, and is imprecise since proteins are co-extracted 

with the lipids289. 

 

6.1.2. Free fatty acid quantification 
For Paper II, lipid digestibility of crude and processed microalgae was determined as fatty acids 

liberated from their parent molecule, thus a method for quantifying the free fatty acids was needed.

   

6.1.2.1. Spectrophotometric method 
Initially, a spectrophotometric method (Lowry & Tinsely, 1976, with minor modifications by 

Bernádez et al., 2005)300, 301, was considered for the quantification of free fatty acids. The method 

requires the sample to be dissolved in chloroform, so microalgae and in vitro digested microalgae 

were extracted with chloroform-methanol, resulting in a distinctly green chloroform extract. 

Clearly, pigments were being extracted together with the lipids. Nannochloropsis gaditana, closely 

related to Nannochloropsis oculata, is known to contain chlorophyll a,  violaxanthin and 

vaucheriaxanthin302. The spectrophotometric method by Lowry & Tinsely (1976) measures 

absorbance at 710 nm300, the tail end of the chlorophyll a spectrum302. Options for how to proceed 

with the method were: i) to confirm that chlorophyll does not interfere with the measurements, e.g. 

by spiking oleic acid standard with varying amounts of chlorophyll a, which is expensive to buy in 
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its pure form and labor-intense to extract303, or ii) to remove chlorophyll from the chloroform 

extracts, by a method which does not influence the amount of fatty acids present. Both options 

represented significant investments of time for method development, therefore free fatty acids were 

separated by solid phase extraction (SPE), as follows below. 

6.1.2.2. Separation of lipid classes by solid phase extraction (SPE) 
For recovering and quantifying free fatty acids in Paper II, the SPE method of Balasubramanian et 

al. (2013) was selected. The method separates lipid classes into i) neutral lipids, ii) free fatty acids 

and iii) polar lipids304. The method is based on that of Kaluzny et al. (1985)305 and uses 

commercially available aminopropyl SPE cartridges, in which the solid phase is sandwiched 

between two frits placed inside a plastic barrel. Unknown to us at the time of the study, the plastic 

barrels leached palmitic acid and stearic acid, which interfered with the fatty acid analysis. Only 

after a tenacious literature search did I realize that the contaminants had been reported previously306, 

307. The discovery of the contamination lead to the omission of palmitic and stearic acid from the 

free fatty acid profiles presented in Paper II while the contribution of contaminants to the total free 

fatty acids was < 3% and thus considered negligible and therefore included in Paper II. 

Paper IV reports the presence of C16:0 and C18:0 contaminations from SPE-columns when eluting 

with 2% acetic acid in diethyl ether. Although the presence of said contaminants has been reported 

before306, 307, the information is not searchable by databases such as Scopus and Web of Science. 

By dedicating an entire publication to the contaminations, hopefully a wider circle of readers will 

become aware of the potential pitfall of SPE-columns. In searching for the source of the 

contaminations, it was discovered that re-using (clean) columns somewhat reduced the amount of 

contaminations leached from the column but by no means removed them. Thus, it remains 

important to determine which fatty acids are present in the sample prior to SPE and if the presence 

of up to 60 µg C16:0 and C18:0 will change the fatty acid profile.  

For preliminary determination of lipid class distribution of Nannochloropsis lipids (Figure 9), the 

method by Olmstead et al. (2013) was applied229. The method has been previously applied to 

separate lipid classes from Nannochloropsis extracts, with the authors reporting that fractions were 

well-separated229. The method uses other solvents than Balasubramanian et al. (2013), therefore it 

may be possible that less contaminants are leached from the SPE column; nonetheless, the presence 

of contaminants should be thoroughly investigated before the method is routinely applied.  
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6.2. Protein quantification and separation methods 
6.2.1. Protein quantification 
Protein quantification was key to mapping the protein solubility and protein yields in Paper I. 

Various methods considered for protein quantification are detailed below. Only the method by 

Slocombe et al. (2013) met the requirements of being i) specific for proteins (though there are 

compounds other than peptide bonds which react with the Folin reagent) ii) reproducible and iii) 

possible to carry out in the lab without purchasing expensive equipment.  

6.2.1.1. Kjeldahl crude protein 
The Kjeldahl method can be used to determine crude protein by assessing the total amount of 

nitrogen in a sample. However, results may be influenced by non-protein nitrogen-sources and the 

amino acid composition of the sample. While conversion factors exist for commonly analyzed 

matrices such as food, no such factors were established for the microalgae analyzed used in the 

presented studies at the time they were carried out147. 

6.2.1.2. Infrared spectroscopy 
Infrared spectroscopy in the form of Millipore’s Direct Detect system is performed by pipetting a 

very small sample volume (2 µl) onto a card which is inserted into the machine where it is dried 

and the infrared spectrum is recorded308. In a small pre-trial, the variance was unacceptably high. 

The small sample volume requires accurate pipetting and a homogenous sample, the latter which 

was not fulfilled by all sample types used in this project.  

6.2.1.3. Lowry protein measurement 
Two spectrophotometric methods were evaluated based on the Lowry method, in which protein first 

reacts with copper in alkali, followed by oxidation of Folin reagent309; specifically, the peptide bond  

is detected in the ensuing color change, though various phenolic compounds are known to also react 

with the reagents310. For any spectrophotometric quantification method, a standard is required, 

which ideally should be as similar as possible to the analyte. Bovine serum albumin might therefore 

appear to be an odd choice of standard; however, bovine serum albumin is readily available in pure 

form, distributed in accurate quantities and relatively inexpensive, in contrast to algal protein. Since 

the aromatic amino acids tryptophan and tyrosine are known to increase the absorbance in the 

Lowry assay147, the amino acid profiles of bovine serum albumin311 and Nannochloropsis148 were 

compared. Nannochloropsis contains a comparable percentage of tryptophan and tyrosine to bovine 

serum albumin (ΣTRP+TYR= 5.9% for Nannochloropsis and 5.3% for bovine serum albumin).  



Analytical considerations 

47 
 

Bio-Rad kit 
Trials were performed with a commercial kit, developed to be compatible with detergents such as 

SDS and sodium hydroxide, used in the sample preparation312. Three different freeze-dried 

microalgae were used in an attempt to find a preparation method applicable to microalgae with 

different cell walls: i) the thin-walled Isochrysis galbana167, ii) the organic cell-walled 

Phaeodactylum tricornutum313, and iii) the tough cellulosic-walled Nannochloropsis oculata232. 

Boiling in either 0.5 M NaOH, 1% SDS or both for 10 min was compared; boiling in 1% SDS 

resulting in the highest measured protein concentration for Isochrysis and Phaeodactylum but the 

lowest for Nannochloropsis. When the trial was repeated, the inter-day variability was found to be 

> 20% for some samples, an unacceptably large difference. On further examination, the method 

was found to be highly influenced by the dilution of the sample, with higher dilutions resulting in 

higher relative absorbance: when doubling the dilution, the measured protein concentration 

increased by 25% or more. Taking together the inconclusive results for sample preparation, the high 

variability and the non-linear response to dilution, the use of the Bio-Rad protein assay kit was 

discontinued.  

Slocombe et al. (2013) method 
The protein quantification method of Slocombe et al. (2013)314 was used for protein measurements 

on Paper I. This method first extracts protein from dried algae by precipitating the protein with 

trichloroacetic acid and then quantifying it spectrophotometrically according to Lowry’s method314. 

Disadvantages of the Slocombe et al. (2013) method are that it is time and labor-intense and there 

is some uncertainty in the weighing of the initial sample: according to the method, 5 mg of freeze-

dried algae are to be weighed in, which demands high accuracy of the analytical balance being used. 

Advantages of the Slocombe et al. (2013) method include that it was developed specifically for 

microalgae, with i) the extraction developed to be effective for cells with recalcitrant cell walls, 

such as Chlorella and ii) it uses small sample sizes, which is an advantage when little microalgal 

biomass is available. Furthermore, variability was lower than in any other investigated method, with 

a coefficient of variation < 8% observed in initial trials. 

 

6.2.2. Polypeptide profiling by SDS-PAGE 
For Paper I, proteins from the fractions of the pH-shift process on Nannochloropsis were separated 

by SDS polyacrylamide gel electrophoresis (PAGE), a technique in which proteins are denatured 

and separated according to size in an electric field245. Depending on the purity of the proteins, the 

sample may be subjected to a purification step before denaturation in the loading buffer. A 

purification315 was attempted for the Nannochloropsis pH-shift fractions; however, instead of 

distinct bands, lanes displayed one long smear, i.e. proteins did not separate. Eventually, suspecting 
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that the majority of the proteins were in fact hydrophobic membrane proteins316, the purification 

step was omitted and the denaturation altered by adding SDS and urea317 to the Lämmli loading 

buffer with β-mercaptoethanol. Furthermore, the denaturation was carried out for 60 min at room 

temperature instead of 95 °C for 5 min, to avoid the proteins from aggregating. To reduce streaking, 

presumably caused by aggregated proteins, the denatured sample was centrifuged at 15 000×g for 

5 min at room temperature and the supernatant loaded onto the gel. Under the described conditions, 

it was possible to resolve the samples’ proteins into distinct bands. 

 

6.2.3. Degree of protein hydrolysis 
For Paper II, protein digestibility was assessed by quantifying the broken peptide bonds and 

comparing to a theoretical value, calculated from the amino acids present in the original material. 

Two methods were considered, one based on Nielsen et al. (2001), in which the reaction between 

primary amines with o-phthaldialdehyde results in a compound which absorbs maximally at 

340 nm318, and the other on Adler-Nissen (1979), in the reaction between primary amines and 

trinitro-benzene-sulfonic acid results in a compound which absorbs maximally at 340 nm319. The 

Nielsen et al. (2001) method promises improvements over the Adler-Nissen (1979) method, 

including shorter analysis time, higher accuracy, less sensitivity to pH and less toxic reagents. 

However, it has been questioned if the Nielsen et al. (2001)-method indeed is less toxic, considering 

that it uses sodium tetraborate, a presumed human reproductive toxicant320, therefore the method 

by Adler-Nissen (1979) was used in-house. Minor changes have been made firstly to scale the 

method down to microtiter scale: volumes were reduced by one-tenth and secondly the alternative 

wavelength (420 nm) described in the original method was used to avoid light absorption by the 

polystyrene 48-well plate321. In addition, due to the nature of the digested samples, light-scattering 

particles were removed by centrifugation at 2000×g for 5 min.  

 

6.3. Total carbohydrate quantification 
For quantifying total carbohydrates, the method by Herbert, Phipps and Strange (1971) was used, 

in which polysaccharides are hydrolyzed by sulfuric acid and react with phenol to form a colored 

compound which can be detected spectrophotometrically250. As the name suggests, the method does 

not distinguish between simple sugars (monomers, and oligosaccharides), simple polysaccharides 

(e.g. chrysolaminarin, which may be present in Nannochloropsis51), complex polysaccharides (i.e. 

combinations of different monomers) and complex macromolecules (including nucleic acids)250. 

The method was originally published for application to microbes and has since been both modified 

for microtiter scale and had its suitability for microalgae demonstrated322.  
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7. Conclusion 
The herein presented work has focused on application of the pH-shift process to Nannochloropsis 

to recover lipids and proteins without the use of organic solvents. Although the pH-shift process 

did not yield separate lipid and protein fractions, the product nevertheless was found to have 

potential as a food or feed. The main discoveries of the presented work are as follows: 

• Nannochloropsis in seawater (10% on dry weight basis) has high protein solubility (> 80%) 

between pH 6 and 10 with low solubility (< 10%) at pH 4 and below.  

• The protein solubility characteristics were used to develop a process in which 

Nannochloropsis was solubilized at pH 7 and then precipitated at pH 3.   

• The main unit operations of the developed process were i) bead-beating for cell-disruption 

and ii) centrifugation at low g-force to separate soluble from non-soluble material. All unit 

operations are scalable. 

• Protein yield was higher with the process version in which proteins were solubilized at the 

native pH (7) compared to solubilization at pH 10: 86% vs. 72%. The developed pH 7-

process resulted in a product which related to the unprocessed material as follows: Water 

and ash content was reduced; total fatty acids and LC n-3 PUFAs were increased 

marginally; total carbohydrates and proteins were increased slightly. 

• Although crude Nannochloropsis had potential as a source of LC n-3 PUFAs and 

nutritionally high-value protein, the in vitro digestion model demonstrated that the cell wall 

posed a formidable barrier with no digestion of Nannochloropsis lipids or proteins observed 

for the unprocessed material (intact microalgae). Cell disruption permitted roughly half of 

the theoretically accessible fatty acids to be hydrolyzed, and hydrolysis was further 

increased by pH-shift processing. pH-shift processing permitted roughly half of the peptide 

bonds to be hydrolyzed.  

• Direct transmethylation on dry microalgal biomass with hydrochloric acid was developed 

as an analytical tool to determine total fatty acids and fatty acid pattern, with results 

comparable to direct transesterification methods with other catalysts. Compared to solvent 

extraction, the developed method saved time, reduced the use of toxic chemicals and 

recovered more fatty acids with less variability, especially for cells surrounded by a 

recalcitrant cell wall, such as Nannochloropsis.  

• When using SPE to fractionate free fatty acids from other lipid classes, contaminations 

(palmitic and stearic acid) were discovered and these were traced to the plastic in the 

extraction columns. Although total free fatty acids could still be determined 

(contaminations contributed < 3% of the total mass), amounts of palmitic and stearic acid 

originating from the algae could not be accurately determined.  
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8. Future outlook 
The presented work indicates that the LC n-3 PUFAs and protein in pH-shift processed 

Nannochloropsis might find application as a food ingredient. Various improvements on the pH-

shift process might be possible. However, before Nannochloropsis can make the jump from 

aquaculture to human food, various knowledge gaps need to be filled:  

• LC n-3 PUFAs are not only associated with health benefits: they are also more susceptible 

to oxidative deterioration than more saturated fatty acids323. Conversely, microalgae 

contain various compounds which protect against oxidation both during storage and in vitro 

digestion324, 325. Thus, investigation is warranted of the lipid stability of a pH-shift processed 

Nannochloropsis-product during both storage and in vitro digestion. 

• Protein quality determination will require further experiments, to establish the digestibility 

of pH-shift processed Nannochloropsis in animal models137, 146.  

• The techno-functional properties of pH-shift processed Nannochloropsis have not been 

fully explored. Especially if the pH-shift process product is to be used with other food 

components, the ability of the product to form gels or stable emulsions requires further 

investigation. Factors of interest include the solubilization pH and the ionic strength of the 

surrounding medium.  

• Given that other microalgae have protein solubility curves141, 202, 207 similar to 

Nannochloropsis, the pH-shift process could be applied to other microalgal biomasses 

could be investigated and general principles for the pH-shift process on microalgae 

established. 

• By adding carbohydrate depolymerizing enzymes such as cellulases, it may be possible to 

reduce the water-holding capacity of the product, thereby improving the dewatering of the 

process. 

• Nannochloropsis is not known to produce any toxic secondary metabolites. However, tests 

are needed to confirm that e.g. the concentrations of nucleic acids are acceptable30. 

Analagours to other microalgae and microalgal products326-328, acute and subchronic 

toxicity of Nannochloropsis and pH-shift process product should be assessed to 

compliment an already published study268. Furthermore, it may be necessary to demonstrate 

that the culture, harvest and processing of Nannochloropsis does not add heavy metals, 

persistent organic pollutants,  or processing chemicals to the product, while harmful 

bacteria stay acceptably low30.  

• Once the safety of Nannochloropsis has been established, food products with the pH-shift 

process product can be developed and a trained test panel should determine various sensory 
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qualities of the food products, before the consumer acceptance is evaluated in an 

appropriate focus group. 

• For the direct transesterification method, it may be possible to further reduce the incubation 

time and temperature229. 
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