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Abstract 

Type 2 diabetes (T2D) is a heterogeneous and complex disease that currently affects more than 350 
million people worldwide. A wide range of risk factors influence the pathogenesis of T2D, including 
genetic and epigenetic components, as well as controllable factors such as diet, obesity, and 
sedentary lifestyle. T2D is characterized by abnormally high blood glucose levels as a consequence 
of the development of insulin resistance in multiple tissues (primarily skeletal muscle, liver, and 
adipose tissue) in combination with impaired insulin secretion in the pancreas. Skeletal muscle 
accounts for around 75-80% of the insulin-stimulated glucose uptake from the blood. 
Consequently, deficiency in glucose uptake mediated by insulin resistance in skeletal myocytes is 
an important factor for the disrupted glucose homeostasis associated with T2D. In fact, skeletal 
muscle insulin resistance can appear long before the onset of the disease itself, making it one of the 
primary defects preceding the development of T2D. The pathophysiology of T2D and the 
mechanisms underlying the development of insulin resistance in skeletal muscle are not yet fully 
understood. In light of the multifactorial complexity of T2D we have adopted a systems biology 
approach to study skeletal muscle in response to this disease, using network modeling of 
metabolism and analysis of genome-wide data from human subjects.  

We developed three tools for analyzing gene expression data and facilitating its interpretation. The 
R package piano enables functional characterization and interpretation of gene expression profiles 
(and other omics data), through so called gene-set analysis (GSA). The skeletal myocyte genome-
scale metabolic model (GEM), that we reconstructed based on transcriptome and proteome data, 
constitutes a comprehensive map of the myocyte metabolic network that can be used for simulation 
and integration of genome-wide data. The Python tool Kiwi visualizes the output from GSA using 
metabolite gene-sets and the topology of a GEM so that significant metabolite subnetworks 
affected by gene expression changes can be identified.  

Leveraged by these tools, we performed two studies of T2D. In the first study, we carried out a 
meta-analysis of muscle tissue transcriptome data from 6 published datasets, providing a holistic 
insight into the metabolic state of T2D muscle. In particular, we identified a metabolic signature 
that has the power to predict T2D in individual subjects, highlighting its potential use for 
biomarkers or drug targets. In the second study, we analyzed transcriptome data from primary 
differentiated myocytes to explore inherent properties associated with T2D and obesity. We found 
a remarkable similarity between the transcriptional profiles in response to T2D and obesity, 
independent of each other, and identified a possible epigenetic mechanism behind these patterns. 
We performed a systematic characterization of the individual intrinsic effects of T2D and obesity, 
which are hardwired in the myocytes rather than attributable to a diabetic or obese extracellular 
environment. In summary, this thesis provides novel methods for analysis of genome-wide data and 
contributes to disentangling the complexity of T2D. 

Keywords: skeletal muscle, myocyte, type 2 diabetes, obesity, metabolism, transcriptomics, gene 
expression, gene-set analysis, network analysis, genome-scale metabolic model 
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Introduction 

The human genome contains just above 20,000 coding genes, according to current 
statistics from Ensembl. In the cell, these genes are transcribed and translated into 
proteins, under the control of advanced regulatory mechanisms. The proteins have 
a vast range of functions serving many of the cell’s needs. The protein landscape of 
a given cell at a given time will depend on numerous factors, including cell type, 
signals and interactions from nearby cells and hormones, availability of various 
nutrients and molecules, and other environmental factors. Genetic and epigenetic 
factors, such as mutations, DNA methylation, and chromatin modifications, also 
influence gene expression (Lee and Young, 2013). Knowledge about what genes a 
cell is expressing at a given time, and at what levels, can give a clue of the current 
state of the cell. With established methods, such as microarrays, and the rapid 
development of next-generation sequencing technology, researchers are now able 
to simultaneously quantify the transcription of virtually all genes. This field of 
research is referred to as transcriptomics.  

Transcriptomics has enabled a holistic and unbiased way to study human disease, 
in terms of finding disease-associated gene expression differences, without having 
to specify beforehand what genes to study. Unfortunately, many diseases are 
complex and do not exhibit changes in only a few genes. Instead, there often is a 
combination of distinct and subtle changes across many genes that act together 
either as a cause or a consequence of the disease (Lee and Young, 2013). Detecting 
and quantifying these gene expression changes is relatively simple. However, to 
figure out the impact of these changes on the function of the cell, or what these 
changes imply about the cell state, is not trivial. This challenge, of how to interpret 
the meaning of numerous differentially expressed genes, has intrigued me since I 
first got introduced to systems biology.  

During my doctoral studies I have pursued this challenge by using and advancing 
a methodology called gene-set analysis (GSA). We have applied GSA as a basis to 
interpret transcriptomic data with a particular interest in understanding how type 
2 diabetes (T2D) is affecting skeletal muscle. T2D is a metabolic disorder and, as 
it turns out, almost one fifth of the 20,000 coding genes are associated with 
metabolism, according the Human Metabolic Reaction (HMR) database 
(Mardinoglu et al., 2014). Metabolism constitutes a network of reactions, 
metabolites and enzymes, and can as such be used as a scaffold for integrating gene 
expression data. In our goal to gain insight into the function of skeletal muscle 
under the influence of T2D, we have reconstructed a metabolic network model for 
muscle cells and used this in connection with transcriptome data and GSA to 
dissect the meaning of gene expression changes, with a particular focus on 
metabolism. 
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In particular, the aim with this thesis was: 

To develop and provide software tools that improve the contextual and
functional interpretation and characterization of omics data, in general, and
transcriptomic data, in particular.
To reconstruct the skeletal myocyte metabolic reaction network in form of
a comprehensive genome-scale metabolic model, to provide a scaffold for
omics data integration in the context of muscle metabolism.
To use systems biology and bioinformatics analysis to gain new insight into
the function and dysfunction of muscle cells, with a focus on metabolism, in
response to obesity and T2D.

This thesis summarizes the main part of the scientific research that I have 
contributed to during my doctoral studies, represented by four original research 
papers, one review paper, and one editorial (all listed on page V and included in 
full-text in the end of the thesis). Paper I describes a software tool, piano, for GSA. 
Paper II gives a review of the use of genome-scale metabolic models to study 
obesity and diabetes. Paper III describes a genome-scale metabolic model for 
skeletal muscle cells and its application to study T2D. Paper IV describes a 
software tool, Kiwi, which visualizes the output of GSA using genome-scale 
metabolic models. Paper V is a summary and outlook of Paper III in form of an 
editorial. Paper VI describes a study of inherent properties of muscle cells in 
association with obesity and T2D. 

Structure of the thesis 
Following this introduction there is a background section covering T2D and 
presenting the holistic framework that we have used to study this disease, in the 
field of systems biology. The main body of this thesis is divided into two parts and 
more specific background relevant to these sections will be given there. Part I 
(based on results from Papers I-IV) introduces GSA and genome-scale metabolic 
models, and describes and discusses two software tools and a network model of 
metabolism that address the difficulties of condensing high-throughput omics data 
(in particular transcriptomics) into interpretable results. Part II (based on results 
from Papers III, V and VI) turns to the specific topic of studying the impact of T2D 
on skeletal muscle and describes how we applied the tools presented in Part I, 
along with other methods, to add insight into the effects that T2D has on skeletal 
muscle cells. Lastly, there are some concluding remarks and future perspectives.  
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Background 

An overview of type 2 diabetes 

A very brief history of diabetes 

The oldest known reference to diabetes comes from an Egyptian medical papyrus 
(Ebers Papyrus) that dates back to around 3,500 years from now, where a condition 
is mentioned and described as “too great emptying of the urine” (Zajac et al., 2010). 
Meanwhile, in India they gave this condition the name “honey urine”, noticing that 
ants were attracted by its sweetness. Later, around 2,000 years ago, the Greek 
coined the term diabetes, meaning “to pass through”. In 1776 it was discovered that 
the sweet substance was sugar (Dobson and Fothergill, 1776) and in 1815 it was 
shown to be glucose (Chevreul, 1815). In the early 1920’s Banting, Best, Collip and 
colleagues discovered the hormone insulin (which we now know is responsible for, 
among other things, the clearance of glucose from the blood), which they extracted 
and purified from the pancreas. This extract was used on diabetic dogs and, in 1922, 
the first human patient was successfully treated (Banting et al., 1922). After an 
agreement with the University of Toronto, Eli Lilly and Company received 
manufacturing rights which led to the first commercial large-scale production of 
insulin (Zajac et al., 2010). In 1922, the Danish researcher August Krogh, who the 
year before was awarded the Nobel Prize in Physiology or Medicine for his work 
on capillaries, was traveling overseas together with his wife Marie, who 
coincidently had just been diagnosed with diabetes. During her husband’s lectures 
in the United States, Marie Krogh was informed about Banting’s discoveries and 
they decided to visit the group. Before their return to Denmark, Krogh was given 
a license for production of insulin. This resulted in the establishment of Nordisk 
Insulinlaboratorium in Denmark, which has evolved to the current company Novo 
Nordisk, the world’s largest insulin producer. In 1923, Banting and laboratory 
director Macleod were awarded the Nobel Prize in Physiology or Medicine for 
their findings. Controversially however, there have been claims that Paulescu, who 
during the same time was treating dogs with insulin extract, should have been 
included in the prize (Murray, 1971). After these discoveries diabetes has 
continued to be immensely studied, which has resulted in a deeper understanding 
of the molecular basis of the disease as well as in improvements of treatment 
strategies. However, there is still much more to learn before we fully understand 
this disease. In the next few sections I will give a brief overview of the state of 
diabetes today and our current understanding of its pathophysiology. 
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Different types of diabetes 

Diabetes (formally diabetes mellitus, to be distinguished from diabetes insipidus) 
refers to a group of syndromes characterized by hyperglycemia, i.e. abnormally 
high blood glucose levels. There are several less common forms of diabetes (e.g. 
gestational diabetes) but the most common variants are type 1 and type 2, where 
the latter stands for the vast majority (roughly 90%) of the cases (Scully, 2012). 
Type 1 diabetes is primarily an autoimmune disease and results from the pancreas 
losing the ability to produce insulin (thus leading to high glucose concentration in 
the blood stream). Individuals with type 1 diabetes rely on treatment with external 
insulin. On the other hand, T2D, which is the form of the disease that we are 
focusing on in our research, involves reduced sensitivity to insulin in different 
tissues, and eventually compromised insulin production in the pancreas. T2D is 
associated with obesity and a sedentary lifestyle. Individuals with T2D do not 
necessarily rely on external insulin supply, depending on the extent of insulin 
resistance and pancreas dysfunction. 

Type 2 diabetes epidemiology 

T2D has been described as a global epidemic (Zimmet et al., 2001). The numbers 
certainly support this statement. It has been estimated that around 350 million 
people worldwide are suffering from diabetes (Scully, 2012) and, according to the 
World Health Organization (WHO), 9% of adults had the disease in 2014 (WHO, 
2014b). These numbers are expected to rise, and it is projected that in 2030 440-550 
million people will have diabetes, equivalent to at least a 50% increase from 2010 
(Shaw et al., 2010; Whiting et al., 2011).  

The traditional view of T2D being considered a disease with onset in middle-aged 
adults is now challenged by the serious facts of increasing prevalence among young 
adults, adolescents and children (Pinhas-Hamiel and Zeitler, 2005; Rosenbloom et 
al., 1999). In the 1990’s T2D represented only 3% of diabetes cases among children 
and adolescents, whereas in 2005 a striking increase to 45% was reported (Pinhas-
Hamiel and Zeitler, 2005). The incidence varies by ethnicity however, and the 
highest frequencies are seen in minority populations, e.g. Native Americans, 
Pacific Islanders, Australian Indigenous populations, and African Americans 
(Chen et al., 2012; Craig et al., 2007; Dabelea et al., 2007). The risk of increasing 
onset of T2D among youth and a higher prevalence of people with chronic 
complications in the near future, may have a huge impact on the economy and 
public health, in terms of negative effects on work capacity and premature 
morbidity and mortality (Chen et al., 2012; Dowse et al., 1991; Zimmet et al., 2001). 

The estimated number of deaths caused by diabetes varies with reports from 1.5 
million worldwide (WHO, 2014a) to as many as 3.5 million in middle income 
countries only (Scully, 2012). In 2030, diabetes is predicted to be the 7th leading 
cause of death in the world and, ranked even higher, the 4th in high-income 
countries (Mathers and Loncar, 2006). Still, around 80% of deaths caused by 
diabetes occur in low- and middle-income countries (WHO, 2014a) and the 
mortality rate is more than double compared to high-income countries (Scully, 
2012). 
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The diabetes epidemic is taking place all over the globe. Africa, in particular driven 
by countries in the northern parts, is predicted to have the fastest increase of 
diabetes cases in the world (Scully, 2012). In 2010 14.1 million people in Africa had 
the disease (Zimmet et al., 2001). Similar patterns are seen in South America and 
in the Middle East, with some extreme examples being Qatar, Saudi Arabia, and 
the United Arab Emirates, all with more than 20% of the population being diabetic 
(Scully, 2012; Whiting et al., 2011). Asia is currently considered the epicenter of 
diabetes (Hu, 2011). In China 92 million adults have diabetes (Yang et al., 2010), 
representing the largest national population of diabetics in the world, followed by 
India (Scully, 2012). In India, an increase in diabetes cases has been reported both 
in urbanized (13.9%-18.2% in 2000-2006) and rural (6.4%-9.2% in 2000-2006) 
areas (Ramachandran et al., 2008). 

Given the high global incidence of diabetes, largely represented by the epidemic 
increase in T2D (Zimmet, 1999), and the predicted escalation of the number of 
diabetic people in the coming years, it is no big surprise that a fair amount of money 
is spent on health care costs related to this disease. It is estimated that 12% of the 
global health expenditure, equivalent to 376 billion US dollars, is used for 
treatment of diabetes (Zhang et al., 2010). There is however a huge difference in 
the amount spent per patient between countries where e.g. USA and Australia 
spend around 8,000 US dollars per patient, whereas China and India, with by far 
the highest absolute number of deaths per year caused by diabetes, only spend a 
couple of hundred US dollars per patient (Scully, 2012). 

Diagnosis and classification 

Different criteria have been used over the years to diagnose and classify diabetes. 
In 2006, the WHO and the International Diabetes Foundation (IDF) published 
updated guidelines for the definition and diagnosis of diabetes (WHO and IDF, 
2006). They recommend that venous blood plasma glucose concentration 
measurements should be used for classification, at fasting state and two hours after 
an oral glucose tolerance test (OGTT). During an OGTT, the subject is given 75 g 
of glucose dissolved in water, and plasma glucose levels are measured at baseline 
and after two hours.  

Table 1 summarizes the criteria for diabetes, impaired glucose tolerance (IGT), 
and impaired fasting glucose (IFG), based on these kinds of measurements. In 
brief, a subject with too high baseline glucose levels or with reduced ability to clear 
glucose from the blood is classified as diabetic.  

This classification is used for both type 1 and type 2 diabetes. If the type is not 
clear from the circumstances, additional tests can be performed, e.g. using 

Table 1. Diagnostic criteria for diabetes, IGT, and IFG, recommended by WHO and IDF (2006). 
Fasting plasma glucose 2 hour plasma glucose 

Diabetes  7.0 mmol/L or  11.1 mmol/L 

Impaired glucose tolerance < 7.0 mmol/L and  7.8 and < 11.1 mmol/L 

Impaired fasting glucose  6.1 and < 7.0 mmol/L and < 7.8 mmol/L 
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autoantibodies to detect destroyed and lost pancreatic islet cell typical for type 1 
diabetes (Sacks et al., 2011) or measuring C-peptide levels to assess insulin 
secretion capability (Jones and Hattersley, 2013). C-peptide and insulin are 
produced in equimolar amounts but, unlike insulin, C-peptide is not metabolized 
by the liver. Further on, C-peptide enables assessment of pancreatic insulin 
secretion even in subjects on exogenous insulin.  

An alternative measure that has recently started to be used for diabetes 
classification and diagnosis is glycated hemoglobin (HbA1c) which reflects the 
average glycemia (blood glucose levels) during the previous 2-3 months (Nathan 
et al., 2007). The WHO recommends a cut point at 6.5% HbA1c for diagnosing 
diabetes, but states that lower levels does not necessarily exclude diabetes (WHO, 
2011). The choice of method used to classify diabetes has a considerable effect on 
prevalence estimations and will be important to take into account when 
considering longitudinal studies (Chen et al., 2012). 

A technique which is often used in diabetes research is the glucose clamp (which 
does not describe a device but refers to clamping the levels of glucose or insulin at 
a fixed predetermined value). Two common versions are the hyperglycemic clamp 
and the euglycemic clamp (DeFronzo et al., 1979). During the hyperglycemic 
clamp the blood plasma glucose concentration is raised to a fixed high level and 
thereafter maintained by intravenous glucose infusion. The infusion rate needed 
to maintain the high glucose concentration will reflect how fast the body can clear 
high glucose levels from the blood (e.g. by insulin secretion and signaling). During 
the euglycemic clamp the blood plasma insulin concentration is raised and 
maintained at a high constant value. Meanwhile, glucose infusion is used to keep 
the blood plasma glucose concentrations at a baseline level. The glucose infusion 
rate reflects how fast the body clears glucose from the blood at a given high insulin 
concentration. These tests quantify how sensitive the pancreatic beta cells are to 
glucose and how sensitive tissues are to insulin (DeFronzo et al., 1979). 

Another common measure used in research to assess beta cell function and insulin 
resistance is the homeostasis model assessment (HOMA) (Wallace et al., 2004). 
Unlike the glucose clamp technique, HOMA is based only on basal plasma glucose 
and insulin or C-peptide concentrations, thus more feasible for large cohort studies 
(Levy et al., 1998; Matthews et al., 1985). A nonlinear computer model, based on 
a simulation of factors influencing blood insulin and glucose concentrations, is used 
to estimate beta cell function and insulin sensitivity as percentages of normal young 
adults, given input values within clinically realistic ranges. There also exists a linear 
approximation to the first version of the computer model. Several studies have 
shown good (but far from perfect) correlation of insulin resistance and beta cell 
function estimates between HOMA and euglycemic or hyperglycemic clamps 
(Wallace et al., 2004). 

Pathophysiology 

As described in the previous section, the diagnosis of T2D is based on the notion 
of elevated plasma glucose levels and reduced capability to maintain glucose 
homeostasis after the acute increases associated with e.g. a meal. This effect is 



An overview of type 2 diabetes 

7 

tightly connected to impairments in both insulin secretion, i.e. pancreatic beta cell 
dysfunction, and insulin action in insulin sensitive tissues, i.e. insulin resistance. 
Normally, after a meal, the increase in circulating glucose stimulates the beta cells 
to secrete insulin into the blood stream. First, stored insulin is released, followed 
by a prolonged release of synthesized insulin. Circulating insulin is quickly 
degraded, resulting in a half-life of less than ten minutes (Tomasi et al., 1967). 
Insulin binds to the insulin receptor on cells in insulin sensitive tissues (primarily 
skeletal muscle, liver, and adipose) and induces a signaling cascade. The signaling 
cascade involves activation of the insulin receptor which leads to tyrosine 
phosphorylation of several different substrates, including insulin receptor 
substrates (IRSs). IRS activates the phosphatidylinositol 3-kinase (PI3K) pathway, 
involving stimulation of the protein kinases Akt and protein kinase C (PKC). The 
insulins signaling pathway eventually results in uptake of glucose, fatty acids, and 
amino acids, and expression of genes promoting glycogen, lipid, and protein 
synthesis (Saltiel and Kahn, 2001). Insulin signaling triggers the translocation of 
glucose transporter 4 (GLUT4) to the cell membrane, which leads to a rapid 
uptake of glucose by skeletal myocytes and adipocytes. In myocytes, excess glucose 
is stored as glycogen. In adipocytes insulin inhibits lipolysis and promotes an 
increased lipogenesis, so that glucose is converted into and stored as triglycerides. 
In liver, insulin stimulates glycogenesis and inhibits gluconeogenesis. 

There is a feedback loop of unknown mechanism that enables crosstalk between 
the tissues responding to insulin action and the beta cells in the pancreas, so that 
insulin release can be continuously adjusted to serve the needs of the cells (Kahn 
et al., 2014). This means that the beta cells can compensate for impaired insulin 
action by increasing insulin secretion, thus maintaining glucose homeostasis even 
in the presence of insulin resistance. During the pathogenesis of T2D, blood 
glucose levels increase, indicating beta cell dysfunction and failure to fully 
compensate for the increased need of insulin secretion. Beta cell dysfunction is 
progressive during the development of T2D, ranging from a disability to clear acute 
postprandial blood glucose increases to resulting in permanently elevated glucose 
levels (Kohei, 2010). Beta cell function can be impaired already in non-diabetic 
subjects at high risk of developing T2D (Cnop et al., 2007; Dunaif and Finegood, 
1996). There is also a reduction in the number of beta cells, through apoptosis, in 
T2D, but this does not on its own explain the reduced insulin secretion capacity 
(Butler et al., 2003; Kahn et al., 2014). The mechanism behind beta cell loss is 
unknown but may involve toxic effects from the high levels of glucose and free 
fatty acids that are seen in connection to T2D, damage related to the increased 
secretory demand, or negative effects from an increased inflammatory response 
(Meier and Bonadonna, 2013). There is likely a combination of loss of function and 
reduced beta cell mass in the impaired insulin secretion seen in T2D subjects. 

Insulin resistance develops before and during T2D and blunts the normal effect of 
insulin, thus leading to reduced glucose uptake in muscle and adipose tissue, 
increased lipolysis in adipose, and increased gluconeogenesis in liver (Eckel et al., 
2005; Kohei, 2010). Most single nucleotide polymorphisms (SNPs) related to T2D 
are targeting beta cell function, but several genetic variants have nevertheless been 
detected to have an association with insulin resistance and affect proteins in the 
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insulin signaling pathway (Billings and Florez, 2010; Kohei, 2010). There are 
several hypotheses about the mechanisms underlying the development of insulin 
resistance, including metabolic overload, endoplasmic reticulum (ER) stress, and 
inflammation. Associated with obesity and high-fat diet, metabolic overload 
involves the elevation of dietary nutrients and accumulation of lipids in non-
adipose tissues. This, in combination with decreased fatty acid metabolism, can 
lead to increased intracellular levels, in liver and muscle, of diacylglycerol, fatty 
acyl-CoA, and ceramides that could cause mitochondrial stress and interfere with 
insulin signaling (Kahn et al., 2006; Muoio and Newgard, 2008; Shulman, 2000). 
Metabolic overload could also lead to an ER stress response that suppresses the 
insulin signaling pathway (Özcan et al., 2004). Adipocytes seem to play an 
important role in the development of insulin resistance by affecting other tissues 
through the secretion of several adipokines, including tumor necrosis factor alpha 
(TNF-alpha), resistin, interleukin 6 (IL-6), retinol binding protein 4, and free fatty 
acids (Kahn et al., 2006; Lin and Sun, 2010; Yang et al., 2005). On the other hand, 
the adipokines adiponectin and leptin are considered beneficial for T2D subjects 
(Eckel et al., 2005; Muoio and Newgard, 2008). Obesity is associated with an 
increased adipose infiltration of macrophages, which can also release 
proinflammatory cytokines like TNF-alpha and IL-6. These can act locally by 
reducing insulin signaling, but also lead to increased insulin resistance in muscle 
and liver (Kahn et al., 2014; Kahn et al., 2006). Specific knockout or inactivation of 
GLUT4 in adipose tissue has been shown to result in impaired insulin action in 
muscle and liver, providing evidence for tissue crosstalk in the development of 
insulin resistance (Abel et al., 2001). 

Risk factors 

The development of T2D is connected to a complex interaction of several different 
environmental and genetic risk factors. Examples of these are e.g. diet, smoking, 
excessive alcohol intake, aging, gender, ethnicity, and intrauterine environment 
(Chen et al., 2012; Doria et al., 2008; Hu, 2011). Other indicators of an increased 
risk of T2D include impaired glucose tolerance, abnormal blood lipid levels, 
hypertension, inflammation, and history of diseases such as gestational diabetes, 
polycystic ovary syndrome, or nonalcoholic fatty liver disease (Chen et al., 2012). 
However, one of the absolute main driving forces behind the increased global 
spread of T2D is overweight and obesity, which are the most important predictors 
of the development of the disease (Hu et al., 2001). In 2005 it was estimated that 
23% of the world’s adult population was overweight (BMI of 25-30) and 9.8% was 
obese (BMI  30), and considering the current trend, these numbers are predicted 
to drastically increase in the coming years (Kelly et al., 2008). Obesity is tightly 
connected to excessive caloric intake, diet quality, sedentary lifestyle, and 
decreased physical activity. As an example, a two hour per day increase in 
television watching was associated with a 14% increase of the risk of T2D, whereas 
if the same amount of time was spent on standing or walking around at home the 
risk decreased with 12% (Hu et al., 2003). Adding to the complexity is the fact that 
T2D can appear in non-obese subjects. This is in particular the case for many Asian 
populations, one example being India with a very low rate of obesity but a high 
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incidence of T2D (Yoon et al., 2006). It has been suggested that these discrepancies 
may be due to a higher percentage of body fat, in particular intra-abdominal fat, 
among Asians, thus enabling a so-called metabolically obese phenotype at lower 
BMI levels (Brunetti, 2007; Misra, 2003). The BMI of T2D patients is on average 
lower for subjects diagnosed at older ages (Hillier and Pedula, 2001), whereas 
intra-abdominal fat increases with age (Utzschneider et al., 2004). It is thus possible 
that the metabolically obese phenotype plays a role in older T2D patients with 
lower BMI levels (Brunetti, 2007; Goodpaster et al., 2003). It has also been 
suggested that different mechanisms affect the development of T2D in obese 
compared to non-obese subjects (Arner et al., 1991). 

A low birth weight and poor nutrition during fetal and infant development can 
increase the risk of developing T2D later in life (Hales and Barker, 2001; Whincup 
et al., 2008). It is suggested that undernutrition promote changes that are beneficial 
for surviving starvation but are detrimental during exposure to normal food intake 
in adult life (Chen et al., 2012; Hu, 2011). 

Genetic differences do also contribute to the risk of developing T2D. A history of 
T2D in a first-degree family was associated with a doubled risk of T2D in a 
Scandinavian cohort (Lyssenko et al., 2008) and a person with diabetic parents 
have a substantially higher risk of developing T2D compared to the general 
population (Leslie et al., 1986). Genome-wide association studies have enabled the 
association between genetic variants and susceptibility to T2D. Variants in around 
50 genetic loci have been established to contribute to T2D, but do not improve the 
prediction of the disease compared to other common risk factors (Cho et al., 2012; 
Hu, 2011; Morris et al., 2012). It is likely that genetic susceptibility enhance the risk 
of T2D in combination with the presence of additional environmental risk factors 
(Hu, 2011). Epigenetic factors, including DNA methylation and histone 
modifications may also have an important impact on the development of T2D, but 
is still poorly understood (Ling and Groop, 2009). 

There is also evidence for that alterations in the function and composition of the 
gut microbiome are associated with T2D and can be used for prediction and 
classification of the disease (Karlsson et al., 2013; Qin et al., 2012). It can however 
be challenging to isolate these effects from the effects on the microbiome 
associated with drug treatment (Forslund et al., 2015). 

Complications 

The negative effects of hyperglycemia on the vascular system represent the 
primary source of morbidity and mortality associated with diabetes (Fowler, 2008). 
Microvascular damage from high glucose levels can lead to chronic complications 
including retinopathy (eye damage, which can lead to blindness), nephropathy 
(impaired kidney function and failure), and neuropathy (which can lead to loss of 
sensation in the feet, with increased risk of ulcers and infections, and can ultimately 
require amputation). These complications are caused by damage to cells where 
glucose uptake is independent of insulin, including capillary endothelial cells, 
mesangial cells (lining capillaries in the kidney), and peripheral neurons and 
Schwann cells (supporting neurons) (Brownlee, 2005; Stolar, 2010).  
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The mechanisms underlying the development of these complications are not fully 
understood, but several theories exist, some of which will be briefly described here. 
High glucose levels can lead to formation of advanced glycation end-products 
(AGEs), e.g. non-enzymatic glycation of intracellular proteins involved in 
transcriptional regulation, modification of the extracellular matrix, and glycation 
of circulating proteins which can trigger an inflammatory response (Brownlee, 
2005). High glucose levels can overload the polyol pathway resulting in increased 
sorbitol and fructose production through aldolase reductase, at the same time 
depleting the NADPH pool, which in turn can lead to decreased levels of reduced 
glutathione, thus making the cell more vulnerable to oxidative stress (Brownlee, 
2005; Chung et al., 2003). In addition, intracellular accumulation of sorbitol and 
fructose can induce osmotic stress (Chung et al., 2003; Fowler, 2008). Oxidative 
stress can arise from increased flux through the tricarboxylic acid (TCA) cycle 
leading to electron buildup in the electron transport chain and superoxide 
production (Du et al., 2001; Nishikawa et al., 2000). Hyperglycemia can also lead 
to activation of protein kinase C (PKC), which can regulate gene expression and 
may indirectly be pro-inflammatory and have a deleterious effect on vascular 
function (Brownlee, 2001, 2005). Finally, increased flux through the hexosamine 
pathway, leading to the addition of N-acetylglucosamine to serine and threonine 
residues of transcription factors, may be linked to increased transcription 
associated with hyperglycemia (Brownlee, 2001). There is unifying evidence that 
oxidative stress, specifically through the increased production of superoxide, may 
be the underlying cause to PKC activation, AGE formation, and increased flux 
through aldolase reductase and the hexosamine pathway (Brownlee, 2001; 
Nishikawa et al., 2000). 

Diabetes and hyperglycemia can also cause macrovascular damage by affecting 
larger blood vessels and the formation of atherosclerotic plaque (Fowler, 2008; 
Stolar, 2010). Around 50% of diabetic people die from cardiovascular disease 
(CVD), making it the primary cause of death (Laing et al., 2003; Morrish et al., 
2001). It has been reported that the risk of myocardial infarction (MI) in diabetic 
people (without history of earlier MI) is comparable to that of non-diabetic people 
with a history of earlier MI (Haffner et al., 1998). The risk of having a stroke is 
more than doubled in people with T2D, independent of other known risk factors 
for CVD (Almdal et al., 2004). However, in contrast to this, there have been recent 
reports that intensive glycemic control does not have any beneficial effect on CVD, 
challenging the role of hyperglycemia in macrovascular damage (Duckworth et al., 
2009; Gerstein et al., 2008; Patel et al., 2008). 

Apart from the chronic complications mentioned earlier, diabetes can also cause a 
number of acute health problems. This includes hyperosmolar hyperglycemic non-
ketotic syndrome, where high glucose concentrations can lead to severe 
dehydration through osmosis (Pasquel and Umpierrez, 2014). Hypoglycemia, too 
low glucose levels, may also occur, as a consequence of anti-diabetic medication 
(Yanai et al., 2015). Both of these conditions can lead to diabetic coma, with high 
mortality rate (Ben-Ami et al., 1999; Gill and Alberti, 1985; Pasquel and 
Umpierrez, 2014). 
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Prevention, management, and treatment 

Prevention of T2D can be achieved by reducing controllable risk factors and 
adopting a healthy lifestyle. This includes maintaining a normal body weight, 
healthy diet, daily physical activity, avoiding tobacco, and moderate alcohol intake 
(Hu, 2011; Mozaffarian et al., 2009). Lifestyle interventions in high-risk subjects 
have been shown to prevent or delay T2D by 50%, being as effective as 
pharmacological treatment (Gillies et al., 2007).  

Management of T2D revolves around reducing the risk of hyperglycemic 
complications by controlling blood glucose concentrations (Inzucchi et al., 2012; 
Kahn et al., 2014). This can be achieved by weight-loss through diet control and 
exercise, without or in combination with medication. There is no universal 
therapeutic strategy and it is important to individualize treatment (Inzucchi et al., 
2012). A long list of drugs have been developed and are used to treat T2D, 
targeting classic organs like the pancreas, adipose tissue, muscle tissue, and liver, 
but also kidneys, brain, and the gastrointestinal tract (Kahn et al., 2014). Table 2 
gives an overview of the different cellular mechanisms of the common classes of 
drugs used in diabetes treatment (although the exact mechanism is unknown for 
many drugs). Metformin is generally used as initial monotherapy, but can 
subsequently be combined with one or several other drugs and insulin (Inzucchi et 
al., 2012; Kahn et al., 2014; Qaseem et al., 2012).  

Table 2. Different classes of drugs used for the treatment of T2D. 
Class Mechanism 

Biguanides (metformin) 

Lowers plasma glucose levels by reducing hepatic gluconeogenesis (glucose production) 
and opposing the action of glucagon (glucagon is a hormone with opposite effect of insulin). 
Metformin inhibits complex I in the mitochondrial respiratory chain, which reduces energy 
availability (increased ratios of ADP/ATP and AMP/ATP) eventually leading to reduced 
gluconeogenesis and lipid/cholesterol synthesis, partly through AMP-mediated signaling 
(Rena et al., 2013). 

Sulfonylureas 

Improves insulin secretion by binding to ATP-sensitive potassium channels in the cell 
membrane of pancreatic beta cells. This causes a membrane depolarization which opens 
voltage-gated calcium channels, increasing intracellular calcium concentrations which 
stimulates insulin secretion. 

Meglitinides/glinides Has a similar mode of action as sulfonylureas but with a weaker binding affinity to the 
potassium channels. 

Thiazolidinediones 
Activates the nuclear receptor peroxisome proliferator-activated receptor  (PPAR- ) which 
regulates transcription of several genes (involved in glucose and lipid metabolism), indirectly 
improving insulin sensitivity in adipose, skeletal muscle, and liver (Hauner, 2002).  

-Glucosidase inhibitors 
Inhibits -glucosidase in the small intestine, which slows down carbohydrate absorption, thus 
decreasing blood glucose concentrations. 

DPP4 inhibitors 
Dipeptidyl peptidase 4 (DPP4) normally inactivates the gut hormones glucagon-like peptide-1 
(GPL-1) and gastric inhibitory polypeptide (GIP). DPP4 inhibitors thus promote GPL-1 and 
GIP action, which includes increased insulin and reduced glucagon secretion. 

GLP-1 receptor agonists  Mimics the effect of GPL-1 (but has longer half-life) by binding to the GLP-1 receptor and 
stimulating insulin secretion and reducing glucagon release. 

Dopamine-2 agonists 
Activates dopamine receptors and thereby influencing central regulation of metabolism by the 
hypothalamus. 

Bile acid binding resins Lowers glucose through a poorly understood mechanism. 

Amylin analogues 
The hormone amylin is normally secreted together with insulin and decreases glucagon 
secretion, delays gastric emptying, and increases satiety (Schmitz et al., 2004). Amylin 
analogues activate amylin receptors and may improve glycemic control. 

SGLT2 inhibitors 
Sodium–glucose co-transporter 2 (SGLT2) acts in the kidney by reabsorbing glucose from 
the urine. SGLT2 inhibitors thus decrease this absorption, leading to lower levels of glucose 
in the blood, but higher in the urine. 

Insulins 
Various modified insulins are available with varying pharmacokinetics. For instance, long-
acting insulins provide a prolonged maintenance of basal levels, whereas short-acting insulins 
can be used if required after meals for more rapid responses. 

Adopted and modified from Inzucchi et al. (2012) and Kahn et al. (2014). 
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In the combination with obesity, the treatment of T2D is challenging since many 
drugs have the risk of resulting in weight gain (Inzucchi et al., 2012; Mingrone et 
al., 2012). Bariatric surgery is used as a weight reducing therapy but has also shown 
positive effects on T2D, possibly through mechanisms unrelated to the weight loss 
(Guidone et al., 2006; Sjöström et al., 2004). In subjects with T2D and severe 
obesity, bariatric surgery has been reported to result in better glucose control 
compared to medical treatment (Mingrone et al., 2012). 

Even though there exists a range of treatment strategies for T2D there is a need 
for research that can result in novel drug targets and improved medications that 
are efficient and have reduced side effects. In fact, a large portion of patients that 
are treated with insulin or other antidiabetic drugs, still retain a poor glycemic 
control (Liebl et al., 2002). 

A complex multi-organ disease 

It is apparent that T2D is a complex heterogenic disorder and its pathophysiology 
and underlying molecular causes are to this date not fully understood. The research 
efforts that remain to be undertaken to unravel these mechanisms are hampered 
by the fact that the development of T2D involves complex interactions of multiple 
environmental and genetic factors, cross-tissue communication, and variations in 
its pathogenesis between different subjects. Consequently, it is sensible to use a 
holistic approach to study T2D. In our research we have therefore used methods 
from systems biology and bioinformatics, relying heavily on so-called omics data 
and network modeling. A brief introduction to this field is given in the next section. 
Nevertheless, I strongly believe that both a systems and reductionist biology 
approach, in collective symbiosis, is needed to uncover the factors that are crucial 
to reach a final comprehension and efficient treatment of T2D. 

Systems biology and bioinformatics 

The system is more than the sum of its parts 

In essence, science has always been driven by the desire to understand and explain 
the unknown and unexplored. In biology, few entities act in a complete 
autonomous manner, but are in contrast connected in one way or another to form 
a system of components that interact and affect each other. Biological research 
undertakes to study the function and properties of these components, as well as the 
systems they constitute. Biological systems can be defined on a hierarchy of 
different levels. For instance, ecology studies the interactions between organisms 
as well as their environment. The human body is a complex system built up by 
different tissues and organs that are connected and controlled by the nervous and 
circulatory systems. Organs themselves, can also be described as systems. Thus 
what is seen as a component of one system can also be a system on its own. In my 
research the system that we study is the cell. Efforts have been made to 
computationally model the whole cell (Karr et al., 2012). However, the exact 
definition of the system depends on what one wants to study. One focus that we 
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have is metabolism, the complete connected network of chemical reactions that are 
catalyzed by enzymes and enable the conversion of molecules within the cell, 
leading to the production of energy, amino acids, lipids, carbohydrates, 
nucleotides, and a range of other important biomolecules. Using so called genome-
scale metabolic models (GEMs) allows us to holistically model and simulate 
cellular metabolism. As the focus is on metabolism, these models do intentionally 
not take into account other perspectives of the cell, like e.g. cell signal transduction 
pathways or gene regulatory networks. GEMs have been a central component to 
many of my research projects and they are therefore further introduced in their 
own section, in Part I. 

Systems biology is an interdisciplinary research field that makes use of 
mathematical and computational modeling to study the interactions of biological 
components. A key motivation to employ a systems biology approach is the 
concept of emergent properties. These are properties of a complex system that 
cannot be deduced from the isolated individual components, but requires, in order 
to emerge, that the components and their interactions are collectively considered 
in the system they constitute.  

Networks and Big Data 

Complex perturbations to molecular networks often stand at the origin of human 
disease, emphasizing the importance of network science in medical research 
(Barabasi et al., 2011). The components of metabolic networks are metabolites, 
reactions, and genes, and as such they provide a bridge between metabolism and 
the genome. An important part of systems biology is the integration of genome-
wide data, networks and models. Today we are flooded with big data owing to the 
advancement of several high-throughput technologies, in particular next-
generation sequencing (NGS). A recent report estimated that between 100 million 
to 2 billion human genomes will be sequenced by 2025 (Stephens et al., 2015). 
Apart from sequencing genomes, NGS technology can also be used for e.g. 
quantifying mRNA and non-coding RNA, identifying and quantifying DNA-
protein interactions, and sequencing heterogeneous microbial populations. These 
type of data are commonly referred to as omics data, in the sense of being complete 
or total. Sequencing can generate e.g. genomic and transcriptomic data, whereas 
other high-throughput technologies are useful in areas such as proteomics, 
lipidomics, and metabolomics. Consequently, it is not uncommon that systems 
biology research is data-driven, exploratory, and hypothesis generating. The field 
of bioinformatics is tightly connected to systems biology and provides an extensive 
pool of methods and software for analyzing and understanding such data. In my 
research, both in tool development and in bioinformatic analysis of T2D, the 
primary measured quantity has been gene expression, in other words 
transcriptomic data. Therefore, the last part of this background section will be 
devoted to a few words on transcriptomics. 
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Transcriptomics 

Transcriptomics is the study of the complete collection of transcribed RNA 
molecules in a single cell or a collection of cells (e.g. from a tissue or microbiota). 
A common aim is to assess the expression levels of all genes, or at least a fair 
portion of all genes, in contrast to studies focusing on expression of a predefined 
selection of interesting genes. In that sense, the analysis of transcriptome data 
provides an unbiased way to study gene expression. A gene expression program 
reflects a specific cell state, and its misregulation is implicated in numerous diseases 
(Lee and Young, 2013). Quantification of gene transcription can be seen as a proxy 
for protein expression, even though several post-transcriptional and post-
translational events play a role in determining the final level and activity of a 
protein. Protein abundances and mRNA levels have been shown to be positively 
correlated (Lundberg et al., 2010; Nagaraj et al., 2011; Schwanhausser et al., 2011).  

One of the most common applications of gene expression profiling is to search for 
differential expression, i.e. compare two or more conditions and identify the genes 
that show statistical differences in their transcript levels. These results can then be 
integrated with models, networks, and other data, to deduce what functions and 
properties are affected in the cells, when comparing different conditions. A 
popular method that is used in this context is gene-set analysis, which will be 
introduced in Part I. 

The most common platforms used for transcriptome profiling are DNA 
microarrays and RNA-sequencing (RNA-seq). I will not go into any deep technical 
details about these methods here, as they are both well-established and standard 
approaches, but just briefly mention a few points. Microarrays were developed 
during the 1990s and 2000s and have continuously been improved since then 
(Bumgarner, 2001; DeRisi et al., 1996; Fodor et al., 1991). Microarrays are based 
on probes, which are short DNA sequences collectively representing e.g. the full 
transcriptome of an organism. A sample containing mRNA (or actually cDNA) 
can then be hybridized to these probes and detected using fluorescence. 
Microarrays are used for relative quantification, where the change in fluorescence 
intensity between the same spot on different arrays can be related to the 
concentration change of the corresponding mRNA molecule. The raw signal data 
is processed, normalized, quality controlled, and statistically analyzed using one of 
several available bioinformatics pipelines. RNA-seq, on the other hand, is based 
on NGS technology. Here, a sample of cDNA is sequenced, producing short 
sequence reads around 100 base pairs (this technology is however developing 
rapidly and the ability to sequence considerably longer stretches of DNA at high-
throughput rates is evolving). The sequence reads are optionally quality trimmed, 
and thereon aligned to an available genome or transcriptome, or assembled de 
novo. Quantification is done by counting the number of reads that have aligned to 
a given genomic location. Differential expression analysis is performed by one of 
several available software tools that handle the discrete count-based nature of 
RNA-seq data, using various statistical models. Some advantages of RNA-seq, 
compared to microarrays, includes the increased ability to detect alternative 
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splicing isoforms and allelic expression, a virtually unlimited dynamic range, and 
the possibility to identify novel transcripts (Wang et al., 2009). 
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Part I: The toolbox 

This part of my thesis will describe the tools that were central to my research and 
publications, and which I took part in developing. Gene-set analysis (GSA), as 
mentioned in the introduction is a method to facilitate the interpretation of 
(primarily) transcriptomic data by exploring overlap with annotated sets of genes 
representing specific functions or properties. Here this concept is presented in 
more detail, and our contribution, in form of a software package piano, is 
described. Further on, to study myocyte metabolism, which is central to T2D, and 
to bridge it to transcriptomics, we reconstructed a myocyte-specific genome-scale 
metabolic model (GEM). Finally, our software tool Kiwi is presented, which 
improves the visualization and interpretation of the results from a GSA, based on 
the topology of e.g. a GEM. Although I have mainly been applying these tools to 
study T2D and obesity in skeletal muscle, all tools described here are general, in 
the sense that they can be applied to a wide range of data and biological research 
topics.  

Gene-set analysis (Paper I) 

The difficulty of interpreting gene expression profiles 

In biological research it is very common to compare two or more groups to each 
other, with the aim of identifying statistically significant differences. This can be 
e.g. to assess the effect of a perturbation or stimulation, or to define distinguishing
characteristics between different populations, stages, or conditions. The properties
that are measured and compared are decided by the researcher, in consideration
of the scientific question and the experimental design. In transcriptomic research
the variables of interest are the genes and the measured values are their expression.
Typically, researchers will perform an appropriate statistical test to assess the
extent of differential expression between the different groups, resulting in a list of
p-values that should be adjusted for multiple testing. At this point it is easy to
identify the list of genes that seem to display changes in expression levels (e.g. by
selecting genes with a low probability that their expression changes between the
groups occurred by chance, i.e. with low p-values). What remains is the difficult
task of interpreting what these collective changes mean, and what implication they
have on cell function. Of course, if the number of significantly differentially
expressed genes is low, it may be possible to manually go through the list and
evaluate the function of each individual gene. In many cases however, a large
number of genes are significant, making the task of interpretation too complex to
be efficiently carried out by a human individual, justifying the need for
computational methods to aid in this step.
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Gene-sets – less is more 

For well-studied organisms, including humans, the genome has been extensively 
studied and therefore widely annotated, in terms of gene function and interaction. 
An enormous amount of data is available through a wide range of databases. A 
good example of this is the Gene Ontology (GO) project which through 
collaborative efforts aims to provide a consistent annotation of genes (or to be 
correct, gene products) by associating them to defined terms (ranging from broad, 
e.g. metabolic process, to specific, e.g. oxidoreductase activity). These terms
ultimately belong to one of three main ontologies: biological processes, cellular
components, and molecular functions (Ashburner et al., 2000). Each GO-term can
be traced back, through a number of more broadly defined parent GO-terms, and
eventually to one of the three main ontologies. A given gene can thus be described
by a number of associated GO-terms. What is maybe more interesting from a
systems biology perspective is the reverse, that a given GO-term is associated to a
number of genes. This is an example of a gene-set. Other examples of categories
of gene-sets could be transcription factors (genes sharing a specific transcription
factor binding site), or pathways (genes participating in specific metabolic or
signaling pathways). Gene-set collections can be compiled from available
databases, but there also exists dedicated databases providing various gene-set
collections, e.g. the Molecular Signatures Database (Liberzon et al., 2011;
Subramanian et al., 2005) and Enrichr (Chen et al., 2013).

Returning to the problem of interpreting long lists of significant genes, it has 
become popular to exploit the collective information provided by gene-sets. 
Moving from the gene level to the gene-set level has two major advantages. First, 
gene-sets typically have a descriptive name, focusing on the function or property 
of its genes, which is often easier to understand than the set of individual gene 
names. Second, even though a gene can belong to multiple gene-sets, the total 
number of gene-sets in a gene-set collection is smaller than the total number of 
genes. This means that, moving from the gene to the gene-set level, the researcher 
typically has a smaller list of gene-sets to go through than the initial list of 
significant genes. 

Overrepresentation analysis 

A common approach to interpret gene expression changes on the level of gene-sets 
has been to select genes using a binary cutoff (e.g. all genes with p-value<0.01) and 
determine whether these genes are significantly overrepresented in any gene-set. 
That is, if any gene-set contains more genes from the selected list than expected by 
random chance. Overrepresentation analysis (ORA) can be done e.g. by using 
Fisher’s exact test, chi-square test, or a binomial test (Khatri and Dr ghici, 2005). 
The drawback of ORA is that the use of an arbitrary binary cutoff omits a lot of 
information since genes falling outside the cutoff are discarded and the individual 
statistical values for the remaining genes are neglected. An advantage is that ORA 
is a fast and computationally light method, and has therefore been employed by 
online web-based user interfaces like DAVID (Hosack et al., 2003), and Enrichr 
(Chen et al., 2013). 
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Gene-set analysis – using all gene-level statistics 

In 2003 Mootha et al. introduced a method and tool, termed gene-set enrichment 
analysis (GSEA), that has become widely popular (Mootha et al., 2003; 
Subramanian et al., 2005). A primary difference to ORA is the use of all gene-level 
statistics to calculate a score for each gene-set. I will use the term gene-set analysis 
(GSA) to refer to methods like GSEA. Formally, where a gene-set score or statistic 
can be calculated by a function f(G, S), where G is a vector of all gene-level 
statistics and S is a vector giving the positions of the gene-set genes in G. To assess 
the statistical significance of the gene-sets, p-values can be calculated for the gene-
set statistics, either from a theoretical null distribution or by permuting the genes 
or samples. The advantage with GSA is that no specific cutoff is required. Rather, 
information for all genes is used, even enabling the detection of small but 
collectively coordinated responses that converge on a specific function or property, 
represented by the gene-set. There are several methods that fall in the definition 
of GSA, but I will not attempt to list them here as they have already been reviewed 
by us (Paper I) and others (Ackermann and Strimmer, 2009; Hung et al., 2012; 
Maciejewski, 2013; Tarca et al., 2013). 

A refined framework for gene-set analysis 

In Paper I we focused our attention on some of the current limitations of GSA. 
We identified four issues that needed to be addressed: 

1. The lack of a gold standard for GSA makes it difficult to evaluate different
methods and decide which one to use.

2. It is unclear what approach to use when calculating the p-values of the gene-
set statistics.

3. Available methods are implemented in various tools, on different platforms
and in different programming languages, making it difficult for users to test
and compare methods in a straightforward manner.

4. It is difficult, but useful, to assess the directionality of a gene-set, in terms
of the different fold changes of its member genes.

To deal with these issues we developed a new analysis tool called piano (Platform 
for Integrative Analysis of Omics data), fully documented and freely available as 
an R/Bioconductor package (Huber et al., 2015; R Core Team, 2005). In piano, we 
implemented 11 methods for calculating gene-set statistics and 3 ways to calculate 
gene-set p-values, enabling the comparison and evaluation of different GSA 
methods, thus addressing point 1-3. With regards to point 4, we introduced the 
concept of directionality classes, where a gene-set is assigned different scores, each 
capturing different characteristics of the collective pattern of up- and down-
regulation of the genes in the set. These concepts will be briefly elaborated in the 
following two sections and an overview of the workflow is given in Figure 1. 

Gene-set statistics and significance estimation 

At the time of developing piano, we identified 11 methods to calculate gene-set 
statistics that fitted our criteria: 
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Fisher’s combined probability test (Fisher, 1932)
Stouffer’s method (Stouffer et al., 1949)
Reporter features (Oliveira et al., 2008; Patil and Nielsen, 2005)
Parametric analysis of gene-set enrichment, PAGE (Kim and Volsky, 2005)
Tail strength (Taylor and Tibshirani, 2006)
Wilcoxon rank-sum test
Gene-set enrichment analysis, GSEA (Subramanian et al., 2005)
Mean
Median
Sum
Maxmean (Efron and Tibshirani, 2007)

The idea was to create a unified framework with consistent input and output, for 
all methods. This was implemented using a single function where the user can input 
gene-level statistics and simply select the desired GSA method and significance 
estimation procedure to be used. This provided a simple system to run and 
compare different GSAs based on the same input data, as opposed to having to 
move between different platforms and tools. In practice, there is one limitation 
however, in that not all types of gene-level statistics can be used as input to all GSA 
methods. As an example, Fisher’s test, Stouffer’s method, and Tail strength, are all 
designed to work specifically on p-values. 

Figure 1. Overview of the GSA workflow in piano. The input gene-level statistics are used to calculate
gene-set statistics according to one of the 11 available methods (orange path). In a similar manner,
modifications of the gene-level statistics (e.g. absolute vales, or subsets of up- and down-regulated genes)
are used in parallel (red and blue paths). This enables the calculation of gene-set statistics and
corresponding gene-set p-values in different directionality classes (non-directional, mixed-directional, and/or
distinct-directional). 
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After the gene-set statistics are calculated, using one of the listed methods (the 
calculation for each method is described in detail in Paper I and in its 
supplementary), gene-set p-values are estimated using one of three methods. In all 
cases, either gene sampling or sample permutation can be used. In these 
procedures, either the gene-level statistics are permuted or the sample labels are 
permuted and new random gene-level statistics are calculated. These random gene-
level statistics are then used to recalculate the gene-set statistics, a procedure that 
is repeated e.g. 10,000 times, thus generating a background distribution of gene-set 
statistics that can be used for significance estimation. Alternatively, a few of the 
methods are defined so that a theoretical null distribution can be used to calculate 
p-values from the gene-set statistics. As an example, for Stouffer’s method p-values
can be estimated from the gene-set statistics using the normal cumulative
distribution.

Directionality classes 

When comparing transcriptional profiles between two different conditions, it is 
clear that a significantly differentially expressed gene is either up- or down-
regulated, and thus its functional activity is either increased or decreased, 
respectively (assuming of course that a change in transcript level is reflected in 
protein level and activity). For a gene-set, the situation becomes slightly more 
complex, as the fold changes of multiple genes have to be taken into account to 
determine if the gene-set is up- or down-regulated (if it is even meaningful to talk 
about up- and down-regulation of a gene-set). The question of directionality can 
be handled in different ways.  

For example, for the reporter features method, Oliveira et al. (2008) first use the 
gene-level p-values to calculate gene-set scores. This procedure does not take into 
account directionality, and significant gene-sets will thus be those containing genes 
with low p-values, regardless of the sign of their fold changes. To capture the 
direction of regulation the authors propose to subset the input data (gene-level 
p-values) into up-regulated and down-regulated genes. An effect of this is that a
gene-set with only a minority of down-regulated genes will still be deemed
significantly down-regulated, given that the few down-regulated genes have low
enough p-values. Further on, a gene-set can simultaneously be significantly up- and
down-regulated if both subsets of the gene-set contain genes with low enough
p-values. (The authors do point out that the subset analyses should be interpreted
in connection to the initial analysis.)

Another example is the PAGE method (Kim and Volsky, 2005). Here, the gene-
set statistic is a function of the difference between the average fold change of the 
gene-set and the average fold change of the whole dataset. This means that the sign 
of the gene-set statistic will reflect whether the gene-set is considered up- or down-
regulated. An effect of this approach is that gene-sets containing a mix of up- and 
down-regulated genes will not be significant, even if all the genes in the set are 
significant, as their fold changes will cancel out. 

Obviously, the meaning of an up- or down-regulated gene-set is different in these 
two examples. To address this, we introduced three different directionality classes, 
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in an attempt to unify the interpretation of the results from the different GSA 
methods (Figure 2). As an example, the gene-set p-values calculated by the 
standard reporter features method are classified as non-directional. A gene-set that 
is significant in the non-directional class can be interpreted as containing more 
“high-scoring” (e.g. low p-values, or high absolute fold changes) genes than 
expected by random chance, discarding the gene-level directionality. On the other 
hand, the gene-set p-values calculated in the subset analysis approach of the 
reporter features method are classified as mixed-directional. A gene-set that is 
significant in the mixed-directional class when the subset (small or large) of genes 
regulated in the same direction and more “high-scoring” than expected by random 
chance. A gene-set can be significantly up- and down-regulated simultaneously, 
hence the name mixed-directional. Finally, as in the example of PAGE, these gene-
set p-values are classified as distinct-directional. Only gene-sets containing “high-
scoring” genes with consistent fold changes will be significant, and they will be 
either up- or down-regulated, not both, hence the name distinct-directional. 

By knowing what directionality class the gene-set p-values belong to, makes it 
easier for the user to interpret the meaning of directionality on the gene-set level 
and compare different GSA methods. In piano we took this one step further, by 
automatically calculating gene-set p-values in all possible directionality classes. 
This was enabled by modifying the original gene-level statistics (e.g. absolute vales, 
or subsetting up- and down-regulated genes) and running parallel GSA analyses. 
The possible directionality classes depend on the specific combination of gene-
level statistics and gene-set statistic calculation method used. Having access to 
information in several directionality classes enables a more comprehensive 
interpretation of the gene-level changes underlying a significant gene-set. 

Comparison of gene-set analysis methods 

With the established GSA framework, unifying the workflow and enabling the use 
of different gene-level statistics, different methods to calculate gene-set statistics, 
different methods to estimate gene-set significance, and structuring the output in 
different directionality classes, it was possible to start to compare different GSAs. 
One GSA can be seen as a unique path through the graph shown in Figure 1. We 

Figure 2. Illustration of the directionality classes. Gene-set analysis identifies significant gene-sets. 
However, the criteria of being significant differs depending on the choice of method. To address this we 
defined three directionality classes in which piano scores the gene-sets. The non-directional class identifies 
gene-sets with significant genes, disregarding the direction of change (gene-set 1 and 3). The distinct-
directional class finds gene-sets that display a significant change in one distinct direction, either up or down 
(gene-set 1 and 2, but not 3). The mixed-directional class separates the subset of up-regulated genes and
down-regulated genes in a gene-set, and checks if they are significant, independently of each other. Gene-
set 1 and 3 are both significantly affected by up-regulation and down-regulation in the mixed-directional 
class. Gene-set 2 was found to be distinct-directional-up, but is not significant in the other classes. This 
means that the significance is mainly due to the majority of up-regulated genes (a coordinated small up-
regulation), rather than the highly significant genes. 

Non-directional

Distinct-directional

Mixed-directional

Gene-set 1 Gene-set 2 Gene-set 3

Intensity/darkness = gene significance
Red = up-regulated
Blue = down-regulated
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used a published microarray dataset (Mootha et al., 2003) and performed a 
differential expression analysis between NGT and T2D subjects, generating gene-
level t-values and p-values. Using a collection of GO-term gene-sets, these gene-
level statistics were used as input to run GSA for all possible combinations of gene-
level statistic type, gene-set statistic calculation method, and significance 
estimation method. Counting also the separate runs for the different directionality 
classes, this resulted in a total of 127 GSA runs. The 127 gene-set p-value vectors 
were then compared using principle component analysis (PCA) and Spearman 
correlation (Figure 3). The primary separation of p-value vectors (representing the 
different GSA runs) in the PCA plot depended on the directionality classification. 
This supports our classification scheme and implies that the way to interpret a GSA 
result can be based on the corresponding directionality class, as earlier described, 
without having to consider the chosen GSA method. The high correlation between 
different GSA runs is good from a user perspective, meaning that different GSA 
methods will not yield drastically different results. It has been suggested before to 
run several GSA tools and combine the results (Huang et al., 2009; Naeem et al., 
2012). Through our implemented framework in piano we have laid the groundwork 

Figure 3. Comparison of different GSA runs. A) PCA plot of 127 gene-set p-value vectors resulting from 
different GSA runs (varying gene-level statistic type, gene-set statistic calculation method, and significance
estimation method). The results separate into our defined directionality classes, supporting our approach. 
B) Pairwise Spearman correlation between gene-set p-value vectors (of the non-directional class) for the
different GSA runs, showing a high consistency of the results from the different runs. The results are similar
for the other directionality classes. GS: gene sampling, SP: sample permutation, ND: null distribution.
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for performing such a task and thus proposed, in Paper I, a consensus scoring 
approach.  

Consensus gene-set analysis 

The consensus GSA is carried out by running a multiple of parallel GSAs (varying 
the input, gene-set statistic calculation method, and/or significance estimation 
method). For each directionality class and each GSA run, the gene-sets are ranked 
according to their p-values. This can be seen as a ranked voting problem, where 
each GSA run is a voter that ranks the candidates (gene-sets). A rank aggregation 
method can then be used to select the winning gene-set (or actually to condense 
the multiple rank-lists into a consensus ranking of all gene-sets). In piano this can 
be done using the average or median rank, or by one of the classical methods 
proposed by de Borda (1781) and Copeland (1951). Ranks rather than actual gene-
set p-values are used to treat conservative and less conservative methods equally. 
When using the consensus GSA approach, I would recommend to investigate the 
gene-set rank (and p-value) distribution for a given gene-set, across GSA runs, in 
connection to drawing biological conclusions. Piano offers visualization functions 
to view the consensus rank as well as individual ranks from each GSA run in order 
to evaluate if the results are consistent across runs or not. An alternative to varying 
the methods between different GSA runs, is to instead vary the input. As an 
example, on could perform one GSA based on gene-level p-values and another on 
fold changes, and use the consensus GSA approach to detect significant gene-sets 
based on both statistical significance and biological change of the member genes. 

Other types of methods 

There are other kinds of methods that do not fit the piano workflow. I will not 
attempt to give a complete overview here but rather list some examples to give an 
idea of the range of methods. See e.g. reviews by Ackermann and Strimmer (2009), 
Huang et al. (2009), Maciejewski (2013), or Nam and Kim (2008) for more 
information. For instance, some methods start from the raw expression data by 
using multivariate and global tests (Goeman et al., 2004; Hummel et al., 2008; Kong 
et al., 2006; Mansmann and Meister, 2005; Tsai and Chen, 2009). Other methods 
incorporate gene (or gene product) interaction networks into the analysis of gene-
sets (Alexeyenko et al., 2012; Glaab et al., 2012) or take into account gene overlap 
between gene-sets (Tarca et al., 2012). There are also methods and tools 
specifically designed for e.g. RNA-seq data (Lee et al., 2015) or genome-wide 
association studies (de Leeuw et al., 2015; Nam et al., 2010; Segrè et al., 2010). 

Considerations when performing gene-set analysis 

As powerful as GSA can seem, it has its pitfalls, and it is important to remember 
that it will never be better than the quality of the input data, i.e. the gene-level 
statistics and the gene-set collection. I will here go over some points that I have 
found useful to consider when running GSA. 

Gene-sets are typically acquired from various dedicated online databases with 
different levels of criteria and validity for gene and gene-set associations, as well 
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as being biased to more heavily researched biological processes. Therefore, when 
the GSA result points towards e.g. significant regulation of glycolysis, the 
researcher has to trust that the genes ascribed to the glycolysis gene-set are correct. 
Further on, the gene-set name may in some cases also be misleading. As an 
example, of the 11 genes in the GO-term gene-set oocyte development, 3 are also 
in the GO-term male sex differentiation. The former gene-set might therefore, 
counterintuitively, be significant largely due to genes associated to male-specific 
gene expression. Consequently, it is important to revisit the gene-level data when 
interpreting the GSA results. In addition to this, it is important to consider the 
gene-set size, as a gene-set containing 3 genes compared to one containing 100 
genes may have different impact on the biological interpretation. 

Another issue to take into account is that genes that are both positively or 
negatively associated with a specific biological process (e.g. inhibiting or 
activating) may be part of the same gene-set. This makes it very difficult to 
correctly interpret directionality on the gene-set level. Further on, there is no 
perfect rule that connects the level of gene expression change, or its statistical 
significance, to the level of influence it has on the biological process represented 
by the gene-set. For instance, the same change in gene expression of two genes in 
a gene-set may in reality affect the represented biological process to different 
extent. Similarly, a single gene may be associated with several gene-sets and thus 
contribute to them with the same score, but influence them differently biologically. 

Finally, when using the permutation-based approaches for gene-set significance 
estimation it is important to consider the gene-level dataset properties. As an 
example, take a dataset where no genes are deemed significant. It could still be 
possible that some gene-sets contain genes with extreme enough values (in relation 
to the dataset) to generate a significant gene-set. In other words, a gene-set may 
become significant since it contains the top differentially expressed genes (hence 
the most extreme genes in the dataset), even if none of these genes are consider 
statistically significant. Because of this, and the other reasons mentioned above, it 
is important to revisit the gene-level information when interpreting the GSA 
results. 

The piano package – three years later 

The purpose of a tool is to be used to solve the task it was designed for. In contrast 
to published biological results, it is therefore relevant to evaluate the actual usage 
of a tool after its publication. Through the publication peer review process and 
acceptance of piano into Bioconductor, some quality control was assured. 
However, its true impact is judged by the usage statistics, a number that, to be 
blunt, probably to a larger extent reflects the tool’s user friendliness, 
documentation quality, and ease of installation, rather than the scientific quality of 
the software. Table 3 shows the number of publications using piano (and total 

Table 3. Usage and total citations for piano. 
 2013 2014 2015  

Using piano (number of publications) 9 21 24  

Total number of citations 12 32 31  
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number of citations) in the last three years, covering a range of biological topics. 
As a developer it is reassuring to see that the tool is used to assist in impactful 
research, justifying the countless hours spent on coding. In addition, piano is 
available through BioMet Toolbox, an online web-based user interface (Garcia-
Albornoz et al., 2014), and has been included to perform analyses in an RNA-seq 
analysis pipeline (Fonseca et al., 2014), and in the online Expression Atlas from 
EBI (Petryszak et al., 2015). 

Genome-scale metabolic models (Papers II & III) 

The structure of genome-scale metabolic models 

In Paper II we described genome-scale metabolic models and their application to 
research on diabetes and obesity. A GEM is a comprehensive list of metabolic 
reactions aiming at covering the complete metabolism of a cell. Each reaction is 
stoichiometrically defined and consists of the participating metabolites and is 
linked to its associated enzymes (additional annotation can also be included). It is 
common to compartmentalize the GEM, so that the same reaction taking place in 
both the cytosol and mitochondria can be properly modeled autonomously. This is 
solved by introducing compartment specific metabolite names, e.g. glucose[c] for 
cytosolic glucose, and transport reactions for connecting metabolites in different 
compartments, e.g. glucose[s]  glucose[c] for transport of glucose between the 
extracellular space and the cytosol. For further structure, groups of reactions can 
also be assigned to specific pathways or metabolic subsystems. Figure 4A shows 
the relation between reactions, metabolites, and enzymes, and this topology 
enables the construction of various networks (e.g. metabolite-metabolite, reaction-
reaction, gene-metabolite, or gene-pathway) that can be used for network-
dependent analysis and data integration. 

A GEM can also be formulated as a stoichiometric matrix, as shown in Figure 4B, 
to enable simulation and prediction of metabolic phenotypes (Bordbar and 
Palsson, 2012). By assuming steady state, i.e. that the metabolite concentrations 
remain constant during the simulated condition, and consequently requiring that 
the production and consumption rates of each metabolite are equal, it is possible 
to calculate fluxes for the reactions in the system. Typically an indefinite number 
of metabolic flux distributions will fulfill the steady-state assumption (e.g. setting 
all fluxes to zero would be an example of a trivial solution). By introducing 
constraints on specific fluxes, the solution space can be decreased. Finally, by 
including an optimization (e.g. maximize the sum of fluxes contributing to synthesis 
of macromolecules essential for growth) the problem reduces to a unique flux 
distribution, the optimal solution (unless alternative optima are present due to e.g. 
futile cycles). This kind of procedure is referred to as flux balance analysis (Orth 
et al., 2010).  

In my research I have not focused on simulation-based analysis of GEMs, but 
rather to exploit the metabolic network topology to contextualize and interpret 
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gene expression data, primarily in connection to T2D as presented in Part II, but 
also to explore the metabolism of ovarian cancer (Aspuria et al., 2014). 

Human genome-scale metabolic models 

Initially GEMs were developed and used to study microbial metabolism 
(Oberhardt et al., 2009). In 2007, the first GEMs of human metabolism, Recon 1 
(Duarte et al., 2007) and EHMN (Ma et al., 2007), were created and anticipated to 
provide a systematic and holistic approach to study the complexity of human 
metabolism and its dysfunction in connection to disease. A few years later, 
information from Recon1, an updated version of EHMN (Hao et al., 2010), 
HumanCyc (Romero et al., 2004), and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, was used to construct the Human Metabolic 
Reaction database (HMR) (Agren et al., 2012; Mardinoglu et al., 2013). These 
efforts of mapping out the complete human metabolism have continuously 
progressed. In 2013 Recon2 (Thiele et al., 2013) was published, and in 2014 HMR 
was updated to HMR2 with a more comprehensive coverage of lipid metabolism 
(Mardinoglu et al., 2014). Just to give an idea of the scope of these models: HMR2 
contains around 8,000 reactions, 3,000 unique metabolites, and 3,700 genes. 

Figure 4. Overview of the structure and application of GEMs. A and B) A GEM can be represented both
as a network (A) and in mathematical terms (B). C) High throughput data and knowledge from molecular
biology can be used for topology based analysis as well as constraint based modeling and simulation.
D) This can be used to identify transcriptionally enriched pathways or metabolites, or to find differences in
network structure or simulation capabilities.
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The human body consists of a range of different cell types with different 
phenotypes. The generic human GEMs do not directly account for the differences 
in metabolism across these different cell types, but are great resources for 
constructing cell type-specific GEMs. Typically this involves creating a subset of 
the generic metabolic network (representing the active metabolism in a given 
tissue or cell type) that fulfils some network and simulation specific requirements, 
e.g. fully connected network with no dead-end metabolites, and all reactions being
able to carry flux. The selection of reactions, metabolites, and genes to be included
is based on evidence from omics data available for the specific cell type in question.
A handful of algorithms with different approaches have been developed for
creating cell type- or context-specific GEMs (Agren et al., 2012; Agren et al., 2014;
Becker and Palsson, 2008; Jerby et al., 2010; Robaina Estévez and Nikoloski, 2015;
Schmidt et al., 2013; Shlomi et al., 2008; Wang et al., 2012; Vlassis et al., 2014;
Yizhak et al., 2014). In a recent review the range of different available cell type-
specific GEMs was summarized, which included models for brain cells, heart cells,
liver and hepatocytes, kidney, and adipocytes (Ryu et al., 2015). As there was not
a comprehensive GEM for skeletal myocytes available at time, we set out to
reconstruct a myocyte metabolic network in order to have a framework to study
muscle metabolism in connection to T2D and obesity.

A myocyte genome-scale metabolic model 

In Paper III we describe the procedure of reconstructing the myocyte GEM. The 
general workflow for this is shown in Figure 5A. High throughput data at the 
transcript and protein level was used to score the reactions in HMR2 to evaluate 
whether they should be included in the final myocyte model. To do this in a 
systematic way we started by comparing the transcriptome and proteome data. The 
transcriptome data was generated using deep RNA-seq of human primary myocyte 
cell cultures from three males and three females and transcript levels were 
estimated by calculating FPKM-values (fragments per kilobase of transcript per 
million mapped reads). This data is myocyte-specific, in contrast to RNA isolated 
from skeletal muscle biopsies which can be contaminated by other cell types. The 
proteome data comes from the Human Protein Atlas (HPA) (Uhlén et al., 2015). 
Briefly, the structure of the HPA data is such that a protein abundance score is 
associated to each protein, based on immunohistochemistry assays. This score has 
four levels (not detected, low, medium, high). Further on, the evidence-based 
reliability of the abundance score for a given protein is classified as either 
supportive or uncertain. At the time of reconstructing the myocyte GEM, the 
majority of the abundance scores were classified as uncertain. For the proteins with 
supportive abundance scores there was a clear difference in FPKM-value 
distributions between genes detected on the protein level (low, medium, or high) 
and genes not detected on the protein level (Figure 5B). A gene with a high FPKM-
value would more likely also be expressed on the protein level. This pattern was 
however not seen for the genes with uncertain protein abundance scores. A density 
plot of all FPKM-values revealed a bimodal distribution of lowly expressed (LE) 
and highly expressed (HE) genes (Figure 5C). The LE genes have been shown to 
likely have non-functional transcripts whereas the HE genes are translated into 
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functional proteins (Hebenstreit et al., 2011). The FPKM-values of the subset of 
genes that were detected on the protein level (low, medium, or high) with 
supportive reliability coincide with the HE part of the density plot. An FPKM-
value of 1 separates the LE and HE distributions and we used this as a rough cutoff 
to predict, from the RNA-seq data, whether or not the corresponding protein was 
present. In practice, we considered only the genes that were either not measured 
on the protein level, or that were, with uncertain reliability, not detected on the 
protein level (pink box in Figure 5B). The abundance levels of these genes were 
then corrected using the RNA-seq data, so that if their FPKM>1 their abundance 
level was set to detected (low). For the remaining genes, we used the available 
protein abundance scores. We believe that this procedure is a fair tradeoff between 
using only the proteome data (which is biologically closer to the presence of a 
reaction, but with a large extent of uncertain and unmeasured abundance scores) 
and using only the transcriptome data (which is biologically farther away from the 
reactions, but has higher gene coverage and is more robust across genes in terms 
of reliable estimates of transcript abundances). 

The combined transcriptome and proteome abundance scores were then used as 
input to the tINIT (task-driven Integrative Network Inference for Tissues) 
algorithm, which has been developed to reconstruct cell type-specific GEMs from 
a draft generic human metabolic network (Agren et al., 2012; Agren et al., 2014). 
Briefly, tINIT starts from a reference model (HMR2 in our case) and a list of 

Figure 5. Reconstruction of the myocyte metabolic network. A) An overview of the model reconstruction
workflow. B) Relation between myocyte protein and transcript levels. Higher FPKM-values (transcript levels) 
were observed for expressed proteins. This information was used to correct the uncertain protein
abundances. C) A bimodal distribution of transcript levels was observed. The histogram of FPKM-values, 
corresponding to the subset of proteins expressed with high certainty, is shown in green. This information 
was used to determine a FPKM-based cutoff to predict protein presence.   
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metabolic tasks that the final model should be able to perform (e.g. produce ATP 
from glucose). The abundance levels of the reaction-associated genes are used to 
score the reactions, where a non-detected gene gives a negative score, whereas a 
detected gene gives a positive score. Through a multistep optimization procedure, 
tINIT returns a model favoring the inclusion of positively scored reactions while 
ensuring a fully connected network where all reactions can carry flux and all 
metabolic tasks can be carried out. The 247 metabolic tasks that were used led to 
an addition of only 22 reactions on top of the ones included from the reaction 
scoring and connectivity requirements. This meant that most of the metabolic tasks 
could be simulated already from a model reconstruction based on only the 
abundance data. The final GEM, iMyocyte2419, contains 5,590 reactions, 2,396 
metabolites, and 2,419 genes. 

We compared iMyocyte2419 to two previously published skeletal muscle GEMs 
(Bordbar et al., 2011; Wang et al., 2012). Both of these models are smaller in scope 
(Figure 6A) but it was still of interest to see if there was any overlap between the 
GEMs. In terms of genes, 82% and 70% of the Bordbar and Wang GEMs, 
respectively, are encompassed by iMyocyte2419 (Figure 6B). Of the genes not 
included in iMyocyte2419, the vast majority were negatively scored, i.e. not present 
in myocytes based on the transcriptome and proteome data. On the other hand, 
only 78 out of the 2419 genes included in iMyocyte2419 had negative scores. These 
genes correspond to 5.2% of the reactions in iMyocyte2419 and had to be included 
to ensure connectivity or functionality of the model. In fact, 14 of these genes have 
received updated abundance levels in later HPA versions and are now classified as 
detected in myocytes on the protein level. 

In Part II I will summarize how we have exploited the topology of the myocyte 
GEM and applied it to study T2D and obesity. However, the myocyte GEM also 
remains available as a resource for other kinds of studies relating to muscle 
metabolism. 

Figure 6. Comparison of myocyte GEMs. A) Number of reactions and genes for the three GEMs. B) Venn
diagram showing the overlap in gene content. The genes excluded from iMyocyte2419 are mainly negatively
scored (not detected in myocytes) whereas the included genes are mainly positively scored (detected in
myocytes).  
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Combining GEMs and GSA (Paper IV) 
The network structure of a GEM, connecting reactions, genes, metabolites, and 
pathways, can be used to construct gene-sets for the specific purpose of analyzing 
genome-wide gene-level data (typically transcriptomics) in the context of 
metabolism. 

Pathway gene-sets 

Metabolic pathway gene-sets can be extracted from GEMs if the reactions are 
annotated to belong to a specific pathway or metabolic subsystem. This is not an 
exclusive feature of GEMs, as pathway gene-sets also can be acquired from 
databases such as KEGG (Kanehisa et al., 2012), BioCyc (Caspi et al., 2014), or 
Reactome (Croft et al., 2014). One advantage of using GEM-derived pathways 
could be that gene-sets are filtered to represent a specific context (like a certain 
cell type). 

Metabolite gene-sets – reporter metabolites 

Another way to exploit the topology of a GEM can be done by extracting the 
metabolite-gene network. Each metabolite is then connected to all genes 
associated to reactions the metabolite is involved in. These genes thus have the 
possibility to influence the production and consumption rate of that metabolite. 
High throughput transcriptome data is readily available and relatively easy to 
generate, and can be integrated with a GEM to reveal metabolites surrounded by 
significant transcriptional regulation, thus translating transcriptome information 
into the context of metabolism. By using metabolites as gene-sets, defined by the 
metabolite-gene network, GSA can be used to pinpoint metabolite nodes in the 
huge metabolic network that are connected to differential gene expression. These 
metabolites were termed reporter metabolites by Patil and Nielsen (2005). 

Gene-set interaction networks 

Metabolite gene-sets are special in the sense that they themselves make up a 
network. The metabolite-metabolite network connects metabolites that participate 
in the same reaction, and an edge in this network thus represents one reaction step. 
This property is not limited to GEM-derived metabolite gene-sets. Other types of 
gene-sets may represent biological entities that connect to or interact with each 
other. In Paper IV we termed this the gene-set interaction network. Other 
examples of such networks are transcription factor gene-sets connected in a gene 
regulatory network (Oliveira et al., 2008), or GO-terms connected in the directed 
acyclic graph that is defined by the GO-term relationships in the GO hierarchy. An 
important distinction that we make for gene-set interaction networks is that the 
gene-set connections are not simply based on gene overlap between gene-sets. In 
other words, the gene-set interaction network should add an additional layer of 
information that could not simply be extracted from the gene members. 
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Some problems with visualization 

GSA results are often presented as tables or heatmaps, which do not take into 
account the possible connections between gene-sets, represented by the gene-set 
interaction network. In the case of metabolite gene-sets, as an example, it may not 
always be obvious to know which of the significant gene-sets are closely connected 
in the metabolic network. This piece of information would be valuable during the 
interpretation of the GSA results, as a connected group of metabolites may point 
to regulation of a specific part of metabolism, something that would not 
immediately be identified if the information from the metabolite gene-set 
interaction network was omitted. At the time, there was no optimal tool for 
visualizing GSA results in the context of the gene-set interaction network, which 
we addressed by developing the tool Kiwi. 

Kiwi – integrating GSA and gene-set interaction networks 

In Paper IV we present the network-based visualization tool Kiwi, implemented in 
Python and available through a web-based user interface in BioMet Toolbox. In 
particular, Kiwi addresses the problem of huge gene-set interaction networks 
(which would be impossible to visualize in their complete form in any meaningful 
way) by reducing the network so that the significant gene-sets and their 
interactions become apparent. 

The inputs to Kiwi are the results from a GSA (for instance, but not limited to, the 
output from piano) and a gene-set interaction network (e.g. a metabolite-
metabolite network). The visualization algorithm is outlined in Figure 7. First, 
significant gene-sets are selected, based on the results from the GSA. Next, the 
shortest path length (SPL) is calculated between all pairs of these gene-sets, based 
on the topology of the gene-set interaction network. Edges are then drawn 
between significant gene-sets, if they are close enough, i.e. if the SPL is smaller 
than an arbitrary cutoff. The edge thickness is set in relation to the SPL, so that 
gene-sets that are close to each other will have a thick edge. The choice of a sensible 
cutoff can depend on network properties, like the average SPL, or the meaning of 
the gene-set interaction network. For example, for a highly connected metabolite-
metabolite network it would not make much biological sense to connect 
metabolites that are maybe three or four steps apart, since these numbers of steps 

Figure 7. The Kiwi workflow. A toy example of a gene-set interaction network, heavily reduced in size, is
used to illustrate the different steps of the visualization algorithm.  
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can connect even distant parts of metabolism. On the other hand, for a GO-term 
network, it could be useful to have a higher cutoff, since GO-terms are connected 
in a more hierarchy-like structure, allowing for connections between parent and 
child GO-terms that are several steps away from each other, but biologically 
related. As a last step (although this is optional) only the best edge or edges are 
kept for each gene-set node, i.e. the thickest edge (representing the shortest 
connections), or in case of a tie, the thickest edges. This results in a network where 
each gene-set is only connected to its closest neighbor. Finally, a force-based layout 
is employed and nodes are scaled and colored in relation to their significance and 
general direction of change, respectively. 

In Paper IV we carried out two case studies that emphasized the advantages of 
Kiwi. I will not reiterate those analyses here, but use Figure 8 (see figure legend) 
to conceptually highlight the purpose of Kiwi compared to other visualization 
approaches (using real data from case study 1 in Paper IV). A group of significant 
reporter metabolites that are connected in the metabolic network were identified 
using Kiwi, but are not necessarily connected based on gene overlap. Nevertheless, 
a gene-overlap network can also be useful for the purpose of detecting gene-sets 
that are driven to be significant based on a similar set of genes. This type of network 
can be obtained by using piano. 

This concludes Part I that described tools that we have developed and that are 
available for the research community to apply to a vast range of different projects. 
I have mainly used these tools to enable advanced analysis of skeletal muscle gene 
transcription in connection to T2D and obesity. This work will be described in 
Part II. 

Figure 8. Visualization of GSA results. A) The Kiwi network identifies groups of metabolites with close
proximity in the metabolic network (marked green and orange in this example). B) A similar network, but with
edges based on gene overlap, does not capture the connection between the green metabolites. C) The full 
gene-set interaction network is too big to be able to highlight the relevant connections. D) Metabolite gene-
sets shown as a list or a heatmap will also not convey the metabolite interactions.  
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Part II: Type 2 diabetes 

Skeletal muscle and T2D 
An overview and introduction to T2D was given in the background section. Here 
I will briefly elaborate on the specific role of skeletal muscle in the development 
of the disease. Skeletal muscle is responsible for the majority (around 75-80%) of 
the required uptake of glucose from the circulation, induced by increased insulin 
secretion following e.g. a meal (Björnholm and Zierath, 2005; Stump et al., 2006). 
A majority of this glucose is converted to glycogen (DeFronzo and Tripathy, 2009). 
Deficiency in skeletal muscle glucose uptake consequently plays an important role 
for the hyperglycemia connected to T2D, even though this also relies on an 
incapacity of the beta cells to compensate for muscle insulin resistance. Muscle 
insulin resistance has been suggested to be one of the primary defects in the 
development of T2D, present long before the disease itself (DeFronzo and 
Tripathy, 2009). This conclusion is based on observations of muscle insulin 
resistance in normal glucose tolerant (NGT) subjects with family history of T2D 
(Ferrannini et al., 2003; Kashyap et al., 2004; Tripathy et al., 2003; Vaag et al., 
1992). Initially, insulin secretion is increased, so that these persons can remain 
NGT. Eventually however, as insulin resistance gets worse and is accompanied by 
beta cell deficiency, T2D will evolve. Increased insulin secretion as a response to 
early development of muscle insulin resistance can also have negative effects. 
Increased and sustained high levels of insulin may induce insulin resistance as 
shown by a reduction of glucose uptake and a decreased activity of glycogen 
synthase with a concordant decrease in glycogen synthesis in skeletal muscle (Iozzo 
et al., 2001). These observations point to the importance of skeletal muscle insulin 
resistance and impaired glucose uptake and glycogen production in the progression 
of T2D. The underlying mechanisms behind insulin resistance in muscle is not yet 
fully understood. 

Insulin resistance in muscle 

Studies have shown that insulin resistance is related to defects in the insulin 
signaling pathway in T2D skeletal muscle, specifically decreased tyrosine 
phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS1) and 
reduced phosphoinositide 3-kinase (PI3K) activity (Bouzakri et al., 2003; Cusi et 
al., 2000; Krook et al., 2000). Similar effects have been observed in skeletal muscle 
of non-obese NGT subjects with family history of T2D (Pratipanawatr et al., 2001). 
The metabolic overload associated with T2D has been implicated in contributing 
to impaired insulin signaling. A raise in circulating free fatty acid levels has been 
shown to decrease IRS1-associated PI3K activity and IRS1 tyrosine 
phosphorylation, and increase activation of PKC theta activity (Dresner et al., 
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1999; Griffin et al., 1999). PKC theta has been suggested to be an important 
mediator of fatty acid-induced insulin resistance in muscle (Kim et al., 2004). 
Elevated levels of diacylglycerol, acyl-CoA, and ceramide, resulting from 
incomplete fatty acid oxidation and lipid overload, could activate PKC and lead to 
serine phosphorylation of IRS1 and consequently impaired insulin signaling 
(Dresner et al., 1999; Itani et al., 2002; Szendroedi et al., 2012; Yu et al., 2002). 

Mitochondrial dysfunction has been implicated in insulin resistance and T2D of 
skeletal muscle (Szendroedi et al., 2012). Reduced ability to switch between 
carbohydrate and fatty acid oxidation under insulin stimulation, so called 
metabolic inflexibility, has been reported in T2D skeletal muscle (Kelley and 
Mandarino, 2000). Furthermore, both decreased oxidative phosphorylation, 
connected to lower expression of the transcriptional coactivator PGC1 (Mootha et 
al., 2003; Patti et al., 2003), and reduced number of mitochondria is associated with 
T2D muscle (Chomentowski et al., 2010; Morino et al., 2005). It is however unclear 
if, in the development of insulin resistance, lipid overload leads to mitochondrial 
dysfunction or if mitochondrial incapacity to oxidize fatty acids precedes the 
accumulation of intramyocellular fatty acid metabolites, (DeFronzo and Tripathy, 
2009). 

Apart from disrupted lipid metabolism, branched-chain amino acids may also play 
a role in the pathogenesis of T2D (Muoio and Newgard, 2008). These metabolites 
have been found to be elevated in subjects with T2D and could impair insulin 
signaling by activating mTORC1 and S6K1, leading to serine phosphorylation of 
IRS1 (Lynch and Adams, 2014). 

Genome-scale metabolic models and skeletal muscle T2D 

In Paper II we reviewed the application of GEMs to study metabolism related to 
obesity and diabetes. The generic human GEMs Recon 1 and EHMN have been 
used to identify metabolic signatures from T2D muscle gene expression data 
(Zelezniak et al., 2010). This analysis highlighted metabolites in the TCA cycle, 
oxidative phosphorylation, and lipid metabolism, as well as NAD+/NADH and 
ATP/ADP. Furthermore, the authors report several transcription factors that are 
members of the CREB, NRF1, and PPAR families, to potentially regulate the 
differentially expressed genes. Recon 1 has also been used to construct a multi-
tissue GEM covering myocytes, adipocytes, hepatocytes, and blood (Bordbar et 
al., 2011). The model was used as a basis for constructing context-specific GEMs 
from gene expression data from normal obese and T2D obese subjects. This 
analysis indicated reduced activity of lactate dehydrogenase and catalase in the 
myocyte model of T2D subjects. 

Recently, a small-scale metabolic model (388 reactions) was used to identify 
network perturbations that reproduced metabolic properties of insulin resistant 
muscle (Nogiec et al., 2015). From their simulations the authors report that a dual 
knockdown of pyruvate dehydrogenase (PDH) and electron-transferrin-
flavoprotein dehydrogenase (ETFDH) resulted in a reduction in ATP synthesis, 
TCA cycle flux, and metabolic flexibility. Experimental validation in form of dual 
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PDH/ETFDH knockdowns in cultured myocytes, and human transcriptomic and 
metabolomics data analysis, supported their simulation results. 

In Papers III, V, and VI, we have exploited our myocyte-specific metabolic 
network iMycoyte2419, by using piano and Kiwi to analyze both published and 
newly generated transcriptome data on muscle T2D, to add pieces to the unsolved 
puzzle of the underlying mechanisms of insulin resistance and T2D in skeletal 
muscle. These projects are summarized in the remaining pages of Part II. 

A metabolic signature of T2D muscle (Papers III & V) 

Transcriptional meta-analysis of skeletal muscle 

In Paper III (and subsequently discussed and summarized in Paper V) our aim was 
to characterize the effects of T2D on skeletal muscle, in particular focusing on 
metabolism. We addressed this by analyzing and connecting the results from 
multiple published datasets of muscle gene expression by performing a 
transcriptional meta-analysis. Meta-analysis is a general statistical approach that 
combines the results from similar studies to, through an increased sample size and 
gain in statistical power, get a better estimate of the effect measured by the 
individual studies. Through database searches we identified microarray datasets 
related to T2D and skeletal muscle, which we narrowed down to six consistent 
studies comparing T2D vs NGT in skeletal muscle at baseline, shown in Figure 9A 
(Chibalin et al., 2008; Jin et al., 2011; Patti et al., 2003; Pihlajamäki et al., 2011; 
Sears et al., 2009; van Tienen et al., 2012). We then used a meta-analysis method, 
designed for microarray data, proposed by Choi et al. (2003) and recommended in 
a recent review (Ramasamy et al., 2008). This method builds on the work of 
Hedges and Olkin (1985). Briefly, an effect-size (which is related to the t-statistic) 
and variance is estimated for each gene in each study. The effect-sizes and 

Figure 9. Meta-analysis of T2D vs NGT gene expression. A) The number of T2D and NGT subjects in 
each of the six studies used in the meta-analysis. B) The integrative discovery rate (at different z-score 
cutoffs), i.e. the fraction of significant genes in the meta-analysis that were not significant in any of the
studies.  
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variances are then pooled across all studies using a random effects model. Finally, 
a z-score is calculated for each gene so that genes with altered expression between 
T2D and NGT can be identified by having an absolute z-score larger than a given 
threshold. By combining multiple datasets, the statistical power is improved, which 
can enable the identification of differentially expressed genes that could not be 
detected in any individual study. Figure 9B shows the integrative discovery rate 
(IDR) (Choi et al., 2003), i.e. the fraction of significant genes that were detected in 
our meta-analysis, that were not identified in any of the individual studies, 
highlighting this benefit of meta-analysis. 

Consensus GSA of the meta-analysis results 

We wanted to identify metabolic pathways and other biological processes that were 
affected by transcriptional changes in T2D. To do this, we performed consensus 
GSA using piano with GO-terms and pathways from iMyocyte2419 as gene-sets, 
and the meta-analysis z-scores as gene-level input. Both these analyses pointed to 
a transcriptional up-regulation of immune-related processes and down-regulation 
of genes involved in glycolysis, pyruvate metabolism, TCA cycle, oxidative 
phosphorylation, respiratory electron transport chain, mitochondrial proteins, 
beta-oxidation, and branched-chain amino acid (BCAA) metabolism. These results 
are in line with previous findings (Abdul-Ghani and DeFronzo, 2010; Donath and 
Shoelson, 2011; Lynch and Adams, 2014; Szendroedi et al., 2012).  

In particular, reduced oxidative phosphorylation has been reported several times 
to be associated with T2D muscle (Mootha et al., 2003; Szendroedi et al., 2012). 
Other studies however have challenged this and report no change of oxidative 
phosphorylation and a normal mitochondrial function (Boushel et al., 2007; De 
Feyter et al., 2008; Frederiksen et al., 2008; Gallagher et al., 2010). Gallagher et al. 
speculated that the absence of insulin stimulation of subjects before sampling could 
explain why they did not identify any difference in oxidative phosphorylation. 
However, none of the studies included in our meta-analysis used stimulated 
subjects (this was part of our inclusion criteria) and we still detected a down-
regulation of oxidative phosphorylation. This result was consistently found also 
when repeating the meta-analysis while including the Gallagher dataset (which did 
not detect oxidative phosphorylation) thus establishing down-regulated oxidative 
phosphorylation as one of the signatures of T2D muscle.  

Further on, we also detected down-regulation of less studied gene-sets, including 
omega-6 fatty acid metabolism, vitamin E metabolism, nucleotide metabolism, and 
cysteine and methionine metabolism. There also appeared to be a down-regulation 
of GO-term gene-sets related to RNA-splicing, in line with the findings presented 
in one of the studies of the meta-analysis (Pihlajamäki et al., 2011). 

Reporter metabolites and Kiwi – identifying a metabolic signature 

Next, we wanted to exploit the topology of the myocyte metabolic network, 
iMyocyte2419, and integrate it with the transcriptional data from the six microarray 
studies, in order to identify a general metabolic signature of T2D in skeletal 
muscle. We carried out consensus GSA of the meta-analysis results using 
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metabolite gene-sets derived from iMyocyte2419 and passed these results to Kiwi 
to extract the network of significant metabolites. For this, we used the metabolite-
metabolite network derived from iMyocyte2419, were we first had removed high-
degree nodes (mainly co-factors) so that the paths connecting metabolites could 
not go through these metabolic hubs. The final identified metabolic signature, 
based on transcriptional changes associated with T2D in multiple different studies, 
is shown in Figure 10. In summary, this signature included metabolites affected by 
down-regulation, acting in the mitochondria, and involved in mitochondrial import 
and oxidation of pyruvate (pyruvate, CO2, S-acetyldihydrolipoamide, lipoamide, 
and dihydrolipoamide), TCA cycle (fumarate, succinyl-CoA, CO2, and FAD), 
BCAA degradation, folate one-carbon metabolism, and lipoylproteins and 
lipoamides. There was also a separate group of metabolites (GAP, DHAP, and sn-
glycerol-3-phosphate) that were affected by transcriptional up-regulation, acting in 
the branch-point of glycolysis, pentose phosphate pathway, and lipid biosynthesis. 

The reporter metabolites 3-methylcrotonyl-CoA, 2-methyl-3-oxopropanoate, 
dihydrolipoamide, lipoamide, and succinyl-CoA, are all intermediates of BCAA 
and were associated with transcriptional down-regulation in T2D in the meta-
analysis, in line with our pathway and GO-term GSA, and with previous results 
(Lefort et al., 2010). As stated previously, high levels of plasma BCAA have been 
observed in connection to T2D and could play a role in the development of insulin 
resistance by interfering with insulin signaling or by causing mitochondrial 
dysfunction through accumulation of BCAA metabolites as a consequence of 
disrupted BCAA catabolism (Lynch and Adams, 2014). Insulin has been reported 
to lower plasma BCAA concentrations and to decrease levels of 3-methylcrotonyl-
CoA (one of the reporter metabolites) in liver (Shin et al., 2014). 

Less has been reported regarding the regulation of genes associated with 5,10-
methenyl-THF in connection to T2D. This reporter metabolite is an intermediate 

Figure 10. The metabolic signature of T2D in skeletal muscle. Consensus GSA of the meta-analysis 
results of six microarray datasets coupled with the Kiwi workflow identified a group of metabolites, and their
connection in the myocyte metabolic network, that were significantly affected by transcriptional changes in
T2D vs NGT. The maximum SPL was set to 3 and the p-value cutoff was set to 0.001. 
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in folate one-carbon metabolism and acts as a carbon donor for nucleotide 
synthesis, methionine synthesis, purine synthesis, and DNA methylation. The 
regulation of 5,10-methenyl-THF is in line with our pathway GSA where we 
observed a down-regulation of both methionine and nucleotide metabolism. Two 
significantly differentially expressed genes are associated with 5,10-methenyl-THF. 
MTHFD1 is down-regulated and implies a reduced interconversion between THF 
intermediates. On the other hand, FTCD is up-regulated, possibly indicating a 
contribution from histidine catabolism into THF metabolism. It has been shown 
that histidine has positive effects on T2D (Kimura et al., 2013; Lee et al., 2005; 
Stan áková et al., 2012), and perhaps an increased histidine catabolism in muscle 
could be linked to the negative effects of T2D. 

The metabolic signature can predict individual disease states 

We wanted to ensure the relevance of the identified metabolic signature of T2D in 
skeletal muscle. This subnetwork came out as a result of combining six different 
datasets, and we wanted to determine if it was prominent enough to be relevant on 
the level of individual subjects. To do this, we took the most significant genes 
underlying this network (12 genes with p<1e-5), associated with 20 out of the 25 
metabolite gene-sets in the network, and asked if these genes alone had the power 
to predict if a subject was T2D or NGT. We used a random forest classification 
model to predict the disease state of each subject from its expression levels of the 
12 genes, by training the model on the remaining subjects in that dataset (leave-
one-out cross validation). For each study we could then plot the true positive rate 
against the false positive rate for different classification thresholds, known as a 
receiver operating characteristic (ROC) curve. The area under the ROC curve 
(AUC) can be used to assess the performance of a binary classification procedure, 
where an AUC of 1 represents a perfect classification and 0.5 represents a 
performance no better than random. This procedure was repeated 100 times to give 
a distribution of 100 AUC scores for each of the six studies. These values are shown 
in Figure 11 and are high for most datasets (close to perfect classification for two 
datasets, around 0.8 for three datasets, and around 0.6 for one dataset). To ensure 
that these results were specific for the metabolic signature and not just a general 
property of gene expression profiles, we reran the classification scheme 100 times 
for each study, while using randomly selected genes as classifiers. These AUC 
scores are also shown in Figure 11, covering a larger range of values but centered 
on around 0.5. This implies that the classifier genes have the ability to correctly 
predict the disease state of individual subjects across several studies suggesting that 
the metabolic signature is a common feature of T2D in skeletal muscle. 
Nevertheless, the performance was lower in the Patti dataset, pinpointing the 
complexity and impact of individual variation in connection to this disease. 

Here, the point was not to establish a gene-set to be used for predicting disease 
states (in which case a different training/validation scheme would have been 
employed), but rather to show that the metabolic signature was relevant for 
individual phenotypes. Regardless, the 12 genes that we used as classifiers have 
later also been shown to be able to predict insulin resistance in independent 
datasets, using random general linear models (Chaudhuri et al., 2015). 



Inherent properties of T2D and obese myocytes (Paper VI) 

41 

Inherent properties of T2D and obese myocytes (Paper VI) 

Dissecting the transcriptional profiles of T2D, obesity, and insulin 

In Paper III we performed a general characterization of T2D skeletal muscle, 
through a meta-analysis of gene expression studies. The advantage with such an 
approach is that previously published data can be reused and analyzed in a new 
light gained from the combination of studies and increase in sample size. A 
disadvantage is that the experimental designs cannot be controlled and that 
information about the phenotypic characteristics of the subjects can be limited. 
Therefore, in Paper VI, we designed and carried out an experiment, which is 
described in Figure 12A, in order to study skeletal myocyte gene expression in a 
controlled manner. In this project, we used 24 human subjects divided into four 
groups, each consisting of 3 males and 3 females. Subjects in the first group (T2D) 
were diagnosed as T2D, but were not obese (BMI of 24.4±2.7). Subjects in the 
second group (OB) were obese (BMI of 35.2±3.6), but not diabetic. A third group 
(T2D&OB) consisted of subjects that were both T2D and obese (BMI of 33.2±2.8). 
Finally, there was a control group consisting of healthy non-obese (BMI of 
24.0±0.6) subjects. This experimental setup represents a factorial design with two 
levels of each of the main factors T2D (either T2D or NGT) and OB (either obese 
or non-obese). The design allowed us to investigate and isolate the individual 
influence of T2D and obesity, respectively. This is of particular interest since a 
majority of T2D patients are also obese (Leibson et al., 2001; Mokdad et al., 2003), 
making it difficult to distinguish between the effects attributed purely to T2D, 

Figure 11. Classification of individual disease states. The metabolic signature has the power to predict
the disease state (T2D or NGT) of individual subjects to a high accuracy in most datasets, and perform well
compared to randomly selected genes.  
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obesity, or influenced by their interaction. To dissect this information can provide 
further insight into the mechanisms underlying this complex and multi-factorial 
disease. 

Cells in the human body are influenced by the extracellular environment including 
circulating hormones, cytokines, and other agents. To avoid confounding the gene 
expression analysis with the possible influence of these factors and their variation 
between individuals we decided to use primary differentiated myotubes, an 
established in vitro model to study skeletal muscle. To do this, muscle biopsies were 
taken from each subject and muscle precursor cells were isolated form the biopsies. 
These were then cultured in vitro and differentiated into myotubes (in vitro 
myocytes). The in vitro myocytes were stimulated with insulin and samples for 
RNA-seq were taken at baseline and at 0.5, 1, and 2 hours after stimulation. As the 
in vitro myocytes were kept in the same controlled environment, any differences 
that we could identify between the groups would represent specific inherent 
properties of these myocytes, as a memory of the influence of the in vivo phenotype 
on the corresponding muscle precursor cells. These intrinsic characteristics are 
relevant to identify since they could represent more robust and hard-wired effects 
of T2D (or obesity), passed on from muscle precursor cells to differentiated 
myocytes, probably through genetic or epigenetic mechanisms, and present even 
without the direct influence from the diabetic (or obese) extracellular 
environment. As such, these properties could be of considerable value when 
designing new treatments for T2D, because they are likely hardwired exclusively 
in the pathological state of the skeletal muscle. 

Figure 12. The transcription profiles associated with T2D and obesity are remarkably similar. A) A 
factorial design was used to study individual effects of T2D and obesity on gene expression. By using in vitro
myocytes, acquired by culturing and differentiating muscle precursor cells isolated from the subjects, it was 
possible to identify inherent transcriptional signatures associated with T2D and obesity. B) By comparing the
transcriptional changes identified between the controls and the remaining three groups (T2D, OB, and
T2D&OB) it was found that the three groups displayed remarkably similar expression patterns. 
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These inherent properties cannot be detected simply by analyzing tissue biopsy 
samples. Further on, in contrast to tissue samples, the in vitro myocyte RNA-seq 
samples are guaranteed to represent the myocyte specific transcriptome, without 
contamination from other cell types present in the tissue. The in vitro myocytes 
have been used before to study various aspects of T2D and it has been shown that 
several properties relevant to the T2D phenotype are retained in these cells 
(Bouzakri et al., 2003; Broholm et al., 2012; Gaster and Beck-Nielsen, 2004; Gaster 
et al., 2004; Green et al., 2011; Henry et al., 1996; McIntyre et al., 2004; Scheele et 
al., 2012; Thompson et al., 1996). In Paper VI we thus set out to characterize the 
inherent properties using genome-wide transcriptome analysis, focusing on the 
effects associated specifically and individually with T2D and obesity. This was done 
by using a linear model to analyze differential expression: 

using the limma/voom pipeline (Law et al., 2014; Ritchie et al., 2015). Here the 
T2D and OB factors, and their interaction (T2D:OB), enable comparisons 
between the four groups. The influence on gene expression by insulin (time after 
stimulation), gender, and age is adjusted for and captured by the last factors in the 
model. 

Similar transcriptional signatures associated with both T2D and obesity 

We started by assessing the differential expression between controls and each of 
the three remaining groups (T2D, OB, and T2D&OB). All three groups were 
distinguished from controls, in terms of differential expression of a large number 
of genes. We clustered genes that were significant in at least one of the three 
comparisons, based on their fold changes, and what appeared was a surprising 
similarity of the changes taking place in all three groups compared to controls 
(Figure 12B). The pairwise Pearson correlation of the fold changes of all genes was 
also high between the three groups (0.67, 0.81, and 0.65). This implies that 
myocytes originating from muscle precursor cells from a T2D but non-obese 
person show very similar characteristics to those of myocytes originating from 
muscle precursor cells from an obese but NGT person. Apparently, muscle 
precursor cells independently influenced by T2D or obesity, promote similar 
transcriptional signatures in the myocytes they give rise to, probably through 
epigenetic mechanisms. Moreover, the induction of a similar transcriptional 
signature cannot be attributed to potential biases from the extracellular 
environment, insulin, age, and gender. It is possible that obesity induces an 
inherent transcriptional response that, being similar to that of T2D, provides a 
foundation to develop the disease under the influence of additional deleterious 
factors that can be present in the in vivo environment. 

In line with the observed similarities between the three groups, we did not identify 
any significant difference in the transcriptional changes associated with insulin 
stimulation. This was concluded by introducing different combinations of 
interaction terms in the linear model, taking into account interaction between T2D, 
OB, and insulin (time). In none of the cases were these interaction terms 
significantly contributing to explaining the expression level of any single gene. 
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However, there might still be differences, others than those noted on the 
transcriptional level, present in the response to insulin signaling, which we did not 
measure. 

An effect of the identification of similar transcriptional profiles associated with the 
T2D, OB, and T2D&OB groups is that there is significant interaction between T2D 
and OB. In other words, assessing the effect of T2D will be dependent on the level 
of obesity. For instance, fewer changes in gene expression were observed when 
comparing T2D vs NGT in the obese case compared with in the non-obese case. 
This, along with the evidence for different etiologies for T2D in obese and non-
obese subjects (Arner et al., 1991), is important to take into account when 
designing or interpreting research that investigates the effect of T2D, and the BMIs 
of the subjects have to be carefully considered. 

Exploring genetic and epigenetic influences on the transcriptional profiles 

The similar transcriptional profiles of T2D and obesity are probably mediated 
through some combination of genetic and epigenetic effects, since the identified 
characteristics of the in vitro myocytes reflect properties passed on from the muscle 
precursor cells from the subjects in the different groups. Therefore, we wanted to 
exploit the RNA-seq data to try to uncover evidence for such influences and 
generate hypotheses for possible mechanisms behind these strikingly similar 
transcriptional changes. 

At the genetic level we explored the association between SNPs and expression 
changes. To avoid drawing false conclusions from our relatively small dataset, we 
focused on known expressed quantitative trait loci (eQTL), which represents a 
significant association between a specific SNP and an expression change of a 
specific gene. Using the NCBI GTEx-eQTL browser (Lonsdale et al., 2013), which 
integrates eQTL information with phenotypic traits from GWAS studies, we could 
acquire eQTLs for T2D and obesity. This resulted in 186 eQTLs affecting the 
expression of 30 unique genes. Next, we compared these eQTL genes with our gene 
expression data and could thereby identify 7 genes showing significant differential 
expression between at least one of the three groups (T2D, OB, or T2D&OB) and 
controls. According to the database, the expression of these 7 genes were affected 
by 67 SNPs in total. To close the circle, we needed to validate whether any of the 
67 SNPs were present in the subjects in our study. Using the RNA-seq data, which 
of course can only be used to infer the DNA-sequence of transcribed regions, we 
were able to determine (for at least four subjects in a group) the nucleotide 
sequences for the regions surrounding eight of the 67 SNPs. The results indicated 
some variation in nucleotide frequencies between the different groups and it is 
possible that some of these genetic variations explain part of the transcriptional 
signatures that we observed in connection to T2D and obesity. In particular we 
identified the transcription factors PPARG and JAZF1, which have the possibility 
to influence the expression of multiple other genes, as being both eQTL genes and 
differentially expressed in our data. 

On the epigenetic level we explored the influence on transcription from histone 
modifications. To do this we performed GSA using piano and a histone 



Inherent properties of T2D and obese myocytes (Paper VI) 

45 

modification gene-set collection from the Epigenomics Roadmap project available 
through the Enrichr website (Chen et al., 2013). These gene-sets are based on 
ChIP-seq data, identifying for each gene if a certain histone modifications is 
present, across various cell types. We filtered this data for muscle related cells. In 
this project we used a specific GSA approach where we performed two parallel 
GSA runs, one with gene-level q-values (FDR adjusted p-values) as input, and one 
with gene-level fold changes as input. We then performed consensus GSA of these 
two runs to identify significant gene-sets based both on the statistical and biological 
level of change of the member genes. Through this analysis we identified one 
specific histone methylation mark, H3K27me3, as particularly interesting, as it was 
highly significant for all three groups compared to controls (Figure 13A). These 
results were consistent with a validation analysis of a different histone modification 
gene-set collection based on data from the ENCODE project (also downloaded 
from Enrichr). Figure 13B shows the number of significant genes belonging to the 
H3K27me3 gene-sets and compares this with the number of expected significant 

Figure 13. The transcription profiles may be influenced by changes to the H3K27me3 mark. A) A
heatmap of the investigated histone modification gene-sets, showing a consistent significance of the
H3K27me3 gene-set in all three groups. B) A boxplot showing the number of significant H3K27me3 genes
compared to the distribution of number of significant genes from random permutation. 
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genes, in a group of genes of that size, by randomly permuting the gene labels 
10,000 times. As can be seen it is quite unlikely to observe these results by chance, 
indicating that there is a possibility that changes to this specific histone methylation 
mark in connection to T2D and obesity could have an influence on part of the 
similar transcriptional signatures that we observed in the T2D, OB, and T2D&OB 
groups compared to controls. 

The H3K27me3 gene-sets show a general unspecific direction of regulation, i.e. a 
mix of up- and down-regulated genes. There is a subtle bias towards down-
regulation however, so there is at least a subset of these genes that are down-
regulated. The presence of H3K27me3 is known to repress the transcription of 
genes involved in development and differentiation (Boyer et al., 2006; Lee et al., 
2006; Sen et al., 2008), and the demethylation of this histone mark is observed 
during myogenesis (Seenundun et al., 2010). In line with this, we found significant 
down-regulation, in the T2D group, of the myogenic marker genes MYOD1, 
MYOG, TNNI1, MYH2, and MEF2C (the last one also down-regulated in the OB 
and T2D&OB groups). 

Characterizing the inherent transcriptional signatures 

To characterize the functions of the expression patterns in the T2D, OB, and 
T2D&OB groups we performed GSA, using the same approach as for the histone 
modification gene-sets, i.e. basing the results on both the gene-level q-values and 
fold changes. We evaluated GO-terms, metabolic pathways from iMyocyte2419, 
and so-called hallmark gene-sets from the Molecular Signatures Database 
(Liberzon et al., 2015). The hallmark gene-sets are computationally and manually 
refined from a large set of founder sets and have been validated using gene 
expression data relevant to the phenotype or property that each gene-set 
represents. The GSA results are shown in Figure 14. 

In line with the finding of influence from H3K27me3 on the transcriptional 
profiles, we identified several gene-sets in the hallmark and GO-term GSAs, 
affected by down-regulation in the three groups and related to development and 
differentiation. These gene-sets included myogenesis, muscle organ development, 
skeletal muscle tissue development, and muscle contraction. In fact, most of the 
down-regulated GO-terms were related to muscle function and structure. 
Collectively, this points to that a portion of the inherent transcriptional profiles 
associated with T2D and obesity includes down-regulation of genes connected to 
muscle development and function, possibly mediated through the H3K27me3 
mark. On the other hand, we also observed significant up-regulation, in the three 
groups compared to controls, of gene-sets involved in the function and structure of 
the extracellular matrix (ECM), e.g. epithelial-mesenchymal transition, 
extracellular matrix, heparin binding, collagen binding, glycosaminoglycan 
binding, and integrin binding. This was interesting since ECM is important for 
muscle maintenance and development, and is required for myotube formation 
(Gillies and Lieber, 2011; Melo et al., 1996; Osses and Brandan, 2002; Stern et al., 
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2009; Velleman et al., 2012). In what way these two opposite results are connected 
is difficult to interpret and requires additional research. 

Another theme that we identified through the GSA was regulation of immune 
related functions and inflammation. These showed up-regulation in the OB group 
and unspecific regulation in the T2D group. This is in line with the known presence 
of chronic low-grade inflammation and activation of the immune system in 
association with T2D and obesity (Donath and Shoelson, 2011; Esser et al., 2014; 
Shoelson et al., 2006). Increased infiltration of macrophages and expression of 

Figure 14. Gene-set analysis results. A) Significant GO-terms identified in the comparisons of the T2D,
OB, and T2D&OB groups with controls, respectively. B) Significant hallmark gene-sets for the same 
comparisons as the GO-terms. 
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inflammatory macrophage genes has been observed in T2D muscle (Fink et al., 
2013; Weisberg et al., 2003). It was however surprising that we identified up-
regulation of inflammation in myocyte specific transcription data, without the 
presence of immune cells. 

T2D up-regulates a metabolite subnetwork involved in sphingolipid metabolism 

In the previously described functional characterization we did not find any 
significant metabolic pathway gene-sets. Not to be constrained by classical pathway 
definitions we decided to complement this analysis by performing reporter 
metabolite analysis and network visualization, using piano and Kiwi. We used the 
network topology of iMyocyte2419 to extract the metabolite-gene associations 
required for the reporter metabolite GSA and the metabolite-metabolite network 
required for the visualization. We identified a group of significant reporter 
metabolites for the T2D group (none were found for the other groups) that were 
affected by transcriptional up-regulation. When we applied the Kiwi algorithm to 
these results it turned out that they belonged to a tightly connected subnetwork 
(Figure 15A) representing a specific part of sphingolipid metabolism (Figure 15B). 
These reactions involve the conversion of ceramide to galactosylceramide and 
digalactosylceramide, as well as to glucosylceramide and lactosylceramide, which 
can be converted to more complex glycosphingolipids. Sphingolipids function as 
both structural molecules and are involved in cell signaling. Sphingolipids have 
been implicated in T2D before, and an increase in sphingolipid production, plasma 
glycosphingolipid levels, and muscle ceramide levels have been observed in 
association with the disease (Adams et al., 2004; Gault et al., 2010; Haus et al., 2009; 
Russo et al., 2013; Summers and Nelson, 2005). Inhibition of the reaction from 

Figure 15. A sphingolipid subnetwork is regulated in T2D. A) The connected subnetwork of reporter
metabolites that resulted from GSA of T2D gene expression. The myocyte GEM iMyocyte2419 was used as
a basis for the topological analysis. B) The identified reporter metabolites are involved in a specific part of
sphingolipid metabolism. Ceramide (Cer), glucosylceramide (GluCer), lactosylceramide (LacCer),
galactosylceramide (GalCer), digalactosylceramide (DiGalCer), UDP-galactose (UDP-Gal), UDP-glucose 
(UDP-Glu).  
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ceramide to glucosylceramide (shown in Figure 15B) improved insulin sensitivity 
in animal models of T2D (Zhao et al., 2007). It has also been reported that 
ceramide levels in muscle correlate with insulin resistance (Amati et al., 2011; 
Straczkowski et al., 2007; Straczkowski et al., 2004). In summary, by using the 
network topology of the myocyte GEM and GSA coupled with the Kiwi algorithm 
we were able to identify up-regulation of a part of sphingolipid metabolism that is 
implicated in T2D and could not be detected by classical pathway analysis. Since 
this was detected as an inherent property of T2D myocytes, without the influence 
from circulating levels of insulin or plasma sphingolipids, it highlights the 
importance of sphingolipids in the development and progression of the disease in 
muscle. 
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Conclusions and outlook 

With this thesis I had the ambition to contribute to the understanding of the 
manifestation of T2D in skeletal muscle, and identify possible mechanisms 
underlying the pathogenesis and development of insulin resistance. Along the way 
this also materialized in the development of several tools. The main driving force 
behind this was their immediate benefit for my own research, but I also believed 
that, if there was a chance that our algorithms could be of value to other 
researchers, it was worth the additional effort involved with bringing them to the 
level of user-friendly, documented software. Piano (Paper I) has improved the 
GSA workflow in several ways. It is a platform for running multiple different GSA 
algorithms in the same setup, the directionality classification improves the 
interpretation of the GSA results, and the consensus scoring approach enables a 
flexible and robust way to identify significant gene-sets. Kiwi (Paper IV) connects 
seamlessly to the output from piano and enables the integration of GSA with 
network analysis. In particular, the piano-Kiwi workflow has allowed us to exploit 
the myocyte metabolic network topology and integrate it with transcriptome data. 
These analysis steps provide a powerful way to quickly go from high-dimensional 
data and big networks, to the identification of implicated metabolite subnetworks, 
independent of classical pathway definitions. By using appropriate input data and 
relevant metabolic networks, this approach can easily be adopted and applied to 
other tissues and other diseases than T2D.  

In the end of Part I, I discussed some considerations that I have found worthwhile 
taking into account when running GSA. I want to follow up here, with my thoughts 
on what should be improved next. There are certainly many different GSA 
algorithms and tools available. The handful that we tested in Paper I turned out to 
be quite consistent. There is of course always room for improvements, but I do not 
think that algorithm development for GSA is a main concern. Rather I would focus 
on what I believe is the weakest link in the GSA chain at the moment, namely the 
gene-set collections. Targeted efforts to improve the quality of gene-sets, in terms 
of valid gene members, reduced overlap, and broad unbiased coverage, would 
greatly benefit GSA and the interpretation of omics data. (What I mean with 
unbiased coverage is that databases from which gene-sets can be acquired typically 
rely on submissions from the research community and are therefore biased to what 
is being actively researched.) The improvement of gene-reaction associations in 
metabolic networks and of the topology of cell type- or context-specific GEMs, will 
also lead to better predictions of metabolites implicated in disease, using the piano-
Kiwi workflow. The recently developed hallmark gene-set collection (Liberzon et 
al., 2015) that we used in Paper VI is an excellent example of improvement of gene-
set quality, and it will be great to see a continued expansion of this collection in the 
future. 
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Research is a collaborative effort, directly or indirectly. I have had the opportunity 
to work in projects with several excellent scientists that have contributed with their 
specific expertise. But even a project carried out by a single individual is usually 
spurred by previous research and the results will hopefully benefit others in the 
field. Even though science is competitive, I have had very positive experience of 
cooperation and assistance from other researchers at conferences and that I have 
pursued with questions. It is reassuring to know that others, from their own unique 
angles, are attempting to tackle the unanswered questions regarding T2D. Our 
approach to study this complex disease is through systems biology, using high-
throughput data, network modeling, and methods that rapidly process this 
information and distills it down to the essential components of interest. As 
mentioned earlier, this approach often represents data driven hypothesis 
generation, in contrast to hypothesis driven data generation (the former based on 
general questions like: “what are the differences between T2D and NGT?”, 
whereas the latter typically involves more precise hypotheses and targeted 
experiments). Indeed we do have experimental data and our results indicate what 
genes are transcriptionally changed in association with T2D, but most of our 
conclusions about functions and mechanisms are inferred from transcriptional 
patterns. To be critical about my own work, our T2D studies lack experimental 
validation. However, this does not diminish the power of systems biology studies, 
because they make it possible to efficiently narrow down high-throughput data 
leading to the identification of likely targets, functions, or mechanisms, involved in 
the development of T2D. This information, together with results from other 
studies, is continuously assembled, piece by piece, as collective evidence, useful for 
us and others in the pursuit of learning more about T2D. 

So, what did we learn about T2D from our studies? In Paper III we reconstructed 
a comprehensive myocyte-specific GEM using both transcriptome and proteome 
data as experimental evidence for the presence of reactions. Next, we analyzed 
gene expression profiles from 153 subjects, across 6 different studies, to establish a 
metabolic signature of skeletal muscle T2D. We identified a subnetwork of 
metabolites, mainly affected by down-regulation, involved in processes like 
mitochondrial oxidative metabolism, BCAA catabolism, and THF metabolism. 
These results were consistent with pathway and GO-term GSA, and it was possible 
to use the expression of the underlying genes to predict the disease state of 
individual subjects. In summary, this study provided holistic insight into the 
metabolic state of T2D muscle. In Paper VI we explored the inherent properties 
of skeletal muscle in association with T2D and obesity, by using in vitro myocytes 
from 24 subjects. We found a remarkable similarity between the transcriptional 
profiles of myocytes originating from T2D, OB, and T2D&OB subjects. It is 
possible that part of these transcriptional patterns are explained by genetic 
variations. We also identified a likely epigenetic candidate, H3K27me3, which 
could mediate the inherent transcription as a memory of the original in vivo 
phenotype. Characterizing the transcriptional changes, we found that myogenesis 
was dysregulated and muscle function was down-regulated in connection to T2D 
and obesity, whereas inflammation was up-regulated. We also identified an up-
regulated metabolite subnetwork involved in sphingolipid metabolism. In 
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summary, this study provided a systematic characterization of the individual 
intrinsic effects of T2D and obesity in skeletal myocytes. Skeletal muscle insulin 
resistance is an important factor in the development of T2D that may appear long 
before elevation of blood glucose levels and diagnosis of the disease (DeFronzo 
and Tripathy, 2009). As such, deleterious changes in skeletal myocytes could be an 
early sign for the risk of developing T2D. The reporter metabolites identified in 
Paper III and Paper VI, through the piano-Kiwi workflow, could therefore be 
valuable biomarkers for the early detection of subjects at risk. If causal links can 
be proven, they could also represent potential drug targets. 

How do the results from our two studies on T2D compare? Both studies look at 
T2D vs NGT in skeletal muscle. However, the results in Paper III are based on 
skeletal muscle tissue biopsies, whereas the results in Paper VI are from in vitro 
myocytes. Furthermore, we learned from the factorial design of T2D and obesity 
that BMI plays an important role in defining the differences between T2D and 
NGT. Indeed, the subject BMIs varied within and between the different datasets 
used in our meta-analysis. Nevertheless, one would expect some common 
biological themes to show up. In both studies we identified transcriptional 
upregulation, in T2D, of genes involved in immune- and inflammation-related 
processes. A chronic low-grade inflammation and immune system activation is 
associated with T2D (Donath and Shoelson, 2011) and macrophage infiltration has 
been observed in muscle of T2D subjects (Fink et al., 2013). Nevertheless, it was 
particularly interesting to find that these patterns also were inherently present in 
the transcriptional regulation of myocytes (without external influence, from e.g. 
the immune system). Further on, we found up-regulation of genes associated with 
the ECM, in the T2D in vitro myocytes. We cannot exclude that this observation is 
influenced by the fact that these cells are cultured. However, while revisiting the 
GSA results from the meta-analysis there was also an up-regulation in skeletal 
muscle tissue, of the GO-terms: regulation of cell shape, cell junction, basal part of 
cell, apical plasma membrane, and cell morphogenesis. If these processes point at 
the same mechanism as up-regulation of ECM, is however difficult to deduce. In 
the meta-analysis, we identified down-regulation of oxidative metabolism, 
specifically glycolysis, beta-oxidation, TCA cycle, and oxidative phosphorylation. 
We could not find any statistically significant changes of any metabolic pathways 
between the different in vitro myocytes, which could point to that these metabolic 
effects are context dependent, i.e. apparent when the myocytes are present in the 
tissue of the host but not inherently associated with the myocytes. We did however 
identify down-regulation of a metabolite subnetwork in the sphingolipid 
metabolism pathway. These results together point at reduced mitochondrial 
capacity and potential deleterious effects from metabolic overload in T2D, and are 
in line with previous results, including a study using a similar approach to ours 
(Zelezniak et al., 2010). Zelezniak et al. also detected 3-methylcrotonyl-CoA, part 
of BCAA catabolism, as a reporter metabolite in T2D subjects, which we also did 
in our meta-analysis. However, we did not see any effect on BCAA metabolism in 
the in vitro myocytes. One reason why we in Paper VI did not observe some of the 
changes that we did in the meta-analysis, or that have been reported in other 
studies, like e.g. down-regulation of BCAA metabolism or oxidative 
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phosphorylation, could be that these processes are not inherent to T2D myocytes, 
but rather a response to the diabetic extracellular environment, as mentioned 
earlier. This also highlights the strength of the in vitro myocyte model, i.e. that it 
enables us to delineate the hard-wired effects of T2D on skeletal muscle.  

An apparent challenge is the variation of results from different studies using 
different human cohorts. Differences in data quality and sample size can only 
explain some of the occasionally low overlap of results between studies. In our 
meta-analysis in Paper III, we initially selected eight studies that compared muscle 
gene expression between T2D and NGT subjects. Nevertheless, two of the studies 
had a negative correlation with the remaining six. Even after careful examination 
of the subject characteristics data, microarray type, muscle type, or potential 
contamination of immune cells, we failed to find any explanation for this irregular 
pattern. (These two studies were not included in the final meta-analysis, see details 
in Paper III). Furthermore, even the top differentially expressed genes from the 
meta-analysis were not always consistent across studies, i.e. a gene could for 
instance be up-regulated in most of the groups, but down-regulated in one of the 
groups. Bigger human cohorts and systematic reporting of detailed subject 
characteristics will improve future studies of T2D, in particular when reanalyzing 
accumulated datasets. Systems biology and bioinformatics approaches can then be 
used to stratify subjects and patients in order to elucidate the complex 
heterogeneity of T2D. 

Research is a collaborative effort. As I said in the background, I believe that 
holistic systems level research needs to be connected to molecular biology targeted 
experiments to eventually reach a full understanding of the development and 
potential treatment of T2D. We have provided some useful systems biology tools 
for the analysis of disease-related high-throughput data, and have identified 
promising mechanisms and targets connected to the pathogenesis of T2D. The next 
steps would be to validate these in separate experiments and determine whether 
they are a cause or consequence of the disease. I hope that our work, that I have 
presented here, will contribute to the collective knowledge and thereby make an 
impact on the quest to understand and cure T2D.  
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