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The effects of Lewis number Le on both vorticity and enstrophy transport within the
flame brush have been analysed using direct numerical simulation data of freely propa-
gating statistically planar turbulent premixed flames, representing the thin reaction
zone regime of premixed turbulent combustion. In the simulations, Le was ranged
from 0.34 to 1.2 by keeping the laminar flame speed, thermal thickness, Damköhler,
Karlovitz, and Reynolds numbers unchanged. The enstrophy has been shown to decay
significantly from the unburned to the burned gas side of the flame brush in the Le ≈
1.0 flames. However, a considerable amount of enstrophy generation within the flame
brush has been observed for the Le = 0.34 case and a similar qualitative behaviour
has been observed in a much smaller extent for the Le = 0.6 case. The vorticity
components have been shown to exhibit anisotropic behaviour within the flame brush,
and the extent of anisotropy increases with decreasing Le. The baroclinic torque term
has been shown to be principally responsible for this anisotropic behaviour. The vortex
stretching and viscous dissipation terms have been found to be the leading order
contributors to the enstrophy transport for all cases, but the baroclinic torque and the
sink term due to dilatation play increasingly important role for flames with decreasing
Le. Furthermore, the correlation between the fluctuations of enstrophy and dilatation
rate has been shown to play an important role in determining the material derivative
of enstrophy based on the mean flow in the case of a low Le. C 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4939795]

I. INTRODUCTION

The statistical behaviour of the transport of vorticity and enstrophy is of fundamental importance
in the analysis of turbulent fluid motion.1–3 The presence of heat release, density variation, and flame
normal acceleration in turbulent flames significantly affects the underlying turbulent flow structure
and is manifested in flame-generated turbulence4 and counter-gradient scalar transport5,6 to name a
few. While these issues have been the focus of turbulent combustion research for decades (as reviewed
elsewhere),7 relatively limited effort has been directed to the analysis of the statistical behaviour of
vorticity ω⃗ and enstrophy Ω transports in turbulent reacting flows.

In non-premixed flames, the alignment of the vorticity vector with local principal strain rates
was analysed by Nomura and Elghobashi,8 Boratov et al.,9 and Jaberi et al.,10 These analyses demon-
strated that vorticity vector ω⃗ aligns with the intermediate principal strain rate in non-premixed flames
similar to that in non-reacting turbulent flows, but the vorticity vector in non-premixed flames also
shows appreciable probabilities of local alignment with the most extensive principal strain rate. The
non-premixed flame Direct Numerical Simulation (DNS) data by Boratov et al.9 have demonstrated
that the extent of vorticity alignment with the most extensive principal strain rate increases in regions
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where the magnitude of strain rate dominates over the vorticity magnitude. The analysis by Jaberi
et al.10 indicated that the alignment of vorticity with the intermediate (most extensive) principal strain
rate decreases (increases) due to chemical heat release in non-premixed flames, whereas the vorticity
vector ω⃗ remains mostly perpendicular to the most compressive principal strain rate in both reactive
and non-reactive regions of non-premixed turbulent combustion.

In premixed flames, the alignment of vorticity with local principal strain rates has been numer-
ically analysed by Hamlington et al.,11 who addressed the thin reaction zones regime combustion.
These authors have revealed that vorticity alignment with local principal strain rates in the thin reac-
tion zones regime flames is qualitatively similar to previous findings in the context of non-premixed
combustion (i.e., predominant alignment with the intermediate principal strain rate; negligible align-
ment with the most compressive principal strain rate, and an increased alignment with the most exten-
sive principal strain rate in the heat releasing zone). It was further shown by Hamlington et al.11 that
vorticity magnitude decays significantly in the burned gas across the flame brush, whereas Treurniet
et al.12 demonstrated that vorticity magnitude increases in the burned gas for the flames with high den-
sity ratio (or heat release parameter). Lipatnikov et al.13 analysed the terms of enstrophy and vorticity
transport equation for weakly turbulent premixed flames representing the corrugated flamelets regime.
While Hamlington et al.,11 Treurniet et al.,12 and Lipatnikov et al.,13 dealt with DNS data, Stein-
berg et al.14–17 experimentally investigated the enstrophy field in turbulent premixed flames using
cinema-stereoscopic Particle Image Velocimetry (PIV) measurements of rim-stabilised turbulent pre-
mixed flames.

Recently, Chakraborty18 revealed that the global Lewis number Le can significantly affect the
vorticity statistics in premixed turbulent combustion. In particular, Chakraborty18 showed that the
statistical behaviour of vorticity alignment with local principal strain rates can be significantly
different for the corrugated flamelets regime of combustion with Le = 1.0, and for the thin reaction
zones regime of combustion with non-unity Lewis number, in comparison to earlier studies.8–11,19–28

For example, in the corrugated flamelets regime, and for the cases with high Karlovitz number and
low Le, where the most extensive principal strain rate is controlled by the local dilatation rate,18 the
vorticity vector ω⃗ predominantly aligns with the intermediate and the most compressive principal
strain rates. Such an alignment of the vorticity vector differs from the alignment observed earlier in
premixed11 and non-premixed8–10 flames with unity Lewis number, or in non-reacting flows.19–28

While each individual species j has its own Lewis number Le j, in simplified models of molecular
transport, the Lewis number of the deficient reactant (fuel or oxidant) is often taken to be the char-
acteristic global Lewis number Le29 as was done in the aforementioned analysis by Chakraborty.18 It
is worth noting here that alternative methods of assigning a characteristic Lewis number have been
proposed based on heat release measurements30,31 and mole fractions of the mixture constituents.32

In the past, the significant effects of characteristic Lewis number Le on various aspects of pre-
mixed combustion (e.g., thermo-diffusive instability of laminar flames, burning rate, scalar gradient
statistics, and combustion modelling) have been addressed analytically,33–36 experimentally,37–43 and
numerically.18,44–53 Various concepts, which have been developed in order to explain such effects
in turbulent flames, are reviewed elsewhere.54,55 However, the influences of Le on vorticity ω⃗ and
enstrophy Ω transport are yet to be analysed in detail in the existing literature. In this respect, the
main objectives of the present analysis are as follows.

1. To demonstrate the effects of characteristic Lewis number Le on the statistical behaviour of the
transport of vorticity ω⃗ and enstrophy Ω in turbulent premixed flames.

2. To provide physical explanations for the observed behaviours of the various terms in the vorticity
ω⃗ and enstrophy Ω transport equation.

The above objectives are met by extracting vorticity ω⃗ and enstrophy Ω statistics from DNS data of
freely propagating statistically planar turbulent premixed flames with characteristic Lewis number
ranging from Le = 0.34 to 1.2.

The rest of the paper is organised as follows. The mathematical background and numerical imple-
mentation pertaining to this analysis are presented in Secs. II and III of this paper. Following this, the
results are presented and subsequently discussed. The main findings are summarised and conclusions
are drawn in Sec. V of this paper.
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II. MATHEMATICAL BACKGROUND

The momentum conservation equation for the ith direction is given by

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p
∂xi
+

1
ρ

∂τik
∂xk

, (1)

where ui is the ith component of velocity, ρ is the gas density, and τij = µ
�
∂ui/∂x j + ∂u j/∂xi

�
−

(2µ/3) δij(∂uk/∂xk) is the component of stress tensor, µ = ρν and ν are dynamic and kinematic
viscosities, respectively, and the summation convention applies for the repeated index k. Taking curl
of Eq. (1) yields the transport equation of the ith component of vorticity ωi = εijk∂uk/∂x j,

∂ωi

∂t
+ uk

∂ωi

∂xk
= ωk

∂ui

∂xk    
t1i

− ϵ ijk
1
ρ2

∂ρ

∂x j

∂τkl

∂xl                        
t21i

+
ϵ ijk

ρ

∂2τkl

∂x j∂xl                
t22i

−ωi
∂uk

∂xk  
t3i

+
ϵ ijk

ρ2

∂ρ

∂x j

∂p
∂xk                  

t4i

. (2)

The term t1i on the right hand side of Eq. (2) is the ith component of the vortex-stretching term. The
ith component of the viscous torque term t21i arises due to the misalignment between the gradients
of viscous stress and density and vanishes in constant-density flows. The ith component of term t22
is responsible for the diffusion of vorticity and is equal to ν∂2ωi/∂x j∂x j in constant-density flows
or in the case of a constant µ (as assumed in the current analysis). The fourth term on the right hand
side of Eq. (2) (i.e., ith component of term t3) is responsible for vorticity destruction by dilatation,
whereas the last term on right hand side of Eq. (2) (i.e., ith component of term t4) is responsible for
baroclinic effects arising from the misalignment of the density and pressure gradients. Both term t3
and t4 vanish in constant-density flows.

Multiplying ωi both sides of Eq. (2) yields the transport equation of enstrophy Ω = ω2/2 =
ωiωi/2 (Ref. 13),
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On Reynolds averaging Eq. (3) provides (Ref. 13)
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where Q indicates the Reynolds averaged value of a general quantity Q. The term TI is the vortex
stretching contribution to the mean enstrophy Ω̄ transport, whereas the term TII is the average
of the scalar product of two vectors, the vorticity and the viscosity torque. The term TIII, which
reads νωi(∂2ωi/∂x j∂x j) = ν∂2Ω/∂x2

j − ν
�
∂ωi/∂x j

� �
∂ωi/∂x j

�
if the dynamic viscosity is constant,

represents the combined action of molecular diffusion and dissipation of the mean enstrophy Ω̄.
These two sub-terms can be of the same order of magnitude for small values of turbulent Reynolds
number, whereas the dissipation sub-term (i.e., −ν

�
∂ωi/∂x j

� �
∂ωi/∂x j

�
) dominates for high values

of turbulent Reynolds number. The term TIV is responsible for the dissipation of enstrophy due to
dilatation. The term TV is the baroclinic torque term which arises due to misalignment between
pressure and density gradients. The statistical behaviour of these terms will be discussed in detail in
Section IV of this paper.

III. NUMERICAL IMPLEMENTATION

As the current analysis focuses on the effects of characteristic Lewis number Le on vorticity
and enstrophy transport in isolation, a simple one-step chemistry has been used for the purpose of
computational economy following several previous analyses.44–52 A well-known compressible code
called SENGA56 has been used for the DNS simulations where the standard conservation equations
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of mass, momentum, energy, and species are solved in non-dimensional form. The dimensionless
forms of the conservation equations are presented in Appendix A. The simulation domain is taken to
be a cube of size 24.1δth × 24.1δth × 24.1δth, where δth = (Tad − T0)/max

�
∇ ⌢

T
�
L

is the thermal flame
thickness with T0, Tad, and T̂ being the unburned gas, adiabatic flame, and instantaneous dimensional
temperatures, respectively, and the subscript “L” refers to the unstrained laminar flame condition.
A uniform Cartesian grid of 230 × 230 × 230 has been used to discretise the simulation domain,
which ensures about 10 grid points within δth. The spatial derivatives for the internal grid points
are evaluated using the 10th order central difference scheme and the order of differentiation drops
gradually to a one-sided 2nd order scheme at the non-periodic boundaries. A low storage third order
explicit Runge-Kutta scheme57 is used for explicit time advancement. The turbulent velocity fluc-
tuations are initialised using a pseudo-spectral method58 using the Bachelor-Townsend spectrum.59

The scalar field is initialised by an unstrained planar laminar flame solution. The initial values of
root-mean-square value of turbulent velocity fluctuation normalised by the unstrained laminar burning
velocity u′/SL, integral length scale normalised by the unstrained laminar flame thickness ratio l/δth,
Damköhler number Da = lSL/u′δth, and Karlovitz number Ka = (u′/SL)1.5(l/δth)−0.5 are 7.5, 2.45,
0.33, and 13.2, respectively. These values of u′/SL, l/δth, Da, and Ka represent the thin reaction zones
regime combustion according to the regime diagram by Peters.60 A single value of heat release param-
eter τ = (Tad − T0)/T0 = 4.5 was set in all studied cases, whereas the Lewis number was varied, i.e.,
Le = 0.34, 0.6, 0.8, 1.0, and 1.2, with SL and δth being kept unchanged by varying the pre-exponential
factor in the expression for the reaction rate. The five cases characterized with these five Le will
be referred to as cases A-E, respectively. Standard values are taken for Prandtl number Pr , ratio
of specific heats γ = cp/cv and the Zeldovich number β = Tac(Tad − T0)/T2

ad (i.e., Pr = 0.7, γ = 1.4,
β = 6.0), where Tac is the activation temperature. The flame Mach number Ma = SL/(γRT0)0.5 is
taken to be 0.014 for all cases with R being the gas constant. All the simulations have been carried
out for a chemical time scale tchem = δth/SL, which corresponds to about 3.34 initial integral eddy
turnover times (i.e., tchem = 3.34l/u′) for the cases considered here. The value of u′/SL decayed by
50% ahead of the flame, whereas l/δth increased by a factor of 1.7 when the statistics were extracted.
The simulation time used in the current analysis remains comparable to several previous analyses,61–67

which have contributed significantly to the fundamental understanding of turbulent reacting flows in
the past.

The Reynolds/Favre averaged values have been calculated by ensemble averaging the relevant
quantities in transverse directions (i.e., x2 − x3 planes). The statistical convergence of the averaged
quantities has been assessed by comparing the corresponding values obtained using half of the sample
size in the transverse directions using a distinct half of the domain, with those obtained based on full
sample size. Both the qualitative and quantitative agreements between these sets of values are found
to be satisfactory, and only the results obtained based on full sample size will be presented here for
the sake of conciseness.

In premixed flames, the species field is often characterised in terms of a reaction progress variable
c, which increases from 0.0 in unburned gases to 1.0 in fully burned products. The reaction progress
variable c can be defined in terms of a suitable reactant (product) mass fraction YR (YP) in the follow-
ing manner: c = (YR0 − YR)/(YR0 − YR∞) (c = (YP − YP0)/(YP∞ − YP0)). The statistically planar flames
propagate in the negative x1-direction for all cases considered here so the Favre averaged reaction
progress variable c̃ remains a unique function of x1. Thus, all the Reynolds averaged quantities are
plotted as a function of c̃ for all cases considered here in Sec. IV of this paper.

IV. RESULTS AND DISCUSSION

The distributions of normalised vorticity magnitude
√
ωiωi × δth/SL in the central x1 − x3 mid-

plane at t = δth/SL for different Lewis number cases are shown in Fig. 1 where the contours of c
from 0.1 to 0.9 (left to right) are superimposed on the vorticity magnitude field. It can be seen from
Fig. 1 that the wrinkling of c isosurfaces increases with decreasing Le, which can be quantified by
the normalised turbulent flame surface area AT/AL, which is listed in Table I for the cases considered
here at the time the statistics were taken. The flame surface area has been evaluated using the volume
integral A =


V |∇c| dV for both turbulent and laminar flame cases (shown with subscripts T and L,
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FIG. 1. Distribution of (ωiωi) 1
2 ×δth/SL in the central x1− x3 plane at time t = tchem for the Le= (a) 0.34, (b) 0.6, (c) 0.8,

(d) 1.0, and (e) 1.2 cases.

respectively). Table I also lists the normalised values of the volume-integrated reaction rate of progress
variable RT/RL (where R =


V ẇdV ), which show that RT/RL increases significantly with decreasing

Le. The increases in AT/AL and RT/RL with decreasing Le are caused by faster (slower) diffusion of
reactants (heat) into (from) reaction zones which are positively stretched by turbulent eddies. This
physical mechanism leads to a local increase in burning rate, accelerates the self-propagation of such
zones, and increases their resistance to quenching due to high stretch rates, thus allowing these zones
to advance far into unburned gas. On the contrary, if Le > 1, thermal diffusion from the stretched reac-
tion zones dominates over reactant diffusion into these zones, thus reducing the local rate of burning
and flame wrinkling, particularly when compared to the corresponding turbulent Le = 1.0 flame.

TABLE I. The effects of Lewis number on normalised volume-integrated
reaction rate of progress variable RT/RL and normalised flame surface area
AT/AL after 3.34 initial eddy turn over times.

Le RT/RL AT/AL

0.34 13.70 3.93
0.6 4.58 2.66
0.8 2.53 2.11
1.0 1.83 1.84
1.2 1.50 1.76
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Local increases in burning rate and self-acceleration of upstream-pointing bulges in turbulent
flames with Le < 1 are qualitatively similar to those in the corresponding laminar premixed flames
due to the imbalances between the reactant and heat fluxes, which manifest themselves in the form
of thermo-diffusive instability with respect to weak perturbations. This instability was investigated in
a number of previous analyses.30,55,68–72 The linear stability analysis of thermo-diffusive instability
for planar33–36 and spherical73,74 laminar premixed flames resulted in analytical expressions for the
instability growth rate and largest wavenumber (smallest wavelength) of a perturbation that could
trigger the instability. Interested readers are referred to Refs. 75–79 and the reviews conducted in
Refs. 70–72 for the latest developments in the linear stability analysis of laminar premixed flames
with Le < 1.

Several analyses44–53 attributed large values of AT/AL or RT/RL for turbulent premixed flames
with Le < 1 to the thermo-diffusive instability of laminar flamelets which separate the unburned
and burned gases. An alternative concept54,55,69,80 of the Lewis number effects in premixed turbulent
combustion emphasizes the propagation of highly stretched leading reaction zones into the unburned
gas (the so-called leading edge concept). However, a comparison of the thermo-diffusive instability
and leading point concepts is beyond the scope of the present study.

It was previously demonstrated by Chakraborty et al.52 that the augmented rate of burning and
strong flame normal acceleration for Le ≪ 1 flames (e.g., Le = 0.34 flame considered here) can lead
to significant flame-generated turbulence within the flame brush. For instance, Fig. 1(a) shows that
the vorticity magnitude

√
ωiωi × δth/SL gets significantly augmented towards the burned gas side

of the flame front in the Le = 0.34 case. The same tendency can be discerned in some locations for
the Le = 0.6 case, but the effects of flame generated turbulence (i.e., vorticity generation) are much
weaker than for the Le = 0.34 flame. For the Le ≈ 1.0 (e.g., 0.8, 1.0, and 1.2 cases) flames, the distri-
bution of the normalised vorticity magnitude

√
ωiωi × δth/SL is significantly different. It can be seen

from Fig. 1 that the probability of finding large magnitudes of
√
ωiωi × δth/SL decreases from the

unburned to the burned gas side of the flame front for flames with Le ≈ 1.0 (e.g., 0.8, 1.0, and 1.2
cases).

The above difference in the vorticity magnitude distribution in response to Le can further be seen

from the variation of the Reynolds averaged normalised vorticity magnitude (ωiωi)1/2 × δth/SL with
Favre averaged reaction progress variable c̃ shown in Fig. 2(a) for the different Lewis number cases

considered here. It can be seen from Fig. 2(a) that (ωiωi)1/2 × δth/SL decays monotonically from
unburned to burned gas side of the flame brush for flames with Le ≈ 1.0 (e.g., Le = 0.8, 1.0, and 1.2)
cases considered here. The Le = 0.6 flame shows a behaviour which is qualitatively similar to the
Le ≈ 1.0 cases. However, the vorticity decay within the flame brush in the Le = 0.6 case is weaker
than in the Le = 0.8, 1.0, and 1.2 cases. A similar vorticity decay has been observed for the enstro-
phy transport for low Damköhler number (i.e., Da < 1) unity Lewis number combustion analysed by

Hamlington et al.11 The decay of (ωiωi)1/2 × δth/SL across the flame brush was also observed for the
corrugated flamelets regime flames by Treurniet et al.12 and Lipatnikov et al.13 However, in the present

simulations, the quantity (ωiωi)1/2 × δth/SL increases from the unburned gas side to the middle of the
flame brush before decaying towards the burned gas side in the Le = 0.34 case. A similar trend was
observed in some of the high Damköhler number (i.e., Da > 1) unity Lewis number flames with high
values of τ in previous analyses.12,13

The variations of the rms values of the normalised Favre averaged vorticity

ρ(ωi − ω̃i)2/ρ̄

1/2
×

δth/SL and its components (i.e.,

ρ(ω1 − ω̃1)2/ρ̄

1/2
× δth/SL;


ρ(ω2 − ω̃2)2/ρ̄

1/2
× δth/SL and


ρ(ω3 − ω̃3)2/ρ̄

1/2
× δth/SL) with c̃ are shown in Figs. 2(b)-2(f) for all the different Lewis num-

ber cases considered here. Figures 2(b)-2(f) indicate that there is a difference in the magnitudes of
the rms values of Favre averaged vorticity components between the direction of mean flame prop-
agation and in the transverse directions for all cases, and this anisotropy is particularly strong in
the Le = 0.34 case. This is consistent with previous analyses11–13 which revealed that the presence
of the flame makes the vorticity field substantially anisotropic. It can be seen from Figs. 2(b) to
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FIG. 2. (a) Variation of the Reynolds averaged normalised vorticity magnitude (ωiωi)1/2×δth/SL with Favre averaged

reaction progress variable c̃ for all cases considered here; variations of

ρ(ωi−ω̃i)2/ρ̄

1/2
×δth/SL,


ρ(ω1−ω̃1)2/ρ̄

1/2
×

δth/SL,

ρ(ω2−ω̃2)2/ρ̄

1/2
×δth/SL, and


ρ(ω3−ω̃3)2/ρ̄

1/2
×δth/SL, with c̃ for the flames with (b) Le= 0.34, (c) Le=

0.6, (d) Le= 0.8, (e) Le= 1.0, and (f) Le= 1.2.

2(f) that

ρ(ω1 − ω̃1)2/ρ̄

1/2
monotonically decays from unburned to burned gas side of the flame

brush for all cases, including the Le = 0.34 case. However,

ρ(ωi − ω̃i)2/ρ̄

1/2
in the Le = 0.34 case

shows augmentation of its magnitude from the unburned gas side to the middle of the flame brush
before decreasing again towards the burned gas side of the flame brush, which is similar to the
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variation of (ωiωi)1/2 within the flame brush as shown in Fig. 2(a). It is evident from Fig. 2(b) that
the augmentation of vorticity magnitude within the flame for the Le = 0.34 case originates prin-
cipally due to vorticity components in the directions normal to the mean direction of flame prop-

agation (e.g.,

ρ(ω2 − ω̃2)2/ρ̄

1/2
and


ρ(ω3 − ω̃3)2/ρ̄

1/2
are responsible for the augmentation of


ρ(ωi − ω̃i)2/ρ̄

1/2
within the flame brush for the Le = 0.34 case). For other cases, all the components

of rms of Favre averaged vorticity (i.e.,

ρ(ω1 − ω̃1)2/ρ̄

1/2
× δth/SL;


ρ(ω2 − ω̃2)2/ρ̄

1/2
× δth/SL

and

ρ(ω3 − ω̃3)2/ρ̄

1/2
× δth/SL decay from the unburned to the burned gas side of the flame brush.

The variations of (ωiωi)1/2, (ωnωn)1/2 (here the repeated indices n do not indicate summation)
and (ωtωt)1/2 (here the repeated indices t indicate summation over two tangential directions) with c̃
are shown in Figs. 3(a)-3(e) for the Le = 0.34, 0.6, 0.8, 1.0, and 1.2 cases, respectively, whereωnωn =

NiNjωiω j and ωtωt = (δij − NiNj)ωiω j are the flame normal and flame tangential vorticity compo-
nents, respectively, with Ni = −(∂c/∂xi)/|∇c| being the ith component of the local flame normal
vector. It is evident from Figs. 3(a)-3(e) that (ωnωn)1/2 decays from the unburned to burned gas side of
the flame for all cases. By contrast, (ωtωt)1/2 decays from the unburned gas side to the middle of flame
before rising again and assuming the maximum value close to the burned gas side of the flame for
the Le = 0.34 case. The augmentation of (ωtωt)1/2 within the flame is principally responsible for the
generation of (ωiωi)1/2 within the flame for the Le = 0.34 case. The quantity (ωtωt)1/2 decays from
the unburned to the burned gas side of the flame for the Le = 0.6, 0.8, 1.0 and 1.2 cases considered
here. Assuming two tangential directions are statistically similar, the variations of (ωtωt/2)1/2 are also
compared with the distributions of (ωnωn)1/2 in Figs. 3(a)-3(e). It can be seen from Figs. 3(a)-3(e)
that there are significant differences in the distributions of (ωtωt/2)1/2 and (ωnωn)1/2 within the flame
brush for all cases but the degree of anisotropy between (ωtωt/2)1/2 and (ωnωn)1/2 increases with
decreasing Le. The anisotropic behaviour of vorticity components in Figs. 3(a)-3(e) is consistent with
the behaviour of Favre mean vorticity components shown in Figs. 2(b)-2(f), respectively. The flame
normal direction for statistically planar flames predominantly coincides with the mean direction of
flame propagation (i.e., x1-direction), and thus the variation of (ωnωn)1/2 ((ωtωt/2)1/2) has been found

to be qualitatively similar to

ρ(ω1 − ω̃1)2/ρ̄

1/2
(


ρ(ω2 − ω̃2)2/ρ̄

1/2
and


ρ(ω3 − ω̃3)2/ρ̄

1/2
). Fur-

thermore, a comparison between Figs. 1–3 reveals that the decay of vorticity magnitude from the
unburned to the burned gas side weakens with decreasing global Lewis number Le even though flames
are subjected to statistically similar turbulent flow field on the unburned gas side of the flame.

It is instructive to investigate the statistical behaviour of the terms of the vorticity and enstrophy
transport equations (i.e., Eqs. (2) and (3)) in order to understand the influences of global Lewis
number Le on the vorticity and enstrophy transports. The variations of the normalised values of

(t1tt1t)1/2, (t21tt21t)1/2, (t22tt22t)1/2, (t3tt3t)1/2, and (t4tt4t)1/2 with c̃ are shown in Figs. 4(a)-4(e) for

the Le = 0.34, 0.6, 0.8, 1.0, and 1.2 cases, respectively, where
�
tqttqt

�1/2
= [(δij − NiNj)tqitqj]1/2 =(⃗

tq ·⃗tq −
(
tq·N⃗
)2)1/2

with q = 1,21,22,3, and 4. The corresponding variations of the normalised

values of (t1nt1n)1/2, (t21nt21n)1/2, (t22nt22n)1/2, (t3nt3n)1/2, and (t4nt4n)1/2 with c̃ are shown in

Figs. 5(a)-5(e) for the Le = 0.34, 0.6, 0.8, 1.0, and 1.2 cases, respectively, where
�
tqntqn

�1/2
=

[�NiNj

�
tqitqj]1/2 =

((
tq·N⃗
)2)1/2

with q = 1,21,22,3, and 4. The quantities
�
tqntqn

�1/2 and
�
tqttqt

�1/2

could be interpreted as the Reynolds averaged values of the magnitudes of the components of the
vector t⃗q (where q = 1,21,22,3, and 4) in local flame normal and tangential directions, as used

in a previous analysis.13 It is worth noting that
�
tqntqn

�1/2 and
�
tqttqt

�1/2 are not the Reynolds aver-
aged magnitudes of the terms of the transport equation of ωn = Niω jNj and ωt =

(
ωi − ω jNiNj

)
,
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FIG. 3. Variation of (ωiωi)1/2×δth/SL, (ωnωn)1/2×δth/SL, (ωtωt)1/2×δth/SL, and (ωtωt/2)1/2×δth/SL with Favre
averaged reaction progress variable c̃ for the Le= (a) 0.34, (b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases.

respectively, under general conditions. Instead,
�
tqntqn

�1/2 and
�
tqttqt

�1/2 are associated with terms of
the transport equation of NiNjDω j/Dt and (δij − NiNj)Dω j/Dt, respectively. Interested readers are

referred to Appendix B for further discussion in this regard. The quantities
�
tqttqt

�1/2 and
�
tqntqn

�1/2 can
only be interpreted as the terms of the transport equation of ωt = (ωi − ω jNiNj) and ωn = Niω jNj

under the strong assumption that the rotation of the moving frame of reference is ignored, which
amounts toω jD(NiNj)/Dt = 0. Nevertheless, the difference between Dωn/Dt = D(NiNjω j)/Dt and
NiNjDω j/Dt, or between Dωt/Dt and [Dωi/dt − NiNjDω j/Dt], is sufficiently small in comparison

� �1/2 �
tqttqt

�1/2to the magnitudes of tqntqn or under the conditions of the present DNS (see Fig. 11
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FIG. 4. Variations of (t1t t1t)1/2×δ2
th/S

2
L, (t21t t21t)1/2×δ2

th/S
2
L, (t22t t22t)1/2×δ2

th/S
2
L, (t3t t3t)1/2×δ2

th/S
2
L, and

(t4t t4t)1/2×δ2
th/S

2
L with c̃ for the Le= (a) 0.34, (b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases.

in Appendix B). Accordingly,
�
tqntqn

�1/2 and
�
tqttqt

�1/2 represent magnitudes of the leading order
contributors to the transport equation of ωn = Niω jNj and ωt = (ωi − ω jNiNj), respectively.

A comparison between Figs. 4 and 5 reveals that the magnitude of the baroclinic torque contri-

bution (t4tt4t)1/2 remains much greater than the magnitude of (t4nt4n)1/2 in the Le = 0.34 case. Nev-
ertheless, the latter quantity does not vanish in the low Le flames, because vectors ∇ρ and ∇c are
not exactly parallel in this case, contrary to an adiabatic flame with Le = 1.0, where ∇ρ and ∇c are

exactly parallel, and, hence, the normal component of ∇ρ × ∇p and the baroclinic term (t4nt4n)1/2
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FIG. 5. Variations of (t1nt1n)1/2×δ2
th/S

2
L, (t21nt21n)1/2×δ2

th/S
2
L, (t22nt22n)1/2×δ2

th/S
2
L, (t3nt3n)1/2×δ2

th/S
2
L, and

(t4nt4n)1/2×δ2
th/S

2
L with c̃ for the Le= (a) 0.34, (b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases.

vanish. This behaviour can be explained in the following manner. The mixture density ρ can be
expressed as ρ = ρ0/(1 + τT) for flames with constant molecular weight (as in the present DNS),
where T = (T̂ − T0)/(Tad − T0) is the non-dimensional temperature.81 The non-dimensional tempera-
ture T can be equated to c for globally adiabatic, low Mach number Le = 1.0 flames, which leads to
∇ρ = −τρ2∇c/ρ0 = τρ2|∇c|N⃗/ρ0. Thus, the vectors ∇ρ and ∇c are parallel (alternatively ∇ρ × ∇p
and N⃗ = −∇c/|∇c| are mutually perpendicular) in the Le = 1.0 flame considered here. It is worth not-
ing that c , T for non-unity Lewis number flames and the quantities increasingly deviate from each
other with decreasing Le. As a result, ∇ρ = −τρ2∇T/ρ0 , τρ2|∇c|N⃗/ρ0 for flames with Le , 1.0
and thus ∇ρ × ∇p and N⃗ = −∇c/|∇c| are not mutually perpendicular to each other. This gives rise to

non-zero values of (t4nt4n)1/2 in the non-unity Lewis number flames.
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It is evident from Fig. 4 that the baroclinic torque contribution (i.e., (t4tt4t)1/2) dominates over

the magnitudes of other contributions (i.e., (t1tt1t)1/2, (t21tt21t)1/2, (t22tt22t)1/2, and (t3tt3t)1/2) for the

Le = 0.34 and 0.6 cases, whereas the magnitude of (t4nt4n)1/2 remains smaller than the magnitudes

of (t1nt1n)1/2, (t22nt22n)1/2, and (t3nt3n)1/2 and comparable to (t21nt21n)1/2. Thus the baroclinic term
t4 is principally responsible for the anisotropy of the vorticity components within the flame brush

in the Le = 0.34 and 0.6 cases. For Le ≈ 1.0 cases, the contribution of baroclinic torque (t4tt4t)1/2

remains comparable to (t1tt1t)1/2, (t21tt21t)1/2, (t22tt22t)1/2, and (t3tt3t)1/2, whereas the baroclinic term

(t4nt4n)1/2 remains negligible in comparison to (t1nt1n)1/2, (t22nt22n)1/2, and (t3nt3n)1/2.
Under conditions of the present DNS, the viscous diffusion term t22 plays an important role

in the Reynolds averaged vorticity transport (see Eq. (2)). For instance, the viscous diffusion term

(t22tt22t)1/2 is significantly greater than the vortex stretching term (t1tt1t)1/2 in all five cases, see Fig. 4,

while the magnitudes of the normal components of these two terms (i.e., (t1nt1n)1/2 and (t22nt22n)1/2)
are comparable in the major part of the flame brush in each case, see Fig. 5. These observations are
associated with relatively moderate values of turbulent Reynolds number Ret for the cases consid-
ered here, whereas the vortex stretching term is expected to dominate at high values of Ret. It can
be seen from Fig. 3 that a strong augmentation of the vorticity magnitude in the transverse direction
takes place within the flame brush, which also sets up a strong vorticity gradient within the flame
in the Le = 0.34 case. This gives rise to an increase in the magnitudes of the vortex-stretching (i.e.,
ω j(∂ui/∂x j)) and the dissipation (i.e., −ν

�
∂ωi/∂x j

� �
∂ωi/∂x j

�
) contributions to the components of

vorticity transport terms in flame tangential direction, and thus (t1tt1t)1/2 and (t22tt22t)1/2 rise from
the unburned gas side and assume peak values within the flame brush before decreasing again on the
burned gas side for the Le = 0.34 case. The vorticity magnitude in the transverse direction decreases
monotonically from the unburned to the burned gas side of the flame brush for the other cases, and

thus (t1tt1t)1/2 and (t22tt22t)1/2 decrease monotonically from the unburned to the burned gas side of
the flame brush for the other (i.e., Le = 0.6,0.8,1.0, and 1.2) cases.

It can be seen from Figs. 4 and 5 that the contributions of dilatation and baroclinic torque in both

flame normal and tangential directions (i.e., (t3nt3n)1/2, (t4nt4n)1/2, (t3tt3t)1/2, and (t4tt4t)1/2) vanish
both in the unburned and burned gas sides of the flame brush as the effects of density variation and
dilatation rate diminish both in the unburned and burned gas sides of the flame brush. Furthermore,
Figs. 4 and 5 indicate that the relative contributions of viscous torque due to density variation, dilata-
tion, and baroclinic terms (i.e., t21, t3, and t4) weaken, and their magnitudes decrease, with increasing
Le. The vorticity transport for the Le ≈ 1.0 (i.e., Le = 0.8, 1.0, and 1.2) cases considered here is prin-
cipally determined by the vortex stretching and viscous diffusion (i.e., t1 and t22 in Eq. (2)), which is
similar to the vorticity transport for non-reacting flows.

It is evident from Eq. (2) that the dilatation contribution destroys all vorticity components ir-
respective of the direction due to predominantly positive dilatation rate ∂ui/∂xi values in premixed
flames. The rate of burning diminishes with increasing Le, which is reflected in the decrease in the
mean value of normalised dilatation rate (∂ui/∂xi) × δth/SL magnitude with increasing Le, as shown
in Fig. 6(a). This increase in the magnitude of dilatation rate ∂ui/∂xi for small values of Lewis num-
ber is responsible for increased magnitudes of t3 = −(∂uk/∂xk)ωi with decreasing Le. However, the
magnitude of t3i = −(∂uk/∂xk)ωi does not change in proportion to (∂uk/∂xk) because an increase

in the dilatation term reduces the magnitude of ωi in the term t3i. It is also worth noting that (t3tt3t)1/2

is comparable with (t1tt1t)1/2 and (t21tt21t)1/2, but is substantially smaller than (t4tt4t)1/2 in the low

Lewis number flames in Figs. 4(a) and 4(b). This difference between (t3tt3t)1/2 and (t4tt4t)1/2 is also
associated with the dependence of t3t on the relevant vorticity components, i.e., due to an important
role played by vorticity diffusion under conditions of the present DNS, the magnitude of vorticity
components is insufficient for the dilatation term to counterbalance the baroclinic torque term.

It is shown elsewhere48,50 that the flame thickness decreases, though the probability of finding
high temperature spots (including super-adiabatic temperature values) increases with decreasing Le
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FIG. 6. Variations of (a) (∂ui/∂xi)×δth/SL, (b) |∇ρ |×δth/ρ0, and (c) (∂ρ/∂xn)×δth/ρ0 with Favre averaged reaction
progress variable c̃ for all cases considered here.

in turbulent flames, because the molecular diffusion of reactants into the reaction zone overwhelms
conductive heat flux out from the zone for small values of Le. Accordingly, the magnitude of density
gradient |∇ρ| increases with decreasing Le, which can be confirmed from Fig. 6(b) where the variation
of |∇ρ| × δth/ρ0 with c̃ is shown for all cases considered here. Similar effects are also observed in
laminar premixed flames subject to thermo-diffusive instability.30,33–36,68,69

The high magnitude of ∇ρ and the particular nature of misalignment between this vector and the
divergence of the viscous stress tensor also lead to relatively large magnitudes of the effects of viscous
torque due to density variation (i.e., t21) in the vorticity transport equation. It can be seen from Figs. 4

and 5 that both (t21tt21t)1/2 and (t21nt21n)1/2 play non-negligible role in vorticity transport for small
values of Le (e.g., Le = 0.34 case considered here). The previous analyses by Hamlington et al.11

and Treurniet et al.12 did not report any significant influences of t21 but Lipatnikov et al.13 reported
considerable influences of t21 for unity Lewis number weakly turbulent flames with high values of τ,
where ∇ρ ≈ −τρ2∇T/ρ0 is expected to assume large magnitudes.

As discussed above, for low Mach number unity Lewis number flames, the non-dimensional
temperatureT can be equated to c, and thus∇ρ can be expressed as∇ρ = τρ2|∇c|N⃗/ρ0, which leads to
∂ρ/∂xn = ∇ρ · N⃗ = −τρ2∇T.N⃗/ρ0 = τρ2|∇c|/ρ0 = |∇ρ|. A comparison between |∇ρ| × δth/ρ0 and
(∂ρ/∂xn) × δth/ρ0 in Fig. 6(b) reveals that these quantities are close to each other even for Le , 1.0
flames, thus, implying that (−∇T.N⃗) remains close to |∇c| in all simulated cases. This suggests that
∇ρ can be taken to scale as ∇ρ ∼ τρ2|∇c|N⃗/ρ0 and thus ∇ρ mostly aligns with the flame normal
direction. This suggests that the baroclinic torque ρ−2∇ρ × ∇p is expected to have weak contributions
in the flame normal direction but its contribution to vorticity transport in tangential directions is likely
to be strong, as indicated by Figs. 4 and 5.
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The variations of |(∇p)t |, |(∇p)n|, and |∇p| are reported in Figs. 7(a)-7(e) for Le = 0.34, 0.6, 0.8,
1.0, and 1.2 cases, respectively. Figures 7(a)-7(e) show that |(∇p)t | and |(∇p)n| remain comparable,

where |(∇p)n| = |N⃗ ·∇p| is associated with locally normal flow acceleration, and the pressure gradient
in tangential direction at a given location is induced by heat release in the surrounding flame wrinkles
and by turbulent eddies.

For a planar laminar flame surface, one obtains N1 = −1, N2 = 0, and thus one obtains ���N⃗ ·e⃗1
��� =

1.0. The extent of flame wrinkling within the flame brush can be quantified with the help of the

FIG. 7. Variations of |(∇p)t |×δth/ρ0S
2
L, |(∇p)n |×δth/ρ0S

2
L, and |∇p |×δth/ρ0S

2
L with Favre averaged reaction progress

variable c̃ for the Le= (a) 0.34, (b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases. (f) Variations of |(∇p̄)1|×δth/ρ0S
2
L with Favre

averaged reaction progress variable c̃ for all cases considered here.
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FIG. 8. Variations of (a) ���N⃗ ·e⃗1
��� and (b) cosθp = (∇ρ×∇p)·ω⃗/(|∇ρ×∇p | · |ω⃗ |) with Favre averaged reaction progress

variable c̃ for all cases considered here.

departure of ���N⃗ ·e⃗1
��� from 1.0, where e⃗ is the unit vector in the direction of mean flame propagation.

The variations of ���N⃗ ·e⃗1
��� with c̃ for all cases are shown in Fig. 8(a). It can be seen from Figs. 7 and 8(a)

that the cases with small values of ���N⃗ ·e⃗1
��� exhibit relatively large magnitudes of |(∇p)t |. For example,

a low magnitude of ���N⃗ ·e⃗1
��� and a high magnitude of |(∇p)t | are obtained in the Le = 0.34 case, because

the flame surface is more wrinkled and thus the probability of its alignment with e⃗1 is likely to be
small, as can be inferred from Fig. 1(a).

Moreover, an increase in turbulent burning rate due to a decrease in Le (see Table I) results in an
increasing magnitude of mean pressure gradient |(∇p̄)1| normal to the mean flame brush, which can
be substantiated from Fig. 7(f). This effect also contributes to the aforementioned increase in |(∇p)t |
with decreasing Le, because the probability of finding a substantial angle between (∇p̄)1 and N⃗ is
sufficiently large in the Le = 0.34 case. As a result, the magnitude of ρ−2∇ρ × ∇p is high in this case.
As the extent of flame wrinkling and the magnitude of |(∇p̄)1| diminish with increasing Le, the mean
magnitude of the tangential pressure gradient and relative contribution of baroclinic torque weakens
with an increase in Lewis number. Interested readers are referred to Ref. 51 for further discussion on
the effects of Le on |(∇p̄)1|, which is not repeated here for the sake of conciseness.

It is worth noting that baroclinic torque not only generates vorticity but also damps vorticity,
depending of an angle between the vectors ω⃗ and ρ−2∇ρ × ∇p. This angle is characterized by cos θp =
(∇ρ × ∇p)·ω⃗/(|∇ρ × ∇p|·|ω⃗|). The variation of cos θp with c̃ for all cases considered here are shown
in Fig. 8(b). It can be seen that the directions of ω⃗ and ρ−2∇ρ × ∇p are completely independent of
each other for leading and trailing edges of the flame brush for the Le = 0.6, 0.8, 1.0, and 1.2 flames.
However, in the Le = 0.34 flame, the directions of ω⃗ and ρ−2∇ρ × ∇p are related on the burned gas
side due to significant density variation caused by temperature inhomogeneity in the burned gas.
Within the flame brush, cos θp assumes relatively high magnitudes and this effect is particularly strong
for the Le = 0.34 case where the tangential components of ρ−2∇ρ × ∇p are principally responsible
for the augmentation of (ωtωt)1/2 within the flame brush.

The variations of the normalised values of the terms of the right hand side of the enstrophy trans-
port equation (i.e., TI ,TII,TIII,TIV and TV) with c̃ are shown in Figs. 9(a)-9(e) for Le = 0.34, 0.6, 0.8,
1.0, and 1.2 cases, respectively. It can be seen that the mean contribution of vortex-stretching term
TI remains positive throughout the flame brush for all cases. The vortex-stretching term TI can be
expressed as

TI = 2Ω(eα cos2 α + eβ cos2 β + eγ cos2 γ), (5)

where eα,eβ, and eγ are the most extensive, compressive, and the most compressive principal strain
rates, and α, β, and γ are the angles between ω⃗ and the principal strain rate directions associated with
eα, eβ, and eγ, respectively. It was previously shown by Chakraborty18 that Le significantly affects
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FIG. 9. Variations of TI ×δ3
th/S

3
L, TII×δ3

th/S
3
L, TIII×δ3

th/S
3
L, TIV×δ3

th/S
3
L, and TV ×δ3

th/S
3
L with c̃ for the Le= (a) 0.34,

(b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases.

the alignment of ω⃗ with the most extensive and compressive principal strain rates and the extent of
alignment with the most extensive strain rate decreases with decreasing Le but the vortex-stretching
term TI acts to generate enstrophy for all Le cases irrespective of the nature of the alignment between
ω⃗ and the principal strain rates. Interested readers are referred to Ref. 18 for further information in
this regard. The correlation between density variation and viscous action TII remains small in magni-
tude in comparison to the other terms. The viscous dissipation term TIII acts as a major sink term for
all cases. It is worth remembering that TIII includes the contributions from the viscous diffusion and
dissipation of enstrophy, with the latter contribution being always negative. Under conditions of the
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FIG. 10. Variations of (TI +TII+TIII+TIV+TV )×δ3
th/S

3
L, TVI×δ3

th/S
3
L, TVI(i)×δ3

th/S
3
L, and TVI(ii)×δ3

th/S
3
L with c̃ for

the Le= (a) 0.34, (b) 0.6, (c) 0.8, (d) 1.0, and (e) 1.2 cases.

present DNS, the magnitudes of the viscous diffusion and dissipation of enstrophy are comparable,
but the latter mechanism is expected to dominate at high Reynolds numbers. The dilatation rate term
TIV assumes non-zero negative values only within the flame brush. However, the magnitude of the
dilatation rate termTIV remains small in comparison to the viscous dissipation termTIII for the Le ≈ 1.0
cases considered here but the magnitude of TIV becomes comparable to TIII for the low Le flames (e.g.,
Le = 0.34 and 0.6 cases considered here). The baroclinic torque term TV generates enstrophy within
the flame brush but vanishes both in the unburned and burned gas sides.



015109-18 Chakraborty, Konstantinou, and Lipatnikov Phys. Fluids 28, 015109 (2016)

FIG. 11. Variations ofω jD(N1N j)/Dt ×δ2
th/S

2
L andω jD(N2N j)/Dt ×δ2

th/S
2
L with c̃ for cases with Le= (a) 0.34, (b) 0.6,

(c) 0.8, (d) 1.0, and (e) 1.2. The variation of ω jD(N3N j)/Dt ×δ2
th/S

2
L is not explicitly shown because of its statistical

similarity to ω jD(N2N j)/Dt ×δ2
th/S

2
L.

It is evident from Figs. 9(a)-9(e) that the relative magnitude of baroclinic torque term TV with
respect to the magnitude of viscous dissipation term TIII increases with decreasing Le.
Figures 9(a)-9(e) further reveal that the vortex-stretching and viscous dissipation terms remain the
leading order contributors in all cases considered here but the dilatation and baroclinic terms play
leading order roles only in the low Le flames (e.g., Le = 0.34 and 0.6 cases considered here). Fur-
thermore, it has been found that the magnitudes of the normalised values of the terms TI ,TII,TIII,TIV,
and TV decrease with increasing Le.
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Equation (4) can be rewritten as

∂Ω̄

∂t
+ ūk

∂Ω̄

∂xk                    
D̄Ω̄
D̄t

= ωiωk
∂ui

∂xk          
TI

− ϵ ijkωi
1
ρ2

∂ρ

∂x j

∂τkl

∂xl                              
TII

+
ϵ ijkωi

ρ

∂2τkl

∂x j∂xl                      
TIII

− 2
∂uk

∂xk
Ω    

TIV

+ ϵ ijk
ωi

ρ2

∂ρ

∂x j

∂p
∂xk                        

TV

− u′
k

∂Ω′

∂xk  
TVI

, (6a)

where D̄ ( ) /D̄t = ∂ ( ) /∂t + ūk∂ ( ) /∂xk is the material derivative associated with the mean flow. The
last term on the right hand side can be rewritten as

−u′k
∂Ω′

∂xk      
TVI

= −
∂

�
u′kΩ

′�

∂xk            
TVI(i)

+Ω′
∂u′

k

∂xk  
TVI(ii)

. (6b)

The normalised values of (TI + TII + TIII + TIV + TV), TVI, TVI(i), and TVI(ii) for all cases are shown in
Figs. 10(a)-10(e). Figure 10(a) indicates that the behaviour of TVI is principally determined by TVI(ii).
It is evident from Fig. 10 that TVI(ii) remains positive for cases with small Le, i.e., flame normal accel-
eration gives rise to positive correlation between fluctuations of enstrophy and dilatation rate, and
this term plays an increasingly important role for flames with small values of Le (e.g., Le = 0.34 and
0.6 cases considered here). The term TVI(ii) partially eclipses the sink contribution of the dilatation
term TIV in flames with small values of Le (e.g., Le = 0.34 and 0.6 cases considered here). The fluc-
tuations of enstrophy and dilatation rate are not strongly correlated in flames with Le ≈ 1.0 and thus
the term TVI(ii) assumes small magnitude throughout the flame brush. Figure 10(a) further indicates
that the net contribution of (TI + TII + TIII + TIV + TV + TVI) assumes positive values in some locations
within the flame brush for the Le = 0.34 case. By contrast, (TI + TII + TIII + TIV + TV + TVI) assumes
predominantly negative values within the flame brush for the Le = 0.6,0.8,1.0, and 1.2 cases. This
suggests that a fluid particle moving with the mean flow from unburned to burned gas side experi-
ences a monotonic drop of Ω̄ (i.e., DΩ̄/Dt < 0) for the Le = 0.6,0.8,1.0, and 1.2 flames, whereas
the fluid particle moving with mean flow locally experiences an increase in Ω̄ (i.e., DΩ̄/Dt > 0) for
the Le = 0.34 flame. This is consistent with the observations from Fig. 2(a) which show a decay of

(ωiωi)1/2 × δth/SL from unburned to burned gas side of the flame brush in the Le = 0.6,0.8,1.0, and

1.2 flames, but (ωiωi)1/2 × δth/SL increases within the flame brush for the Le = 0.34 flame.

V. CONCLUSIONS

The effects of Lewis number Le on the transport of vorticity and enstrophy within the flame
brush have been analysed using DNS data of freely propagating statistically planar turbulent premixed
flames with Le ranging from 0.34 to 1.2. The investigated flames propagate in intense small-scale
turbulence, characterized by Ka > 1 and Da ∼ O(1), and are associated with the thin reaction zones
regime of premixed turbulent combustion. It has been found that, under conditions of the present
study, enstrophy decreases significantly from the unburned to the burned gas side of the flame brush
in the Le ≈ 1.0 flames. However, a considerable amount of enstrophy augmentation within the flame
brush has been observed for the Le = 0.34 case and a similar, but less pronounced behaviour has
been observed in the Le = 0.6 case. The vorticity components have been shown to exhibit anisotropic
behaviour within the flame brush and the extent of anisotropy increases with decreasing Le. It has been
demonstrated that the baroclinic torque term is principally responsible for this anisotropic behaviour.
The vortex stretching and viscous dissipation terms have been found to be the leading order contrib-
utors to the enstrophy transport for all cases; however, the baroclinic torque and the sink term due
to dilatation play an increasingly important role for small values of Le. In the case of a low Le, it
has been demonstrated that the correlation between the fluctuations of enstrophy and dilatation rate
plays an important role in determining the material derivative of enstrophy based on mean flow. The
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qualitative nature of the findings of the current paper is unlikely to be modified in the presence of
detailed chemistry, but three-dimensional DNS data for high values of turbulent Reynolds number
are definitely required for deeper understanding of enstrophy transport in premixed turbulent flames.
Furthermore, the present analysis does not address the near wall effects on vorticity dynamics in
turbulent reacting flows, which are likely to have significant influences on the vorticity transformation
mechanisms discussed in this paper. Some of the aforementioned issues will form the basis of future
investigations in this regard.
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APPENDIX A: NON-DIMENSIONAL FORM OF CONSERVATION EQUATIONS

The non-dimensional mass, momentum, energy, and progress variable transport equations are
presented below,

∂ρ+

∂t+
+
∂(ρ+u+i )
∂x+i

= 0, (A1)

∂(ρ+u+i )
∂t+

+
∂(ρ+u+

k
u+i )

∂x+
k

= −∂P+

∂x+i
+

1
Re

∂(τ+
ki
)

∂x+
k

, (A2)
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+
1
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, (A3)

∂(ρ+c)
∂t+

+
∂(ρ+u+

k
c)

∂x+
k

= ẇ+ +
1

ReSc
∂

∂x+
k


ρ+D+

∂c
∂x+

k


, (A4)

where the non-dimensional quantities are given by

x+i = xi/Lref , u+i = ui/uref , P+ = P/ρrefu2
ref , τ+ki = τki/ρrefu2

ref , E+ = E/CpT0, (A5)
ẇ+ = ẇLref/ρrefuref , ρ+ = ρ/ρref , λ+ = λ/λref , D+ = D/Dref , Le = λref/ρref Dref ,

with P is the pressure, E = CvT + ukuk/2 + H(1 − c) is the specific internal energy, and H is the heat
of reaction per unit mass of reactants consumed. Therefore,

E+ =
1
γ
(1 + τT+) + 1

2
(γ − 1)Ma2u+ku+k + τ(1 − c). (A6)

In Eqs. (A1)-(A4), Re = ρrefuref Lref/µref is the nominal Reynolds number, Ma = uref/aref is the Mach
number, γ = Cp/Cv is the ratio of specific heats, Pr is the Prandtl number, and Sc = Pr · Le is the
Schmidt number with ρref , λref , Dref , uref , Lref , aref , and µref are the reference values of density,
thermal conductivity, mass diffusivity, velocity scale, length scale, acoustic velocity, and viscosity,
respectively. Here the density, thermal conductivity, mass diffusivity, viscosity, and acoustic speed of
the unburned gas are taken to be ρref , λref , Dref , µref , and aref , respectively, while SL and 10δth are
considered to be uref and Lref , respectively. The gas is assumed to follow the ideal gas law P = ρRT̂
which takes the following non-dimensional form:

P+ =
1

γMa2 ρ(1 + τT). (A7)

Equations (A1)-(A4) are solved in conjunction with Eq. (A7) in the compressible DNS code called 
SENGA.56 Interested readers are referred to Ref. 56 for further information. It can be seen from
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Eq. (A4) that Le comes into play directly through the species conservation equation, which involves
Sc = Pr · Le. The effects of Le are reflected in the density and pressure gradient fields which in turn
affect the vorticity transport.

APPENDIX B: DECOMPOSITION OF VORTICITY TRANSPORT EQUATION

The vorticity transport equation (i.e., Eq. (2)) can be written in the following form:

Dωi

Dt
= Ki, (B1)

where

Ki = ωk
∂ui

∂xk    
t1i

− ϵ ijk
1
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Equations (B1) and (B2) can be manipulated as follows. One the one hand,
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and
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and therefore, one can write the following:
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It is worth stressing, however, that Dωn/Dt , NiNjK j and Dωt/Dt ,
�
Ki − K jNiNj

�
, i.e., Dωn/Dt ,

Kn and Dωt/Dt , Kt.
On the other hand,
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The variations of ω jD(N1Nj)/Dt and ω jD(N2Nj)/Dt (ω jD(N3Nj)/Dt is statistically similar to
ω jD(N2Nj)/Dt and is thus not explicitly not shown here) with c̃ for all cases considered here are
presented in Fig. 11. It can be seen from Figs. 11 and 5 that the magnitude of ω jD(NiNj)/Dt

remains much smaller than the magnitudes of the leading order terms of
�
tqntqn

�1/2, e.g., (t22nt22n)1/2.
Accordingly, the magnitudes of the terms of the conservation equation of NiNjω j are expected to be

close to those of
�
tqntqn

�1/2
=

((
tq·N⃗
)2)1/2

, where q = 1,21,22,3, and 4.
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