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Abstract: We assess the concept of electrically supercharged internal combustion engines, where
the supercharger, consisting of a compressor and an electric motor, draws electric power from a
buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing
the engine, while delivering high power demands by supercharging. Simultaneously, we seek the
optimum buffer size that provides sufficient electric power and energy to run the supercharger,
such that the vehicle is able to deliver the performance required by a driving cycle representing
the typical daily usage of the vehicle. We provide convex modeling steps that formulate the
problem as a second order cone program that not only delivers the optimal engine and buffer
size, but also provides the optimal control and state trajectories for a given gear selection
strategy. Finally, we provide a case study of sizing the engine and the electric buffer for different
compressor power ratings.
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1. INTRODUCTION

Recent years have shown high interest in the reduction
of energy consumption and pollutant emissions of ground
transportation. With the goal of improving energy effi-
ciency and employing renewable energy sources, vehicle
manufactures are currently introducing several types of
electrified vehicles. Nevertheless, the internal combustion
engines (ICE) are expected to remain the dominant force
in the automotive market for decades to come [Shahed and
Bauer, 2009].

To meet the ever-tightening expectations on fuel economy,
the automotive industry has pursued the path of engine
downsizing [Leduc et al., 2003]. The latter is often followed
by a practice of ICE overpowering to improve the vehicle
drivability. In general this also results in reduced carbon
emissions and a better fuel economy compared to a larger
engine, mainly due to the reductions in engine weight,
friction and throttle valve losses [Fraser et al., 2009]. ICE
overpowering is made possible by the use of boosting de-
vices such as a turbocharger (driven by hot exhaust gases)
or a supercharger (driven mechanically by the crank shaft
via a chain or belt). In both cases, a compressor increases
(boosts) the pressure or density of the air supplied to
the engine, providing the engine with more oxygen (air).
This allows more fuel to be injected and burned, thereby
increasing the ICE maximum torque and power limits.

However, turbo-charged ICEs exhibit a relatively low-
torque capability at low engine speeds [Taylor and Howe,
2007] which compromises vehicle drivability and acceler-
ation performance. Namely, at low speed the downsized
ICEs suffer from the insufficient exhaust gas-flow to ad-
equately propel the turbocharger at the moment the gas
pedal is pressed, inducing the well-known turbo-lag [Leduc
et al., 2003]. The belt-driven supercharger, on the other
hand, does not experience the turbo-lag phenomenon, but
is less fuel economic as it increases the engine parasitic
losses. One way to efficiently provide the required low-
end torque and at the same time eliminate the turbo-
surge/lag is to electrify the mechanical superchargers,
i.e., replace/equip their mechanical power source (prime
mover) with an electric motor [Villegas et al., 2011, Chay-
opitak et al., 2012, Kachapornkul et al., 2012, Wang et al.,
2005]. The resulting device, an electric supercharger, i.e., a
motor-compressor unit (MCU), follows a popular automo-
tive trend of vehicle electrification that has already proven
capable of improving the efficiency and performance of
numerous systems such as the steering, water pump and
air conditioning. The success achieved by electrification
so far is primarily due to the electric machine’s ability
to efficiently produce the requested, instantaneous torque
in a remarkably wide speed range, from zero to several
hundred thousands rotations per minute.

Historically, the lack of compact, high-power/energy-
density electric sources and of light-weight, high-speed,
high-power-density electric motors prohibited the prolif-



eration of the MCU devices throughout the automotive
sector. The widely used 12 V battery system is at the limit
of providing sufficient power for the electrical boost [Taylor
and Howe, 2007]. Besides, the high power surges from the
MCU may incur high battery losses.

Today the situation regarding electric storage elements
is somewhat different as a plethora of high-power bat-
teries and high-energy capacitors appear on the market.
However, the choice of electric buffer technology and the
optimal buffer size in terms of power ratings and energy
density is still an open question.

In this paper we seek the optimum buffer size that provides
sufficient electric power and energy to run the super-
charger, such that the vehicle is able to drive a repre-
sentative driving cycle. Besides sizing the buffer, we also
investigate the scenario of downsizing the ICE, while deliv-
ering high power demands by supercharging. The resulting
optimization problem is a dynamic program, where the
ICE and buffer are optimal sized only when the vehicle
is also optimally controlled on the studied driving cycle.
The problem is non-convex, nonlinear and mixed-integer
dynamic program, where both plant design and control are
optimization variables.

The plant design and control problem is typically handled
by decoupling the plant and controller, and then optimiz-
ing them sequentially or iteratively [Assanis et al., 1999,
Galdi et al., 2001, Wu et al., 2011, Fathy et al., 2004, Peters
et al., 2013]. However, sequential and iterative strategies
generally fail to achieve global optimality [Reyer and Pa-
palambros, 2002]. An alternative is a nested optimization
strategy, where an outer loop optimizes system’s objective
over the set of feasible plants, and an inner loop generates
optimal controls for plants chosen by the outer loop [Fathy
et al., 2004]. This approach delivers the globally optimal
solution, but it may incur heavy computational burden
(when, e.g., dynamic programming is used to optimize the
energy management [Tara et al., 2010]), or may require
substantial modeling approximations [Filipi et al., 2004,
Kim and Peng, 2007, Sundström et al., 2010].

This paper addresses the problem by first decoupling the
integer decisions, i.e., the gear selection strategy, and then
formulating the remaining problem as a convex second
order cone program (SOCP) [Boyd and Vandenberghe,
2004]. The integer signals are decided outside the convex
program, by using a simple heuristic strategy that has been
observed to give near optimal results for the problem of
sizing series and parallel hybrid electric vehicle powertrains
[Murgovski et al., 2012c, Pourabdollah et al., 2013].

Finally, a case study is provided that depicts the optimal
engine and electric buffer sizes for different compressor
power ratings and two buffer technologies, a lithium-ion
battery and a supercapacitor.

This paper is organized as follows. Section 2 provides back-
ground to the electrically supercharged ICE configuration
and states a verbal problem formulation. The mathemat-
ical modeling is provided in Section 3 and the convex
optimization problem is formulated in Section 4. Section 5
presents a use-case study. Discussion and conclusions are
drawn in Section 6.

Fig. 1. ICE equipped with a stand-alone motor-compressor
unit (MCU). The electric buffer is discharged by
auxiliary loads and the electric motor (EM), which
in turn drives the compressor (C). The buffer is
charged by the conventional car-alternator (A), which
is driven by the internal combustion engine (ICE).

Table 1. Optimization problem for powertrain
components sizing and energy management.

Minimize:
Operational + component cost;
Subject to:
Driving cycle constraints,
Energy conversion and balance constraints,
Buffer dynamics,
Physical limits of components,
...
(For all time instances along the driving cycle).

2. THE POWERTRAIN SIZING PROBLEM

The block diagram of the ICE electrically supercharged
with an MCU is illustrated in Fig. 1. The MCU, which
is placed in the ICE air intake along with a bypass valve,
enables more power to be delivered from the ICE, e.g.,
while overtaking or when starting-off at traffic lights.
When the excess power is needed, which we refer to as
supercharging, the bypass valve is closed, while it is open
during naturally-aspirated operation.

The bursts of mechanical MCU power have to be matched
by the power ratings of the electric buffer that drives
the MCU. However, deciding the optimal buffer energy
requirement is not trivial, since this depends on the typical
daily usage of the vehicle. A common form of representing
the vehicle usage is by recording speed and acceleration
profiles for a period of time, and then constructing a
driving cycle that contains both the vehicle speed and
road topography as functions of time. An example of such
cycle is the Class 3 World Harmonized Light Vehicle Test
Procedure 1 (WLTP3), which is used here as a proof of
concept for realization of the method being proposed.

The vehicle is required to exactly follow the speed de-
manded by the driving cycle (in a backwards simulation
approach), thus ensuring that a possible downsizing of
the powertrain does not compromise the demanded per-
formance. To have a fair comparison, the buffer is required
to sustain its initial charge at the end of the driving cycle,
meaning that any energy used for supercharging has to
be put back in the buffer at some point, through the
conventional car-alternator driven by the ICE. This may
require high utilization of the electric buffer, making it
beneficial to increase its size. However, a larger buffer
increases the cost of the vehicle. Then, to keep the cost

1 http://www.dieselnet.com/standards/cycles, March 2015.



down, the possibility of downsizing the ICE is also con-
sidered, such that the optimal tradeoff is reached between
the components cost and the operational cost within the
lifetime of the vehicle.

The resulting optimization problem is verbally stated in
Table 1, while the mathematical description is deferred to
Section 3.

3. MODELING AND PROBLEM FORMULATION

The optimization problem formulated in Table 1 is re-
visited here, by providing mathematical meaning to con-
straints and the objective function.

3.1 Longitudinal dynamics and power balance

The vehicle is modeled as a point mass system, where the
vehicle mass

m(·) = m0 +mEsE +mBsB (1)

consists of a baseline mass m0 and a part varying linearly
with scaling coefficients of the engine and buffer, sE and
sB . The notation (·) is used to indicate a function of
decision variables. The longitudinal relations of the point
mass system can be described by the speed and torque
demanded at the ICE shaft

ωd(t) = v(t)
rγ(t)

rw
, (2)

τd(·) =
r2
wλω̇d(t)

r2
γ(t)ηγ(t)

m(·) +
rwg sinα(t)

rγ(t)ηγ(t)
m(·)

+
ρacdAfr

3
wω

2
d(t)

2r3
γ(t)ηγ(t)

+
rwgcr cosα(t)

rγ(t)ηγ(t)
m(·),

(3)

where the last two terms in (3) are dissipative torques due
to aerodynamic drag and rolling resistance. Here, rw is
wheels radius, λ is rotational mass ratio, ρa is air density,
cd is drag coefficient, Af is vehicle’s frontal area, cr is
rolling resistance coefficient, g is gravity, α(t) and v(t) are
speed and road slope provided by the driving cycle and rγ
and ηγ are ratio and efficiency of transmission gear γ(t),
including the final differential gear. Using (1) in (3) allows
the demanded torque to be written as affine function of
the scaling coefficients

τd(·) = τ0(t) + τ1(t)sE + τ2(t)sB (4)

where for a given gear trajectory γ(t), the torque trajecto-
ries τ0(t), τ1(t), τ2(t) are defined at each time instant along
the driving cycle.

The demanded torque is delivered by the ICE

τE(t) + τbrk(t) =
PA(t)

ωE(t)ηA
+ τd(·) (5)

where τE(t), ωE(t) are engine torque and speed, PA(t) and
ηA are electric power and efficiency of the alternator and
τbrk(t) is braking torque that includes the torque dissi-
pated due to engine friction or usage of the braking pads.
The relation between the ICE speed and the demanded
speed is given by

ωE(t) = max{ωd(t), ωEidle} (6)

where ωEidle is the engine idling speed.

The electric power balance is described by

PB(t) + PA(t) = PBd(·) +
PC(·)
ηM

+ Paux (7)
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Fig. 2. Battery cell open circuit voltage.

where PC(t) is mechanical MCU power, ηM is efficiency
of the electric motor and power electronics running the
compressor, Paux is power consumed by auxiliary devices
and PB(t) and PBd(·) are internal (before losses) and
dissipative buffer powers. Positive value for PB(t) in this
context refers to discharging the buffer.

3.2 Electric buffer

The electric buffer pack is built of baseline number of
n0 cells connected in series, where the cells are either
lithium-ion batteries, or supercapacitors. The battery cell
is modeled as an open circuit voltage uc(soc) and a
constant resistance Rc connected in series. The open
circuit voltage is approximated as affine in state of charge
(SOC)

uc(soc) =
Qc
Cc

soc(t) + uc0, (8)

where Qc is cell capacity in Ah, while Cc (F) and uc0
(V) are coefficients obtained by fitting an affine relation
to the cell open circuit voltage model, as illustrated in
Fig. 2. Such approximation is suitable for lithium-ion
battery technology, where operation at too low and high
state of charge is avoided due to battery longevity reasons
[Guzzella and Sciarretta, 2013].

When scaling the electric buffer, it is assumed that the
baseline number of cells is multiplied by the scaling coeffi-
cient sB. In the following, we employ the convex modeling
steps of Murgovski et al. [2012b], where instead of cell
voltage and cell current ic(t), decision variables are pack
energy and power.

The pack energy is computed as

EB(t) = sBn0Qc

∫ soc(t)

0

uc(s)ds

=
sBn0Cc

2
(u2
c(soc)− u2

c0).

(9)

Then, the pack losses can be expressed as

PBd(·) = sBn0Rci
2
c(t) = RcCc

P 2
B(t)

2EB(t) + sBn0Ccu2
c0

(10)

which, as quadratic-over-linear, is a convex function of
PB(t), EB(t) and sB [Boyd and Vandenberghe, 2004], for
a strictly positive denominator.

Constraints on SOC and cell current translate to con-
straints on pack energy and power

EB(t) ∈ sB
n0Cc

2

([
u2
c(socmin), u2

c(socmax)
]
− u2

c0

)
(11)

PB(t) ∈ [icmin, icmax]

√
sBn0

(
2EB(t)

Cc
+ sBn0u2

c0

)
(12)
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Fig. 3. Static model of a 4-stroke gasoline engine. Top left:
original and approximated fuel power vs. torque, for
different engine speeds in rpm. Top right: efficiency
map of the approximated model. Bottom left: effi-
ciency map of an 85 % scaled engine. Bottom right:
efficiency map of a supercharged 85 % scaled engine.

where the geometric mean in (12) is a concave function of
EB(t) and sB [Boyd and Vandenberghe, 2004]. The battery
dynamics are simply expressed as

ĖB(t) = −PB(t). (13)

In the case when uc0 = 0 the model (10)-(13) would
describe a capacitor. For a full derivation of this model
see Murgovski et al. [2012b] and Egardt et al. [2014].

3.3 Electrically supercharged ICE

The model for the scaled and supercharged ICE is derived
from the model of an existing, baseline ICE. As a baseline
we use a 4-stroke naturally aspirated gasoline engine,
whose net torque τE0(t) is limited by

τE0(t) ∈ [0, τEmax0(ωE)]. (14)

The fuel power of the baseline ICE is modeled by a static,
second order function

Pf0(·) = a0(ωE) + a1(ωE)τE0(t) + a2(ωE)τ2
E0(t) (15)

with coefficients parameterized in engine speed. Further-
more, a2(ωE) ≥ 0,∀ωE, implying that the fuel power is a
convex function of engine torque. This is a common way
of modeling the ICE, known as Willans approximation
[Guzzella and Onder, 2010]. Even a simpler representation,
affine in torque, is often considered an accurate representa-
tion [Guzzella and Onder, 2010]. The fit of the fuel power
approximation and the corresponding efficiency plot are
depicted in the top left and top right plots of Fig. 3.

The ICE is downsized by scaling the displacement volume
Vd0 of the baseline ICE, while keeping the bore-to-stroke
ratio constant. Since engine torque depends linearly on the
displacement volume,

τEmax0 =
Vd0

4π
pime0(ωE) (16)

it follows that the torque of the scaled engine relates lin-
early to the torque of the baseline engine, τE(t) = sEτE0(t),

while maintaining the same operational speed range
[Guzzella and Onder, 2010]. Here, pime0(ωE) is the indi-
cated mean effective pressure. The fuel power is assumed
to also scale linearly

Pf (·) = sEPf0(·)

= a0(ωE)sE + a1(ωE)τE(t) + a2(ωE)
τ2
E(t)

sE

(17)

which means that the same efficiency map of the baseline
ICE is used, but only stretched/compressed to the scaled
torque limit. Similar modelling approximation has been
used by Sundström [2009], Pourabdollah et al. [2013].
The efficiency map of a scaled engine is illustrated in the
bottom left plot of Fig. 3.

Equation (17) can be recognized as a perspective function
of (15). Thus, it is convex in both τE(t) and sE [Boyd and
Vandenberghe, 2004].

In addition to scaling, the engine torque in (16) can be
also increased by increasing the indicated mean effective
pressure pime0(ωE). This can be achieved by using a
compressor to boost the pressure at the engine inlet
manifold. Considering ambient pressure and temperature,
pa, Ta, at the compressor inlet, and denoting with Π(t) =
pC(t)/pa the pressure ratio over the compressor, with
pC(t) being the pressure at the compressor outlet, the
compressor power can be expressed as

PC(·) = ṁC(t)cp
Ta
ηC

(
Π(t)

κ−1
κ − 1

)
(18)

with

ṁC(t) = ηV
VdωE(t)pC(t)

4πRaTC(t)
, (19)

while the temperature increase due to compression,

TC(t) = Ta +
Ta
ηC

(
Π(t)

κ−1
κ − 1

)
(20)

where ṁC(t), cp, κ and Ra are air mass flow, specific heat
capacity, specific heat ratio and specific gas constant of
air, respectively [Guzzella and Onder, 2010]. The air mass
flow in (19) is derived by considering a stoichiometric
air-fuel ratio. The isentropic compressor efficiency and
the volumetric efficiency are denoted by ηC and ηV ,
respectively, and are assumed to be constant.

The ratio of torque increase due to supercharging, sΠ(·),
is computed as the ratio of airmass flow (19) between the
supercharged and naturally aspirated engine at wide open
throttle [Banish, 2009]

sΠ(·) =
ηV

VdωE(t)pC(t)
4πRaTC(t)

ηV
VdωE(t)pa
4πRaTa

= Π(t)
Ta
TC(t)

. (21)

Equations (18)-(21) are combined to obtain

sΠ(Π) =
Π(t)

1 + 1
ηC

(
Π(t)

κ−1
κ − 1

) (22)

PC(Π, sE) = βωE(t)sE (Π(t)− sΠ(Π)) (23)

where the displacement volume of the downsized en-
gine (sE ≤ 1) is replaced with Vd = sEVd0 and
β = ηV pacpVd0/(4πRa). Finally, the torque limits of the
scaled and supercharged ICE are expressed by

τE(t) ∈ [0, τEmax0(ωE)sEsΠ(Π)]. (24)



The fuel power relation (17) is assumed identical for
both the naturally aspirated and the supercharged en-
gine operation. This is a pessimistic model, since it has
been indicated by Hiereth and Prenninger [2007], Martin
et al. [2014] that the supercharged engine has a better
effective efficiency than a naturally aspirated engine. The
assumption will have little influence on the results, since
only a small fraction of the driving cycle sampled points
are operated under supercharged conditions, as it will be
shown later, in Section 5.

The efficiency map of a supercharged engine is illustrated
in the bottom right plot of Fig. 3.

3.4 Problem formulation

The optimization objective is formulated to minimize a
cost function consisting of operational and components
costs. The operational cost is simply the cost for consumed
petroleum and the components cost constitutes the cost for
ICE and electric buffer. The two costs are weighted into a
single objective function, where the weighting coefficients
wf , wE, wB transform the costs for petroleum, ICE and
electric buffer into currency/km. More information on
how these coefficients are computed can be found in
Pourabdollah et al. [2013].

The resulting optimization problem can be summarized as
follows

min wf

∫ tf

0

Pf (τE, sE)dt+ wEsE + wBsB (25a)

s.t. (11), (12),

τE(t) + τbrk(t) =
PA(t)

ωE(t)ηA
+ τd(sE, sB) (25b)

PB(t) + PA(t) = PBd(·) +
PC(Π, sE)

ηM
+ Paux (25c)

ĖB(t) = −PB(t) (25d)

EB(0) = EB(tf ) (25e)

τE(t) ∈ [0, τEmax0(ωE)sEsΠ(Π)] (25f)

Π(t) ∈ [1,Πmax] (25g)

PC(Π) ≤ PCmax (25h)

PA(t) ∈ [0, PAmax] (25i)

sB ≥ 0, sE ∈ [0, 1], τbrk ≤ 0 (25j)

where the constraints are imposed ∀t ∈ [0, tf ] and tf
is the time when the trip ends. The conservation of
buffer energy is constrained by (25e) and limits are im-
posed on the pressure ratio, compressor power, alterna-
tor power, scaling coefficients and braking torque, by
(25g)-(25j). There are six time dependent optimization
variables, τE(t), τbrk(t), PA(t), PB(t), EB(t),Π(t), and two
scalar variables, sE and sB.

4. CONVEX MODELING

In this section we revisit the optimization problem (25)
and we show that the problem can be reformulated as a
convex second order cone program (SOCP).

4.1 The supercharging ratio as a concave function

An important aspect for the problem convexity discussed
later, in Section 4.3, is that the supercharging ratio sΠ(Π)
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Fig. 4. Second order approximation of the supercharging
ratio. The lines of the original and approximated
model completely overlap.

is a concave function. By investigating the second deriva-
tive of sΠ(Π),

d2sΠ(Π)

dΠ(t)2
=

ηC
κ−1
κ Π(t)

−1
κ

(ηC + Π(t)
κ−1
κ − 1)2

(
2κ−1

κ Π(t)
κ−1
κ

ηC + Π(t)
κ−1
κ − 1

− 2 +
1

κ

)
where the term left to the parenthesis is nonnegative, it
can be concluded that the supercharging ratio is convex
for

Π(t)
κ−1
κ /(1− ηC) ∈ [1, 2κ− 1] (26)

and concave otherwise. However, since outlet compressor
pressure is greater than ambient pressure, i.e., Π(t) ≥ 1,
the function sΠ(Π) is concave if the compressor efficiency
satisfies

ηC ≥ 2(κ− 1)/(2κ− 1). (27)

For a specific heat ratio κ = 1.4 and compressor efficiency
of 60 % used in the case study in Section 5, the function
sΠ(Π) is concave in the entire feasible range of Π(t), since
ηC > 2(κ− 1)/(2κ− 1) = 44 %.

In addition to obtaining a convex problem, this paper
investigates a standard SOCP formulation. For this reason,
the supercharging ratio is approximated by a second order
concave function

ŝΠ(Π) = b0 + b1Π(t) + b2Π2(t) (28)

with b2 ≤ 0 and b0 = 1 − b1 − b2. It can be observed
in Fig. 4 that this function accurately approximates the
supercharging ratio. In fact, for the depicted operating
range of Π(t), an affine approximation could also be
satisfactory.

4.2 Change of variables

Further analysis of problem (25) reveals that the product
sEŝΠ(Π) that appears in (25f) is neither convex, nor
concave function. A remedy to this matter is a variable
change

Π̃(t) = sEΠ(t) (29)

that allows a scaling function to be defined

s̃Π(Π̃, sE) = sEŝΠ(Π) = b0sE + b1Π̃(t) + b2
Π̃2(t)

sE
(30)

that combines the scaling of displacement volume and
torque increase due to supercharging. The function s̃Π(·) is
a perspective function of (28) and it is, therefore, concave

in both Π̃(t) and sE. The compressor power

PC(Π̃, sE) = βωE(t)
(

Π̃(t)− s̃Π(Π̃, sE)
)

(31)



is a convex function of Π̃(t) and sE.

4.3 Convex second order cone program

Finally, the problem (25) is reformulated as a convex
optimization problem

min wf

∫ tf

0

Pf (τE, sE)dt+ wEsE + wBsB (32a)

s.t. (11), (12), (25d), (25e), (25j), (25i)

τE(t) + τbrk(t) =
PA(t)

ωE(t)ηA
+ τd(sE, sB) (32b)

PB(t) + PA(t) ≥ PBd(·) +
PC(Π̃, sE)

ηM
+ Paux (32c)

τE(t) ∈ [0, τEmax0(ωE)s̃Π(Π̃, sE)] (32d)

Π̃(t) ∈ sE[1,Πmax] (32e)

PC(Π̃) ≤ PCmax (32f)

where the electric power balance (25c) has been relaxed
with inequality. The relaxation changes the original formu-
lation, by creating a convex superset of the non-convex set.
However, it can be logically reasoned that (32c) will hold
with equality at the optimum, as otherwise energy will be
wasted unnecessarily. Hence, the solution of the relaxed
problem is also the solution of the non-relaxed problem.
For a detailed proof see Murgovski et al. [2015].

The problem (32) is written in discrete time using zero
order hold, and then it is casted to a standard SOCP form

minimize fTx

subject to ||Aix+ ei||2 ≤ cTi x+ di, i = 1, .., .m

Fx = g

where x ∈ Rn are optimization variables, Ai ∈ Rni×n,
F ∈ Rp×n, and || · ||2 is Euclidean norm. Constraints of
type z ≥ x2/y (or equivalently

√
yz ≥ x) are written as∣∣∣∣∣∣∣∣( 2x

y − z

)∣∣∣∣∣∣∣∣
2

≤ y + z. (33)

Further details on SOCP modeling can be found in Boyd
and Vandenberghe [2004]. The problem is solved with
SeDuMi [Labit et al., 2002].

5. CASE STUDY

This section provides a case study of powertrain sizing on
WLTP3. The ICE illustrated in the top right plot of Fig. 3
is used as a baseline. Two electric buffers are considered, a
lithium-ion A123 battery cell and a Maxwell supercapaci-
tor cell with specifications provided in Table 2. The costs
for gasoline, battery and supercapacitor are 1.216 EUR/l,
500 EUR/kWh and 8000 EUR/kWh, respectively. Varying
engine cost (that varies with size) is 0.67 EUR/kW. The
remaining parameters are given in Table 3.

5.1 Gear selection strategy

Gear is decided outside the convex optimization, by an
iterative search. First, gear is selected that maximizes the
difference of engine operating points from the maximum
torque line. This step allows the engine to be downsized
as mush as possible, where engine and battery size is ob-
tained by solving the convex problem (32) for the selected

Table 2. Electric buffer cell specifications.

Battery Supercapacitor

mBc = 80 g mBc = 414 g
Qc = 2.3 Ah Cc = 2 kF
Rc = 11.5 mΩ Rc = 0.4 mΩ
icmin/max = ∓35 A icmin/max = ∓1600 A

socmin/max = {20, 80}% socmin/max = {10, 100}%

wB = 0.0453 EURc/km wB = 0.0062 EURc/km
Cc = 58 kF, uc0 = 3.27 V

Table 3. Vehicle specifications.

Af = 2.07 m2 ρa = 1.184 kg/m3 ηV = 90 %
cd = 0.32 pa = 101 325 Pa ηC = 60 %
cr = 0.01 κ = 1.4 ηM = 92 %
λ = 1.3 cp = 1005 J/kgK ηγ = 95 %
Paux = 0 W Ra = 287 J/kgK ηA = 65 %
m0 = 970 kg rγ = {15.2, 8.2, 5.3, 4, 3.3} PAmax = 1 kW
rw = 29.57 cm g = 9.81 m/s2 Πmax = 1.58
mE = 62.67 kg wE = 0.019 EURc/km b1 = 0.61
Vd0 = 1000 cm3 wf = 0.584 EURc/kWh/km b2 = −0.049
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Fig. 5. Total and fuel cost, to the left, and component sizes,
to the right. The thick lines depict results when using
a battery, and thin lines when using a supercapacitor.

gear. Second, the obtained component sizes are used as a
baseline for selecting gear that maximizes engine efficiency
for the naturally aspirated operation. The convex problem
(32) is solved to obtain new component sizes. These com-
ponent sizes are used as a baseline in further iterations,
where the second step is repeated until component sizes
converge to a certain value. It was found that the optimal
engine and buffer sizes converge in just two iterations.

More sophisticated gear selection strategies that also em-
ploy iterative solutions of convex problems have been
published and could be applied to this problem as well
[Pourabdollah et al., 2014, Nüesch et al., 2014].

5.2 Optimal component sizes

The powertrain sizing problem is solved for different com-
pressor powers ranging within [0, 2] kW, where 0 corre-
sponds to naturally aspirated operation. The results are
shown in Fig. 5 for the two cases of using either the
lithium-ion battery, or the supercapacitor. It is apparent
that the supercharging decreases the fuel cost by about
3.6 %, for any of the two buffers, in spite of the pessimistic
fuel model (17).

The total optimization cost for the two buffers, depicted
in the left plot of Fig. 5, shows that the used battery
technology is not the best choice, despite the much smaller
cost per energy content. The right plot in Fig. 5 reveals
that the operational (fuel) cost and engine sizes are nearly



S
pe

ed
 (

km
/h

)

0

50

100

B
uf

fe
r 

S
O

C
 (

%
)

0

50

100

Battery SOC
Supercapacitor SOC
Battery SOC limits
Supercapacitor SOC limits

P
re

ss
ur

e 
ra

tio
 (

-)

1
1.1
1.2
1.3
1.4
1.5 Battery

C
om

p.
 p

ow
er

 (
kW

)

0

0.5

1

1.5

Pressure ratio (-)
Compressor power (kW)
Upper bound

Time (min)
0 5 10 15 20 25 30

P
re

ss
ur

e 
ra

tio
 (

-)

1
1.1
1.2
1.3
1.4
1.5 Supercapacitor

C
om

p.
 p

ow
er

 (
kW

)

0

0.5

1

1.5

Pressure ratio (-)
Compressor power (kW)
Upper bound

Fig. 6. From top to bottom: speed profile of the driving
cycle, optimal buffer SOC trajectories, pressure ratio
and compressor power when using a battery, and
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compressor power limit.
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Fig. 7. Optimal operating points depicted by a dot marker.
The top plot shows operating points for the ICE, and
the bottom plot for the electric buffer. The left plots
show results when using a battery, and the right when
using a supercapacitor. The contour lines depict the
efficiencies of the components.

identical for the two buffers, implying that the main
difference in total cost is the buffer investment cost.

5.3 Optimal state and control trajectories

Apart from the optimal component sizes, the solution of
problem (32) provides also the optimal control and state

trajectories for the studied driving cycle. These are shown
in Fig. 6 for the case when MCU power is 1.5 kW. Indeed,
it can be observed that the compressor is operated at
peak power for the operating point with the highest power
demanded by the driving cycle. Although the MCU is oper-
ated similarly for the battery and supercapacitor scenario,
there is a major difference in the state trajectories of these
two buffers. Very little of the battery energy content is
utilized and the battery SOC trajectory stays close to its
upper limit, for which the open circuit voltage is higher
and losses are thus lower. The battery is sized by the power
requirements, which is visible in Fig. 7. This indicates that
the chosen battery cell is not a good candidate for the
studied application, and additional investigations should
be performed for batteries with higher power to energy
ratio. On the contrary, the supercapacitor is utilized in its
entire power/energy operating range, as shown in Fig. 7.

6. DISCUSSION AND CONCLUSIONS

This paper provides convex modeling steps for the problem
of optimally sizing the ICE and electric buffer (battery,
or supercapacitor), while delivering high power demands
by supercharging. The optimal solution provides also the
optimal control and state trajectories that minimize oper-
ational cost on a given driving cycle. In the provided case
study the driving cycle used to evaluate the engine concept
is WLTP3, although the proposed method is the same for
any other driving cycle. Ideally, the engine concept should
be evaluated on a larger set of driving cycles that may
better represent the typical usage of the target vehicle.
These cycles could be appended into one long driving
cycle, which may also include performance requirements,
represented by, e.g., acceleration vs. speed profiles, or
additional constraints in the problem [Pourabdollah et al.,
2013].

The powertrain model considers constant efficiencies for
the alternator and the MCU, although problem convexity
will be preserved if their losses are modeled as any other
function convex in power/torque. Including thermal states
for the ICE and MCU without infringing convexity is
also possible [Murgovski et al., 2012a], and will be the
subject of future studies. Future studies may also include
investigations of other electric buffer cell technologies,
including constraints on the pack terminal voltage.
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