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Abstract. Improved understanding of runaway-electron formation and decay

processes are of prime interest for the safe operation of large tokamaks, and their

dynamics during dynamical scenarios such as disruptions are of particular concern. In

this contribution, we present kinetic modelling of scenarios with time-dependent plasma

parameters – in particular, we investigate hot-tail runaway generation during a rapid

drop in plasma temperature. With the goal of studying runaway-electron generation

with a self-consistent electric field-evolution, we also discuss the implementation of

a conservative collision operator and demonstrate its properties. An operator for

avalanche runaway-electron generation which includes the proper energy dependence

of the runaway distribution, is investigated, and the avalanche growth rate is shown

to be significantly affected in some parameter regimes. These developments all pave

the way for an improved modelling of runaway-electron dynamics during disruptions

or other dynamic events.

1. Introduction

In the quest for avoidance or mitigation of the harmful effects of runaway-electron

formation [1], a greater understanding of the runaway-electron phenomenon is required.

Improved knowledge of runaway-electron formation mechanisms and their dynamics and

characteristics will benefit the fusion community and contribute to a stable and reliable

operation of reactor-scale tokamaks.

Kinetic simulation is the most accurate and useful method for investigating

runaway-electron dynamics, and we recently developed a new tool called CODE

(COllisional Distribution of Electrons [2]) for fast and detailed study of these processes.

CODE solves the spatially homogeneous kinetic equation in 2-D momentum space,

including electric-field acceleration, collisions, avalanche runaway generation and

synchrotron-radiation-reaction losses [2, 3, 4]. In CODE, momentum space is discretized

using finite differences in momentum and a Legendre-mode decomposition in pitch-

angle cosine, and a (quasi-)steady-state solution can be efficiently obtained through the

inversion of a single sparse system (in the absence of an avalanche source).
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In this contribution we discuss improvements to the model, which enable us to study

the effect of hot-tail runaway generation on the electron distribution (Section 2), which

can be the dominant mechanism in rapidly cooling plasmas, as well as an improved model

for the knock-on collisions leading to avalanche multiplication of the runaway population

(Section 4). This model takes the energy dependence of the runaway distribution into

account. We also discuss the implementation of a full linearized collision operator, and

demonstrate its conservation properties (Section 3).

The improvements described in this contribution enable the detailed study of

runaway processes in dynamic situations such as disruptions, and the conservative

collision operator makes self-consistent calculations of the runaway population and

current evolution in such scenarios feasible [5].

2. Time-dependent plasma parameters

To be able to investigate the behavior of the electron population in dynamic scenarios

such as disruptions or sawtooth crashes, it is necessary to follow the distribution function

as the plasma parameters change. To this end, CODE has been modified to handle

time-dependent background plasma parameters. Since the kinetic equation is treated in

linearized form, the actual temperature and density of the distribution are determined

by the background Maxwellian used in the formulation of the collision operator. This

allows for a scheme where the kinetic equation is normalized to a reference temperature

T̃ and number density ñ, so that the discretized equation can be expressed on a fixed

reference grid in momentum space. (Throughout this paper, we will use a tilde to denote

a reference quantity.) By changing the properties of the Maxwellian equilibrium around

which the collision operator is linearized, plasma-parameter evolution can be modelled

on the reference grid without the need for repeated interpolation of the distribution

function to new grids.

Analogously to Ref. [2], the kinetic equation in 2D momentum space for the electron

distribution function f experiencing a (parallel) electric field E and collisions can be

expressed as

∂F

∂t̂
+ Ê

(
ξ
∂F

∂y
+

1− ξ2

y

∂F

∂ξ

)
= Ĉ {F}+ Ŝ. (1)

Here we have introduced a convenient normalized momentum y = γv/ṽe – where

ṽe=
√

2T̃ /m is the reference electron thermal speed – and the cosine of the pitch angle

ξ = y‖/y. Using κ=m3ṽ3
eπ

3/2/ñ, we have also defined the distribution function F =κf

(normalized so that F (y=0) = 1 for a Maxwellian with T = T̃ and n= ñ), time t̂= ν̃eet,

and electric field Ê = −eE/mṽeν̃ee, as well as the normalized operators Ĉ = C κ/ν̃ee
and Ŝ=Sκ/ν̃ee, with ν̃ee = 16

√
πe4ñ ln Λ̃/3m2ṽ3

e the reference electron thermal collision

time, −e, m and v the charge, rest mass and speed of the electron, c the speed of light,

and γ the relativistic mass factor. C is the Fokker-Planck collision operator and S

an operator describing close (large-angle) Coulomb collisions. These operators will be
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discussed more thoroughly in Sections 3 and 4, respectively; for now we just state the

new formulation of the collision operator employed in Ref. [2]:

Ĉtp = cC v̄
3
ey
−2
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)
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Here, a bar denotes a quantity normalized to its reference value (i.e, v̄e = ve/ṽe),

x = y/γ = v/ṽe is the normalized speed, cC = 3
√
πν̄ee/4, cξ = Zeff+Φ−Ψ+v̄2

eδ
4x2/2, Zeff

is the effective ion charge, Φ = Φ(x/v̄e) and Ψ = Ψ(x/v̄e) = v̄2
e [Φ−v̄−1

e xdΦ/d(x/v̄e)]/2x
2

are the error and Chandrasekhar functions, respectively, and δ= ṽe/c is assumed to be

a small parameter.

Changes to the plasma temperature manifest as shifts in the relative magnitude

of the various terms in Eq. (2) (through δ and the quantities with a bar), as well as a

change in the overall magnitude of the operator, whereas changes in density only have

the latter effect. In both cases, the distribution is effectively colliding with (and relaxing

towards) a Maxwellian different from the one native to the reference momentum grid.

Heat or particles are introduced to (or removed from) the bulk of the distribution when

using this scheme, as all changes to plasma parameters are described by changes to

the Maxwellian. This provides a powerful way of simulating rapid cooling, for instance

associated with a tokamak disruption.

2.1. Hot-tail runaway-electron generation

If the time scale of the initial thermal quench in a disruption event is short enough –

comparable to the collision time – the tail of the initial Maxwellian electron distribution

will not have time to equilibrate as the plasma cools. The particles in this supra-thermal

tail may constitute a powerful source of runaway electrons, should a sufficiently strong

electric field develop before they have time to reconnect with the bulk electrons. This

process is known as hot-tail generation, and can be the dominant source of runaways

under certain conditions [6, 7], and has previously been investigated analytically or using

computationally expensive Monte-Carlo simulations [7, 8, 9]. Using CODE to model a

temperature drop, we may study a wider range of scenarios and verify the validity of

the analytical models.

Figure 1a compares the runaway density evolution computed with CODE to

analytical formulas derived in Ref. [9], for a typical hot-tail scenario. The calculations

followed the prescribed temperature evolution shown in Fig. 1b and the avalanche source

was excluded. The collision operator used in Ref. [9] is the non-relativistic limit of

Eq. (2), with cξ = 0 (the distribution is isotropic since there is no electric field, see

below). CODE results using both this operator and the full Eq. (2) are plotted in

Fig. 1a, with the latter producing ∼ 50% more runaways in total. This difference

can likely be explained by the relatively high initial temperature (3 keV) in the scenario

considered, in which case the non-relativistic operator is not strictly valid for the highest

energy particles. The analytical formulas use different definitions for nr; the CODE
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Figure 1. a) Hot-tail runaway density obtained using CODE (solid) – with (black)

and without (red, yellow) an electric field included during the temperature drop – and

several analytical formulas (dashed), for the temperature and E-field evolution in b).

ED is the Dreicer field and the cited equation numbers refer to Ref. [9].

results are expected to agree with Eq. (19) in Ref. [9], and good agreement is indeed

seen for the saturated values in the figure.

The evolution of the temperature and electric-field are shown in Fig. 1b. These are

the same as those used in Fig. 5 of Ref. [9], as are all other parameters. The analytical

formulas are derived in the absence of an electric field; only an exponential drop in

the bulk temperature is assumed. The electric field shown in Fig. 1b is only used to

define a runaway region y > yc = 1/(δ
√
E/Ec − 1) (with Ec the critical electric field for

runaway generation), so that the runaway fraction can be calculated. In other words,

it is assumed that the electric field does not have time to influence the distribution

significantly during the temperature drop. A CODE calculation where the electric-

field evolution is properly included in the kinetic equation is also shown in Fig. 1a

(solid black), showing increased runaway production by less than a factor of 2. For the

parameters used, the above assumption can thus be considered reasonable.

3. Conservative linearized Fokker-Planck collision operator

Treating the runaway electrons as a small perturbation to a Maxwellian distribution

function, the Fokker-Planck operator for electron-electron collisions can be linearized

and written as C{f} ' C l{f, f} = Ctp{f1, fM} + C fp{fM , f1}, where fM denotes a

Maxwellian, and f1 = f − fM the perturbation to it. The so-called test-particle term,

Ctp, describes the perturbation colliding with the bulk of the plasma, whereas the field-

particle term, C fp, describes the reaction of the bulk to the perturbation. The full

linearized operator C l conserves particles, momentum and energy. The field-particle

term mainly affects the bulk of the plasma, and is therefore commonly neglected when

studying runaway-electron kinetics, however the test-particle term alone only ensures

the conservation of particles, not momentum or energy.

Under certain circumstances, it is necessary to use a fully conservative treatment

also for the runaway problem, in particular when considering processes where the

conductivity of the plasma is important. In the study of runaway dynamics during
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Figure 2. a) Parallel momentum and b) energy moments of the distribution function

in CODE, using different collision operators. Initially, E = 50 V/m and Zeff = 1 were

used, but for t> t0, the electric field was turned off and the ion charge set to Zeff = 0

(to avoid momentum transfer to the background ions). Using two Legendre modes for

the field-particle term was sufficient to achieve good conservation.

a tokamak disruption using a self-consistent treatment of the electrical field, accurate

plasma current evolution is essential, and the full linearized collision operator must be

used. A linearized operator valid for arbitrary particle energy has been formulated

[10, 11]. The collision operator originally implemented in CODE is the result of an

asymptotic matching between the highly relativistic limit of the test-particle term of

that operator with the usual non-relativistic test-particle operator [12], and is given in

Eq. (2). The relativistic field-particle term is significantly more complicated, however,

and its use would be computationally expensive. Here we instead implemented the

non-relativistic field-particle term, as formulated in Ref. [13]. As will be shown, this

operator (together with the non-relativistic limit of Eq. 2) accurately reproduces the

Spitzer conductivity for temperatures where the bulk is non-relativistic. Using the

normalization in Section 2, the operator is

Ĉ fp =
cC
π3/2

e−v̄
−2
e x2

[
2x2

v̄4
e

∂2G

∂x2
− 2

v̄2
e

H + 4πF

]
, (3)

where G and H are the Rosenbluth potentials, obtained from the distribution using

ṽ2
e∇2

vH = −4πF, ṽ2
e∇2

vG = 2H. (4)

The system of equations composed of Eqs. (3-4), together with the non-relativistic limits

of Eqs. (1-2) (y→x and δ→0), is discretized (see Ref.[2]) and solved using an efficient

method described in Ref. [14]. The inclusion of the field-particle term introduces a full

block for each Legendre mode into the normally sparse matrix describing the system,

however since only a few modes are required to accurately describe the Rosenbluth

potentials, the additional computational cost is modest.

The conservation properties of the full non-relativistic collision operator, as well as

the relativistic test-particle operator in Eq. (2), are shown in Fig. 2. An electric field was

initially used to supply some momentum and energy to the distribution. As expected,

the full operator conserves energy and momentum in a pure electron plasma (Zeff = 0)
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Figure 3. a) Conductivity (normalized to the Spitzer value) and b) runaway density,

for different collision operators and E-field strengths, considering only Dreicer runaway

generation. The parameters T =1 keV, n=5×1019 m−3 and Zeff =1 were used.

after the electric field is turned off at t = t0 = 100 collision times, whereas the operator in

Eq. (2) does not. The electric field continuously does work on the distribution – a large

part of which heats the bulk electron population – but the linearization of the collision

operator breaks down if the distribution deviates too far from the equilibrium solution.

As long as a non-vanishing electric field is used together with an energy conserving

collision operator, an adaptive sink term removing excess heat from the bulk of the

distribution must be included in Eq. (1) to guarantee a stable solution. (Physically this

accounts for loss processes that are not properly modelled, such as line radiation and

radial heat transport.) The magnitude of the black line in Fig. 2b therefore reflects the

energy content of the runaway population, not of the total distribution. The sink term

is not included for t> t0 (since E= 0), and the energy conservation observed is due to

the properties of the collision operator itself.

Figure 3 demonstrates that CODE reproduces the expected Spitzer conductivity

σS for moderate electric field strengths if the conservative collision operator is used, and

the initial Maxwellian adapts to the applied electric field on a time scale of roughly 10

collision times. For field strength significantly larger than Ec, the conductivity starts to

deviate from σS, as a runaway tail begins to form (Fig. 3b); in this regime, the analytical

calculation is no longer valid. Using the collision operator in Eq. (2) consistently leads

to a lower conductivity (by about a factor of 2), as expected. The runaway growth is

also affected, with the conserving operator leading to a larger runaway growth rate.

4. Improved operator for knock-on collision

The Fokker-Planck collision operators discussed in Section 3 accurately describe grazing

collisions – small-angle deflections which make up the absolute majority of particle

interactions in the plasmas we consider. Large-angle collisions are usually neglected as

their cross-section is significantly smaller, but in the presence of runaway electrons they

can play an important role in the momentum space dynamics, as an existing runaway

can transfer enough momentum to a thermal electron in one collision to render it a
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runaway, while still remaining in the runaway region itself. Such knock-on collisions can

therefore lead to an exponential growth of the runaway density – an avalanche.

In the absence of a complete solution to the Boltzmann equation, avalanche runaway

generation is modelled using an additional source term in the kinetic equation (1),

evaluated for y > yc. A commonly used operator was derived by Rosenbluth and

Putvinski [15] and takes the form

ŜRP =
nr
n
n̄2

[
3πδ3

16 ln Λ̃
δ(ξ − ξ2)

1

y2

∂

∂y

(
1

1−
√

1 + δ2y2

)]
, (5)

where nr is the number density of electrons. In the derivation, the momentum of the

incoming particle is assumed to be infinite (and its pitch-angle vanishing), and it is not

affected by the interaction. This implies that the generated secondary particles are all

created on the ellipse ξ=ξ2 =δy/(1+
√

1 + δ2y2), and that all runaways (from the point

of view of the avalanche source) are assumed to have infinite momentum (since ŜRP∝nr).
They can therefore contribute equally strongly to the avalanche process. This has the

peculiar and non-physical consequence that particles can be created with an energy

higher than that of any of the existing runaways. The δ-function in ξ is numerically

ill-behaved, as it produces significant oscillations (Gibbs phenomenon) when discretized

using the Legendre-mode decomposition employed in CODE (see Fig. 4a).

An operator that relaxes the assumption of infinite runaway momentum has been

presented by Chiu et al. [16]. It has the form

ŜCh(y, ξ) = n̄
2πe4

m2c3

ñδ3

ν̃ee

x

y2ξ
(yin)4 F ?(yin) Σ (γ, γin) , (6)

where Σ is the Møller scattering cross-section [17] and F ? is the pitch-angle-averaged

distribution of incoming runaways with properties yin and γin. All incoming particles

are thus still assumed to have zero pitch angle (ξ = 1), but their energy distribution

is properly taken into account. In CODE, F ? is efficiently computed from the 0th

Legendre mode of F , F ?=2F0.

From the conservation of 4-momentum in a collision, the momentum-space

coordinates are related through

ξ =
√

(γ − 1)(γin + 1)/(γ + 1)(γin − 1), (7)

which restricts the momentum-space region where the source is non-vanishing. Since

the electrons participating in a collision are indistinguishable, it is sufficient to consider

only the cases where the energy of the created secondary runaway is less than half of

the primary energy, (γ− 1) ≤ (γin− 1)/2, which leads to the condition ξ ≤ ξmax =√
γ/(γ + 1). By the same argument, the maximum attainable runaway energy in the

simulation (the maximum of the momentum grid) leads to the condition ξ ≥ ξmin =√
(γ − 1)(γmax + 1)/(γ + 1)(γmax − 1).

The magnitudes of the two sources (5) and (6) are computed from a given typical

runaway distribution function, and shown in Fig. 4a and b. Note that the amount of

numerical noise is significantly reduced for the source in Eq. (6). Fig. 4c shows the

source magnitudes integrated over pitch-angle, and as expected, the source in Eq. (6)
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is log10 Ŝ and yc defines the lower bound of the runaway region. The angle-averaged

source magnitudes are shown in c). The parameters T = 1 keV, n = 5 × 1019 m−3,

Zeff = 1 and E = 1 V/m were used, with max(y) = 70, and the simulation was run for

300 collision times with primary generation only.

extends only up to y ' ymax/2, whereas the source in Eq. (5) is non-vanishing also

for larger momenta. The amount of secondary runaways generated by the two sources

agree well at low energies, but less so further away from the bulk. The total source

magnitude
∫
Ŝdydξ is however similar, since most of the secondaries are created close to

the boundary of the runaway region.

Such good agreement is not always observed, however. Figure 5 compares the total

runaway growth rate (Dreicer+avalanche) using the two sources, for several different

parameter sets (with Fig. 5b corresponding to the parameters used in Fig. 4). The

figure shows that the sources can lead to significantly different growth rates. In Fig. 5a

(high T , relatively weak E field) the Rosenbluth-Putvinski source gives a higher growth

rate, whereas the situation is reversed in Fig. 5c (low T , relatively weak E field). In the

intermediate case in Fig. 5b, the growth rate is similar for the two sources.

It is evident that the improved avalanche operator in Eq. (6) can affect the runaway

dynamics significantly compared to the operator in Eq. (5) – at least in certain parameter

regimes – and may lead to more accurate modelling of runaway avalanches. Together

with the ability to model dynamic scenarios and the possibility to allow for self-consistent

calculation of the plasma current, the work presented here can therefore lead to a better

assessment of the risks posed by runaways in future tokamaks such as ITER.

5. Conclusions

In this contribution we have described several improvements to the numerical tool

CODE, used for calculating the momentum space distribution of runaway electrons.



Kinetic modelling of runaway-electron dynamics 9

collision times

0 2000 4000

Γ
/
Γ

D
re

ic
e

r

1

1.5

2

T = 5 keV

E/Ec = 2
E/ED = 0.02 a)

Dreicer+RP

Dreicer+Ch

collision times

0 500 1000

Γ
/
Γ

D
re

ic
e

r

1

1.05

1.1

1.15

T = 1 keV
E/Ec = 26
E/ED = 0.05

b)

collision times

0 2000 4000

Γ
/
Γ

D
re

ic
e

r

1

1.02

1.04

1.06

1.08

T = 10 eVE/Ec = 1000
E/ED = 0.02

c)

Figure 5. Runaway growth rate (normalized to the Dreicer growth rate) in CODE

simulations using the avalanche operators in Eq. (5) (RP, dashed) and Eq. (6) (Ch,

dash-dotted), for various temperatures and E fields. The parameters n=5× 1019 m−3

and Zeff =1 where used.

We have adapted CODE to be able to account for time-varying plasma parameters,

and have used it to study rapid-cooling scenarios where hot-tail runaway-electron

generation is dominant. Good agreement with previous theoretical work was observed.

Furthermore, an implementation of the full, linearized, non-relativistic collision operator

was described, showing excellent conservation properties and reproducing the expected

Spitzer conductivity in the relevant parameter regime. An improved operator for

close Coulomb collisions, relaxing some of the approximations of the commonly used

Rosenbluth-Putvinski operator, was also discussed. It was found that the avalanche

growth rate can be significantly effected – either increased or decreased, depending on

the parameter regime – by the use of the new operator. The work presented here paves

the way for more accurate modelling of runaway electron dynamics during for instance

tokamak disruptions.
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