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Microscopic view on Landau level broadening mechanisms in graphene
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Placing a two-dimensional sheet of graphene in an external magnetic field the continuous electronic band
structure is discretized due to Landau quantization. The resulting optical transitions are subject to a broadening,
which can lead to a significant overlap of Landau levels. We investigate the possible microscopic processes that
could cause a broadening of the corresponding peaks in the absorption spectrum of Landau-quantized graphene:
(i) radiative decay, (ii) Coulomb interaction, (iii) optical phonons, (iv) acoustic phonons, and (v) impurities. Since
recent experiments have shown that independent of the magnetic field the resolvable number of Landau levels
is constant, we put a special focus on the dependence of the broadening on the external magnetic field B and
the Landau level index n. Our calculations reveal the impurities to be the crucial broadening mechanism, where
different regimes of well separated and densely spaced Landau levels need to be taken into account. Furthermore,
carrier-carrier and carrier-phonon scattering give rise to a very specific dependence on the Landau level index n

that has not been observed yet.
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I. INTRODUCTION

In an external magnetic field, the electronic band structure
of graphene splits up into nonequidistant Landau levels (LLs)
displaying the relativistic quantum Hall effect [1,2]. Due to the
rather unusual Landau level spectrum [3] with εn = ±�ωc

√
n,

where ωc is the cyclotron frequency and n the Landau level
index, the carrier dynamics in graphene subject to a magnetic
field show some remarkable features [4–6] and have started to
attract considerable attention in current research [4–13].

In practice, optical transitions between discrete energy
levels are always subject to a finite broadening, which appears
as a consequence of interactions with the environment or even
with the light field in vacuum. This is of special importance in
Landau-quantized graphene, where carrier-carrier as well as
carrier-phonon scattering sensitively depend on the magnitude
of the LL broadening [13]. Furthermore, the broadening,
if large enough, leads to a significant overlap of LLs and
thereby counteracts the quantization. The inset in Fig. 1 shows
the original Dirac cone and the energetically lowest discrete
LLs with indices n = 0,1,2,3,4 in the conduction and the
valence band, illustrating that the spacing between adjacent
LLs decreases with increasing n. The LL spacing is determined
by the cyclotron frequency ωc = vF

√
2e0B/�, where �ωc

corresponds to the energy difference between LL+1 and LL0.
Since it is proportional to

√
B, one could assume that the

number of well-separated and experimentally resolvable LLs
increases at larger magnetic fields B. However, in a recent
experiment by Orlita et al. [14], the number of resolvable
LLs was found to be constant for different magnetic field
strengths suggesting a

√
nB dependence of the LL broadening

that exactly cancels the increased LL spacing.
In this article, we study different microscopic processes

contributing to the Landau level broadening focusing in
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particular on their n and B dependence. We take into ac-
count impurity-induced LL broadening as well as broadening
due to radiative damping, carrier-carrier, and carrier-phonon
scattering. We calculate the absorption spectrum of Landau-
quantized graphene based on a microscopic theory and analyze
the impact of these broadening mechanisms on the absorption
peaks. The latter correspond to inter-LL transitions obeying
the optical selection rules LLn → LLn±1 [15–17]. Figure 1
illustrates the absorption spectrum of intrinsic graphene (zero
doping) under Landau quantization with a broadening �n,n±1.

II. THEORETICAL APPROACH

In this section, we first introduce the many-particle Hamil-
ton operator of our system, before we calculate the absorption
spectrum of Landau-quantized graphene.

A. Many-particle Hamilton operator

The Hamilton operator reads in second quantization:

Ĥ = Ĥ0,el + Ĥ0,ph︸ ︷︷ ︸
Ĥ0

+ Ĥel-light + Ĥel-el + Ĥel-ph + Ĥel-imp︸ ︷︷ ︸
Ĥint

(1)

and consists of the free contribution of electrons and phonons
as well as the electron-light, electron-electron, electron-
phonon, and electron-impurity interactions.

(a) Free contribution. The contribution of the free electron
kinetic energy reads

Ĥ0,el =
∑

i

εia
†
i ai, (2)

with the electronic dispersion εi = λivF
√

2�e0niB that is
calculated with tight-binding wave functions in combination
with the Peierls substitution considering the presence of an
external magnetic field [3,13]. It depends on the Fermi velocity
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FIG. 1. (Color online) Spectrum of Landau-quantized graphene
for the first four interband transitions at an external magnetic field
of 4 T. The corresponding transition between the discretized Landau
levels are shown in the inset with the Dirac cone in the background.
Here, �10 denotes the broadening of the transition LL0 → LL+1, �12

the transition LL−1 → LL+2, etc. The full width at half maximum
(FWHM) equals �FWHM = 2�.

vF, the magnetic field B, and the indices λ distinguishing the
conduction (λ = +1) from the valence band (λ = −1) and n

denoting the Landau levels. The energy does not depend on
the spin (s), the valley (ξ ), nor on the position of the electron
in the two-dimensional graphene plane, which is connected to
the quantum number [3] m. Therefore, the full quantum state
is defined by the compound index i = {ξ,λn,m,s} and every
Landau level LLλn is highly degenerate.

The kinetic energy of free phonons describing the vibrations
of lattice ions around their equilibrium positions is described
by

Ĥ0,pn =
∑
q,κ

εqκ

(
b†qκbqκ + 1

2

)
, (3)

where εqκ = �ωqκ indicates the dispersion of the phonons and
b
†
qκ and bqκ are the creation and annihilation operators acting

on the phonon state which consists of the quasimomentum q
and the branch index κ = LO,LA,TO,TA,ZO, where L are
longitudinal, T transverse, Z flexural, O optical (out-of-phase
oscillation of neighboring lattice atoms), and A acoustic (in-
phase oscillation) phonon modes.

(b) Carrier-light interaction. To calculate the absorption in
Sec. II B we use the semiclassical approach for the coupling of
electrons with the light. Later on in this section, we will also
apply the fully quantum mechanical approach to determine the
radiative broadening of Landau levels.

The semiclassical electron-light interaction Hamiltonian
reads

Ĥ sc
el-light = i�

e0

m0

∑
ij

Mij · A(t)a†
i aj , (4)

where e0 is the charge and m0 the mass of a free electron,
A(t) is the vector potential of the optical field, and Mij =
〈	i(r)|∇|	j (r)〉 is the optical matrix element. Here, the

excitation pulse is modeled using a Gaussian envelope function
and consists of two contributions stemming from left (σ+) and
right (σ−) circularly polarized light:

A(t) = e
− t2

2σ2

[
Aσ+

0

(
cos(ωLt)

sin(ωLt)

)
+ Aσ−

0

(
cos(ωLt)

− sin(ωLt)

)]
. (5)

The corresponding prefactors Aσ±
0 = 1

ωL

√
εpf√

πε0cσt
contain the

width of the pulse σt , the pump fluence εpf, and the frequency
of the light pulse ωL ≈ ωij = (εi − εj )/�, which is assumed
to be in resonance with an inter-Landau level transition. In
the basis of the Jones vectors [18] ε̂± = 1√

2
( 1
∓i), the optical

excitation pulse reads

A±(t) = e
− t2

2σ2

(
Aσ+

0
1√
2
e∓iωij t + Aσ−

0
1√
2
e±iωij t

)
. (6)

The characteristic optical selection rules LLn → LLn±1 of
Landau-quantized graphene are inherent to its optical matrix
element [4,19]:

Mi,j = −M∗
i,j

= iδξi ,ξj
δmi ,mj

δsi ,sj

αni
αnj

m0vF

2
√

2�

× (λiδni ,nj +1ε̂
+ + λjδni ,nj −1ε̂

−), (7)

with the constants αn=0 = √
2, αn
=0 = 1.

To calculate the radiative broadening in Sec. III B we
treat the interaction of electrons with the light field quantum
mechanically. To this end, the radiation is quantized by
expanding the vector potential in plane waves [20]. The
electron-photon Hamiltonian then depends on the ladder
operators of the photons c

†
q and cq:

Ĥ
qm
el-light = �

∑
i,j

∑
q,σ

M̃ij
q,σ a

†
i aj (c†q,σ + cq,σ ), (8)

and the optical matrix element reads

M̃ij
q,σ = −i

e0

m0

√
�

2ωqε0V

1√
2
ε̂σ · 〈	i(r)|eiqr∇|	j (r)〉︸ ︷︷ ︸

≈〈	i (r)|∇|	j (r)〉=Mij

, (9)

with the frequency ωq of a photon in the mode given by
the wave vector q and the polarization vector for circularly
polarized light ε̂σ corresponding to a Jones vector ε̂±. The
latter depends on the polarization of the excitation pulse (left-
or right-hand circularly polarized). Since the wavelength of
light is much larger than the lattice constant of graphene, we
can apply the dipole approximation by retaining only the first
term in the Taylor series of eiqr ≈ 1.

(c) Carrier-carrier interaction. The Coulomb interaction
is described by

Ĥel-el = 1

2

∑
abcd

Vab
cda+

a a+
b acad, (10)
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where electrons in the states c,d exchange energy and
momentum and scattering to the states a,b. The strength of
the interaction is determined by the Coulomb matrix element
in the presence of an external magnetic field [4]:

Vab
cd = αna

αnb
αnc

αnd

e2
0δξaξc

δξbξd

8π2ε0εr

∫ ∞

0
dq

∫ 2π

0
dϕ

× [
λaλcF

na−1,ma

nc−1,mc
(q) + F na,ma

nc,mc
(q)

]
× [

λbλdF
nb−1,mb

nd−1,md
(−q) + F nb,mb

nd ,md
(−q)

]
, (11)

with the relative and vacuum permittivities εr and ε0,
the momentum expressed in polar coordinates q = (q,ϕ),
and the form factor describing the geometric structure of
graphene [13]:

Fn′m′
n,m (q) = (−1)�(±n′∓n)|n−n′ |+�(±m′∓m)|m−m′ |e− �q2

2e0B

×
√

min(m′,m)!
max(m′,m)!

√
min (n′,n)!
max(n′,n)!

(
q

√
�

2e0B

)|m−m′|+|n−n′ |

×(eiϕ)m−m′−n+n′
L

|m−m′|
min(m′,m)

(
�q2

2e0B

)
L

|n−n′|
min(n′,n)

(
�q2

2e0B

)
,

(12)

with the associated Laguerre polynomials Lα
n(x).

(d) Carrier-phonon interaction. The Hamiltonian of the
electron-phonon interaction reads

Ĥel-pn =
∑
i,j

a
†
i aj

∑
qκ

g
qκ

ij (bqκ + b†qκ ), (13)

with the electron-phonon matrix element g
qκ

ij = 〈	i(r)|
Vqκ

ph (r)|	j (r)〉 that is determined by the coupling-potential
Vqκ

ph . The diagonal elements of Vqκ

ph represent on-site coupling
considered via a deformation potential, whereas the off-
diagonal elements describe the coupling of neighboring sites
by modulated hopping [13,21,22].

In this work, we consider single-phonon processes. Flex-
ural modes, which are only excited in pairs [23], are thus
omitted. In the case of long-wavelength acoustic phonons,
the on-site coupling is one magnitude larger than the off-site
coupling [22]; hence we concentrate on the deformation
potential, where the main contribution stems from the �LA
mode. In contrast, the optical modes strongly couple via the
modulated hopping mechanism and are considered at the �

and K point. For a transition j → i the coupling matrix
elements for electrons with acoustic and optical phonons in
Landau-quantized graphene then reads [9,13]

g
qLA

ij = iD|q|δξiξj
αni

αnj

√
�

4MAωqLA

× (
λiF

nj ,mj

ni−1,mi
(−q) + λjF

nj −1,mj

ni ,mi
(q)

)
, (14)

g
q�−O

ij = 3αni
αnj

β�
2vF√

2MAεq,�−Oa2
0

× (
λiF

nj ,mj

ni−1,mi
(−q) ± λjF

nj −1,mj

ni ,mi
(q)

)
, (15)

g
qK−O

ij = αni
αnj

√
〈g2

K−O〉DFT

× (
λiF

nj ,mj

ni−1,mi
(−q) − λjF

nj −1,mj

ni ,mi
(q)

)
, (16)

where ωq,LA = vF |q| is the dispersion of acoustic
phonons [24], M = 7.6 × 10−8 g cm−2 the graphene mass
density [25], A the area of graphene, D = 16 eV the defor-
mation potential [26], β ≈ 2 the coupling parameter [27], and
εq,�−O the optical phonon energy. Furthermore, the sign ± in
Eq. (15) corresponds to the modes �TO and �LO, respectively,
and the carrier-phonon interaction strength 〈g2

K−T O〉DFT =
0.0994 eV2Auc/A and 〈g2

K−LO〉DFT = 0.00149 eV2Auc/A is
based on numerical calculations by Piscanec et al. [28]. Note
that the coupling strength is two orders of magnitude smaller
for KLO phonons in comparison to the other optical phonons;
thus their impact to the energy broadening is comparatively
small.

(e) Carrier-impurity interaction. The impurities are as-
sumed to be randomly distributed scatterers at carbon atom
sites resulting in an effective potential [29–32]. In agreement
with experimental results, we consider short-range scatter-
ers [14]. The interaction of electrons with impurities in the
sample is determined by the Hamilton operator:

Ĥel-imp =
∑
ij

Dij a
†
i aj . (17)

In the appearing matrix element Dij = 〈	i(r)|U (r)|	j (r)〉
the impurities are represented by the Gaussian white
noise potential U (r) [33]. The impurity average of a
single impurity potential vanishes, i.e., D12 = 0, while

D12D34 = δξ1,ξ2δξ3,ξ4

�
2v2

F

l2
BAimp

Fm1m2m3m4
n1n2n3n4

depends on the form

factor Fm1m2m3m4
n1n2n3n4

, which can be found in the Supplemental
Material of Ref. [4]. Furthermore, the dimensionless parameter
Aimp enters and characterizes the scattering strength. It is
proportional to the number of scatterers in the sample and
their effective potential [29] and is adjusted to experimental
observations on LL broadening (A = 255). More details on
how the impurity-induced LL broadening has been accounted
for in the well separated and densely spaced LL regime is
discussed in Sec. III A.

Note that we do not take geometrical confinement effects
into account that compete with the confinement of electrons
into cyclotron orbits [34]. Assuming a magnetic length scale
much smaller than the geometrical confinement, they are
negligible [35].

B. Absorption spectra

In linear optics, the absorption coefficient α̃ at frequency ω

is determined by the imaginary part of the optical susceptibil-
ity [36] χ (ω). For atomically thin two-dimensional materials,
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such as graphene, we can introduce the Taylor approximated
absorbance α(ω) = 1 − e−Lzα̃(ω) ≈ Lzα̃(ω) as

α±(ω) = ωLz

n(ω)c
Im{χ±(ω)}, (18)

with the graphene layer thickness Lz, the speed of light c,
and the refractive index n(ω) = 1 in vacuum. The subscript
± denotes the σ±-circularly polarized components for all
respective quantities [cf. Eq. (6)] and will be used throughout
the paper.

The optical susceptibility χ (ω) can be expressed through
the current density j(ω) and the vector potential of the light
field A(ω) [37]:

χ±(ω) = j±(ω)

ε0ω2A±(ω)
, (19)

where ε0 is the vacuum permittivity and the current density in
Landau-quantized graphene reads [37]

j±(ω) = −i�e0

2m0ALz

∑
ij

[M±
ij pij (ω) + M±

jipji(ω)], (20)

with the extent of graphene in the z-direction Lz.
To determine the absorbance, we calculate the microscopic

polarization pij (t) = 〈a†
i aj 〉 entering in Eq. (20) by deriving

Bloch equations for Landau-quantized graphene [5,36,37]:

ρ̇i(t) = 2
∑

l

Re{�il(t) pil(t)} + S in
i (t)(1 − ρi(t))

− Sout
i (t)ρi(t), (21)

ṗij (t) = iωijpij (t) + �ji(t)(ρi(t) − ρj (t)) − �ij

�
pij , (22)

where �ij = e0/m0Mij · A is the Rabi frequency containing
the optical matrix element Mij and the vector potential A. The
equations describe the coupled dynamics between pij (t) and
ρi(t) = 〈a†

i ai〉, the latter corresponding to the carrier occupa-
tion ρi(t) = 〈a†

i ai〉 in the state i. In the case of linear optics, we
assume a constant carrier occupation ρ(ελ

n) given by the Fermi
function. The time-dependent Coulomb- and phonon-induced
scattering rates S in/out

i (t) = S in/out
iel

(t) + S in/out
iph

(t) in Eq. (21)
are important to study the many-particle induced broadening
mechanisms for Landau levels and will be further described in
Secs. III C and III D 1.

The dephasing of the microscopic polarization is deter-
mined by

�ij = �rad
ij + �Coul

ij + �
ph-op
ij + �

imp
ij . (23)

It comprises all different scattering channels that contribute
to the Landau level broadening (cf. Sec. III): (i) radiative
broadening �rad

ij , (ii) Coulomb-induced broadening �Coul
ij ,

(iii) broadening due to the scattering with optical phonons
�

Ph-op
ij , and (iv) impurity-induced broadening �

imp
ij . The con-

tribution of acoustic phonons is included nonperturbatively
within the independent boson model (IBM) [38]: cf. the
discussion below. The investigated broadening mechanisms
can depend on the Landau level index n, the external magnetic
field B, and the temperature T .

Applying the Fourier transform of Eq. (22) and using
Eqs. (18)–(20), the absorbance reads

α±(ω) =
∑
ij

(αni
αnj

vF)2e3
0B

8π�cε0n(ω)ω
δnj ,ni±1

[
�ij

�2
ij + �2(ω − ωij )2

− �ij

�2
ij + �2(ω + ωij )2

A∓(ω)

A±(ω)︸ ︷︷ ︸
neglegtet in RWA

]
. (24)

Here, we performed the sum over the valley, spin, and m

degrees of freedom resulting in the prefactor 2L2e0B/(π�).
The Kronecker δ’s describe the optical selection rules and
stem from Eq. (7). When pumping with circular polarized
radiation, the second term proportional to A∓(ω)

A±(ω) ∼ e±i2ωij t can
be neglected according to the rotating wave approximation
(RWA).

Evaluating Eq. (24), we have microscopic access to the
absorption spectrum of Landau-quantized graphene exhibiting
pronounced peaks for the optically excited inter-LL transitions.
Within the RWA, σ+-polarized radiation excites transitions
with n → n + 1, while σ−-polarized light induces transitions
with n → n − 1 [39]. The absorption peaks have a Lorentzian
shape in Eq. (24) with the broadening �ij , while their
position is determined by the respective transition energy
(εi − εj ) = �ωij .

Independent boson model (IBM). To incorporate the in-
fluence of acoustic phonons on the broadening of LL peaks
in absorption spectra, we analyze the effect of nonenergy
conserving (non-Markovian) processes occurring on very short
time scales within the time-energy uncertainty. The reason
is that the energy of the acoustic phonons is too small to
efficiently induce inter-LL transitions [4]. For this purpose,
we apply the independent boson model, which is exactly
solvable [38] for a two-level system with a bosonic bath.

In the regime of pure dephasing, the radiation causes a
polarization of the material, but does not change the carrier
occupation. Considering a system that has been excited before
t = 0, we solely deal with the interaction of the system with
phonons for t � 0. In contrast to the correlation expansion used
in Eqs. (21) and (22) we apply here the Wick’s theorem [40],
which is applicable in the interaction picture of quantum
mechanics and allows one to simplify an arbitrary product
of creation and annihilation operators by reducing it to sums
of products of pairs of these operators. The polarization
pij (t) = 〈a†

i aj 〉 is obtained in the interaction picture where
the dynamics is determined by the time evolution operator
U (t,t0):

pij (t) = 〈U †(t,t0)(a†
i aj )(t0)U (t,t0)〉. (25)

To deduce the absorbance [Eq. (18)], we perform a Fourier
transformation of the microscopic polarization, insert it into
Eq. (20) for the current, and obtain

αIBM
± (ω) =

∑
ij

(αni
αnj

vF)2e3
0B

8π�2cε0n(ω)ω2
δnj ,ni±1

× Re

{∫ ∞

0
eXij (t)e−iωtdt

}
, (26)
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FIG. 2. (Color online) Absorption spectrum for the transition
LL−1 → LL+2 for different broadening mechanisms: (a) radiative
decay, (b) Coulomb scattering, (c) scattering with optical phonons,
(d) acoustic phonons (implemented within the IBM with the radiative
decay as zero phonon line), and (e) impurity-induced scattering for
well separated LLs. Note that the spectrum is spectrally shifted with
�ω → �(ω − ωij ).

where the exponent Xij (t) is defined as

Xij (t) = i(ωij − �ij )t + iR
ij

2 (t)−S
ij

T + R
ij

1 (t) − γ t. (27)

It is determined by

�ij = −
∑
qκ

G
q
ijωqκ , S

ij

T =
∑
qκ

Gij
q (2nqκ + 1),

(28)
Rij (t) =

∑
qκ

Gij
q [(nqκ + 1)e−iωqκ t + nqκe

iωqκ t ].

The prefactor of αIBM
± includes the summation over the

Kronecker δ’s expressing the optical selection rules, as in
Eq. (24). The relaxation of the polarized material due to acous-
tic phonons, i.e., the electron-phonon interaction, leads to the
characteristic IBM exponent Xij (t), which is discussed in de-
tail in Ref. [38]. Furthermore, nqκ is the thermal Bose-Einstein
distribution introducing a temperature dependence, while the

parameter G
ij
q =| gii

q − g
jj
q |2 /(�2ω2

qκ ) is determined by the
linear dispersion of the acoustic phonons ωqκ = vF|q| and the
diagonal electron-phonon matrix elements gii

q , cf. Eq. (14),
which contain the associated Laguerre polynomials giving
rise to a characteristic shape of the acoustic phonon-induced
broadening, as will be discussed below in Fig. 2.

To be able to evaluate the integral in Eq. (26), a decay rate
γ was inserted. Since the radiative decay is always present,
we assume that its value is determined by �rad

ij /�; cf. Eq. (34).
The constant �ij describes a shift in energy, the so-called
polaron shift, occurring when polarized graphene interacts
with an electron, which itself caused the polarization [41,42].
The Huang-Rhys factor S

ij

T determines the strength of the
coupling with the lattice [43] and therefore the strength of
phonon-induced damping, while the time dependence and
the weight of phonon emission/absorption is inherent to the
dynamics of Rij (t).

III. BROADENING MECHANISMS

In this section, we examine the microscopic mechanisms
giving rise to Landau level broadening in graphene. We
study the absorption spectrum focusing on the broadening
of interband absorption peaks. To be able to understand the
experimentally observed fixed number of resolvable LLs [14],
we investigate the dependence of the broadening on the LL
index n and the external magnetic field B.

Figure 2 shows the absorption spectrum characterized by a
pronounced peak stemming from the LL transition LL−1 →
LL+2. We show separately different broadening mechanisms
for two external magnetic fields B. In all cases, an increase
of B gives rise to an enhanced energy broadening. We find
that the impurity-induced broadening presents the dominant
contribution reflecting well the experimentally observed LL
broadening [14] in the range of 5 meV. In the following, the
different broadening mechanisms are discussed in detail.

A. Impurity-induced broadening

Here, we investigate the Landau level broadening stemming
from the scattering of electrons with impurities. An expression
for the broadening is obtained within the self-consistent Born
approximation [4,31,32]. To determine the impurity-induced
broadening, we distinguish between two different regimes: (i)
the well separated LL regime, where the broadening is smaller
than the inter-Landau level spacing and (ii) the densely spaced
LL regime with a strong LL overlap.

Figure 3(a) shows the density of states at an external
magnetic field of B = 4 T for a constant impurity broadening
of 3.5 meV (corresponding to the experimentally observed
value [14]). The lowest 7 LLs have no overlap and are hence
well separated. Then, the spectral overlap gradually increases.
For n = ±12 (n = ±17), we have an overlap of 10% (20%).
In this regime, it is a good approximation to calculate the
carrier-impurity scattering assuming the linear electronic band
structure of graphene in the absence of a magnetic field [31].

1. Well separated LL regime

The impurity broadening for well separated LLs can be
obtained within the self-consistent Born approximation by two
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FIG. 3. (Color online) (a) Density of states of the energetically
lowest Landau levels as obtained in a self-consistent Born approx-
imation for a constant broadening of 3.5 meV and corresponding
impurity scattering parameter of Aimp = 255. (b) Broadening of
LL due to impurities for well separated LLs in comparison to the
inter-Landau level energy spacing. A crossing is observed at n = 7,
where LLs start to overlap.

different methods. The first method exploits the Heisenberg
equation of motion making use of the impurity Hamiltonian
[Eq. (17)] within the density matrix formalism [4]. Hereby
the broadening of an absorption peak, i.e., the width of the
Lorentzian in Eq. (24), can be directly calculated. The second
method is based on Green’s functions and yields the density
of states [31]:

DOS(E) = 1

π2vF

√
�Aimp

2e0B

√
1 − Aimp(E − En)2

2(�ωc)2
, (29)

which is illustrated in Fig. 3(a). The density of states drops
to zero for each LL at E = En ± �ωc

√
2/Aimp; therefore, the

full width at half maximum of each LL is given by �DOS
FWHM =

�ωc

√
2/Aimp and yields a Lorentzian broadening of

�well
imp = 1

2
�ωc

√
2

Aimp
= vF

√
�e0B

Aimp
. (30)

The equation is in accordance with the density matrix-based
approach described in Ref. [4], if neglecting the small influence
of the form factor. Note that an exact calculation of the density
of states yields a Gaussion shape [44]. Comparing the exact
result with that of the self-consistent Born approximation, we
find a good agreement, in particular with respect to the level
broadening [45].

Being proportional to
√

B, the broadening shows the same
dependence on the magnetic field as the Landau level energies.
As a consequence, the number of well separated Landau levels
is constant. Nevertheless, this does not explain the constant
number of resolvable LLs for arbitrary magnetic fields, as
observed in the experiment [14]. The reason is that partly
overlapping LLs can still be resolved if they are sufficiently
far apart in energy, and this energy difference increases with
the magnetic field; cf. the bright violet lines in Fig. 4.

Note that the same Landau level broadening (except for
the form factor) is also obtained for a conventional two-
dimensional electron gas [29]. However, in this case the
Landau level energies scale linearly with B, therefore, the
Landau level spacings increase faster with the magnetic field
than the broadening does. Furthermore, due to the constant
Landau level spacings, all LLs are resolvable above a critical
magnetic field.

FIG. 4. (Color online) Absorption spectra for different external
magnetic fields focusing on the impurity-induced broadening within
the regime for well-separated LLs, densely spaced LLs, and a
combination of both. The blue-shaded area shows the transition
region between the two regimes; cf. the explanation in the text.
The investigated conditions correspond to a temperature of 2 K
and a magnetic field strength of 4 T according to the experimental
realization [14].

2. Densely spaced LL regime

To calculate the impurity-induced broadening in the regime
of densely spaced LLs the self-consistent Born approximation
is used. The LL quantization is neglected to calculate the
relaxation time, which determines the full width at half
maximum of the absorption [31]. The magnetic field then
enters via the insertion of the LL energy and we can write
for the broadening [32]

�
densely
i,j =π | εi − εj |

Aimp
∼

√
B(

√
n + 1 + √

n). (31)

The increase of the broadening with
√

B(
√

n + 1 + √
n) leads

to a limited number of resolvable Landau level transitions
independently of the magnetic field (cf. the bright blue
lines in Fig. 4), as observed in a recent experiment [14].
However, the densely spaced LL regime is not applicable to the
low-energetic LLs, which do not overlap; cf. Fig. 3. Therefore,
we need to take into account both LL regimes considering a
transition region weighted by the overlap of LLs.

3. Combined approach

Comparing the inter-Landau level spacings
�ωc(

√
n + 1 − √

n) with the impurity-induced broadening
�well

imp [Eq. (30)] gives the condition when the LLs start to
overlap

(
√

|n + 1| −
√

|n|) < 2

√
2

Aimp
. (32)
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Adjusting the carrier-impurity scattering strength of Aimp ≈
255 to the experimentally observed LL broadening of 3.5 meV
at B = 4 T and T = 2 K, we find that at these conditions,
LLs are strictly separated for LLs up to n = 7; cf. Fig. 3(b).
This is the valid region for the impurity model addressing the
well separated LL regime; cf. Eq. (30). Energetically higher
LLs show a gradually increasing overlap counteracting the
energy quantization. To develop a model covering all LLs, we
introduce a gradual transition (weighted by the LL overlap)
from the well-separated regime characterized by zero overlap
(up to n = 7) to the densely spaced regime. We assume that
for LL n = 12 with an overlap of approximately 10% the latter
regime has taken over.

Figure 4 shows absorption spectra for three different
external magnetic fields directly comparing the results from
the model valid in the well separated LL regime, densely
spaced LL regime, and the model combining both regimes.
We find that the combined model (dark blue line) for the
impurity-induced broadening reproduces well the experimen-
tal observation that independent of the magnetic field a
constant number of approximately 10 resolvable LLs can be
found.

B. Radiative broadening

The most fundamental relaxation process out of an excited
state is spontaneous emission, which is also known as radiative
decay. Since the process is very slow, it results in a sharp
peak in the absorption spectrum, cf. Fig 2(a), which can be
calculated using Fermi’s golden rule.

Considering the Heisenberg equation for H0,el and the
interaction with a quantized light field H

qm

el-pt, the radiative
decay rate can be written as [46]

�rad
ij = 2π�

∑
q,σ

∣∣Mij
q,σ

∣∣2
δ(ω0 − ωq). (33)

Considering the photon dispersion ωq = |q|c with the photon
wave vector q and assuming the cavity volume V to be infinite,
we convert the sum into an integral and obtain

�rad
ij = (αni

αnj
e0vF )2 ωc

16πε0

(
ng

c

)3

|λi

√
ni − λj

√
nj |

× δξi ,ξj
δmi ,mj

(δni ,nj +1 + δni ,nj −1), (34)

where the optical matrix element M
ij
q,σ from Eq. (9) was

inserted. Here, a correction of the vacuum light velocity c →
c/nbg , with the background refractive index nbg = √

εbg , was
introduced, since the screening by the background material is
relevant for the radiative decay rate. Assuming the graphene
sample to be supported on one side, the dielectric background
constant reads εbg = (εair + εsubstrat)/2 ≈ 3.3 for SiC [37].

We find that the radiative decay rate for Landau-quantized
graphene is in the range of 10−1 μeV yielding a relaxation
time on a nanosecond time scale due to spontaneous emission.
Concretely, for the transition LL−1 → LL+2, it takes approx-
imately 31 ns to relax back into the initial position. Even
though the radiative decay rate [Eq. (34)] exhibits the required
dependence on

√
nB to be able to explain the experimental

observation [14], it is negligible for the LL broadening, since

FIG. 5. (Color online) (a) Coulomb-induced LL broadening as
a function of the transition LL−n → LLn+1 for two different tem-
peratures with a constant external magnetic field B = 4 T. The
comparison between all Coulomb scattering channels (red line)
and the case excluding Auger scattering (yellow line) illustrates
the outstanding importance of the latter. (b) Schematic illustration
of possible Coulomb-induced scattering channel including (i) pure
dephasing, (ii) intra- and (iii) interband scattering, (iv) Auger, and (v)
Auger-like scattering. Reverse processes are not shown.

it is too small. Nevertheless, radiative decay is important as
the initial broadening for other mechanisms; cf. Sec. III D 2.

C. Coulomb-induced broadening

The Coulomb interaction influences the LL broadening via
the time-dependent many-particle scattering rates [14,47]:

�Coul
ij = �

2

∑
l=i,j

[
S in

l,C(t) + Sout
l,C(t)

]
(35)

that enter the Bloch equation for the occupation probability
[Eq. (21)] and read [13]

S in
l,C(t) = 2π

�

∑
abc

V la
bc Ṽ la

bc (1 − ρa)ρbρcL�

(
�Ela

bc

)
, (36)

Sout
l,C(t) = 2π

�

∑
abc

Ṽ la
bc ρa(1 − ρb)(1 − ρc)L�

(
�Ela

bc

)
. (37)

They are determined by the carrier occupations ρl , the
Coulomb matrix elements Ṽ la

bc = V la
bc (V bc

la − V cb
la ), the energy

difference �Elabc = εl + εa − εb − εc, and the Lorentzian
L�(E) �L

π(�E2+�2
L)

. The latter expresses the energy conservation,
where the broadening �L is considered to be induced by the
impurity scattering �imp.

Figure 5(a) shows Coulomb-induced LL broadenings at
B = 4 T in dependence of the interband transition LL−n →
LLn+1 for different temperatures T . We find a strong depen-
dence on both n and T . For energetically low LLs n = 1,2,
we obtain broadenings in the range of 4 meV (0.5 meV) for
300 K (10 K). The broadening is given by the sum of the
incoming and outgoing scattering rates of the two involved LLs
of a given transition LL−n → LLn+1 [Eq. (35)]. Each of these
scattering rates S in/out

l depends on three carrier occupations ρa ,
ρb, ρc and incorporates a Lorentzian. While every summand
of Eq. (36) describes an energy-conserving scattering event of
two electrons from the initial states a and b to the final states c

and l, Eq. (37) incorporates the sum of the reverse processes,
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respectively. As a result, Pauli blocking plays an important
role for Coulomb-induced scattering processes.

In order to explain the dependence of the LL broadening on
the transition LL−n → LLn+1, we now consider the impact
of specific electron-electron scattering channels: (i) pure
dephasing processes that do not change the carrier occupation
in the involved LLs, (ii) intraband processes involving two
electrons that both remain in the same band, (iii) interband
processes bridging the valence and the conduction band,
(iv) Auger processes that are characterized by one electron
changing the band, while the second electron remains in its
initial band, and (v) Auger-like processes incorporating two
electrons scattering into or out of the zeroth LL (that belongs
to both the conduction and the valence band); cf. Fig. 5(b).

In Fig. 5(a), the influence of Auger scattering (iv) is
illustrated by directly comparing all Coulomb scattering
processes (red line) and only non-Auger processes (yellow
line) for two different temperatures T . The high impact of T for
the energetically lowest LLs can be ascribed to the non-Auger
processes that are denoted by (i)–(iii), (v) in Fig. 5(a). Taking
into account Auger channels (iv), the difference between the
red and the yellow lines remains similar at both investigated
temperatures. At low temperatures, apart from the half-filled
zeroth LL, all LLs are either empty (ρc

n
=0 = 0) or full
(ρv

n
=0 = 1) and, as a consequence, Coulomb scattering is
completely suppressed via Pauli blocking. Nevertheless, Pauli
blocking due to the occupation ρl in the investigated state l

does not enter the scattering rates S in/out
l [Eqs. (36) and (37)]

and results in a finite Coulomb-induced broadening even at
zero temperature. To give a concrete example, the Auger-like
scattering process (v) in Fig. 5(b) is strongly suppressed by
Pauli blocking at low temperatures, since LL−1 is completely
occupied, and yet the scattering rate S in

−1 ∝ ρ0ρ0(1 − ρ1) 
= 0
yields a contribution to the broadening of all absorption peaks
that involve LL−1. Since Auger-like scattering is generally
possible between LL0 and LL±n, all LL transitions are subject
to a finite broadening. However, the matrix elements for
Auger-type scattering strongly decreases for higher values
of n, therefore, the broadening clearly decreases with n; cf.
the yellow line in Fig. 5(a). Likewise, also pure dephasing (i)
processes involving the zeroth LL contribute to the broadening
at low temperatures. At higher temperatures, the Pauli blocking
is generally weakened as carriers are thermally distributed
in energetically lower LLs, i.e., ρ1,ρ2 are no longer empty.
This enables other scattering processes to contribute to the
Coulomb-induced broadening. In particular, intraband (ii)
as well as interband (iii) scattering becomes feasible. As a
consequence, the LL broadening for the energetically lowest
LLs clearly increases with the temperature; cf. Fig. 5(a).

Including Auger processes we find that they are responsible
for the interesting dependence of the energy broadening on
the inter-LL transition LL−n → LLn+1; cf. the red lines in
Fig. 5(a). The reason for this exceptional role of Auger
processes is the fact that they require equidistant LLs to
occur. As we can see in Fig. 5(b), LL n = 1 is energetically
located in the center of n = 0 and n = 4 permitting Auger
scattering of the type LL0 → LL1 in conjunction with LL4 →
LL1. Following the same line of reasoning as above, we
deduce that the nonvanishing scattering rate Sout

4 (t) ∼ ρ0(1 −
ρ1)2 
= 0 gives rise to a broadening of inter-LL transitions

that incorporate the LL n = 4. This leads to an increased
broadening of the absorption peaks corresponding to the
transitions LL−3 → LL4 and LL−4 → LL+5 due to Auger
scattering, which is clearly visible in Fig. 5(a). Similarly,
there are more ladders of equidistant Landau levels n =
0,2,8, n = 0,3,12, etc., resulting in a broadening of inter-LL
transitions that incorporate the LLs n = 8,12, etc.; hence an
increased broadening of the transitions LL−7 → LL+8 and
LL−8 → LL+9 is observed in Fig. 5(a).

In summary, Coulomb interaction contributes significantly
to the LL broadening. However, its strength is too small
to explain the experimentally observed broadenings [14] of
approximately 5 meV at a temperature of 2 K. Furthermore,
its interesting dependence on the LL transition LL−n → LLn+1

has not been observed yet in experiments.

D. Phonon-induced broadening

The energy of the acoustic phonons is too small to
efficiently induce inter-LL transitions [4]; therefore, they are
considered within the pure dephasing inducing non-Markovian
independent boson model. On the other hand, the higher
energetic optical phonons are capable of efficiently inducing
inter-LL transitions, if their energies are in resonance [9].
Consequently, the broadening due to optical phonons is
obtained from phonon-induced scattering rates within the
second-order Born-Markov approximation [37].

1. Optical phonons

The interaction of charge carriers with optical phonons is
described by time-dependent scattering rates in analogy to the
case of the Coulomb interaction [37]

�
Ph-op
ij = �

2

∑
l=i,j

[
S in

l,ph(t) + Sout
l,ph(t)

]
(38)

that enter the Bloch equation for the occupation probability
[Eq. (21)] and read [13]

S in
l,ph(t) = 2π

�

∑
i

∑
qκ

|gqκ

il |ρi

× [
(nqκ + 1)L�

(
�Eem

ilκ

) + nqκL�

(
Eab

ilκ

)]
, (39)

Sout
l,ph(t)(t) = 2π

�

∑
i

∑
qκ

∣∣gqκ

li

∣∣(1 − ρi)

× [
(nqκ + 1)L�

(
�Eem

liκ

) + nqκL�

(
Eab

liκ

)]
. (40)

Here, nqκ is the phonon occupation that is determined by
the Bose-Einstein distribution. Furthermore, Eem/ab

jiκ = εi −
εj ± εqκ is the energy difference for the emission (+) and
absorption (−) of an optical phonon with the energy εqκ . While
phonon absorption requires a finite temperature T , since the
corresponding rates are proportional to nqκ , the emission of
phonons is also possible at T = 0 K due to the dependence on
(nqκ + 1). Therefore, we focus our discussion here on phonon
emission processes.

The impact of the optical phonons on the broadening
is determined by resonances that occur between inter-LL
transitions and the energy of the involved optical phonon; cf.
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FIG. 6. (Color online) (a) Energy broadening induced by opti-
cal phonons as a function of the transition LL−n → LLn+1 for
two different temperatures at a constant external magnetic field
B = 4 T. (b) Schematic illustration of the underlying most im-
portant phonon-induced transitions LL10 → LL1, LL7 → LL0, and
LL5 → LL0.

Fig. 6. For optical phonons, we assume constant energies with
ε�TO = 192 meV, ε�LO = 198 meV, εKTO = 162 meV, and
εKLO = 151 meV [13,48]. Since the carrier-phonon coupling
of the KLO mode is much smaller than that of the other modes
(cf. Sec. II A), we only consider resonances between inter-LL
transitions and the phonon modes �TO, �LO, and KTO.

At a magnetic field of 4 T, the transitions LL10 →
LL1, LL7 → LL0, and LL5 → LL0 are in approximate res-
onance with the dominant optical phonon modes. Similar
to the Coulomb-induced broadening, the occupation ρl does
not enter the scattering rates S in/out

l,ph ; hence also scattering
events that are suppressed by Pauli blocking contribute to
the energy broadening. Therefore, the scattering rates for
the above transitions are nonzero and induce a broadening
of the absorption peaks involving LLs with the indices ni =
5,7,10. Consequently, the increased broadenings of LLs n =
4,5 can be ascribed to the phonon-induced transition LL5 →
LL0. Similarly, the contribution to the broadening of the LLs
n = 6,7 (9,10) stems from the transition LL7 → LL0 (LL10 →
LL0); cf. Fig. 6. The observed temperature dependence is
very weak, because the energy kBT at room temperature
is not high enough to thermally excite the optical phonon
modes.

The strength of the phonon-induced broadening is in the
range of 1 meV for LL transitions fulfilling the resonance
conditions with optical phonon energy. Larger broadenings
can be achieved for resonant optically allowed LL transitions,
since the form factors appearing in Eqs. (14)–(16) favor such
transitions [9].

2. Acoustic phonons

The broadening due to acoustic phonons does not contribute
to the LL broadening through a Lorentzian in the Bloch
equations, but as a complex function that is determined by
the Huang-Rhys factor ST , the dynamics inherent to R(t),
and the polaron shift �; cf. Eq. (26). Figure 7 illustrates the
absorption spectrum explicitly including the acoustic phonon-
induced LL broadening and its dependence on the transition
LLn+1 → LL−n and the temperature T . The polaron shift �,
i.e., the energetic shift with respect to the zero-phonon line
is very small. For B = 4 T and the transition LL+2 → LL−1,

FIG. 7. (Color online) Absorption spectrum considering the
broadening due to acoustic phonons at a constant external magnetic
field of 4 T for (a) different transitions LLn+1 → LL−n at a constant
temperature T = 300 K and for (b) different temperatures consider-
ing the constant transition LL+2 → LL−1.

it is found to be 16.2 μeV. The nonlinear dynamics enters
through the time-dependent factor R(t). It gives weight to
absorption and emission with complex terms proportional to
nq and (nq + 1), respectively. The strength of the coupling with
acoustic phonons is determined by the temperature-dependent
Huang-Rhys factor ST = R(t = 0).

To be able to numerically calculate the Fourier transfor-
mation in Eq. (26), we have included the radiative broadening
Eq. (34). In Fig. 7, we can identify the very slow radiative decay
as the energetically sharp zero-phonon line. The temperature-
dependent sidebands are caused by the emission (E − E0 > 0)
and absorption (E − E0 < 0) of acoustic phonons. Their
frequency range is continuous owing to the linear dispersion
ωq,LA.

The strength of the broadening due to acoustic phonons
depends on the external magnetic field (cf. Fig. 2) and
increases for higher fields since Eq. (26) is proportional to√

B. Figure 7(a) shows that the number of sidebands is
proportional to the LL number n, while the full width of
the absorption is approximately constant. This relation is
introduced by the factor G

q
ij ∼ |gii − gjj |, which contains the

Laguerre polynomials of the form factor from Eq. (12).
Figure 7(b) shows the absorption of the transition LL+2 →

LL−1 for a constant magnetic field at different temperatures
T . For small T , the emission of phonons is predominant.
Increasing the temperature, the occupation of phonons nqκ

becomes larger and leads to an enhanced absorption of acoustic
phonons and more pronounced side peaks. This can be traced
back to the temperature dependence of the Bose-Einstein
distribution nqκ appearing in Eqs. (26) and (28).

The characteristic line shape of the acoustic phonon
broadening is difficult to quantify. We approximate the FWHM
for the LL n = 1 and the temperature T = 10 K to be about
1 meV. The higher the temperature, the larger the FWHM
becomes. In summary, the experimentally observed fixed
number of resolvable Landau levels cannot be explained with
the broadening contribution of acoustic or optical phonons.

IV. DISCUSSION

Now, we compare the different mechanisms contribut-
ing to the Landau level broadening including radiative
decay, Coulomb scattering, optical phonon scattering, and
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FIG. 8. (Color online) Landau level broadening induced by ra-
diative decay (A), Coulomb scattering (B), optical phonon scattering
(C), impurities for Aimp = 255 (D), the sum of all contributions (E),
and the experimental data (F) is shown at a constant temperature of
T = 2 K as a function of (a) the external magnetic field B for the
fixed transition LL−1 → LL+2 and as a function of (b) the transition
LL−n → LLn+1 for the fixed magnetic field B = 4 T.

carrier-impurity scattering. Figure 8 exhibits the dependence
of these broadening mechanisms on the magnetic field B

and the LL index n. Experimental data obtained by Orlita
et al. [14] is also shown. The broadening induced by acoustic
phonons is calculated as a non-Markovian process via the IBM,
and is not included in Fig. 8, since the IBM broadening follows
a more complex pattern and does not obey a simple Lorentzian
line shape. However, we can estimate it to be smaller than
0.5 meV for small temperatures; cf. Fig. 7(b). In fact, the
acoustic phonon-induced broadening becomes relevant only at
higher temperatures, where it reaches values of several meV.
Furthermore, in order to observe the predicted LL splitting, the
other broadening mechanisms have to be strongly suppressed.
This can be achieved, e.g., by using a very clean graphene
sample (small impurity-induced broadening) that is placed in
a strong dielectric material considerably reducing the Coulomb
interaction via screening, and using a magnetic field that
prevents resonances between optical phonons and inter-LL
transitions.

The sum of all relevant broadening mechanisms at low
temperatures shows a good qualitative agreement with the
experimental values; cf. lines E and F in Fig. 8. The LL
broadening shows a

√
B dependence on the magnetic field.

The value of � = 2.75 meV at B = 2 T is doubled when
increasing the field to B = 8 T; cf. Fig. 8(a). The main
contribution stems from electron-impurity scattering, which

is also the crucial part to explain the experimentally observed
constant number of resolvable LLs; cf. Fig. 4. This can be
ascribed to the impurity-induced broadening in the densely
spaced LL regime resulting in an increase of � with n that
starts to have an impact at n = 7; cf. line D in Fig. 8(b).
Note that only impurity-induced scattering can explain the
observed level broadening (the other broadening mechanisms
yield a much smaller broadening) and the observed constant
number of resolvable LLs. While all broadening mechanisms
show an increase of � with the magnetic field [Fig. 8(a)],
the n dependence is more distinguished [cf. Fig. 8(b)].
Unfortunately, only the values for two different inter-LL
transitions could be extracted from the experiment. Our
calculations clearly attribute the observed increase of the
broadening of the energetically lowest LLs to the Coulomb
scattering; cf. the lines B and E in Fig. 8(b). We further predict
a nonmonotonous dependence of the broadening on the LL
index n due to the efficient Auger channels that sensitively
depend on n. Their contribution can be distinguished from
the optical phonon contribution by varying the magnetic field:
while Auger scattering explicitly depends on n, the dependence
of optical phonon scattering on n is due to magnetophonon
resonances that occur at different n for different magnetic
fields. Experimental values for higher transitions would be
desirable to test these predictions.

In summary, we have calculated the energy broadening
mechanisms in Landau-quantized graphene including radiative
coupling, carrier-carrier, carrier-phonon, and carrier-impurity
scattering. We reveal that the radiative broadening is identified
to be very small, while the Coulomb- and phonon-induced
broadening shows an interesting dependence on the Landau
level n. We find that only the carrier-impurity scattering
with its square-root dependence on the magnetic field B and
the LL index n can explain the experimental observation
that a constant number of Landau levels can be resolved
independently of the applied magnetic field.

ACKNOWLEDGMENTS

We acknowledge financial support from the Deutsche
Forschungsgemeinschaft through SPP 1459 and SFB 910
(HF). Furthermore, E.M. is thankful to the Swedish Research
Council (VR) and the EU Graphene Flagship (CNECT-ICT-
604391).

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

[3] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[4] F. Wendler, A. Knorr, and E. Malic, Nat. Commun. 5, 3703

(2014).
[5] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Orlita, M.

Potemski, C. Berger, W. A. de Heer, H. Schneider, M. Helm,
et al., Nat. Phys. 11, 75 (2014).

[6] F. Wendler and E. Malic, Sci. Rep. 5, 12646 (2015).

[7] P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C.
Berger, W. A. de Heer, and M. Potemski, Phys. Rev. B 80,
245415 (2009).

[8] W.-P. Li, J.-W. Yin, Y.-F. Yu, and Z.-W. Wang, Solid State
Commun. 163, 19 (2013).

[9] F. Wendler, A. Knorr, and E. Malic, Appl. Phys. Lett. 103,
253117 (2013).

[10] Z.-W. Wang, L. Liu, L. Shi, X.-J. Gong, W.-P. Li, and K. Xu, J.
Phys. Soc. Jpn. 82, 094606 (2013).

[11] M. Mittendorff, M. Orlita, M. Potemski, C. Berger, W. A. de
Heer, H. Schneider, M. Helm, and S. Winnerl, New J. Phys. 16,
123021 (2014).

205428-10

http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1038/ncomms4703
http://dx.doi.org/10.1038/ncomms4703
http://dx.doi.org/10.1038/ncomms4703
http://dx.doi.org/10.1038/ncomms4703
http://dx.doi.org/10.1038/nphys3164
http://dx.doi.org/10.1038/nphys3164
http://dx.doi.org/10.1038/nphys3164
http://dx.doi.org/10.1038/nphys3164
http://dx.doi.org/10.1038/srep12646
http://dx.doi.org/10.1038/srep12646
http://dx.doi.org/10.1038/srep12646
http://dx.doi.org/10.1038/srep12646
http://dx.doi.org/10.1103/PhysRevB.80.245415
http://dx.doi.org/10.1103/PhysRevB.80.245415
http://dx.doi.org/10.1103/PhysRevB.80.245415
http://dx.doi.org/10.1103/PhysRevB.80.245415
http://dx.doi.org/10.1016/j.ssc.2013.03.023
http://dx.doi.org/10.1016/j.ssc.2013.03.023
http://dx.doi.org/10.1016/j.ssc.2013.03.023
http://dx.doi.org/10.1016/j.ssc.2013.03.023
http://dx.doi.org/10.1063/1.4852635
http://dx.doi.org/10.1063/1.4852635
http://dx.doi.org/10.1063/1.4852635
http://dx.doi.org/10.1063/1.4852635
http://dx.doi.org/10.7566/JPSJ.82.094606
http://dx.doi.org/10.7566/JPSJ.82.094606
http://dx.doi.org/10.7566/JPSJ.82.094606
http://dx.doi.org/10.7566/JPSJ.82.094606
http://dx.doi.org/10.1088/1367-2630/16/12/123021
http://dx.doi.org/10.1088/1367-2630/16/12/123021
http://dx.doi.org/10.1088/1367-2630/16/12/123021
http://dx.doi.org/10.1088/1367-2630/16/12/123021


MICROSCOPIC VIEW ON LANDAU LEVEL BROADENING . . . PHYSICAL REVIEW B 92, 205428 (2015)

[12] Z.-W. Wang, L. Liu, and Z.-Q. Li, Europhys. Lett. 108, 36005
(2014).

[13] F. Wendler, A. Knorr, and E. Malic, Nanophotonics 4, 224
(2015).

[14] M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski,
C. Berger, W. A. de Heer, G. Martinez, and M. Potemski, Phys.
Rev. Lett. 107, 216603 (2011).

[15] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and
W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).

[16] D. S. L. Abergel and V. I. Fal’ko, Phys. Rev. B 75, 155430
(2007).

[17] J. Rioux, G. Burkard, and J. E. Sipe, Phys. Rev. B 83, 195406
(2011).

[18] R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
[19] K. M. Rao and J. E. Sipe, Phys. Rev. B 86, 115427 (2012).
[20] H. Haken, Quantum Field Theory of Solids (North-Holland,

Amsterdam, 1976).
[21] H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
[22] E. Mariani and F. von Oppen, Phys. Rev. B 82, 195403 (2010).
[23] E. Mariani and F. von Oppen, Phys. Rev. Lett. 100, 076801

(2008).
[24] K. H. Michel and B. Verberck, Phys. Rev. B 78, 085424 (2008).
[25] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, Phys. Rev. B 84,

205406 (2011).
[26] W.-K. Tse and S. Das Sarma, Phys. Rev. B 79, 235406 (2009).
[27] F. Wendler and E. Malic, Phys. Status Solidi B 251, 2541 (2014).
[28] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J.

Robertson, Phys. Rev. Lett. 93, 185503 (2004).
[29] T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974).
[30] T. Ando, J. Phys. Soc. Jpn. 38, 989 (1975).
[31] N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).
[32] T. Ando, Y. Zheng, and H. Suzuura, J. Phys. Soc. Jpn. 71, 1318

(2002).

[33] E. Akkermans and G. Montambaux, Mesoscopic Physics
of Electrons and Photons (Cambridge University Press,
Cambridge, UK, 2007).

[34] Y. C. Huang, C. P. Chang, and M. F. Lin, Nanotechnology 18,
495401 (2007).

[35] J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K.
L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 655
(2010).

[36] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scientific,
Singapore, 2009).

[37] E. Malic and A. Knorr, Graphene and Carbon Nanotubes:
Ultrafast Optics and Relaxation Dynamics (Wiley-VCH,
New York, 2013).

[38] G. D. Mahan, Many-Particle Physics (Plenum Press, New York,
1981).

[39] F. Wendler, H. Funk, M. Mittendorff, S. Winnerl, M. Helm,
A. Knorr, and E. Malic, Proc. SPIE 9361, 936105 (2015).

[40] G. C. Wick, Phys. Rev. 80, 268 (1950).
[41] S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev.

B 35, 8113 (1987).
[42] G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D.-W. Wang,

and P. Zoller, Phys. Rev. Lett. 100, 050402 (2008).
[43] K. Huang and A. Rhys, R. Soc. 204, 406 (1950).
[44] F. Wegner, Z. Phys. B 51, 279 (1983).
[45] T. Dittrich, P. Haengi, G.-L. Ingold, B. Kramer, G. Schoen, and

W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH,
New York, 1998).

[46] M. O. Scully, Quantum Optics (Cambridge University Press,
Cambridge, UK, 1997).

[47] L. Zheng and S. Das Sarma, Phys. Rev. B 53, 9964 (1996).
[48] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P.

Ordejón, Phys. Rev. Lett. 92, 075501 (2004).

205428-11

http://dx.doi.org/10.1209/0295-5075/108/36005
http://dx.doi.org/10.1209/0295-5075/108/36005
http://dx.doi.org/10.1209/0295-5075/108/36005
http://dx.doi.org/10.1209/0295-5075/108/36005
http://dx.doi.org/10.1515/nanoph-2015-0018
http://dx.doi.org/10.1515/nanoph-2015-0018
http://dx.doi.org/10.1515/nanoph-2015-0018
http://dx.doi.org/10.1515/nanoph-2015-0018
http://dx.doi.org/10.1103/PhysRevLett.107.216603
http://dx.doi.org/10.1103/PhysRevLett.107.216603
http://dx.doi.org/10.1103/PhysRevLett.107.216603
http://dx.doi.org/10.1103/PhysRevLett.107.216603
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.75.155430
http://dx.doi.org/10.1103/PhysRevB.83.195406
http://dx.doi.org/10.1103/PhysRevB.83.195406
http://dx.doi.org/10.1103/PhysRevB.83.195406
http://dx.doi.org/10.1103/PhysRevB.83.195406
http://dx.doi.org/10.1364/JOSA.31.000488
http://dx.doi.org/10.1364/JOSA.31.000488
http://dx.doi.org/10.1364/JOSA.31.000488
http://dx.doi.org/10.1364/JOSA.31.000488
http://dx.doi.org/10.1103/PhysRevB.86.115427
http://dx.doi.org/10.1103/PhysRevB.86.115427
http://dx.doi.org/10.1103/PhysRevB.86.115427
http://dx.doi.org/10.1103/PhysRevB.86.115427
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.65.235412
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevLett.100.076801
http://dx.doi.org/10.1103/PhysRevB.78.085424
http://dx.doi.org/10.1103/PhysRevB.78.085424
http://dx.doi.org/10.1103/PhysRevB.78.085424
http://dx.doi.org/10.1103/PhysRevB.78.085424
http://dx.doi.org/10.1103/PhysRevB.84.205406
http://dx.doi.org/10.1103/PhysRevB.84.205406
http://dx.doi.org/10.1103/PhysRevB.84.205406
http://dx.doi.org/10.1103/PhysRevB.84.205406
http://dx.doi.org/10.1103/PhysRevB.79.235406
http://dx.doi.org/10.1103/PhysRevB.79.235406
http://dx.doi.org/10.1103/PhysRevB.79.235406
http://dx.doi.org/10.1103/PhysRevB.79.235406
http://dx.doi.org/10.1002/pssb.201451371
http://dx.doi.org/10.1002/pssb.201451371
http://dx.doi.org/10.1002/pssb.201451371
http://dx.doi.org/10.1002/pssb.201451371
http://dx.doi.org/10.1103/PhysRevLett.93.185503
http://dx.doi.org/10.1103/PhysRevLett.93.185503
http://dx.doi.org/10.1103/PhysRevLett.93.185503
http://dx.doi.org/10.1103/PhysRevLett.93.185503
http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1143/JPSJ.36.959
http://dx.doi.org/10.1143/JPSJ.38.989
http://dx.doi.org/10.1143/JPSJ.38.989
http://dx.doi.org/10.1143/JPSJ.38.989
http://dx.doi.org/10.1143/JPSJ.38.989
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1143/JPSJ.71.1318
http://dx.doi.org/10.1088/0957-4484/18/49/495401
http://dx.doi.org/10.1088/0957-4484/18/49/495401
http://dx.doi.org/10.1088/0957-4484/18/49/495401
http://dx.doi.org/10.1088/0957-4484/18/49/495401
http://dx.doi.org/10.1038/nnano.2010.154
http://dx.doi.org/10.1038/nnano.2010.154
http://dx.doi.org/10.1038/nnano.2010.154
http://dx.doi.org/10.1038/nnano.2010.154
http://dx.doi.org/10.1117/12.2075458
http://dx.doi.org/10.1117/12.2075458
http://dx.doi.org/10.1117/12.2075458
http://dx.doi.org/10.1117/12.2075458
http://dx.doi.org/10.1103/PhysRev.80.268
http://dx.doi.org/10.1103/PhysRev.80.268
http://dx.doi.org/10.1103/PhysRev.80.268
http://dx.doi.org/10.1103/PhysRev.80.268
http://dx.doi.org/10.1103/PhysRevB.35.8113
http://dx.doi.org/10.1103/PhysRevB.35.8113
http://dx.doi.org/10.1103/PhysRevB.35.8113
http://dx.doi.org/10.1103/PhysRevB.35.8113
http://dx.doi.org/10.1103/PhysRevLett.100.050402
http://dx.doi.org/10.1103/PhysRevLett.100.050402
http://dx.doi.org/10.1103/PhysRevLett.100.050402
http://dx.doi.org/10.1103/PhysRevLett.100.050402
http://dx.doi.org/10.1098/rspa.1950.0184
http://dx.doi.org/10.1098/rspa.1950.0184
http://dx.doi.org/10.1098/rspa.1950.0184
http://dx.doi.org/10.1098/rspa.1950.0184
http://dx.doi.org/10.1007/BF01319209
http://dx.doi.org/10.1007/BF01319209
http://dx.doi.org/10.1007/BF01319209
http://dx.doi.org/10.1007/BF01319209
http://dx.doi.org/10.1103/PhysRevB.53.9964
http://dx.doi.org/10.1103/PhysRevB.53.9964
http://dx.doi.org/10.1103/PhysRevB.53.9964
http://dx.doi.org/10.1103/PhysRevB.53.9964
http://dx.doi.org/10.1103/PhysRevLett.92.075501
http://dx.doi.org/10.1103/PhysRevLett.92.075501
http://dx.doi.org/10.1103/PhysRevLett.92.075501
http://dx.doi.org/10.1103/PhysRevLett.92.075501



