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Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) is anon-invasive struc-
tural imaging technique that provides information about tissue micro-structures.
Quantitative measures derived from dMRI reflect pathological and developmental
changes in living tissues such as human brain. Such parameters are increasingly
used in diagnostic and prognostic procedures and this has motivated several stud-
ies to investigate their estimation accuracy and precision. The precision of an es-
timated parameter is dependent on the applied gradient encoding scheme (GES).
An optimal GES is one that minimizes the variance of the estimated parameter(s).
This thesis focuses on optimal GES design for the following dMRI models: sec-
ond and fourth-order diffusion tensor imaging (DTI), ADC imaging and diffusion
kurtosis imaging (DKI). A unified framework is developed that comprises three
steps. In the first step, the original problem is formulated as an optimal experiment
design problem. The optimal experiment design is the one that minimizes the con-
dition number (K-optimal) or the determinant (D-optimal) of the covariance ma-
trix of the estimated parameters. This yields a non-convex optimization problem.
In the second step, the problem is re-formulated as a semi-definite programming
(SDP) problem by introducing new decision variables and convex relaxation. In
the final step, the SDP problem is solved and the original decision variables are
recovered. The proposed framework is comprehensive; it canbe applied to DTI,
DKI, K-optimal design, D-optimal design, single-shell andmulti-shell acquisi-
tions and to optimizing directions andb-values.

The main contributions of this thesis include: (i) proof that by uniformly dis-
tributing gradient encoding directions one obtains a D-optimal design both for
DKI and DTI; (ii) proof that the traditionally used icosahedral GES is D-optimal
for DTI; (iii) proof that there exist rotation-invariant GESs that are not uniformly
distributed; and (iv) proof that there exist GESs that are D-optimal for DTI and
DKI simultaneously. A simple algorithm is presnted that cancompute uniformly
distributed GESs. In contrast to previous methods, the proposed solution is strictly
rotation-invariant. The practical impact/utility of the proposed method is demon-
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strated using Monte Carlo simulations. The results show that the precision of
parameters estimated using the proposed approach can be as much as 25% better
than that estimated by state-of-the-art methods. Validation of these findings using
real data and extension to non-linear estimators/diffusion models provide scope
for future work.

Keywords: Diffusion MRI, Gradient Encoding Scheme, Diffusion Tensor
Imaging, Diffusion Kurtosis Imaging, ADC imaging, D-optimal experiment de-
sign, Optimal Image acquisition, Second and Fourth Order Tensors.
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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) is a widely used medical imaging technique
that acquires images of the body with a technically advancedand expensive scan-
ner. No ionizing radiation is used in MRI and there is no knownside effect as-
sociated with being scanned by an MRI machine. The techniquewas developed
in 1970s and has been extended to several specialized imaging modalities; e.g.
functional MRI and diffusion MRI. The first papers on diffusion MRI date from
the mid-1980s [1, 2]. The technique is performed using the same scanner as used
in regular MRI (see Figure 1.1). In clinical practice the total scan time should be
no more than 10 minutes [3].

Diffusion MRI is sensitive to diffusion (Brownian motion) of water molecules
inside living tissues. Its main clinical application is in brain imaging although it
finds application to other parts of the body; e.g. breast and prostate. The basic
idea behind diffusion MRI is that knowing the paths that water molecules may
travel/diffuse in brain, one can estimate the structure of micro-pipes connecting
different parts of the brain. Figure 1.2(a) shows a typical result for diffusion imag-
ing of the whole brain. Note that colors are not real (added bythe illustration soft-
ware). Although it may seem too crowded/fuzzy, one can select special regions of
interest to study neural pathways connecting two specific parts as shown in Figure
1.2(b).

The two key concepts in this thesis arediffusion MRIandgradient encoding
scheme. The latter is related to the concept ofexperiment design. Thus, we first
briefly introduce diffusion MRI and then we describe the concept of experiment
design and its relevance to diffusion MRI. Finally we brieflyreview related studies
and summarize contributions of the thesis.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Philips MRI machine at Sahlgrenska University Hospital, Gothen-
burg, Sweden. The image is taken from [4].

1.1 Diffusion-weighted MRI

The movement of water molecules in living tissues (diffusion) is influenced by
the local cellular environment. The idea behind diffusion imaging is that from
the measured (bulk) diffusion profile in a voxel, one can obtain important proper-
ties of the underlying micro-structure (see Figure 1.3). Diffusion-weighted Mag-
netic Resonance Imaging (dMRI) is a non-invasive structural imaging technique
that measures the hindered/restricted diffusion of water molecules in tissues, thus
revealing information about tissue micro-structure. It involves acquiring a se-
ries of diffusion-weighted images (DWIs), reconstructingthe diffusion profile at
each voxel and extracting quantitative features describing the underlying micro-
structure. This information is used to differentiate micro-structural differences
between different tissues (e.g. between malignant and benign tissues) and to lo-
cate and track white matter fibre pathways in the brain. The dMRI technique is
variously used for medical imaging of the brain, breast [7, 8], pancreas [9], heart
[10] and even the whole body [8].

The main use of dMRI in brain imaging is to: (i) discover changes in white
matter (WM) due to development, disease or degeneration [11] and (ii) localise
white matter tracts, e.g. in pre-surgical planning. The dMRI technique measures
the probability density function (PDF),p, of hydrogen nuclei displacementsr over
a fixed timet [12]. The functionp(r , r0) represents a six-dimensional image [13]
wherer0 denotes voxel position in 3D. The 6D data is usually illustrated as iso-

4



1.1 DIFFUSION-WEIGHTED MRI

(a) (b)
Figure 1.2: (a) Tracography: mapping fiber pathways (connections) in the human

brain. The image is taken from [5]. (b) Tractography visualizations
of diffusion MRI in region of interest overlaid on structural MRI: Su-
perior segment of the bilateral cingulum fiber bundles. The image is
adapted from [6].

Figure 1.3: Correspondence between underlying micro-structure and the diffusion
profile is the basic assumption behind diffusion-weighted MR imag-
ing. First row shows some hypothetical diffusion profiles that arise
from the micro-structures presented in the second row.

probability surfaces (see the first row in Figure 1.3). In dMRI it is assumed thatp
and its features convey useful information about the underlying micro-structure.
The diffusion PDF is complex in general, but simple models ofdiffusion have
been proposed to quantify diffusion in living tissues. Among these, the most pop-
ular model is the 2nd order diffusion tensor (DT) which was introduced by Basser
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CHAPTER 1. INTRODUCTION

et al. [14] to quantify anisotropic diffusion of water molecules in the human brain.
Basically, the DT model stems from assuming a zero-mean trivariate Gaussian
PDF for the diffusion propagator (p). The (second order positive-definite) DT is
defined to be the covariance matrix ofp. The well-known limitations of the 2nd
order DT in modeling crossing micro-structures has given rise to a variety of com-
plex models including the high-order tensors (HOTs) [15] and diffusion kurtosis
imaging [16, 17]. Diffusion tensor imaging (of arbitrary even order, abbreviated
by DTI) and diffusion kurtosis imaging (DKI) are of central interest in this thesis.
A brief review of the steps involved in brain DWI analysis follows.

The whole task comprises three steps: (i) data acquisition in which one has
to choose an acquisition protocol suitable/optimized for the application in consid-
eration; (ii) reconstruction which includes data pre-processing/correction, model
fitting, parameter estimation; and (iii) clinical application in which estimated dif-
fusion parameters are used for a clinical study or research advancement. Whilst
all three steps are currently being actively researched, the focus of this thesis is on
the first step. Before providing more detail about data acquisition in dMRI, we in-
troduceexperiment designas a general signal processing concept in the following
section. This concept is frequently used throughout the thesis.

1.2 Optimal Experiment Design

ax + by
a

b
c

Figure 1.4: A hypothetical experiment design problem with[a b]T as design vec-
tor and[x y]T as unknown parameters.

Consider a hypothetical problem in which the task is to estimatex andy, as
shown in Figure 1.4. At least two measurements are required to form a linear
system as follows:

a1x+b1y = c1
a2x+b2y = c2

(1.1)

The setD = {[a1 b1]
T , [a2 b2]

T} is called anexperiment design. For the sake of
illustration, let’s consider a numerical example with two measurements. Let the
true value of the unknown parameters be[x0 y0]

T = [3 2]T . Then, two possible
experiment designs areD1 = {[1 1]T , [5 3]T} andD2 = {[−2 1]T , [1 2]T}. This
numerical example is illustrated in Figure 1.5, where the measurements corre-
sponding toD1 andD2 are shown by blue and green points/stars, respectively. In

6



1.3 EXPERIMENT DESIGN IN DMRI

the absence of noise, one can correctly find the unknown parameters using either
D1 orD2. However, in the presence of noise (measurement noise), theproblem is
not deterministic anymore and designs producing more robust/precise estimates
are more favourable. In our example,D1 is not a good design as it leads to an
ill-conditioned problem. In Figure 1.6 possible measurements usingD1 (in the
presence of Gaussian noise) are plotted. It shows that usingD1, it is likely to
get two parallel lines (means a linear system without solutions) or high variance
estimates. Usually, the number of measurements is much higher than the number
of unknown parameters (N > 2 in this case) to ensure a robust estimation.

To express this in mathematical terms, let us re-write (1.1)asAθ = c where
θ = [x y]T , c= [c1 c2 · · · cN]T andA is the design matrix (ith row ofA is [ai bi ]

T).
Thus the least squares (LS) estimate of the unknown parameters θ̂ = [x̂ ŷ]T is θ̂ =
(ATA)−1ATc. The covariance matrix of̂θ (assuming Gaussian noiseN (0,σ2))
is given by

cov(θ̂) = σ2M−1 (1.2)

whereM = ATA is called theinformation matrix. The optimal experiment design
entails making the covariance matrixsmall in some sense. It is usual to minimize
a scalar function of the covariance matrix. Several scalarization methods have
been considered in the literature including D-optimal design (to minimize the de-
terminant of the covariance matrix), E-optimal design (to minimize the spectral
norm of the covariance matrix), A-optimal design (to minimize the trace of the
covariance matrix) [18] and K-optimal design (to minimize the condition number
of the covariance matrix) [19].

Revisiting the numerical example above, one can verify that: (i) the determi-
nant of the information matrix forD1 (det(M1) = 4) is smaller than that ofD2
(det(M2) = 25); and (ii) the condition number of the information matrixfor D1

(κ(M1) = 322) is greater than that ofD2 (κ(M2) = 1). Thus estimates obtained
usingD2 are numerically more stable. In the context of quantitativebiomedical
imaging, there exist applications where the unknown parameter is a biomarker.
In other words, the unknown parameter has diagnostic value and thus the optimal
experiment design is essential.

1.3 Experiment Design in dMRI

Irrespective of the diffusion model under consideration, diffusion imaging is an
estimation problem whose precision is dependent on the experiment design. Med-
ical applications of diffusion imaging attract wide attention to the problem of op-
timal experiment design in diffusion-weighted MRI. A shortliterature review fol-
lows.

7



CHAPTER 1. INTRODUCTION

Figure 1.5: A numerical example of the hypothetical estimation problem given in
figure 1.4 where the true value of unknown parameters is[x0 y0]

T =
[3 2]T . Two possible experiment designs areD1 = {[1 1]T , [5 3]T}
andD2 = {[−2 1]T , [1 2]T}. In the absence of measurement noise,
measurements corresponding toD1 andD2 are illustrated by the blue
and green points/stars, respectively.

At least six measurements in non-collinear directions are required to recon-
struct a 2nd order symmetric DT. These measurement directions are called gra-
dient encoding directions. The dMRI signal is measured by applying a diffusion
sensitizing gradient in (at least) six different directions. The number and distribu-
tion of these directions (over the unit sphere) are elementsof the set of acquisition
parameters called the gradient encoding scheme (GES). The number of measure-
ments is limited/determined by the clinically feasible time while the distribution
of directions in a GES must be optimized for robust estimation of the diffusion
parameters. The optimal GES design is one of the most fundamental problems in

8



1.3 EXPERIMENT DESIGN IN DMRI

Figure 1.6: A numerical example of the hypothetical estimation problem given in
figure 1.4 where bad experiment designD1 = {[1 1]T , [5 3]T} can lead
to an ill-conditioned system or high variance estimates. The measure-
ment noise is Gaussian distributed asN (0,σ2) with σ = 0.2.

dMRI. The classical case, i.e. data acquisition with a constantb-value1 and 2nd
order DT reconstruction has been the subject of much study over the last decades
[20, 21, 22, 23, 24, 25, 26, 27]. An observation drawn from theliterature is that
it is widely accepted that measurement directions should beuniformly distributed
over the unit sphere. The motivation is that the SNR of measured signal is depen-
dent on the orientation and anisotropy of the tensor [28, 29]. Thus, when the SNR
in different directions is unknown, uniformly distributing the diffusion encoding
directions ensures an acceptable SNR/performance on average. Although this is
intuitively appealing, it has not been mathematically proved.

A review of the literature reveals that:
(i) It is known that the optimal GES is dependent on the diffusion model and the
choice of reconstruction method [30]. The common practice of using a uniformly
distributed (UD) GES seems to be primarily motivated/tested for the 2nd order DT
model [31, 28]. Nevertheless, the UD GES has been extensively used for other
models of diffusion imaging (e.g. for DKI [17]);
(ii) There is no exact solution to the problem of uniformly distributing an arbitrary
number of points on the unit sphere. The icosahedral scheme [32, 33] gives the
solution for certain specific cases. There exist methods that closely approximate
the icosahedral scheme and provide solutions for an arbitrary number of measure-
ments. The most important of these is the Jones scheme [28];

1so-called single-shell sampling
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CHAPTER 1. INTRODUCTION

(iii) The absence of a mathematical proof for the optimalityof the UD design has
triggered a second round of studies on the optimal design forthe 2nd order DT
model (a decade after the first round). More recent studies [34, 35] define the
optimality based on mathematical metrics borrowed from theexperiment design
theory;
(iv) A large number of new diffusion models have been proposed to either detect
crossing micro-structures [36, 15, 37] or discover more detailed micro-structural
information [38, 39, 40]. Despite their promising results,the problem of optimal
GES design for the new models as well as multi-shell acquisitions has not, to
date, been well-studied [29]. Presumably this is because ofthe non-convexity and
complexity of the problem. Another possible reason is that one obtains satisfac-
tory results using the existing UD GESs; and
(v) Parameters derived from the modern diffusion models areincreasingly used
as biomarkers in medical diagnosis/prognosis. This has given rise to numerous
recent studies exploring optimal GES design for high order models [41, 42, 43]
and multi-shell acquisitions [44, 45, 46].

As mentioned above, the optimal GES design in dMRI is a fundamental yet
complex problem. Several design approaches have been proposed in the litera-
ture. One approach is to consider a simplified diffusion model [34, 42]. Another
is to acquire a priori knowledge of the imaged micro-structures using a prelimi-
nary scan [43, 34] and exploit this knowledge for GES design [35, 34]. Several
researchers have used stochastic optimization techniquesfor experiment design in
dMRI [43, 41, 47, 42]. For instance, in [35] and [43] simulated annealing (SA)
is used in experiment design for spinal cord imaging and the downhill simplex
method (DSM) is used for K-optimal design in DTI [47]. Although these methods
are promising, a drawback they have in common is that a globally optimal solu-
tion is not guaranteed. This is because of several simplifications/discretizatios and
the use of stochastic optimization techniques.

The optimal GES for each diffusion model is the one that minimizes the vari-
ance of the estimated parameters. Using experiment design theory, one can obtain
the optimal GES by minimizing the covariance matrix of the estimated param-
eters in some sense. Possibilities include K-optimal, A-optimal, D-optimal and
E-optimal designs. The earliest study that utilized experiment design methods
to solve GES design problem is [47], where the K-optimal design problem for
2nd order DTI is solved using DSM. A major drawback of this approach is that
it yields a rotationally variant GES2. In [35] the A-optimal design problem for
2nd order DTI is solved using SA. In [34], a D-optimal design for 2nd order DTI
is presented that assumes a prior knowledge of the micro-structure of interest is
available.

2For a discussion of the importance of rotation-invariance see Section 2
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1.4 Main Contributions

In this thesis, the problem of optimal GES design for dMRI is revisited. A math-
ematical framework is proposed to solve the optimal GES design problem for
even order diffusion tensor imaging and for diffusion kurtosis imaging. Numer-
ous theoretical results are presented that collectively broaden our understanding
of different aspects of the GES design problem. In addition to several findings that
complement or support previous research, this thesis presents several new results:
(i) there exist designs that are optimal for second and fourth order diffusion ten-
sor imaging at the same time; (ii) there exist optimal designs that are optimal for
second and fourth order diffusion tensor imaging and DKI at the same time; (iii)
the traditionally used icosahedral scheme (as a UD GES) is D-optimal for second
and fourth order diffusion tensor imaging and DKI, simultaneously; and (iv) the
D-optimal design guarantees rotation invariance of a GES for DTI and DKI.

The proposed method differs from previous studies in the following respects
(i) unlike [35, 47], it does not utilize stochastic optimization techniques; (ii)
In contrast to [34, 35], it does not assume any simplification/discretization of
the original problem; (iii) unlike [35, 34, 47], it providestheoretical and prac-
tical properties of the obtained solutions; (iv) In comparison to [28], it produces
rotation-invariant schemes (in the case of D-optimal design); and (v) it estab-
lishes a general theoretical framework for GES design by extending the proposed
method to the modern diffusion imaging techniques such as HOT and DKI.

1.5 Aims and Objectives

This thesis has the following aims: (i) to provide new insights and understand-
ing with respect to the different aspects of optimal gradient encoding schemes in
dMRI; and (ii) to develop a unified framework to solve the optimal GES design
problems in dMRI. To this end, the thesis has the following objectives:

1. To develop an optimal GES for the second order DTI.

2. To develop an optimal GES for fourth order DTI (does not require multi-
shell acquisition).

3. To develop an optimal GES for some high order models that require multi-
shell acquisitions.

4. To evaluate the proposed optimal designs in comparison toseveral state-of-
the-art methods.
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1.6 Scope of the Thesis

As implied by the aims and objectives, the scope of this thesis is limited to acqui-
sition of dMRI data. It does not include any contribution to other parts of dMRI
analysis pipeline. Both single-shell and multi-shell acquisition strategies are con-
sidered. The work presented herein is limited to even3 order diffusion tensor
imaging, diffusion kurtosis imaging and apparent diffusion coefficient imaging.

1.7 Thesis Outline

This thesis is organized as follows. The first part, the introductory chapters, in-
cludes a brief review of the theory and background of dMRI (Chapter 2), a sum-
mary of the thesis work (Chapter 3), and conclusions and future work (Chapter
4). The second part includes appended papers.

3This ensures that the HOT is antipodally symmetric.
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CHAPTER 2

Background and Theory

This chapter briefly reviews the theoretical underpinningsof dMRI. The chap-
ter begins by reviewing the physiological and physical bases of dMRI. This is
followed by a presentation of the mathematical formulationof a simple 2nd or-
der DT model. Next, a review of the related work on two major steps of dMRI
processing, namely acquisition and reconstruction, is presented and open ques-
tions and shortcomings highlighted. In particular, we review optimal GES design
methods and elaborate on the differences and drawbacks of existing approaches.
Finally, a brief overview of dMRI applications, such as tractography, is presented.

2.1 Physiology

The human brain has 100 billion neurons (highly specialisedneural cells) which
together are responsible for regulating most of our activities [48]. A typical neuron
is composed of a cell body, dendrites, axon and axon terminals (as shown in Figure
2.1). Axons are surrounded by a fatty tissue, the so-called Myelin sheath, that
provides electrical insulation and facilitates signal transmission. The human brain
mainly consists of three tissue types, namely white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF). The GM (also known as cortex) is primarily
composed of neuron cell bodies while the WM contains myelinated axons that
facilitate communication between various regions of the cortex [49]. Myelin is
white in color, and the tissue containing the cell bodies is gray in color and this in
turn is why their surrounding tissues have their characteristic names. The axons in
WM are highly ordered and densely packed into bundles known as fibre tracts or
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CHAPTER 2. BACKGROUND AND THEORY

Figure 2.1: A typical neuron consists of the cell body, dendrites, axon (covered by
Myelin sheath) and axon terminal. This image is adapted from[50].

fascicles. These white matter fibres connect different cortical (grey matter) areas,
and some of them also project down to the spinal cord [49]. Thediffusion of water
molecules in CSF is isotropic (same in all directions) whilein highly structured
WM, it is anisotropic reflecting the underlying micro-architecture.

2.2 Physics

It is difficult (if not impossible) to quantify the Brownian motion of a single water
molecule. However, considering statistics of the displacements of a huge number
of molecules leads to the definition of the diffusion coefficient (for isotropic dif-
fusion). The mean square displacement of the molecules in anisotropic medium
is related to their diffusion coefficient according to Einstein’s equation:D = 1

6t <
rTr > wheret is diffusion time,r is the net displacement vector of a particle
and<> means the ensemble average [48]. The scalar constantD depends on
the properties of the diffusing particles and the medium butnot on the direction
[48]. In biological tissues the diffusion pattern is modulated by the surrounding
microstructure leading to an anisotropic diffusion profile. In the anisotropic case,
the probability density functionp of displacementsx of the particle of interest
over a fixed timet describes/quantifies the ongoing diffusion process. Although
this PDF is complex in general, some simple models have been proposed to de-
scribe anisotropic diffusion; the most important of them isthe DT model proposed
by [14]. The PDFp and its features reflect the underlying micro-structure. Inthe
literature this is generally taken to be a one-to-one relation meaning that given the
micro-structure, the functionp can be uniquely characterized and vice versa.
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2.3 Mathematics of Diffusion MRI

It has been shown that the diffusion-weighted signal is the Fourier transform of
the ensemble average diffusion propagator,p(r |t) [12, 51, 52, 48]:

S(q) = S0

∫
p(r |t)exp(iq.r)dr (2.1)

where the vectorq is defined asq = γδQ, with Q being the vector of the ap-
plied diffusion gradient,γ is the gyromagnetic ratio of proton (or the hydrogen
nucleus) andδ is the diffusion gradient pulse duration (see [12, 52, 48] for more
details). The local advection velocity is assumed to be zero(net motion of the
whole population) [12] leading to the antipodal symmetry ofthe diffusion PDF,
p(r |t) = p(−r |t). The basic DT model for diffusion stems from assuming a zero-
mean trivariate Gaussian PDF for the diffusion propagator:

p(r |t) =
1√

(4πt)3|D|
exp(−rTD−1r

4t
). (2.2)

Under this assumption (2.1) reduces to:S(q) = S0exp(−tqTDq). It is usual to
further simplify this notation by introducing variablesg= q

|q| andb= t|q|2 (known
as theb-value) such that [52, 48]:

S(g) = S0exp(−bgTDg) (2.3)

In this perspective, the (second order positive-definite) DT (denoted byD) is the
covariance matrix ofp. Having six unknowns requires at least six measurements
to estimate the DT. As implied by the antipodal symmetry ofp, in the absence of
noise, the diffusion signal is real-valued. However, this is not the case in practice
where the diffusion signal is assumed to be biased by Rician noise. The measured
magnitude signal is expressed as [53]:

Sn =
√

(S+n1)2+n2
2 (2.4)

wheren1 andn2 are uncorrelated zero-mean Gaussian noise variables with equal
variance. Second order DT estimation leads to an over-determined system of
linear equations as follows. Given a set ofN > 6 DW measurements stored
in y, whereyi = −b−1ln( Si

S0
)1, and diffusion sensitizing gradient vectorsgi =

[gix,giy,giz], i = 1, ...,N, the DT is given byd = G−1y whered = [Dzz,Dyz,Dyy,
Dxz,Dxy,Dxx]

T and theith row of G (known as the design matrix or encoding ma-

1The term−b−1ln( S
S0

) is referred to as the apparent diffusion coefficient (ADC).
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trix) is [g2
iz,2giygiz,g2

iy, 2gixgiz,2gixgiy,g2
ix]. In this linear least squares (LLS) esti-

mation framework, (i) positive-definiteness of the solution is not guaranteed, and
(ii) sensitivity of the estimated DT to the noise in measurements is upper-bounded
by the condition number of the design matrix [32].

In addition to the complicated diffusion models, it is usualto estimate some
quantitative features that more simply reflect the properties of the tissue segment
under consideration. For 2nd order DTI, two well-defined parameters are widely
used: Fractional anisotropy (FA) and the principal direction of diffusion (PDD).
The FA value is calculated as the normalized variance of eigenvalues (λi) of the
diffusion tensor:

FA =

√
3∑3

i=1(λi(D)− λ̄(D))2

2∑3
i=1(λi(D))2

(2.5)

FA takes a value in the range[0,1], where FA=0 means isotropic diffusion (spher-
ical tensor) and FA=1 indicates extremely anisotropic diffusion (very elongated
ellipsoidal tensor). In the white matter of the human brain,as a consequence of
the highly structured environment, the FA value is close to one. The FA value
is known to reflect the changes related to aging or pathological alterations. The
eigen-vector corresponding to the largest eigen-value determines the principal di-
rection of diffusion (PDD) that is used for fiber tracking (tractography).

2.4 Acquisition: GES Design

The analysis of the diffusion signal is closely related to the sampling ofq-space
[54]. Different sampling schemes studied to-date fall intotwo groups based on
their sampling strategy: Cartesian and spherical sampling[11]. Cartesian sam-
pling (also known as full space sampling) is used in diffusion spectrum imaging
(DSI) [55]. Full sampling ofq-space requires a high number of measurements
(N > 200) and thus is not practicablein vivobecause of the long acquisition time.
Spherical sampling strategies (also known as high angular resolution imaging
(HARDI) techniques) are divided into two groups: single-shell and multiple-shell.
Single-shell schemes provide samples over a sphere inq-space. In other words, a
single non-zerob-value is applied. In contrast, multiple-shell schemes apply sev-
eral non-zerob-values. [54] categorizes different sampling schemes based on the
number of required measurements and adds radial and sparse sampling strategies.
In addition to the sampling strategy, the selection of the sampling points is also
highly important. For both single and multi-shell sampling, one needs to make
a decision about the number of measurements to perform and the distribution of
sampling points (the GES).

The minimum number of required measurements is determined,on the one
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2.4 ACQUISITION: GES DESIGN

Figure 2.2: Spatially varying SNR in dMRI measurements: High SNR is achieved
when measuring perpendicular to the fiber/tensor.

hand, by the number of unknown parameters in our model. On theother hand,
the maximum number of measurements is limited by the clinically acceptable
acquisition time. Thus, it is the distribution of measurement directions that should
be optimized to minimize the variance of the estimated parameters (an experiment
design problem).

2.4.1 Model-free GES Design

It is known that all theoretical methods for optimal experiment design (e.g. D-
optimal) require the consideration of a diffusion model. However, there exist
model-free GESs that are deemed to be optimal for all kinds ofdiffusion imaging.
It is well-accepted that uniformly distributed (UD) gradient encoding schemes
are optimal for 2nd order DTI. Further, the UD GES is frequently used for other
diffusion models [17, 27, 30, 44] implying that it is the bestavailable choice for
any kind of diffusion imaging.

The UD GES is motivated by the fact that SNR of dMRI measurements is spa-
tially varying. The SNR of the measured signal is dependent on the orientation and
anisotropy of the imaged tensor [28, 29]. As shown in Figure 2.2, when measuring
along the fiber, the signal level drops to the noise floor (according to (2.3)). How-
ever, when measuring perpendicular to the fiber, the SNR is much higher [29]. To
better visualize the spatially varying SNR, the dMRI signalarising from six hypo-
thetical micro-structures (according to (2.11)) are shownin Figure 2.3. Broadly
speaking, measurements in the red areas have a high SNR whilemeasurements in
the dark blue area are almost useless (too noisy). Thus, without prior knowledge
of the orientation of the structure to be imaged, a uniform distribution of gradi-
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Figure 2.3: Spatially varying SNR in dMRI measurements: dMRI signal arising
from six hypothetical micro-structures (a)D1 =diag([17 2 2])×10−4,
FA=0.87; (b) D2 =diag([2 17 5]) ×10−4, FA=0.77; (c)
D3 =diag([2 6 16]) ×10−4, FA=0.73; (d) D1 + D2; (e) D1 + D3

and (f)D1 +D2 +D3. The diffusion signal is simulated using (2.11).
The orientation of diffusion tensors are shown with dashed arrows.

ent encoding directions seems sensible. This increases thechance of having at
least six high SNR measurements for any micro-structure. Another motivation is
that a uniform distribution of gradient encoding directions minimizes the cross-
term effects in estimating the diffusion tensor [56]. Although both arguments are
intuitively appealing, they have not been mathematically proved.

This thesis, for the first time, proves that a UD GES can be optimal for several
different models (i.e. the UD GES conforms to the conditionsobtained by model-
dependent GES design approaches). For this reason, herein we categorize the
GES design methods based on the number of shells (and not the model under
consideration). In the following subsection we briefly review some existing work
on single-shell optimal GES design that has mainly been devised for second order
DTI.

2.4.2 Single-shell GES Design

To estimate parameters of some diffusion models (e.g. even-order tensors) a
single-shell data acquisition suffices where only one non-zero b-value is used
for data acquisition. Although multi-shell acquisitions (with several non-zerob-
values) can provide additional information [57], single-shell acquisitions are usual
because of the acquisition time limit and computational burden.
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2.4 ACQUISITION: GES DESIGN

Given the possibility of makingN measurements, one of the most fundamental
questions in dMRI is how to distribute sampling points over the unit sphere (for
a single-shell acquisition scheme). The optimal single-shell sampling has been
widely studied [28, 20, 22, 23, 24, 31, 32, 25, 26, 30, 27]. Four observations can
be drawn from the literature:

(i) It is widely accepted among researchers that sampling points should be uni-
formly distributed over the unit sphere (the motivation is that the SNR of the mea-
sured signal is dependent on the orientation and anisotropyof the tensor [28, 29]).
There is no analytical solution for the problem of uniformlydistributing an arbi-
trary number of points on a sphere [58]. The icosahedral scheme [24, 32] provides
the UD GES for some specific cases. There exist methods to obtain an approxi-
mately UD GES for an arbitrary number of points. Of particular note is the elec-
trostatic repulsion (ER) scheme that minimizes the interaction energy of identical
charges positioned at sampling points [28]. These two methods (icosahedral and
ER) were originally devised for 2nd order DTI but have been used for GES design
in DKI and other models of diffusion imaging [27, 30, 44] because they generate
an (approximately) uniform distribution of points on a sphere.

(ii) The uniformity of the distribution of gradient encoding directions over
the sphere is measured by the minimum angle subtended by any possible pair of
encoding directions [44, 56, 24, 58] (denoted byβmin, defined below). Letβi j be
the angle betweengi andg j . Then, the minimum and maximum angles,βmin and
βmax are defined as follows:

βi = min {βi j | i 6= j, j = 1, · · · ,N},
βmin = min {βi | i = 1, · · · ,N},
βmax= max{βi | i = 1, · · · ,N}.

(2.6)

For each GES, the minimum angular distance between two neighboring points,
βmin is considered as a measure of uniformity of the distributionof points (the
larger, the better). For icosahedral schemes (or exact UD GESs),βmin reaches the

best possible valueβ ∗
min = 180

π arctan(2)
√

5
N−1 [58]. This can be used to examine

how close a given GES is to the exact UD GES. For ideal GESs (e.g., the icosa-
hedral scheme),βmin = βmax holds, a smaller value of∆β = βmax− βmin implies
that the given GES is better in terms of uniformity. It is noteworthy that some
other optimality metrics have been proposed to measure the uniformity of the dis-
tribution of directions of a GES. These all stem from the ideathat minimizing the
electrostatic interaction (Coulombic) energy between equal charges positioned on
the sphere will uniformly distribute those point charges. Following this idea, sev-
eral energy functions are defined includingJ1 [59, 33, 24],J2 [44], J3 [41] and
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Figure 2.4: Five uniformity metrics are evaluated for 100 GESs (withN=20) ob-
tained by D-optimal design algorithm for 2nd order DTI (given in
Paper A). See definition of the metrics in the text (forJ4 we seta= 2).
The optimal GES for each metric is denoted by a red star. It can
be seen that optimality in one sense does not require/resultin opti-
mality in any other sense. The optimal GESs are #30 (βmin = 9.8◦),
#27 (βmin = 15.1◦), #5 (βmin = 10.9◦), #46 (βmin = 5.3◦) and #78
(βmin = 16.8◦).

J4:
J1 = ∑2N

i=1∑2N
j=i+1

1
||gi−g j || .

J2 = ∑N
i=1

1
||gi−g j ||2 + 1

||gi+g j ||2 .

J3 = ∑2N
i=1

gi−g j

||gi−g j ||3 .

J4 = ∑2N
i=1

gi−g j
||gi−g j ||a .

(2.7)

In these cost functions theith gradient encoding direction of a GES withN points
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is denoted bygi where the indexi varies up to 2N when for eachgi the corre-
sponding−gi is also considered (to account for antipodal symmetry). As can
be seenJ3 is a vector-valued function. In a private communication, the authors
of [41] stated that they minimize||J3||. In J4 the constanta can be any posi-
tive real number. An interesting observation is that these metrics are not consis-
tent, e.g. for two given GESs,J1(GES1)< J1(GES2) does not necessarily lead
to βmin(GES1)> βmin(GES2). As shown in Figure 2.4 this inconsistency applies
to all five above-mentioned metrics. For 100 GESs (N=20) obtained by the D-
optimal design method for 2nd order DTI (given inPaper A), all five metrics are
evaluated and their respective optimal GES is denoted by redstars. It can be
seen that optimality in one sense does not require/result inoptimality in any other
sense. In this thesis, we mainly useβmin because it seems a direct and appealing
metric.

(iii) It is widely accepted that sampling more points leads to more precise
tensor estimation (the motivation for acquiring more measurements is to mitigate
noise). For the second order DT model (with only six unknowns) at least 30
measurements are required for robust estimation of all parameters of interest [31].

(iv) Choosing different objective functions leads to different optimal schemes.
Minimization of the interaction energy of identical charges positioned at sam-
pling points (known as the ER scheme) [28], minimization of the condition num-
ber (MCN) of the design matrix [47] associated with the leastsquares estimation
of the DT, and the icosahedral scheme [32] are popular examples. Several other
criteria have also been proposed to measure the optimality of sampling schemes
including the total tensor variance [24], signal deviation[27], variance of tensor-
derived scalars [32, 31], minimum angle between pairs of encoding directions,
and SNR of tensor-derived scalars [60]. The reader is referred to [29] for a com-
prehensive review of these sampling schemes.

(v) Because of the anisotropic noise propagation in dMRI [32] the rotational
variance of any particular performance measure should be evaluated. For a dis-
cussion of the importance of rotation-invariance (of a GES)see Chapter 15 in
[29]. The importance of rotation-invariance gave rise to a common evaluation
framework [31, 22, 32, 27, 47] for sampling schemes (based onthe Monte Carlo
simulations). This generalized GES evaluation framework (mainly used for the
2nd order DT) is described in Algorithm 1 below. In addition to the FA value, the
uncertainty of the vector-valued quantities (e.g. PDD) should be evaluated. We
compute the 95% cone of uncertainty (CU95 as defined in [61]) to quantify the
uncertainty in the estimation of the PDD.

This well-known evaluation framework is applicable when the optimality mea-
sure of interest is a function of the DT-derived quantities.In the MCN and Jones
schemes the optimality/fitness of a given set of sampling points can be directly
evaluated. Thus the framework reduces to successive rotations and evaluations
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Algorithm 1: Pseudo-algorithm to compute response surface ofσ (FA)
Data: diagonal tensorD0 with a prescribed FA,NR rotation matrices,

number of Monte Carlo trialsNMC, SNR=S0/σ , GES
Result: response surface ofσ (FA)
for r = 1 to NR do

ObtainD = RTD0R;
for n = 1 to NMC do

- simulate the diffusion signal at the sampling points defined by the
GES under evaluation using the Stejskal-Tanner [62] equation
(S(gi) = S0exp(−bgT

i Dgi));
- add Rician distributed noise to the synthetic signal to obtain given
SNR;
- compute the diffusion tensor̂D and corresponding FA value;

record the standard deviation of estimated FA (σ (FA));

to assess the rotational variance. Simulations in [32] showthat the icosahedral
sampling scheme (detailed in [32]) is superior to the MCN scheme in terms of
rotational-invariance of the condition number (CN).

As emphasized in [30], the determination of an optimal GES isdependent
on the choice of diffusion model. It is still an open questionfor many diffusion
models. In this thesis, we propose a unified approach for optimal GES design in
DTI and show that it can be extended to high order DTI and DKI.

2.4.3 Multi-shell GES Design

Some modern diffusion models (e.g. DKI) require multi-shell acquisitions. Opti-
mal GES design for multi-shell acquisition of dMRI data has also been the sub-
ject of numerous studies. Several multi-shell GES design methods are based on
single-shell solutions [45, 46, 41]. Other studies have developed model-dependent
optimal multi-shell schemes [43, 41, 30]. Direct extensionof the ER scheme (in-
troduced in [28]) to obtain an UD multi-shell GES is also investigated [44, 63, 64].
Another extension to the ER algorithm is presented in [65] using tensor metrics
and charged containers.

In this thesis, an optimal multi-shell GES is designed for DKI. Furthermore,
it is shown that the developed GES is D-optimal for 2nd and fourth order DTI, as
well.
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(a) (b) (c)

Figure 2.5: An example of input data for a dMRI reconstruction algorithm: (a)
b0 image of an arbitrary slice of a human brain, (b) same slice when
imaged withb=1000s/mm2 andg= [0.52 −0.52 0.68], (c) same slice
when imaged withb=1000s/mm2 andg = [−0.69 −0.73 −0.02].

2.4.4 GES Design Theory

Given that much of this thesis is concerned with the optimal experiment design for
several diffusion imaging techniques, in this section we briefly review experiment
design theory. In many different areas of engineering, the problem of estimating
a vectorθ ∈ Rn from a set of measurementssi, i = 1, . . . ,N arises, where

si = aT
i θ + εi , i = 1, . . . ,N (2.8)

ai is the design for measurementi and theεis are assumed to be independent zero
mean random variables with equal varianceσ2 (the measurement noise). The
precision of the estimation problem is dependent on the experiment designsai ,
i = 1, · · · ,N. The least squares estimator (LSE) is unbiased and has the following
covariance matrix [19]:

Cov(θ̂) = σ2M−1 (2.9)

whereM = ∑N
i=1aiaT

i and is usually called the“information matrix". Optimal
experiment design entails making the covariance matrixsmallin some sense. It is
usual to minimize a scalar function of the covariance matrix. Several scalarization
methods have been studied to date including D-optimal design (to minimize the
determinant of the covariance matrix) [43, 34, 42], E-optimal design (to minimize
the spectral norm of the covariance matrix) [18], A-optimaldesign (to minimize
the trace of the covariance matrix) [35, 18] and K-optimal design (to minimize the
condition number of the covariance matrix) [47, 19].
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(a) (b) (c)

Figure 2.6: Three examples of outputs of a dMRI reconstruction algorithm: (a)
FA map of an arbitrary slice of a human brain, (b) color coded PDD
map of the same slice, (c) a hypothetical tensor field. Images(a) and
(b) are produced by ExploreDTI [66]. The image (c) is adaptedfrom
[67].

2.5 Reconstruction

Given a set of dMRI measurements for each voxel, a reconstruction method is
expected to provide:
(i) an estimate of the number of fiber bundles constructing the underlying micro-
structure (although it is an input in some methods);
(ii) an estimate of the orientation of each fascicle; and
(iii) features ofp that characterize the tissue/micro-architecture properties such as
FA.

Example inputs and outputs of a dMRI reconstruction algorithm are illustrated
in Figures 2.5 and 2.6, respectively. More sophisticated models would provide
orientation distribution functions (ODFs) instead of a tensor field in 2.6(c).

A wide variety of methods have been proposed to analyze the diffusion signal
in order to determine the underlying micro-structure and its features. These ap-
proaches broadly fall into two groups: parametric (model-based) and non-parametric
(model-free) approaches. Parametric methods assume that the dMRI signal is a
weighted linear sum of functions each of which models the diffusion pattern of a
single fascicle [68]. This group is also known as the mixturemodels [54, 68]. The
non-parametric methods try to estimate some function indicating potential fiber
directions and their uncertainty [69]. The target functions are some mathematical
series [54] or spherical orientation distribution functions (ODF) [69]. This catego-
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rization is widely accepted although there is no clear demarcation between these
two groups. For example the Persistent Angular Structure (PAS-MRI) method is
classified as a parametric/model-based method in [54] whilebeing considered as
non-parametric/model-free in [69, 68]. It is noteworthy that some methods model
the ADC profile instead of modeling the diffusion signal. Regardless of the ap-
plied method/model, the peaks of the ADC profile do not coincide with fascicle
orientations (except for single-fascicle micro-structure) but the profile is useful for
FA computation [12]. In this regard, the reconstruction methods are divided into
two groups: those that aim to determine the fODF (or its blurred version known
as dODF [70]) and those that aim to estimate the ADC profile.

2.5.1 Parametric Methods

The regular DT model is the most popular parametric method that adequately
models the diffusion signal within isotropic or single-fascicle voxels. Simple, fast
and robust estimation and well-established interpretation framework make the 2nd
order DT model suitable for daily clinical use. However, itsknown limitations
in modeling complex micro-structures has given rise to manynew models and
reconstruction frameworks. A multi-tensor model is a natural generalization of
the DT model to resolve complex architectures. Basically itassumes thatp is sum
of several Gaussian distributions:

p(r |t) =
n

∑
i=1

fi
1√

(4πt)3|Di|
exp(−rTD−1

i r

4t
) (2.10)

wherefi are volume fractions such thatfi ∈ [0,1] and∑n
i=1 fi = 1. This assumption

leads to the multi-exponential modeling of the diffusion signal:

S(g) = S0

n

∑
i=1

fi exp(−bgTDig) (2.11)

This idea (with some modifications) has led to various multi-compartment mod-
els, where each term models the contribution of different biologic compartments
(such as intra-axonal, extra-axonal, isotropic and so on) in the diffusion signal
(see [71] for details). The main limitations with this family of parametric models
are:
(i) Model order selection - to choose a suitablen is not a trivial task in general.
Some studies use a fixedn that would lead to poor results in case of a mismatch
between the underlying micro-structure and the model (see Figure 27.2 in [29]).
Several studies have sought to estimaten separately [12].
(ii) Acquisition requirements - the number of unknown parameters and thereof the
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minimum number of measurements depends onn. Further, given a single-shell ac-
quisition, it is impossible to precisely estimate multi-tensor models [11].
(iii) Estimation framework - because of the non-linearities and noisy measure-
ments, the estimation process is challenging.

The model-based approaches usually reveal a finite number offascicles in
each voxel and their respective features (such as FA, principal diffusion direction
(PDD)). However, for adequately resolving fanning or branching fascicles, esti-
mation of fODF/dODF would seem to be more desirable. The non-parametric
methods seek to estimate a spherical functionf ODF : Ω → R for each voxel de-
scribing the fraction of fibers pointing in each direction [29] (or conceptually the
probability that a particle located in the center of the voxel, will diffuse in that
direction). In this perspective, PAS-MRI and deconvolution-based methods are
classified as non-parametric methods as they estimate the fODF/dODF, although
they use some models of diffusion as the response functions.For a discussion
of the advantages and disadvantages of the multi-tensor model see [11] and [54],
respectively.

2.5.2 Non-Parametric Methods

Non-parametric DWI reconstruction methods include diffusion spectrum imaging
(DSI) [55], q-ball imaging (QBI) [36] and its variations, the diffusion orienta-
tion transform (DOT) [72], PAS-MRI [37], deconvolution-based methods [73]
and higher order tensor methods [74]. [11] enumerates threemajor error sources
in q-space approaches (DSI,QBI, etc), the most important of which is the acquisi-
tion requirements. For more details on the advantages and drawbacks of different
methods see [54, 29]. The general drawbacks with model-freeapproaches are as
follows:
(i) The incorporation of the probability in describing diffusion patterns may not
be desirable all the time. For some applications, such as tractography or evalua-
tion of synthetic data-based studies, quantification of thenumber of fascicles and
their PDD are required. This has led to an active research area dealing with the
extraction of the required deterministic information (e.g. PDD) from the available
probabilistic description of the diffusion profile. The research on this secondary
problem has led to fODF maxima extraction methods [75, 76, 77], tensor decom-
position [78] and Z-eigen decomposition theory [79].
(ii) The model-free approaches describe the general shape of the diffusion pat-
tern rather than describing the contribution of each fascicle and its orientation and
anisotropy. Most existing tractography algorithms are based on the model-free
reconstructions but still rely on FA maps (obtained from 2ndorder DT) to detect
white matter tissue.
(iii) The evaluation of these methods (especially on synthetic data) is dependent
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on how one interprets them. For example, Z-eigen decomposition of a fourth or-
der tensor givesν ≤ 13 Z-eigenvalues [80] while in evaluation of angular error,
the number of PDDsn is assumed to be known (as in [81]) and only then largest
eigenvalue-vector pairs are considered.

2.5.3 High Order Diffusion Tensors (HOTs)

Non-Gaussian diffusion models have gained wide attention because of their abil-
ity/potential to resolve complex fiber architectures such as fiber crossing, branch-
ing or kissing. One of the promising alternatives to 2nd order DTI that can model
complex fiber architectures in the brain, is the HOT model2. In regions with com-
plex micro-structures, HOTs can model the apparent diffusion coefficient (ADC)
with higher accuracy than the conventional 2nd order model [84].

Given that optimal GES design for HOTs is one of the contributions of this the-
sis, this section briefly reviews HOT-based ADC profile estimation. The Stejskal-
Tanner equation for dMRI signal attenuation is [62]:

−1
b

ln

(
S
S0

)
= d(g) (2.12)

whered(g) is the diffusivity function,S is the measured signal when the diffusion
sensitizing gradient is applied in the directiong, S0 is the observed signal in the
absence of such a gradient, andb is the diffusion weighting factor. (2.12) shows
that for the second order DT modeld(g) = gTDg≥ 0. Generally,d(g) : Ω → R+.
The diffusivity functiond(g) (also known as the ADC profile) is modeled using
even-order symmetric tensors as follows:

d(g) =
3

∑
i1=1

3

∑
i2=1

...
3

∑
im=1

di1i2...imgi1gi2...gim (2.13)

where the upper bound of the summations shows the tensor dimension and the
number of sums is equal to the order of tensorm. Tensor elements are shown with
di1i2...im, and symmetry means that any possible permutations of indices gives the
same value. For example, for a fourth order symmetric tensor: d1112 = d2111 =
d1121 = d1211 = dα(3,1,0) whereα(n1,n2,n3) shows any possible permutation of
indices havingn1 ones,n2 twos andn3 threes. Thus eachm-th order tensor hasn=
(m+1)(m+2)/2 distinct elements with the multiplicity ofµα(n1,n2,n3) = m!

n1!n2!n3! .
In this thesis and related publications,g= [x,y,z] is used instead ofg= [g1,g2,g3]

2Variations of HOTs ranked first in both the HARDI reconstruction contest held in conjunction
with ISBI 2012 [82] and the diffusion MRI modeling challengeheld in conjunction with MICCAI
2013 [83].
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for simplicity. Thus, the diffusivity function takes the following form:

d(g) =
m

∑
i=0

m−i

∑
j=0

th(i, j)g
i
1g j

2gm−i− j
3 =

m

∑
i=0

m−i

∑
j=0

th(i, j)x
iy jzm−i− j (2.14)

whereg = [g1 g2 g3]
T , th(i, j) = dα(i, j ,m−i− j)µα(i, j ,m−i− j) and h(i, j) = j + 1+

i(2m+3− i)/2. Thus the diffusivity function can be expressed as an innerprod-
uct of two vectors,t containing the unknown diffusion tensor elements andai

containing the experiment design forith measurement:

d(gi) = aT
i t (2.15)

wheregi = [xi,yi ,zi]. Both t andai belong toRn but multiplicity coefficients may
be placed in either of the vectors. We keep them in experimentdesign always.

Examples: Form= 2, the second order DT model, the diffusivity function is
composed of:t = [dxx dyy dzzdxy dxz dyz]

T andai = [x2
i y2

i z2
i 2xiyi 2xizi 2yizi ]

T .

Form= 4 the experiment design isai = [z4
i 4yiz3

i 6y2
i z2

i 4y3
i zi y4

i 4xiz3
i 12xiyiz2

i
12xiy2

i zi 4xiy3
i 6x2

i z2
i 12x2

i yizi 6x2
i y2

i 4x3
i zi 4x3

i yi x4
i ]

T .

Note thatd(g,t,m) = d(g) is used for simplification. Given measurements inN >
n different directionsgi , the least squares estimator of even-order DT is:

t̂ = (BTB)−1BTs. (2.16)

whereB is anN ×n matrix asB = [a1 a2 · · · aN]T ands is a column vector of
sizeN, whose elements are the measured ADC values; i.e.s= −1

b[ln(S1/S0) · · ·
ln(SN/S0)]

T . For relatively bigN, it is assumed thatB has row rankn. For other
HOT estimation approaches see [85, 86]. Unlike the 2nd orderDT there is no
unified framework for interpretation of high order DTs. In other words, standard
definitions of FA and PDD for these models are not immediatelyobvious. In [79]
a framework for the interpretation of HOTs is presented based on the concept
of Z-eigenvalues [87] (a generalization of eigen-decomposition to HOTs). An
expression for computing the FA from a HOT is also given while[85] proffers an
alternative definition.

The only study on GES design for HOTs [27] is limited to comparison of ex-
isting GESs mainly devised for second order tensor imaging;e.g. the minimum
condition number (MCN) scheme [47]. A caveat here is that thecondition num-
ber is computed from the design matrix associated with the linear least squares
estimation of parameters of interest. Thus, by definition, it is model-dependent.
One of the problems considered in this thesis is to find K-optimal and D-optimal
GES designs for HOTs.
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2.5.4 Diffusion Kurtosis Imaging (DKI)

In order to quantify micro-structural properties of imagedtissues, a wide vari-
ety of models have been fitted to the diffusion attenuated MR signal. Of special
interest is diffusion kurtosis imaging (DKI) [16, 17] that was proposed to probe
the non-Gaussian diffusion. DKI provides biomarkers reflecting pathological and
developmental changes in the human brain [88, 89, 90, 91].

The diffusion profile at each voxel is described by two symmetric tensors, a
2nd order diffusion tensorD (3× 3 matrix) and a 4th order kurtosis tensorW
(3×3×3×3 matrix). The model that relates the measurements to the unknown
parameters is [92]

ln
S(g,b)

S0
= −b

3

∑
i=1

3

∑
j=1

Di j gig j +
1
6

b2D̄2
3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

Wi jkl gig jgkgl (2.17)

whereD̄ = 1
3trace(D). This model holds under certain conditions, most restrictive

of which is the maximum limit forb-value. At least two-shell acquisition is re-
quired for DKI model fitting. For more details see [92, 17]. The task in DKI is to
estimate 6 distinct elements ofD (denoted byd11 to d33) and 15 distinct elements
of W (denoted byw1 to w15). The model can be reformulated as follows [92]:

ln
S(gi,b j)

S0
= a(i, j)Tθ (2.18)

whereS(gi,b j) is the signal intensity measured in the gradient encoding direction
gi = [xi yi zi ]

T with diffusion weighting factorb j andS0 is the signal intensity
with b j = 0. The vector of unknown parameters isθ = [d11 d22 d33 d12 d13 d23

v1 v2 · · · v15]
T wherevk = D̄2wk. The experiment design isa(i, j) = [−b jx2

i −
b jy2

i − b jz2
i − 2b jxiyi − 2b jxizi − 2b jyizi

b2
j

6 x4
i

b2
j

6 y4
i

b2
j

6 z4
i

2b2
j

3 xiy3
i

2b2
j

3 xiz3
i

2b2
j

3 x3
i yi

2b2
j

3 x3
i zi

2b2
j

3 yiz3
i

2b2
j

3 y3
i zi b2

j x
2
i y2

i b2
j x

2z2 b2
j y

2
j z

2
j 2b2

j xiyiz2
i 2b2

j xiy2
i zi

2b2
j x

2
i yizi ]

T . Given a set of measurements usingn non-zero b-values andNj di-
rections per shell,{S(gi,b j)|i = 1, · · · ,Nj ; j = 1, · · · ,n;n ≥ 2}, the LSE of the
unknown parameters is

θ̂ = (BTB)−1BTs. (2.19)
where the design matrix of sizeN×21 isB = [a(1,1) a(2,1) · · · a(Nn,n)]T and

N = ∑n
j=1Nj , ands= [ln(

S(g1,b1)
S0

) ln(
S(g2,b1)

S0
) · · · ln(

S(gNn,bn)
S0

)].

2.5.5 Apparent Diffusion Coefficient Imaging

Among the many complicated diffusion models there exist a simple model, i.e.
ADC imaging, that is widely used for the classification of brain disorders [93],
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detection of malignant breast lesions [94], identifying stages of cerebral infarction
[95] and diagnostic imaging of the kidney [96, 97], prostate[98, 99] and ovaries
[100, 101]. ADC imaging is also used to solve challenging clinical problems
such as differentiation of Parkinson’s disease from multiple system atrophy and
progressive supranuclear palsy [102].

In essence, ADC imaging is a mono-exponential model fitting problem. The
model for ADC imaging is given by

S= S0exp(−bD) (2.20)

whereS is the measured signal when the diffusion weighting factorb is applied,
S0 is the observed signal in the absence of such a weighting factor andD is the
apparent diffusion coefficient. The parameters to be estimated areS0 andD. In
ADC imaging the parameter of interest isD (the ADC value).

The popularity of ADC imaging as a quantitative imaging toolhas motivated
many studies investigating the reliability and reproducibility of ADC estimates
[103, 104, 96]. In the case of ADC imaging, an experiment design consists of the
b-values applied for measurements and their repetitions. Anintuitively appeal-
ing experiment design is the equidistant (ED) distributionof sampling points on
a valid range of the independent variable (b-values). The range of valid sampling
points is determined by the biophysical aspects of the problem at hand. For in-
stance, perfusion contamination at lowb-values [105, 104] and SNR drop at high
b-values [106] limit the applicable range ofb-values. The ED experiment design
method is widely used in the literature [107, 96, 108, 109]. However, many studies
use non-systematic experiment designs [98, 110] that can considerably influence
the results.

Some studies have developed a theoretical framework by minimizing the vari-
ance of the estimated parameters [111, 112, 113]. In these studies, the Cramer-Rao
lower bound (CRLB) of the ADC value is minimized assuming a Gaussian noise
distribution. Hereinafter, we call this method GCRLB. The result of GCRLB is
dependent on the range of ADC values to be imaged and the validity of noise
assumptions. In this thesis, a new D-optimal experiment design is proposed that
partly resolves these problems.

2.6 Applications of dMRI

Once the reconstruction step is done, depending on the modelunder consideration,
a number of features/scalars/vectors the describing underlying tissue characteris-
tics becomes available to be used in the downstream applications. The applica-
tions of dMRI (in brain imaging) mainly fall in to two groups:(a) detection of
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disease-associated WM changes (based on quantitative diffusion features) and (b)
tractography-based diagnosis, surgical planning, etc. Tractography (combining
local micro-structure information to obtain neural pathways connecting different
parts of the gray matter), is an active research area, playing a key role in the human
connectomics. Connectomics is the study of the connectivity in the brain [114].
The dMRI technique provides a structural connectome of the WM.

Developing accurate and robust approaches to describe local diffusion pat-
terns and thereof local micro-structures, is a crucial stepin the dMRI processing
pipeline. This local micro-structural information is integrated to provide neural
pathways inside human brain. The task of reconstructing WM fiber pathways is
called tractography and provides a powerful tool to study neuroanatomy of the hu-
man brain. Tractography is commonly used for pre-surgical planning in clinics as
the only non-invasive way to probe the neural architecture of the human brain in
vivo [52]. It is an input to brain structural connectome mapping and brain network
analysis.

Two strategies have been taken for tractography: global andlocal. The local
tractography methods fall into two groups: deterministic and probabilistic. They
build the pathways based on the information provided by local diffusion patterns.
Deterministic tractography starts from a given point (seed) and follows the PDD
from one voxel to another. This is terminated if the algorithm reaches the speci-
fied destination seed or the fiber runs into low FA regions (that are not supposed to
have oriented micro-structures). Positioning way-point seeds is the usual way of
improving/regularizing these algorithms. The whole diffusion process and micro-
structure estimation in turn, are based on probability theory. Deterministic trac-
tography ignores the uncertainty inherent in the local models of diffusion. One
might be interested in the probability of the existence of point-to-point connec-
tions, in a more realistic perspective. This has led to probabilistic tractography
methods.

In contrast to local tractography, global tractography (GT) considers each path
as a parameter to be optimized. The optimality can be defined with respect to
different objective functions. Generally, an objective function should in some
way measure the diffusion signal fit and concordance with theprior knowledge.
The main drawback with GT is its high computational burden. There has been a
concerted effort to overcome this drawback [115, 116, 117, 118].

Tractography-related studies are categorized into several groups: (i) studies
that aim to estimate fiber orientation distribution functions (fODFs) as accurately
as possible [119, 120, 80, 121] (fODFs are the input to any local tractography
methods); (ii) studies that introduce new deterministic tractography methods [122,
121, 123, 124, 125, 126]; (iii) studies that introduce new probabilistic tractography
methods [121, 127, 124, 125]; (iv) studies that investigateglobal tractography (in
contrast to local tractography) [128, 115, 116, 117, 118]; (v) studies that provide
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a review or comparison of different tractography methods and their applications
[129, 130, 131]; and (vi) studies based on connectome analysis [132, 116, 114].
This thesis does not include contributions to this part of dMRI analysis. However,
the proposed optimal GESs improve the robustness of the information input to
this step.

Figure 2.7: Diffusion MRI: Three main steps and corresponding terminology.

To summarize this chapter, the three main steps of diffusionimaging and
related terminology are shown in Figure 2.7. The first step isdata acquisition
where one has to select a gradient encoding scheme (GES) among many other
acquisition settings. In the second step, namely reconstruction, acquired data is
processed and the underlying micro-structure is characterized using parametric
or non-parametric models. A diffusion model can be as simpleas the mono-
exponential decay (in the case of ADC imaging). However, more advanced mod-
els such as 4th order tensors or DKI are required to more thoroughly characterize
tissue alteration or complicated micro-structures. In thelast step, the collective
information is used for tractography or differentiating tissue types.

32



CHAPTER 3

Summary of the Thesis Work

This chapter briefly describes the work carried out in this thesis. First, in the next
section we introduce the problems under consideration and compare experiment
design problems in dMRI with some general experiment designproblems. Then
we summarize the content of the appended papers in separate subsections where
we highlight our contributions and present the main results.

3.1 Experiment Design in dMRI: Challenges and New
Solutions

Numerous diffusion models have been developed over the lasttwo decades. These
models are used to characterise properties of the micro-structures in living tissues.
Model fitting is complicated by the fact that the dMRI measurements are inher-
ently noisy (a side effect of MRI signal acquisition). Diffusion parameters find
application in medical diagnosis/prognosis. This motivates the investigation of
the robustness, reproducibility and reliability of these parameters. One way to
achieve robust estimates of diffusion parameters is to optimize the data acquisi-
tion setting such that it minimizes the variance of the estimated parameters. This
is an optimal experiment design problem (EDP). In the case ofADC imaging, the
task is to find the set of appliedb-values while for DTI and DKI it involves the de-
sign/specification of a GES. In this thesis several EDPs are considered including
optimal experiment design for ADC imaging, diffusion tensor imaging (second
and fourth order) and diffusion kurtosis imaging.

To better describe the problems at hand, two examples of experiment design
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xi d1 + yi d2
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+2xi zi d13 + 2yi zi d23
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(b)

Figure 3.1: Two examples of the problem in (2.8): (a) Hypothetical experiment
design problem withθ = [d1 d2] andai = [xi yi ]. (b) Experiment de-
sign problem in second order DTI withθ = [d11 d22 d33 d12 d13 d23]
andai = [x2

i y2
i z2

i 2xiyi 2xizi 2yizi]
T .

problems (EDPs) that satisfy (2.8) are presented in Figure 3.1. Figure 3.1-(a)
shows a hypothetical experiment design problem withθ = [d1 d2] andai = [xi yi ].
Figure 3.1-(b) describes the experiment design problem in second order DTI with
θ = [d11 d22 d33 d12 d13 d23] andai = [x2

i y2
i z2

i 2xiyi 2xizi 2yizi]
T . Both problems

are compatible with the formulation in (2.8) although thereare key differences.
These differences complicate the EDP in several ways including:

• The condition number of the problem in Figure 3.1-(a) can be minimized
down to one (the ultimate minimum) while this is not possiblein the pres-
ence of cross-terms (such asxiyi) in the problem in Figure 3.1-(b); and

• For the problem in Figure 3.1-(a), the number of free design parameters
(decision variables) for each measurement (two) is equal tothe dimension
of the design vectorai while the number of free design variables for DTI is
less than the dimension of the design vector.

The EDPs in this thesis cannot be solved by straight forward application of ap-
proaches in the optimization literature for the following reasons:

• The problems under consideration in this thesis, unlike problems in [133,
19, 18], are not convex; and

• The conventional experiment design problems (as in [18]) seek to minimize
the objective function over a finite and thus countable setA , i.e.∀i : ai ∈ A .
In this thesis, however,A is not a countable set but includes the whole set
of feasible solutions.

The general formulation for GES design problems in this thesis is as follows:

mingi F (M−1)
s.t. : M ≥ 0, ||gi|| = 1, i = 1, · · · ,N.

(3.1)

whereF : Rn×n → R is a scalarization function (such as the trace, determinant,
condition number),n is the size of the information matrixM and thegis are the
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gradient encoding directions. The size of the information matrix depends on the
model under consideration. It is listed for even order DTI, DKI and ADC imaging
in Table 3.1. It is noteworthy that in experiment design for ADC imaging, deci-
sion variables arebis instead ofgis (thus the constraints ongi in (3.1) should be
replaced withbmin ≤ bi ≤ bmax). The problem above is not convex. However, it
can be converted to a convex problem and solved by semi-definite programming.

Table 3.1: Dimension of the information matrix (n) in optimal experiment design
problems of dMRI

Model DTI2 DTI4 DTI6 DKI ADC
n 6 15 28 21 2

There exists a set of studies considering the same EDPs as this thesis. The pro-
posed method differs from the previous studies in several respects. In contrast to
[35, 47], it does not utilize stochastic optimization techniques. It does not involve
any simplification/discretization of the original problemas in [34, 35]. Unlike
[35, 34, 47], it provides theoretical and practical properties of the obtained so-
lutions. In comparison to [28], it produces (exactly) rotation-invariant gradient
encoding schemes (in the case of D-optimal design). Finally, it establishes a gen-
eral theoretical framework for GES design in dMRI by extending the proposed
method to modern diffusion imaging techniques (e.g. HOTs and DKI).

In following sections, a summary of our findings for each model is presented.

3.2 Second Order DTI

The problem of GES design for 2nd order DTI is considered inPapers A, Eand
F. The icosahedral scheme is well-known in the dMRI literature. However, a
simple algorithm to generate the icosahedral scheme for an arbitrary number of
measurements does not exist. InPaper E, such an algorithm is proposed. The
algorithm generates the exact (with the condition number of1.5811) and rotation-
invariant GESs although they are not necessarily UD.

In Paper F, a simple algorithm for the computation of the K-optimal GES
for second order DTI is proposed. The algorithm: (i) does notneed stochastic
optimization; (ii) reveals several theoretical properties of K-optimal designs; and
(iii) works for an arbitrary number of measurements. BothPapers EandF, were
based on conjectures giving the optimal information matrix. Later, inPaper A, all
these findings are proved and formulated under a unified framework.

The unified approach to find analytical solutions for A,E,K,D-optimal exper-
iment design problems for second order DTI is developed inPaper A. The infor-
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mation matrix (M in (3.1)) for 2nd order DTI is

M =
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i




(3.2)

Our proposed solution involves the following steps:

• Change decision/design variables, i.e. obtain optimal moments (e.g.∑ x4
i )

instead of optimal directions (e.g.[xi yi zi ]). This reduces the number of
design variables (from 3N to 15, in the case 2nd order DTI).

• ConvertN non-convex constraints to one convex constraint as follows. The
non-convex constraints imply that∑N

i=1 ||gi||4 = N. This is a convex con-
straint on new decision variables (convex relaxation).

• Solve the resulting semi-definite programming problem.

• Recover/retrieve the original design variables (gradientencoding directions).

A summary of results follows. Common to all types of optimal designs (A/E/K/D),
odd moments must be zero (e.g.∑x3

i yi = ∑ x2
i yizi = 0). In the case of K-optimal

and E-optimal design, even moments are:

∑ x4
i = ∑ y4

i = ∑ z4
i = 5N

21 ,

∑ x2
i y2

i = ∑ x2
i z2

i = ∑ z2
i y2

i = N
21.

(3.3)

The D-optimal design requires the even moments to satisfy the following condi-
tions:

∑ x4
i = ∑ y4

i = ∑ z4
i = 3N

15 ,

∑ x2
i y2

i = ∑ x2
i z2

i = ∑ z2
i y2

i = N
15.

(3.4)

The A-optimal design requires the even moments to satisfy the following condi-
tions:

∑ x4
i = ∑ y4

i = ∑ z4
i = N

4.5672,

∑ x2
i y2

i = ∑ x2
i z2

i = ∑ z2
i y2

i = N
17.4853.

(3.5)

Further study/evaluation of the proposed GESs, yields the following insights/conclusions
for second order tensors:

• The traditionally used icosahedral scheme is a subset of D-optimal designs.
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• The D-optimal design is rotation-invariant with respect toall four (A/E/K/D)
optimality metrics. (See the proof in Section 3.8.1).

• The proposed method can be used to compute the optimal designfor an
arbitrary number of measurements. In Figure 3.2-(a),N=11 is deliberately
chosen to highlight this property.

• The determinant of the information matrix is a rotation invariant optimality
metric.

• ForN=6, the D-optimal design reproduces the icosahedral scheme(see Ta-
ble 3.2). However, the D-optimal design generates GESs thatdeviate from
uniformity for large values ofN (see Figure 2.4).

• One can re-run the proposed algorithm to find uniformly distributed D-
optimal solutions. For example, the solutions with the largestβmin among
1000 runs forN=11, 15, 20 and 30 are shown in Figure 3.2.

Table 3.2: D-Optimal GES design reproduces the well-known icosahedral scheme
[47, 32] forN = 6 with βmin = βmax= 63.4349◦. However, these exist
non-UD D-optimal solutions for large values ofN.

xi yi zi

-0.0421 0.3135 -0.9487
0.1214 0.9808 -0.1527
-0.3864 0.6113 0.6906
0.8149 -0.5156 0.2648
0.8639 0.2843 -0.4158
0.6511 0.4684 0.5973

Our Monte-Carlo simulations (Table 3.3) show that the D-optimal design leads to
the minimum variance estimation of the diffusion parameters. Thus, we conclude
that the D-optimal design is the most useful method for GES design of 2nd or-
der tensors (because of rotation-invariance, UD solutionsand minimum variance
estimation of diffusion parameters).

Among existing methods, the ER scheme [28] is the most popular one. As can
be seen in Table 3.3, the difference between the ER scheme andthe D-optimal
scheme is negligible for 2nd order DTI. However, as shown inPaper A, it is well-
pronounced for high order models. In addition, the possibility of extensions to
GES design for high order tensors is demonstrated inpaper A. Another important
theoretical contribution ofPaper Ais that it provides the first mathematical proof
of optimality of UD GESs.
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Figure 3.2: The D-optimal design with the largestβmin among 1000 runs for (a)
N=11, βmin =41.1◦; (b) N=15, βmin =31.9◦; (c) N=20, βmin =29.3◦;
and (d)N=30,βmin =24.0◦.

Table 3.3: Statistics of the robustness test performed according to Algorithm 1
given in the previous Chapter (N = 20). The ER scheme is proposed
in [41, 28]. The parameter, CU95 is defined in [61] to quantify the
uncertainty in the estimation of PDD

Scheme Mean(σ (FA)) Std(σ (FA)) Mean(CU95)
◦

Std(CU95) βmin
◦

D-opt 0.0480 0.0013 9.98 0.28 29.3
ER 0.0482 0.0013 9.98 0.30 28.8
K-opt 0.0492 0.0069 10.88 1.19 9.7

3.3 Fourth Order DTI

The problem of GES design for 4th order DTI is considered inPaper B. The opti-
mal GES design approach that was originally developed for second order DTI (in
Paper A) is extended to fourth order DT estimation. In particular,Paper Bpro-
poses K-optimal design for fourth order DTI. Comparisons with previous work
and theoretical results are also presented in this paper. Inaddition, part ofPaper
A is devoted to solving D-optimal GES design for fourth order DTI. In the pro-
posed method (Paper B), the K-optimal design problem for fourth order DTI is

38



3.3 FOURTH ORDER DTI

formulated as an SDP problem:

minq,p α
s.t. : M(q) ≥ 0, I ≤ pM(q) ≤ αI

p ≥ 0, uTq = N.
(3.6)

whereM is the information matrix,I is the identity matrix,α is the condition
number ofM , q ∈ R45 includes the moments of a GES (for example,q1 = ∑x8

i
andq10 = ∑x4

i y4
i ), u ∈ R45 is constant vector with only fifteen non-zero elements,

and p equals 1/λmin(M) (λmin denotes the minimum eigenvalue). The optimal
valueα∗ in (3.6) is obtained by performing a line search onp. Let the optimal
value of the following problem beα∗

c wherec is a real non-negative constant:

minq α
s.t. : M(q) ≥ 0, I ≤ cM(q) ≤ αI , uTq = N

(3.7)

Thenα∗ = min {α∗
c |c ∈ R+}. Details on variable change, convex relaxation and

the extraction of the original variables from the optimal information matrix can be
found inPaper B.

Using the same notation/strategy, the D-optimal design problem for fourth
order DTI is formulated as an SDP problem (Papers A and C):

minq − log det(M)
s.t. : M(q) ≥ 0, uTq = N.

(3.8)

The problems in (3.7) and (3.8) can be efficiently solved by LMI solvers. In
summary, our findings concerning fourth order DT estimationinclude:

• The D-optimal GES is rotation-invariant (See the proof in Section 3.8.2).

• The D-optimal design for the fourth order tensor is also D-optimal for the
2nd order tensor, however, the converse is not true (See the proof in Section
3.5).

• The D-optimal design for fourth order tensors yields GESs with uniform
coverage of the unit sphere, for a practical range ofN.

• The icosahedral scheme is D-optimal for fourth order tensorestimation.

• The proposed method can be used to compute the D/K-optimal design for
an arbitrary number of measurements.

• The odd moments of the K-optimal design are zero.
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Figure 3.3: A comparison of the K-optimal GESs for 100 runs ofthe proposed
algorithm: 2nd and 4th order DTI are denoted by DTI2 and DTI4,
respectively. The condition numbers of the 2nd and 4th orderinfor-
mation matrices are shown byκ2 andκ4, respectively (N = 30).

• The even moments of the K-optimal design are proportional tothe total
number of measurements.

• The K-optimal design is not unique, in general (See the proofin Paper B).

• The D-optimal design is not unique.

A previous study [27] compared existing GESs for 4th order DTI. This study
emphasizes that the numerically optimized schemes (e.g. ERand MCN) vary
with each optimization.Paper Brepresents a clear advancement by solving the
K-optimal design problem and describing the relationship between different solu-
tions. Solutions of the K-optimal design problem (both 2nd and 4th order DTI)
for 100 runs of the proposed algorithm are compared in Figure3.3. It can be seen
that: (i) the proposed algorithm consistently provides theoptimal solution for both
2nd and 4th order DTI; (ii) the K-optimal GES for 2nd order DTIis sub-optimal
for 4th order DTI; (iii) the K-optimal GES for 4th order DTI issub-optimal for
2nd order DTI. Consequently, one should not use the same GES as the K-optimal
design for both 2nd and 4th order DTI (as was done in [27]); and(iv) the K-
optimal designs for both 2nd and 4th order DTI are also different in terms of the
uniformity of distribution of gradient encoding directions.
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3.4 Diffusion Kurtosis Imaging (DKI)

The extension of the proposed method to non-Gaussian/modern diffusion mod-
els that require multi-shell acquisitions (such as DKI) significantly enhances the
theory/approach developed in this thesis. DKI is a technique that can provide
biomarkers reflecting pathological and developmental changes in the human bran
[88, 89, 90, 91]. Motivated by this fact, an optimal experiment design method for
DKI is given inPaper C.

In Paper C, the D-optimal design problem for DKI is converted to the follow-
ing convex optimization problem:

minp − log det(M(p))
s.t. : M(p) ≥ 0, uTq = N1, uTq′ = N2,
rTq = N1, rTq′ = N2, tTq = N1, tTq′ = N2

(3.9)

wherer , t andu are some suitable constant vectors inR88, q andq′ are vectors
containg moments of a GES for the first and second shell, respectively, N1 and
N2 are the number of points on the first and second shell, andp ∈ R176 (consists
of the variables inq andq′). The solution to this problem described inPaper C,
leads us to the following major findings:

• The conventional icosahedral scheme is approximately D-optimal for DKI.

• The proposed D-optimal design is rotation-invariant. (Seethe proof in sec-
tions 3.8.1 and 3.8.2).

• There exists a D-optimal solution for DKI which is simultaneously D-optimal
for 2nd and 4th order diffusion tensor estimation.

• The proposed method can be used to compute the optimal designfor an
arbitrary number of measurements and shells.

• D-optimality enforces the uniform distribution of gradient encoding direc-
tions for a typical number of measurements in DKI.

• The solution of the DKI D-optimal design problem is not unique.

• The proposed method optimizes both gradient encoding directions andb-
values.

The work inPaper Cestablishes a theoretical foundation for the experiment de-
sign in other diffusion imaging techniques that utilize linear models. Importantly,
these theoretical findings provide the first mathematical proof of the optimality of
uniformly distributed GESs for DKI.
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3.5 Model-independent GES Design

From the material presented inPapers A, C, Eand F, it can be seen that it is
possible to find a set of solutions that are D-optimal for several diffusion models
at the same time. This set includes UD schemes (e.g. the icosahedral scheme).
Given that the UD schemes are widely used for diffusion imaging (irrespective of
the diffusion model under consideration), the proposed method can be regarded
as a model-independent GES design method. In other words, itcan be used for
other diffusion imaging techniques as well.

The D-optimal GES for a high order model is also D-optimal forall lower
order models. For example, there exist a DKI D-optimal design that is simulta-
neously D-optimal for second and fourth order DTI, as well. This is discussed
in Paper C. In addition, D-optimal design for fourth order DTI is simultaneously
D-optimal for DKI and second order DTI (See the proof below).This enhances
the practical impact of the proposed method and extends its utility beyond the
model under consideration (although the proposed method ismodel-dependent by
construction).

Here, we prove that the D-optimal design for fourth order DTIis also D-
optimal for second order DTI and DKI. The D-optimal design for the fourth order
tensor is given by the following equations (obtained inPaper A):

∑ x8
i = ∑ y8

i = ∑ z8
i = N

9
∑ x2

i y6
i = ∑ x6

i y2
i = ∑ x2

i z6
i = ∑ x6

i z2
i = ∑ z2

i y6
i = ∑ z6

i y2
i = N

63

∑ x4
i y4

i = ∑ x4
i z4

i = ∑ z4
i y4

i = N
105

∑y4
i x2

i z2
i = ∑z4

i x2
i y2

i = ∑ x4
i y2

i z2
i = N

315

(3.10)

The task is to compute values of all design moments required for DKI (4th-,6th-
and 8th-order moments). The 8th order moments are already known from the
definition of D-optimality for fourth order DTI. Thus, we need to show that 4th
and 6th order moments also take the DKI D-optimal values given in Paper C. Let
us start by computing 6th order moments. Given thatx2

i +y2
i +z2

i = 1, we multiply
this equation byx6

i yielding:

x8
i +x6

i y2
i +x6

i z2
i = x6

i ⇒ ∑x8
i +∑x6

i y2
i +∑x6

i z2
i = ∑x6

i
⇒ ∑x6

i = N
9 + 2N

63 = N
7

(3.11)

Similarly one can compute all 6th degree moments of the design. They all take
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the DKI D-optimal values:

∑ x6
i = ∑ y6

i = ∑ z6
i = N

7
∑ x2

i y4
i = ∑ x2

i z4
i = ∑ x4

i y2
i = ∑ x4

i z2
i = ∑ z2

i y4
i = ∑ z4

i y2
i = N

35

∑ x2
i y2

i z2
i = N

105

(3.12)

Knowing the 6th degree moments, one can proceed with the computation of the
4th degree moments:

x2
i +y2

i +z2
i = 1 ⇒ x6

i +x4
i y2

i +x4
i z2

i = x4
i

⇒ ∑x6
i +∑x4

i y2
i +∑x4

i z2
i = ∑x4

i ⇒ ∑x4
i = N

7 + 2N
35 = N

5
(3.13)

Similarly one can compute all 4th degree moments of the design to see that they
take DKI D-optimal values:

∑ x4
i = ∑ y4

i = ∑ z4
i = N

5 ,

∑ x2
i y2

i = ∑ x2
i z2

i = ∑ z2
i y2

i = N
15

(3.14)

Similarly one can show that all 6th and 4th degree odd momentsare equal to zero.
Thus, D-optimality for fourth order DTI ensures D-optimality for DKI and second
order DTI. It is worth mentioning that the converse is, in general, not true.

3.6 Optimal Design for ADC imaging

The problem of optimal experiment design for ADC imaging is addressed inPaper
D. ADC imaging is an estimation problem that conforms to (2.8). Its information
matrix is:

M =

[
N −∑N

i=1bi

−∑N
i=1bi ∑N

i=1b2
i

]
(3.15)

whereN is the total number of measurements. Noting that minimizingdet(M−1)
is equivalent to maximizing det(M) we need to solve the following problem:

max det(M)
s.t. : M ≥ 0, bmin ≤ bi ≤ bmax, i = 1, · · · ,N.

(3.16)

The explicit form of the objective function is:

det(M) = N
N

∑
i=1

b2
i − (

N

∑
i=1

bi)
2 (3.17)
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(a)N=2 (b) N=10
Figure 3.4: Standard deviation of the estimated ADC values (σD) for a range ofD

values wherebmin = 0, bmax= 1500,S0 = 500,NMC = 20000 (num-
ber of Monte Carlo trials) and SNR=S0/σG (Rician distributed noise).
The proposed D-optimal method is compared to GCRLB [113].

Thus, one can see that for an arbitraryN, the D-optimal experiment design is:

bi = bmin i = 1, · · · ,n
bi = bmax i = n+1, · · · ,N (3.18)

wheren = N/2 if N is even, otherwisen = (N + 1)/2. The proposed theoreti-
cal framework for the optimal experiment design of mono-exponential model fit-
ting has the following advantages: (i) in comparison to GCRLB [113], it imposes
fewer restrictions on the noise distribution; and (ii) in contrast to GCRLB, the pro-
posed design is independent of the imaged parameters. The proposed D-optimal
experiment design for ADC imaging is compared to GCRLB [113]in Figure 3.4.
It can be seen that the D-optimal design consistently outperforms GCRLB.

3.7 A New Framework for Repeated Measurements
in DTI

This section briefly describes the studies presented inPapers GandH. In exper-
iment design theory, the optimal GES is obtained by minimizing the covariance
matrix of the estimated parameters in some sense, as mentioned earlier. In this re-
gard, K-optimal [47] and D-optimal (inPaper A) GES design methods have been
developed. It is known that the condition number is invariant under repetition
[134]. Even the new optimality metrics, such as the determinant of the informa-
tion matrix are invariant under repetitions (seePaper A). The following choices
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are equally good (in terms of condition number/determinat): (i) optimizing forNt

unique directions, i.e.Nu = Nt ; (ii) optimizing for Nu = Nt/M unique directions
and repeating measurementsM times; and (iii) using a combination of optimized
GESs forN1 andN2 directions whereN1 +N2 = Nt .

In the diffusion MRI literature, the question of whether given a fixed scan
time, it is better to make measurements in all unique directions or to repeat mea-
surements in a smaller number of directions has received considerable attention
[134, 135, 136, 137, 138, 3, 139, 31]. Differences in what is meant by a re-
peated measurement arise as a consequence of where and how noise is accounted
for. There are two strategies: to estimate the signal from complex-valued raw
data or from real-valued magnitude data. This distinction was first highlighted in
[140] where a theoretical analysis for themaximum likelihood estimation(MLE)
of structural MR images was given. Inspired by [140], we investigate the effect
of choosing real or complex-valued data on the estimation ofdiffusion param-
eters. Specifically, we propose a new acquisition/processing pipeline based on
the second strategy. The lack of ground truth for real data and the intractability
of mathematical derivations make it difficult to investigate the effect of the pro-
cessing pipeline on the robustness of tensor estimation. However, Monte Carlo
simulations can shed light on this problem. InPapers GandH, we have investi-
gated the issue of repeated measurements. The main contributions of these papers
are:

• A new approach for acquiring and processing repeated measurements in
DTI is presented.

• The new framework improves precision in the estimation of diffusion pa-
rameters.

• The new framework allows us to exploit knowledge of the noisedistribution
to enhance the SNR.

Details can be found inPapers GandH.

3.8 Appendix

3.8.1 Proof of Rotation-invariance for D-optimal Design for
2nd order DTI

The rotation-invariance property of the proposed D-optimal design for second or-
der DTI is illustrated inPaper Ausing Monte Carlo simulations. The proof of this
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property (discussed in Section 3.2) is given here. First, let us define the following
notation:

q1 = ∑ x4
i q2 = ∑ y4

i q3 = ∑ z4
i

q4 = ∑ x2
i y2

i q5 = ∑ x2
i z2

i q6 = ∑ z2
i y2

i
q7 = ∑ x3

i yi q8 = ∑ xiy3
i q9 = ∑ x3

i zi

q10 = ∑ xiz3
i q11 = ∑ y3

i zi q12 = ∑ yiz3
i

q13 = ∑ x2
i yizi q14 = ∑ xiy2

i zi q15 = ∑ xiyiz2
i .

(3.19)

Let the moments of the rotated GES be denoted byqR
c . The D-optimal values of

the even moments are given in (3.4). The odd moments of D-optimal design are
equal to zero. Below, we prove the rotation invariance forq1.

q1 = ∑ x4
i = N

5 =⇒ qR
1 = ∑(r11xi + r12yi + r13zi)
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13)
2 = N

5 .

In the derivations above, we substitute D-optimal values ofthe moments and use
properties of a rotation matrix. The proof for other momentsis similar.

3.8.2 Proof of Rotation-invariance for D-optimal Design for
the 4th order DTI

The proof of the rotation invariance of the proposed D-optimal design for fourth
order DTI (discussed in Section 3.3) is given below. First, we define the following
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notation:
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(3.20)

The D-optimal values of even moments are specified in (3.10).All odd moments
are equal to zero (for a D-optimal GES). Below, we prove rotation invariance for
q1. Let the moments of the rotated GES be denoted byqR

c . The proof can be
obtained as follows:
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In the derivations above, we substitute D-optimal values ofthe moments and use
the properties of a rotation matrix. Using a similar approach, the proof for other
moments can be obtained.
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Conclusion and Future Work

In this thesis, the problem of optimal GES design for second order DTI was re-
formulated as an experiment design problem (EDP). This EDP is a non-convex
optimization problem. It is then converted into a convex SDPusing convex re-
laxation. The proposed method guarantees a globally optimal solution and leads
to several important theoretical results. Then, the proposed method is extended
to optimal GES design for fourth order DTI and diffusion kurtosis imaging. It is
also applied to ADC imaging. Several interesting findings, in addition to the new
theoretical findings relating to optimal GES design, include: (i) among design ap-
proaches offered by experiment design theory, it is the D-optimal design that leads
to rotation-invariant and UD GESs; (ii) the uniform distribution of gradient encod-
ing directions is a necessity for D-optimal diffusion imaging when the number of
measurements is nearly equal to the number of unknown model parameters; (iii)
there exist UD designs that are simultaneously D-optimal for several models; and
(iv) the proposed D-optimal design method improves the precision of estimated
parameters compared to state-of-the-art methods;

The following points highlight the contributions and potential impact of this
thesis: (i) an exact/analytical solution is of scientific interest even if approximate
solutions are available. The difference between the proposed method and the ex-
isting UD solutions is more pronounced when using higher order models; (ii) a
theoretically motivated method can be extended to similar problems; (iii) exten-
sion of the proposed method to high order models that requiremulti-shell acquisi-
tion adds further support to the utility of the proposed method; (iv) simultaneous
optimality for several models means that several parties using different models
can have the same optimal GES for data acquisition; (v) the proposed method
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does not require any prior information (in contrast to some of the existing meth-
ods); and (vi) the proposed method can optimize both gradient encoding directions
andb-values in multi-shell acquisitions.

Future Work

Further extension of the proposed work to higher order dMRI models provides
scope for future work. Another possible avenue for future work is the extension of
the proposed work to high order models (other than DKI) that require multi-shell
acquisition. However, before proceeding with further theoretical developments, it
is recommended that the existing theoretical results be validated using real data.
Currently, the proposed method cannot be applied to non-linear model estimation.
Extensions/modifications that allow experiment design fornon-linear models can
be an important topic for dMRI research.
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