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Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) isoa-invasive struc-
tural imaging technique that provides information abosguie micro-structures.
Quantitative measures derived from dMRI reflect patholalgagod developmental
changes in living tissues such as human brain. Such paresvateincreasingly
used in diagnostic and prognostic procedures and this hagatea several stud-
ies to investigate their estimation accuracy and precisitm precision of an es-
timated parameter is dependent on the applied gradientdamgcecheme (GES).
An optimal GES is one that minimizes the variance of the estith parameter(s).
This thesis focuses on optimal GES design for the followiktRdl models: sec-
ond and fourth-order diffusion tensor imaging (DTI), ADCaging and diffusion
kurtosis imaging (DKI). A unified framework is developed tltamprises three
steps. In the first step, the original problem is formulatedmoptimal experiment
design problem. The optimal experiment design is the orteriivamizes the con-
dition number (K-optimal) or the determinant (D-optimaf)tbe covariance ma-
trix of the estimated parameters. This yields a non-conygxrozation problem.
In the second step, the problem is re-formulated as a sefmiéegorogramming
(SDP) problem by introducing new decision variables andrermelaxation. In
the final step, the SDP problem is solved and the originalsitativariables are
recovered. The proposed framework is comprehensive; ibeaapplied to DTI,
DKI, K-optimal design, D-optimal design, single-shell amilti-shell acquisi-
tions and to optimizing directions ardvalues.

The main contributions of this thesis include: (i) proofttbg uniformly dis-
tributing gradient encoding directions one obtains a Oroal design both for
DKI and DTI; (ii) proof that the traditionally used icosalalGES is D-optimal
for DTI; (iii) proof that there exist rotation-invariant (&S that are not uniformly
distributed; and (iv) proof that there exist GESs that arediimal for DTI and
DKI simultaneously. A simple algorithm is presnted that campute uniformly
distributed GESs. In contrast to previous methods, theqeeg solution is strictly
rotation-invariant. The practical impact/utility of thegposed method is demon-



strated using Monte Carlo simulations. The results show tthe precision of
parameters estimated using the proposed approach can heham25% better
than that estimated by state-of-the-art methods. Vabdaif these findings using
real data and extension to non-linear estimators/diffusnmdels provide scope
for future work.

Keywords: Diffusion MRI, Gradient Encoding Scheme, Diffusion Tensor
Imaging, Diffusion Kurtosis Imaging, ADC imaging, D-optahexperiment de-
sign, Optimal Image acquisition, Second and Fourth Ordasdks.
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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) is a widely used medicagmg technique
that acquires images of the body with a technically advaacedexpensive scan-
ner. No ionizing radiation is used in MRI and there is no kneside effect as-
sociated with being scanned by an MRI machine. The technigsedeveloped
in 1970s and has been extended to several specialized ignagdalities; e.g.
functional MRI and diffusion MRI. The first papers on diffasi MRI date from
the mid-1980s [1, 2]. The technique is performed using theesscanner as used
in regular MRI (see Figure 1.1). In clinical practice thealatcan time should be
no more than 10 minutes [3].

Diffusion MRI is sensitive to diffusion (Brownian motionf water molecules
inside living tissues. Its main clinical application is irain imaging although it
finds application to other parts of the body; e.g. breast andtate. The basic
idea behind diffusion MRI is that knowing the paths that watmlecules may
travel/diffuse in brain, one can estimate the structure @fonpipes connecting
different parts of the brain. Figure 1.2(a) shows a typieaduit for diffusion imag-
ing of the whole brain. Note that colors are not real (addethbyllustration soft-
ware). Although it may seem too crowded/fuzzy, one can sefgecial regions of
interest to study neural pathways connecting two specifits @& shown in Figure
1.2(b).

The two key concepts in this thesis atdfusion MRIandgradient encoding
scheme The latter is related to the conceptexperiment designThus, we first
briefly introduce diffusion MRI and then we describe the cptoof experiment
design and its relevance to diffusion MRI. Finally we brieftyiew related studies
and summarize contributions of the thesis.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Philips MRI machine at Sahlgrenska Universigspital, Gothen-
burg, Sweden. The image is taken from [4].

1.1 Diffusion-weighted MRI

The movement of water molecules in living tissues (diffugics influenced by

the local cellular environment. The idea behind diffusioraging is that from

the measured (bulk) diffusion profile in a voxel, one can whitmportant proper-

ties of the underlying micro-structure (see Figure 1.3)fusion-weighted Mag-

netic Resonance Imaging (dMRI) is a non-invasive struttaraging technique

that measures the hindered/restricted diffusion of watdeoules in tissues, thus
revealing information about tissue micro-structure. Moives acquiring a se-
ries of diffusion-weighted images (DWIs), reconstructthg diffusion profile at

each voxel and extracting quantitative features desa@ithe underlying micro-

structure. This information is used to differentiate mistauctural differences
between different tissues (e.g. between malignant andjbdissues) and to lo-
cate and track white matter fibre pathways in the brain. Th&UtMchnique is

variously used for medical imaging of the brain, breast [7/p&ncreas [9], heart
[10] and even the whole body [8].

The main use of dMRI in brain imaging is to: (i) discover chasgn white
matter (WM) due to development, disease or degeneratignajid. (ii) localise
white matter tracts, e.g. in pre-surgical planning. The d¥hnique measures
the probability density function (PDFp, of hydrogen nuclei displacememtever
a fixed timet [12]. The functionp(r,ro) represents a six-dimensional image [13]
wherer g denotes voxel position in 3D. The 6D data is usually illustdeas iso-

4



1.1 DIFFUSION-WEIGHTED MRI

(a) (b)

Figure 1.2: (a) Tracography: mapping fiber pathways (cotmes) in the human
brain. The image is taken from [5]. (b) Tractography viszetiions
of diffusion MRI in region of interest overlaid on structuMRI: Su-
perior segment of the bilateral cingulum fiber bundles. Thage is
adapted from [6].

Figure 1.3: Correspondence between underlying micrasttre and the diffusion
profile is the basic assumption behind diffusion-weighteld vhag-
ing. First row shows some hypothetical diffusion profileattharise
from the micro-structures presented in the second row.

probability surfaces (see the first row in Figure 1.3). In dMRs assumed thap
and its features convey useful information about the ugdegimicro-structure.
The diffusion PDF is complex in general, but simple modelsliffusion have
been proposed to quantify diffusion in living tissues. Argahese, the most pop-
ular model is the 2nd order diffusion tensor (DT) which wasdduced by Basser

5



CHAPTER 1. INTRODUCTION

et al. [14] to quantify anisotropic diffusion of water molges in the human brain.
Basically, the DT model stems from assuming a zero-meaarigite Gaussian
PDF for the diffusion propagatop). The (second order positive-definite) DT is
defined to be the covariance matrix @f The well-known limitations of the 2nd
order DT in modeling crossing micro-structures has givee to a variety of com-
plex models including the high-order tensors (HOTSs) [15] diffusion kurtosis
imaging [16, 17]. Diffusion tensor imaging (of arbitraryesvorder, abbreviated
by DTI) and diffusion kurtosis imaging (DKI) are of centratérest in this thesis.
A brief review of the steps involved in brain DWI analysisléols.

The whole task comprises three steps: (i) data acquisitiomhich one has
to choose an acquisition protocol suitable/optimizederdapplication in consid-
eration; (ii) reconstruction which includes data pre-gssing/correction, model
fitting, parameter estimation; and (iii) clinical applimat in which estimated dif-
fusion parameters are used for a clinical study or reseatecareement. Whilst
all three steps are currently being actively researchedgitus of this thesis is on
the first step. Before providing more detail about data astjon in dMRI, we in-
troduceexperiment desigas a general signal processing concept in the following
section. This concept is frequently used throughout theishe

1.2 Optimal Experiment Design

a —f
axr + by c
b —

Figure 1.4: A hypothetical experiment design problem éth|T as design vec-
tor and[x y]" as unknown parameters.

Consider a hypothetical problem in which the task is to estér andy, as
shown in Figure 1.4. At least two measurements are requaddrin a linear
system as follows:

aX+by=cy

aX+ by =cp (1)

The setD = {[a; by]",[ap by]T} is called arexperiment designFor the sake of
illustration, let’s consider a numerical example with tweasurements. Let the
true value of the unknown parameters[ggyo]" = [3 2T. Then, two possible
experiment designs a®; = {[1 1]7,[5 37} and®, = {[-2 4J7,[1 2]T}. This
numerical example is illustrated in Figure 1.5, where thesneements corre-
sponding ta®; and®» are shown by blue and green points/stars, respectively. In
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1.3 EXPERIMENT DESIGN IN DMRI

the absence of noise, one can correctly find the unknown Edessnusing either
D1 or D,. However, in the presence of noise (measurement noisg)roidem is
not deterministic anymore and designs producing more tfgimesise estimates
are more favourable. In our exampf®; is not a good design as it leads to an
ill-conditioned problem. In Figure 1.6 possible measuretaising®4 (in the
presence of Gaussian noise) are plotted. It shows that @jngt is likely to
get two parallel lines (means a linear system without sohg) or high variance
estimates. Usually, the number of measurements is muclehighn the number
of unknown parameter&(> 2 in this case) to ensure a robust estimation.

To express this in mathematical terms, let us re-write (ds36 = ¢ where
6=[xy",.c=[cic - cn]" andA is the design matrixith row of A is [a; bi]").
Thus the least squares (LS) estimate of the unknown paresitete [xy]Tis 6 =
(ATA)~IATc. The covariance matrix d (assuming Gaussian nois€ (0, g2))
is given by

covf) = oMt (1.2)

whereM = ATA is called thénformation matrix The optimal experiment design
entails making the covariance matsmallin some sense. It is usual to minimize
a scalar function of the covariance matrix. Several scdfon methods have
been considered in the literature including D-optimal gegto minimize the de-
terminant of the covariance matrix), E-optimal design (tmimize the spectral
norm of the covariance matrix), A-optimal design (to mirasnithe trace of the
covariance matrix) [18] and K-optimal design (to minimike ttondition number
of the covariance matrix) [19].

Reuvisiting the numerical example above, one can verify. tiathe determi-
nant of the information matrix foD; (detM1) = 4) is smaller than that aD»
(detM2) = 25); and (ii) the condition number of the information matiox ©1
(k(M1) = 322) is greater than that @, (k(M2) = 1). Thus estimates obtained
using®-, are numerically more stable. In the context of quantitativenedical
imaging, there exist applications where the unknown pataris a biomarker.
In other words, the unknown parameter has diagnostic valdetaus the optimal
experiment design is essential.

1.3 Experiment Design in dMRI

Irrespective of the diffusion model under consideratiaffudion imaging is an
estimation problem whose precision is dependent on theiexeet design. Med-
ical applications of diffusion imaging attract wide attentto the problem of op-
timal experiment design in diffusion-weighted MRI. A shittérature review fol-
lows.



CHAPTER 1. INTRODUCTION
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Figure 1.5: A numerical example of the hypothetical estioraproblem given in
figure 1.4 where the true value of unknown parametefgoigo]" =
[3 2]T. Two possible experiment designs @e = {[1 47,5 3"}
and®, = {[-2 7,[1 2T}. In the absence of measurement noise,
measurements corresponding®e and®; are illustrated by the blue
and green points/stars, respectively.

At least six measurements in non-collinear directions atgiired to recon-
struct a 2nd order symmetric DT. These measurement directce called gra-
dient encoding directions. The dMRI signal is measured Ipfyéapg a diffusion
sensitizing gradient in (at least) six different direcgoithe number and distribu-
tion of these directions (over the unit sphere) are elenwdritee set of acquisition
parameters called the gradient encoding scheme (GES).urhber of measure-
ments is limited/determined by the clinically feasible ¢éinvhile the distribution
of directions in a GES must be optimized for robust estinmtbthe diffusion
parameters. The optimal GES design is one of the most funatahEoblems in
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1.3 EXPERIMENT DESIGN IN DMRI

4.5 T T T
é _Lf x+y=5
4l

—L2: 5x+3y=21

.+ Noisy data of L1
3.5

a Noisydataosz i

3\ .

. . .
2 25 3 35 4

Figure 1.6: A numerical example of the hypothetical estioraproblem given in
figure 1.4 where bad experiment des@n= {[11]",[53"} canlead
to an ill-conditioned system or high variance estimates Measure-
ment noise is Gaussian distributed 450, 0%) with o = 0.2.

dMRI. The classical case, i.e. data acquisition with a amtst-value' and 2nd
order DT reconstruction has been the subject of much stueytbe last decades
[20, 21, 22, 23, 24, 25, 26, 27]. An observation drawn fromlitegature is that
it is widely accepted that measurement directions shoulechifermly distributed
over the unit sphere. The motivation is that the SNR of mesksignal is depen-
dent on the orientation and anisotropy of the tensor [28, PB{is, when the SNR
in different directions is unknown, uniformly distribugrthe diffusion encoding
directions ensures an acceptable SNR/performance ongavefdthough this is
intuitively appealing, it has not been mathematically j@av

A review of the literature reveals that:
(1) It is known that the optimal GES is dependent on the diffnsnodel and the
choice of reconstruction method [30]. The common practfagsong a uniformly
distributed (UD) GES seems to be primarily motivated/teébde the 2nd order DT
model [31, 28]. Nevertheless, the UD GES has been extegsigeld for other
models of diffusion imaging (e.g. for DKI [17]);
(i) There is no exact solution to the problem of uniformlgulibuting an arbitrary
number of points on the unit sphere. The icosahedral sch8:e8B] gives the
solution for certain specific cases. There exist methodsctbaely approximate
the icosahedral scheme and provide solutions for an anpitkanber of measure-
ments. The most important of these is the Jones scheme [28];

1so-called single-shell sampling



CHAPTER 1. INTRODUCTION

(iii) The absence of a mathematical proof for the optimadityhe UD design has
triggered a second round of studies on the optimal desigth®2nd order DT
model (a decade after the first round). More recent studi@s33] define the
optimality based on mathematical metrics borrowed frometkigeriment design
theory;

(iv) A large number of new diffusion models have been propdseeither detect
crossing micro-structures [36, 15, 37] or discover moraited micro-structural
information [38, 39, 40]. Despite their promising resutte problem of optimal
GES design for the new models as well as multi-shell acgoisthas not, to
date, been well-studied [29]. Presumably this is becauigeaion-convexity and
complexity of the problem. Another possible reason is thmegt obtains satisfac-
tory results using the existing UD GESs; and

(v) Parameters derived from the modern diffusion modelsrareeasingly used
as biomarkers in medical diagnosis/prognosis. This hasngiise to numerous
recent studies exploring optimal GES design for high ordedats [41, 42, 43]
and multi-shell acquisitions [44, 45, 46].

As mentioned above, the optimal GES design in dMRI is a furetaal yet
complex problem. Several design approaches have beensawpo the litera-
ture. One approach is to consider a simplified diffusion nh{@ke 42]. Another
is to acquire a priori knowledge of the imaged micro-strueswising a prelimi-
nary scan [43, 34] and exploit this knowledge for GES desk§) B4]. Several
researchers have used stochastic optimization techniguesperiment design in
dMRI [43, 41, 47, 42]. For instance, in [35] and [43] simuth&nnealing (SA)
Is used in experiment design for spinal cord imaging and thentill simplex
method (DSM) is used for K-optimal design in DTI [47]. Althgluthese methods
are promising, a drawback they have in common is that a diobptimal solu-
tion is not guaranteed. This is because of several simglies/discretizatios and
the use of stochastic optimization techniques.

The optimal GES for each diffusion model is the one that mings the vari-
ance of the estimated parameters. Using experiment désgnt one can obtain
the optimal GES by minimizing the covariance matrix of théneated param-
eters in some sense. Possibilities include K-optimal, Arog@l, D-optimal and
E-optimal designs. The earliest study that utilized expent design methods
to solve GES design problem is [47], where the K-optimal giegiroblem for
2nd order DTl is solved using DSM. A major drawback of this mggh is that
it yields a rotationally variant GEXS In [35] the A-optimal design problem for
2nd order DTl is solved using SA. In [34], a D-optimal design2nd order DTI
Is presented that assumes a prior knowledge of the micuctste of interest is
available.

2For a discussion of the importance of rotation-invariarezeSection 2
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1.4 Main Contributions

In this thesis, the problem of optimal GES design for dMRIlesgisited. A math-
ematical framework is proposed to solve the optimal GESgmheproblem for
even order diffusion tensor imaging and for diffusion ksrsoimaging. Numer-
ous theoretical results are presented that collectivedadien our understanding
of different aspects of the GES design problem. In additiesetveral findings that
complement or support previous research, this thesispieseveral new results:
(i) there exist designs that are optimal for second and ffoortler diffusion ten-
sor imaging at the same time; (ii) there exist optimal desidpat are optimal for
second and fourth order diffusion tensor imaging and DKhatgame time; (iii)
the traditionally used icosahedral scheme (as a UD GES)aptipral for second
and fourth order diffusion tensor imaging and DKI, simu&aansly; and (iv) the
D-optimal design guarantees rotation invariance of a GE®1d and DKI.

The proposed method differs from previous studies in thieviehg respects
(i) unlike [35, 47], it does not utilize stochastic optimizan techniques; (ii)
In contrast to [34, 35], it does not assume any simplificdtimeretization of
the original problem; (iii) unlike [35, 34, 47], it providekeoretical and prac-
tical properties of the obtained solutions; (iv) In compari to [28], it produces
rotation-invariant schemes (in the case of D-optimal d@signd (v) it estab-
lishes a general theoretical framework for GES design bgredihg the proposed
method to the modern diffusion imaging techniques such af &l DKI.

1.5 Aims and Objectives

This thesis has the following aims: (i) to provide new ingggand understand-
ing with respect to the different aspects of optimal gradéercoding schemes in
dMRI; and (ii) to develop a unified framework to solve the ompl GES design
problems in dMRI. To this end, the thesis has the followingeotives:

1. To develop an optimal GES for the second order DTI.

2. To develop an optimal GES for fourth order DTI (does noursgmulti-
shell acquisition).

3. To develop an optimal GES for some high order models tlwptire multi-
shell acquisitions.

4. To evaluate the proposed optimal designs in compariseeveral state-of-
the-art methods.

11



CHAPTER 1. INTRODUCTION

1.6 Scope of the Thesis

As implied by the aims and objectives, the scope of this thiedimited to acqui-
sition of dMRI data. It does not include any contribution tber parts of dMRI
analysis pipeline. Both single-shell and multi-shell a@sdion strategies are con-
sidered. The work presented herein is limited to éverder diffusion tensor
imaging, diffusion kurtosis imaging and apparent diffuscmefficient imaging.

1.7 Thesis Outline

This thesis is organized as follows. The first part, the ohiiciory chapters, in-
cludes a brief review of the theory and background of dMRIgkr 2), a sum-
mary of the thesis work (Chapter 3), and conclusions andduitork (Chapter
4). The second part includes appended papers.

3This ensures that the HOT is antipodally symmetric.
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CHAPTER 2

Background and Theory

This chapter briefly reviews the theoretical underpinningsiIMRI. The chap-
ter begins by reviewing the physiological and physical basiedMRI. This is
followed by a presentation of the mathematical formulatéma simple 2nd or-
der DT model. Next, a review of the related work on two majepstof dMRI
processing, namely acquisition and reconstruction, isered and open ques-
tions and shortcomings highlighted. In particular, we egwvoptimal GES design
methods and elaborate on the differences and drawbacksstihexapproaches.
Finally, a brief overview of dMRI applications, such as tagraphy, is presented.

2.1 Physiology

The human brain has 100 billion neurons (highly specialissatal cells) which
together are responsible for regulating most of our ac&{d8]. A typical neuron
is composed of a cell body, dendrites, axon and axon ters{aalshown in Figure
2.1). Axons are surrounded by a fatty tissue, the so-callgdlid sheath, that
provides electrical insulation and facilitates signahsmission. The human brain
mainly consists of three tissue types, namely white mawéxy), gray matter
(GM) and cerebrospinal fluid (CSF). The GM (also known asexQris primarily
composed of neuron cell bodies while the WM contains myé&tdaxons that
facilitate communication between various regions of theeso[49]. Myelin is
white in color, and the tissue containing the cell bodies&ygn color and this in
turn is why their surrounding tissues have their charastienames. The axons in
WM are highly ordered and densely packed into bundles knaifibee tracts or

13
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Dendrite

Axon Terminal
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Ranvier °

Schwann cell
Myelin sheath
Nucleus
Figure 2.1: A typical neuron consists of the cell body, déedr axon (covered by
Myelin sheath) and axon terminal. This image is adapted {&0h

fascicles. These white matter fibres connect differenicar(grey matter) areas,
and some of them also project down to the spinal cord [49].ditfesion of water
molecules in CSF is isotropic (same in all directions) winildnighly structured
WM, it is anisotropic reflecting the underlying micro-aruture.

2.2 Physics

It is difficult (if not impossible) to quantify the Brownianation of a single water
molecule. However, considering statistics of the displaeets of a huge number
of molecules leads to the definition of the diffusion coeéfdi (for isotropic dif-
fusion). The mean square displacement of the molecules isoaiopic medium
is related to their diffusion coefficient according to Egists equationD = 6_1t <
r'r > wheret is diffusion time,r is the net displacement vector of a particle
and <> means the ensemble average [48]. The scalar conBtalgpends on
the properties of the diffusing particles and the mediumrmiton the direction
[48]. In biological tissues the diffusion pattern is modethby the surrounding
microstructure leading to an anisotropic diffusion profllethe anisotropic case,
the probability density functiomp of displacements of the particle of interest
over a fixed time describes/quantifies the ongoing diffusion process. Aigto
this PDF is complex in general, some simple models have bemoped to de-
scribe anisotropic diffusion; the most important of therthes DT model proposed
by [14]. The PDFp and its features reflect the underlying micro-structureghin
literature this is generally taken to be a one-to-one @atieaning that given the
micro-structure, the functiop can be uniquely characterized and vice versa.

14



2.3 MATHEMATICS OF DIFFUSION MRI

2.3 Mathematics of Diffusion MRI

It has been shown that the diffusion-weighted signal is therier transform of
the ensemble average diffusion propagapor|t) [12, 51, 52, 48]:

S(a) = % | plr[texplic.rdr 2.1)

where the vectoq is defined ag) = ydQ, with Q being the vector of the ap-
plied diffusion gradienty is the gyromagnetic ratio of proton (or the hydrogen
nucleus) and is the diffusion gradient pulse duration (see [12, 52, 48nhore
details). The local advection velocity is assumed to be geeb motion of the
whole population) [12] leading to the antipodal symmetntted diffusion PDF,
p(r|t) = p(—r|t). The basic DT model for diffusion stems from assuming a zero-
mean trivariate Gaussian PDF for the diffusion propagator:

1 r'D-1r
rt) = ———expg—————
p(r|t) COED] o 2

). (2.2)
Under this assumption (2.1) reduces &) = Sexp—tq'Dq). It is usual to
further simplify this notation by introducing variablgs- & andb=t|q|? (known

ql
as theb-value) such that [52, 48]:

S(g) = Sexp(—bg Dg) (2.3)

In this perspective, the (second order positive-definit€)(@enoted byD) is the
covariance matrix op. Having six unknowns requires at least six measurements
to estimate the DT. As implied by the antipodal symmetryppoin the absence of
noise, the diffusion signal is real-valued. However, tkigot the case in practice
where the diffusion signal is assumed to be biased by Rim&enThe measured
magnitude signal is expressed as [53]:

Sh=1/(S+ny)2+n3 (2.4)

wheren; andny are uncorrelated zero-mean Gaussian noise variables guitd e
variance. Second order DT estimation leads to an oversdéied system of
linear equations as follows. Given a setf> 6 DW measurements stored
iny, wherey; = —b‘lln(%)l, and diffusion sensitizing gradient vectags=
[Oix, Oy, 0iz], i = 1,...,N, the DT is given byd = G~y whered = [D, Dy, Dyy,
Dxz, Dxy, Dxx]T and the" row of G (known as the design matrix or encoding ma-

1The term—b‘lln(g) is referred to as the apparent diffusion coefficient (ADC).
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CHAPTER 2. BACKGROUND AND THEORY

trix) is (9%, 20iyGiz, 95> 20ixGiz, 20ixTiy, G- I this linear least squares (LLS) esti-
mation framework, (i) positive-definiteness of the solntis not guaranteed, and
(ii) sensitivity of the estimated DT to the noise in measugats is upper-bounded
by the condition number of the design matrix [32].

In addition to the complicated diffusion models, it is ust@kestimate some
guantitative features that more simply reflect the propsrbf the tissue segment
under consideration. For 2nd order DTI, two well-definedapagters are widely
used: Fractional anisotropy (FA) and the principal di@ctof diffusion (PDD).
The FA value is calculated as the normalized variance ofremees 4;) of the

diffusion tensor: _
3 (x
FA = \/32:1(2'('3)—)\('3))2 (2.5)
2574(Ai(D))?

FA takes a value in the rang@, 1], where FA=0 means isotropic diffusion (spher-
ical tensor) and FA=1 indicates extremely anisotropicugibn (very elongated
ellipsoidal tensor). In the white matter of the human brama consequence of
the highly structured environment, the FA value is closerie.oThe FA value
is known to reflect the changes related to aging or pathadbgiterations. The
eigen-vector corresponding to the largest eigen-valuerahes the principal di-
rection of diffusion (PDD) that is used for fiber trackingagtography).

2.4 Acquisition: GES Design

The analysis of the diffusion signal is closely related te ampling ofg-space
[54]. Different sampling schemes studied to-date fall itv@ groups based on
their sampling strategy: Cartesian and spherical sampplihfy Cartesian sam-
pling (also known as full space sampling) is used in diffasspectrum imaging
(DSI) [55]. Full sampling ofg-space requires a high number of measurements
(N > 200) and thus is not practicallevivo because of the long acquisition time.
Spherical sampling strategies (also known as high angelswlution imaging
(HARDI) techniques) are divided into two groups: singleisand multiple-shell.
Single-shell schemes provide samples over a sphafspace. In other words, a
single non-zerd-value is applied. In contrast, multiple-shell schemedyapgv-
eral non-zerd-values. [54] categorizes different sampling schemesdasdhe
number of required measurements and adds radial and spanpérsy strategies.
In addition to the sampling strategy, the selection of theang points is also
highly important. For both single and multi-shell samplinge needs to make
a decision about the number of measurements to perform andigtribution of
sampling points (the GES).

The minimum number of required measurements is determmedhe one
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2.4 ACQUISITION: GES DESIGN

Figure 2.2: Spatially varying SNR in dMRI measurements:H\NR is achieved
when measuring perpendicular to the fiber/tensor.

hand, by the number of unknown parameters in our model. Omttiner hand,
the maximum number of measurements is limited by the clilyicecceptable
acquisition time. Thus, it is the distribution of measuretdirections that should
be optimized to minimize the variance of the estimated patara (an experiment
design problem).

2.4.1 Model-free GES Design

It is known that all theoretical methods for optimal expezimhdesign (e.g. D-
optimal) require the consideration of a diffusion model. wéwer, there exist
model-free GESs that are deemed to be optimal for all kindkffafsion imaging.
It is well-accepted that uniformly distributed (UD) gradieencoding schemes
are optimal for 2nd order DTI. Further, the UD GES is freqlyensed for other
diffusion models [17, 27, 30, 44] implying that it is the basailable choice for
any kind of diffusion imaging.

The UD GES is motivated by the fact that SNR of dMRI measurdmisrspa-
tially varying. The SNR of the measured signal is dependetite orientation and
anisotropy of the imaged tensor [28, 29]. As shown in Figue®hen measuring
along the fiber, the signal level drops to the noise floor (etiog to (2.3)). How-
ever, when measuring perpendicular to the fiber, the SNR &hrhigher [29]. To
better visualize the spatially varying SNR, the dMRI sigawasing from six hypo-
thetical micro-structures (according to (2.11)) are shawhigure 2.3. Broadly
speaking, measurements in the red areas have a high SNRmdalsurements in
the dark blue area are almost useless (too noisy). Thusowmtigirior knowledge
of the orientation of the structure to be imaged, a uniforstrthution of gradi-
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Figure 2.3: Spatially varying SNR in dMRI measurements: diignal arising
from six hypothetical micro-structures (B) =diag(17 2 2)x10~4,
FA=0.87, (b) D, =diag(2 17 5) x107% FA=0.77; (c)
D3 =diag(2 6 16) x1074, FA=0.73; (d)D; + Dy; (e) D1 + D3
and (f)D1 4+ D2 + D3. The diffusion signal is simulated using (2.11).
The orientation of diffusion tensors are shown with dasheals.

ent encoding directions seems sensible. This increaseshdrece of having at
least six high SNR measurements for any micro-structurett#er motivation is
that a uniform distribution of gradient encoding direcgaminimizes the cross-
term effects in estimating the diffusion tensor [56]. Altigh both arguments are
intuitively appealing, they have not been mathematicalbvpd.

This thesis, for the first time, proves that a UD GES can benwgdtfor several
different models (i.e. the UD GES conforms to the conditiobtined by model-
dependent GES design approaches). For this reason, heeegategorize the
GES design methods based on the number of shells (and notdtel mnder
consideration). In the following subsection we briefly visome existing work
on single-shell optimal GES design that has mainly beersdeiior second order
DTI.

2.4.2 Single-shell GES Design

To estimate parameters of some diffusion models (e.g. eveer tensors) a
single-shell data acquisition suffices where only one reno-b-value is used
for data acquisition. Although multi-shell acquisitiongith several non-zerb-
values) can provide additional information [57], singheef acquisitions are usual
because of the acquisition time limit and computationatibar
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2.4 ACQUISITION: GES DESIGN

Given the possibility of makinyl measurements, one of the most fundamental
questions in dMRI is how to distribute sampling points oves tinit sphere (for
a single-shell acquisition scheme). The optimal singkeitampling has been
widely studied [28, 20, 22, 23, 24, 31, 32, 25, 26, 30, 27].rkihservations can
be drawn from the literature:

(i) Itis widely accepted among researchers that samplimggsehould be uni-
formly distributed over the unit sphere (the motivatiorhiattthe SNR of the mea-
sured signal is dependent on the orientation and anisotbiye tensor [28, 29]).
There is no analytical solution for the problem of uniforndigtributing an arbi-
trary number of points on a sphere [58]. The icosahedralselj24, 32] provides
the UD GES for some specific cases. There exist methods tonadrtaapproxi-
mately UD GES for an arbitrary number of points. Of particulate is the elec-
trostatic repulsion (ER) scheme that minimizes the intesaenergy of identical
charges positioned at sampling points [28]. These two nustiicosahedral and
ER) were originally devised for 2nd order DTI but have beesduer GES design
in DKI and other models of diffusion imaging [27, 30, 44] basa they generate
an (approximately) uniform distribution of points on a sghe

(i) The uniformity of the distribution of gradient encodjrdirections over
the sphere is measured by the minimum angle subtended byossibfe pair of
encoding directions [44, 56, 24, 58] (denotedf, defined below). Lef;; be
the angle betweeg andg;. Then, the minimum and maximum anglgs,» and
Bmax are defined as follows:

Bi=min{By|i#] j=1--- N}
Brin=min{B |i=1,--- N}, (2.6)
Brmax=max{B; [i=1,--- ,N}.

For each GES, the minimum angular distance between two beigiy points,
Bmin IS considered as a measure of uniformity of the distributbpoints (the
larger, the better). For icosahedral schemes (or exact UBSEBnin reaches the

best possible valug;,, = %)arctar(Z), /% [58]. This can be used to examine
how close a given GES is to the exact UD GES. For ideal GESs (hayicosa-
hedral schemef3min = Bmax holds, a smaller value & = Bmax— Bmin implies
that the given GES is better in terms of uniformity. It is matethy that some
other optimality metrics have been proposed to measurenifi@ ity of the dis-
tribution of directions of a GES. These all stem from the ittesst minimizing the
electrostatic interaction (Coulombic) energy betweeraégnarges positioned on
the sphere will uniformly distribute those point chargeslidwing this idea, sev-

eral energy functions are defined includihg[59, 33, 24],J, [44], J3 [41] and
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Different GESs

Figure 2.4: Five uniformity metrics are evaluated for 100SSEwithN=20) ob-
tained by D-optimal design algorithm for 2nd order DTI (givim
Paper A. See definition of the metrics in the text (fiywe seta = 2).
The optimal GES for each metric is denoted by a red star. It can
be seen that optimality in one sense does not require/riesolbti-
mality in any other sense. The optimal GESs are #3@n(= 9.8°),
#27 Bmin = 15.1°), #5 Bmin = 10.9°), #46 Bmin = 5.3°) and #78
(Bmin = 16.8°).
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In these cost functions thh gradient encoding direction of a GES withpoints
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is denoted byg; where the index varies up to Rl when for eacly; the corre-
sponding—g; is also considered (to account for antipodal symmetry). &s c
be seenls is a vector-valued function. In a private communicatiorg #uthors

of [41] stated that they minimizgJs||. In J4 the constant can be any posi-
tive real number. An interesting observation is that thesérios are not consis-
tent, e.g. for two given GESg;(GES)< J1(GES) does not necessarily lead
to Bmin(GES) > Bmin(GES). As shown in Figure 2.4 this inconsistency applies
to all five above-mentioned metrics. For 100 GESsZ0) obtained by the D-
optimal design method for 2nd order DTI (givenfaper A, all five metrics are
evaluated and their respective optimal GES is denoted bystag. It can be
seen that optimality in one sense does not require/resafitimality in any other
sense. In this thesis, we mainly u8gi, because it seems a direct and appealing
metric.

(iii) It is widely accepted that sampling more points leadsntore precise
tensor estimation (the motivation for acquiring more measients is to mitigate
noise). For the second order DT model (with only six unknowatsleast 30
measurements are required for robust estimation of alhpatexs of interest [31].

(iv) Choosing different objective functions leads to diéfiet optimal schemes.
Minimization of the interaction energy of identical chasgeositioned at sam-
pling points (known as the ER scheme) [28], minimizationhaf tondition num-
ber (MCN) of the design matrix [47] associated with the lesigtares estimation
of the DT, and the icosahedral scheme [32] are popular exasndeveral other
criteria have also been proposed to measure the optimélggrapling schemes
including the total tensor variance [24], signal deviatj@®], variance of tensor-
derived scalars [32, 31], minimum angle between pairs obdimg directions,
and SNR of tensor-derived scalars [60]. The reader is e [29] for a com-
prehensive review of these sampling schemes.

(v) Because of the anisotropic noise propagation in dMR] {B2 rotational
variance of any particular performance measure should aei&ed. For a dis-
cussion of the importance of rotation-invariance (of a GE& Chapter 15 in
[29]. The importance of rotation-invariance gave rise tcoanmon evaluation
framework [31, 22, 32, 27, 47] for sampling schemes (baseith@Monte Carlo
simulations). This generalized GES evaluation framewarki(ly used for the
2nd order DT) is described in Algorithm 1 below. In additiarthe FA value, the
uncertainty of the vector-valued quantities (e.g. PDD)udthde evaluated. We
compute the 95% cone of uncertainty (6las defined in [61]) to quantify the
uncertainty in the estimation of the PDD.

This well-known evaluation framework is applicable whea tiptimality mea-
sure of interest is a function of the DT-derived quantitiesthe MCN and Jones
schemes the optimality/fithess of a given set of samplingtpaian be directly
evaluated. Thus the framework reduces to successiveansatind evaluations
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Algorithm 1: Pseudo-algorithm to compute response surfaae(BA)
Data: diagonal tensobDg with a prescribed FANg rotation matrices,
number of Monte Carlo trialslyc, SNR=S /0, GES
Result response surface of(FA)
for r=1to Ngrdo
ObtainD = RTDgR;
for n=11to Nyc do
- simulate the diffusion signal at the sampling points defibg the
GES under evaluation using the Stejskal-Tanner [62] eqnati
(S(gi) = Soexp(—bg Dg)));
- add Rician distributed noise to the synthetic signal tawbgiven
SNR;
- compute the diffusion tens@ and corresponding FA value;

rgcord the standard deviation of estimated BARA));

to assess the rotational variance. Simulations in [32] stiaw the icosahedral
sampling scheme (detailed in [32]) is superior to the MCNescé in terms of
rotational-invariance of the condition number (CN).

As emphasized in [30], the determination of an optimal GE8edpendent
on the choice of diffusion model. It is still an open questionmany diffusion
models. In this thesis, we propose a unified approach fom@tGES design in
DTI and show that it can be extended to high order DTl and DKI.

2.4.3 Multi-shell GES Design

Some modern diffusion models (e.g. DKI) require multi-shefuisitions. Opti-
mal GES design for multi-shell acquisition of dMRI data h&deen the sub-
ject of numerous studies. Several multi-shell GES desigthaus are based on
single-shell solutions [45, 46, 41]. Other studies havestigped model-dependent
optimal multi-shell schemes [43, 41, 30]. Direct extensdbthe ER scheme (in-
troduced in [28]) to obtain an UD multi-shell GES is also istigated [44, 63, 64].
Another extension to the ER algorithm is presented in [6%)gi$ensor metrics
and charged containers.

In this thesis, an optimal multi-shell GES is designed forlDRurthermore,
it is shown that the developed GES is D-optimal for 2nd andtfoarder DTI, as
well.
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(b) (©)

Figure 2.5: An example of input data for a dMRI reconstructadgorithm: (a)
bp image of an arbitrary slice of a human brain, (b) same slicerwh
imaged withb=1000s/mn? andg = [0.52 —0.52 0.68], (c) same slice
when imaged with=1000s/mn¥ andg = [-0.69 — 0.73 —0.02].

2.4.4 GES Design Theory

Given that much of this thesis is concerned with the optimpeeiment design for
several diffusion imaging techniques, in this section weflyrreview experiment
design theory. In many different areas of engineering, toblpm of estimating
a vectorf € R" from a set of measuremergsi = 1,...,N arises, where

s=a 0+¢&, i=1,...,N (2.8)

g; is the design for measuremardnd theg;s are assumed to be independent zero
mean random variables with equal variar@® (the measurement noise). The
precision of the estimation problem is dependent on the raxpat designs;,
i=1---,N. The least squares estimator (LSE) is unbiased and haslibeifg
covariance matrix [19]: Cov(8) = 0?M 2.9)
whereM = yN  aal and is usually called th&nformation matrix". Optimal
experiment design entails making the covariance matriallin some sense. Itis
usual to minimize a scalar function of the covariance ma8everal scalarization
methods have been studied to date including D-optimal deggayminimize the
determinant of the covariance matrix) [43, 34, 42], E-optidesign (to minimize
the spectral norm of the covariance matrix) [18], A-optirdasign (to minimize
the trace of the covariance matrix) [35, 18] and K-optimaige (to minimize the
condition number of the covariance matrix) [47, 19].
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Figure 2.6: Three examples of outputs of a dMRI reconstuacélgorithm: (a)
FA map of an arbitrary slice of a human brain, (b) color cod&DP
map of the same slice, (c) a hypothetical tensor field. Iméajeand
(b) are produced by ExploreDTI [66]. The image (c) is adajitech
[67].

2.5 Reconstruction

Given a set of dMRI measurements for each voxel, a recongirumethod is
expected to provide:

(i) an estimate of the number of fiber bundles constructireguiiderlying micro-
structure (although it is an input in some methods);

(if) an estimate of the orientation of each fascicle; and

(iii) features ofp that characterize the tissue/micro-architecture proggesuch as
FA.

Example inputs and outputs of a dMRI reconstruction albariare illustrated
in Figures 2.5 and 2.6, respectively. More sophisticatedeatsowould provide
orientation distribution functions (ODFs) instead of asenfield in 2.6(c).

A wide variety of methods have been proposed to analyze thesdin signal
in order to determine the underlying micro-structure asdeatures. These ap-
proaches broadly fall into two groups: parametric (modeddul) and non-parametric
(model-free) approaches. Parametric methods assumenthdMRI signal is a
weighted linear sum of functions each of which models thiugibn pattern of a
single fascicle [68]. This group is also known as the mixtamzlels [54, 68]. The
non-parametric methods try to estimate some function atatig potential fiber
directions and their uncertainty [69]. The target functi@me some mathematical
series [54] or spherical orientation distribution funasdODF) [69]. This catego-
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rization is widely accepted although there is no clear deatam between these
two groups. For example the Persistent Angular Structud&{MRI) method is
classified as a parametric/model-based method in [54] vileileg considered as
non-parametric/model-free in [69, 68]. It is noteworthgttkome methods model
the ADC profile instead of modeling the diffusion signal. Rediess of the ap-
plied method/model, the peaks of the ADC profile do not calaavith fascicle
orientations (except for single-fascicle micro-struejuut the profile is useful for
FA computation [12]. In this regard, the reconstructionmoels are divided into
two groups: those that aim to determine the fODF (or its leldiversion known
as dODF [70]) and those that aim to estimate the ADC profile.

2.5.1 Parametric Methods

The regular DT model is the most popular parametric methatl didequately
models the diffusion signal within isotropic or single-dade voxels. Simple, fast
and robust estimation and well-established interpretdteamework make the 2nd
order DT model suitable for daily clinical use. However, ktsown limitations
in modeling complex micro-structures has given rise to maey models and
reconstruction frameworks. A multi-tensor model is a natgeneralization of
the DT model to resolve complex architectures. Basicaliggumes thagiis sum
of several Gaussian distributions:

(rjt) = . fi 71 ex;i—rTDrlr
P =25 /Gman, 4t

wheref; are volume fractions such thhte [0, 1] andy [ ; fi = 1. This assumption
leads to the multi-exponential modeling of the diffusiogreil:

) (2.10)

S0)=%3 f exp(—bg' Dig) (2.11)

This idea (with some modifications) has led to various megtinpartment mod-
els, where each term models the contribution of differealdgic compartments
(such as intra-axonal, extra-axonal, isotropic and so wrihé diffusion signal
(see [71] for details). The main limitations with this fagndf parametric models
are:

(i) Model order selection - to choose a suitahles not a trivial task in general.
Some studies use a fixedthat would lead to poor results in case of a mismatch
between the underlying micro-structure and the model (sgeré 27.2 in [29]).
Several studies have sought to estinraseparately [12].

(i) Acquisition requirements - the number of unknown paetens and thereof the
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minimum number of measurements depends.dfurther, given a single-shell ac-
quisition, it is impossible to precisely estimate multi$éer models [11].

(i) Estimation framework - because of the non-lineast@end noisy measure-
ments, the estimation process is challenging.

The model-based approaches usually reveal a finite humbfsoicles in
each voxel and their respective features (such as FA, pahdiffusion direction
(PDD)). However, for adequately resolving fanning or btang fascicles, esti-
mation of fODF/dODF would seem to be more desirable. The pemaimetric
methods seek to estimate a spherical funcfi@DF : Q — R for each voxel de-
scribing the fraction of fibers pointing in each directio®]2or conceptually the
probability that a particle located in the center of the \pxell diffuse in that
direction). In this perspective, PAS-MRI and deconvolntlmased methods are
classified as non-parametric methods as they estimate DE/G®DF, although
they use some models of diffusion as the response functibos.a discussion
of the advantages and disadvantages of the multi-tensoelnsed [11] and [54],
respectively.

2.5.2 Non-Parametric Methods

Non-parametric DWI reconstruction methods include diffasspectrum imaging
(DSI) [55], g-ball imaging (QBI) [36] and its variations, éldiffusion orienta-
tion transform (DOT) [72], PAS-MRI [37], deconvolution4ed methods [73]
and higher order tensor methods [74]. [11] enumerates theger error sources
in g-space approaches (DSI,QBI, etc), the most important ofhvisithe acquisi-
tion requirements. For more details on the advantages awebdicks of different
methods see [54, 29]. The general drawbacks with modelajppeoaches are as
follows:

(i) The incorporation of the probability in describing diffion patterns may not
be desirable all the time. For some applications, such atotyeaphy or evalua-
tion of synthetic data-based studies, quantification ofiln@ber of fascicles and
their PDD are required. This has led to an active researchdealing with the
extraction of the required deterministic information (e2fpD) from the available
probabilistic description of the diffusion profile. The easch on this secondary
problem has led to fODF maxima extraction methods [75, 7§,téAsor decom-
position [78] and Z-eigen decomposition theory [79].

(i) The model-free approaches describe the general shiagiee aliffusion pat-
tern rather than describing the contribution of each féseind its orientation and
anisotropy. Most existing tractography algorithms areeblasn the model-free
reconstructions but still rely on FA maps (obtained from 2nder DT) to detect
white matter tissue.

(iif) The evaluation of these methods (especially on syinth#ata) is dependent
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on how one interprets them. For example, Z-eigen decompnosif a fourth or-
der tensor givey < 13 Z-eigenvalues [80] while in evaluation of angular error,
the number of PDDs is assumed to be known (as in [81]) and only tHargest
eigenvalue-vector pairs are considered.

2.5.3 High Order Diffusion Tensors (HOTS)

Non-Gaussian diffusion models have gained wide attentemabse of their abil-
ity/potential to resolve complex fiber architectures sugfitzer crossing, branch-
ing or kissing. One of the promising alternatives to 2nd o€l that can model
complex fiber architectures in the brain, is the HOT médiel regions with com-
plex micro-structures, HOTs can model the apparent ddfusoefficient (ADC)
with higher accuracy than the conventional 2nd order mag#l [

Given that optimal GES design for HOTSs is one of the contrdng of this the-
sis, this section briefly reviews HOT-based ADC profile eation. The Stejskal-
Tanner equation for dMRI signal attenuation is [62]:

1 S
i <§) —d(9) (2.12)

whered(Qg) is the diffusivity function Sis the measured signal when the diffusion
sensitizing gradient is applied in the directignS, is the observed signal in the
absence of such a gradient, amd the diffusion weighting factor. (2.12) shows
that for the second order DT mod#]g) = g"Dg > 0. Generallyd(g) : Q — R*.
The diffusivity functiond(g) (also known as the ADC profile) is modeled using
even-order symmetric tensors as follows:

3 3 3
dg =5 > ---_zldiliz.,.imgilgiz---gim (2.13)

i]_:liz:l Im=

where the upper bound of the summations shows the tensondiomeand the
number of sums is equal to the order of tensoifensor elements are shown with
dii,...im» and symmetry means that any possible permutations ofésdjives the
same value. For example, for a fourth order symmetric tendQhi, = dz111 =
di121= 1211 = dg(310) wherea (ng, n2,nz3) shows any possible permutation of
indices having; onesn, twos andhs threes. Thus eaah-th order tensor has=
(m+1)(m+2)/2 distinct elements with the multiplicity @iy n, n,,ng) = nl+2"ns'

In this thesis and related publicatiogss [X,y, 7] is used instead af = [g1, 02, 93]

2Variations of HOTs ranked first in both the HARDI reconstiantcontest held in conjunction
with ISBI 2012 [82] and the diffusion MRI modeling challengeld in conjunction with MICCAI
2013[83].

27



CHAPTER 2. BACKGROUND AND THEORY

for simplicity. Thus, the diffusivity function takes thelkowing form:

m m-—i o o m m-—i o o
d(g) = thi nGh00s ) = toi Xyl zZM ) (2.14)
i;}j;) h(i,j)Y19293 i;j; h(i,j)
whereg = [g1 @2 93]", thi j) = a(ijmi—j)Hai,jmi—j) andh(i,j) = j+1+

i(2m+3—1i)/2. Thus the diffusivity function can be expressed as an ipneu-
uct of two vectorst containing the unknown diffusion tensor elements and
containing the experiment design fitlh measurement:

d(g) =at (2.15)

whereg; = [Xi, Vi, z]. Botht anda; belong toR" but multiplicity coefficients may
be placed in either of the vectors. We keep them in experimesign always.

Examples: Fom= 2, the second order DT model, the diffusivity function is
composed oft = [dyx Oyy 07, 0xy Oz 0y T anda; = [x2 y? 22 2xyi 2%z 2yiz]'.

Form= 4 the experiment design = [Z' 4y,Z> 6y?Z* 4y3z vy} 4xZ0 12xyiZ?
1267z 4xy? 6x77° 12¢yiz 6XFy7 4z 4y )T
Note thatd(g,t,m) = d(g) is used for simplification. Given measurementslin-
n different directiongy;, the least squares estimator of even-order DT is:

t=(B"8B)"1B's. (2.16)

whereB is anN x n matrix asB=[a; ap --- aN]T andsis a column vector of
sizeN, whose elements are the measured ADC valuess i;e.—%[ln(sl/so) e
In(Sy/S0)]". For relatively bigN, it is assumed tha has row rankn. For other
HOT estimation approaches see [85, 86]. Unlike the 2nd dbdethere is no
unified framework for interpretation of high order DTs. Irhet words, standard
definitions of FA and PDD for these models are not immediatbljious. In [79]
a framework for the interpretation of HOTs is presented dase the concept
of Z-eigenvalues [87] (a generalization of eigen-decontmosto HOTS). An
expression for computing the FA from a HOT is also given wf8lg] proffers an
alternative definition.

The only study on GES design for HOTs [27] is limited to conigam of ex-
isting GESs mainly devised for second order tensor imagng; the minimum
condition number (MCN) scheme [47]. A caveat here is thatcthedition num-
ber is computed from the design matrix associated with theali least squares
estimation of parameters of interest. Thus, by definitiors model-dependent.
One of the problems considered in this thesis is to find Krogtiand D-optimal
GES designs for HOTSs.
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2.5.4 Diffusion Kurtosis Imaging (DKI)

In order to quantify micro-structural properties of imagessues, a wide vari-
ety of models have been fitted to the diffusion attenuated MRas. Of special
interest is diffusion kurtosis imaging (DKI) [16, 17] thata& proposed to probe
the non-Gaussian diffusion. DKI provides biomarkers reitecpathological and
developmental changes in the human brain [88, 89, 90, 91].

The diffusion profile at each voxel is described by two synriogénsors, a
2nd order diffusion tensob (3 x 3 matrix) and a 4th order kurtosis tensof
(3 x 3 x 3 x 3 matrix). The model that relates the measurements to theawrk
parameters is [92]

S(L = —bzl Z Dijgig gi+5 b2 Zi Z z ZVVukI gigjoka  (2.17)

J=1k=1I=

whereD = Ltrace(D). This model holds under certain conditions, most reswecti
of which is the maximum limit fob-value. At least two-shell acquisition is re-
quired for DKI model fitting. For more details see [92, 17].€llask in DKI is to
estimate 6 distinct elements Df(denoted byd;1 to d33) and 15 distinct elements
of W (denoted bywv; to wis). The model can be reformulated as follows [92]:

In@:a(i,jfe (2.18)

whereS(g;, b ) is the signal intensity measured in the gradient encodiregtion
g=[XVz ] with diffusion weighting factobj and & is the signal intensity
with b; = 0. The vector of unknown parametersfis= [d11 do» d33 dio di3 do3
V1 V2 -+ vig|T wherevi = D?w,. The experiment design &, j) = [~bjx? —

b? b? b?_, 207 2b?

be2| sz|2 2bJX|y| —2b1X|Z« —2bjyiz X' @Y 47 Sy Fxg
27

X 3 ez 5 Ty 'y3z b2x2y? oz L2272 2bixyiZ 2b%xyiz

bjlezyI ]T. Given a set of measurements usingon-zero b-values any; di-
rections per shell{S(gi,bj)[i = 1,---,Nj;j =1,---,n;n > 2}, the LSE of the
unknown parameters is A

) 6=(B"B) B's. (2.19)
where the design matrix of sia¢x 21 isB = [a(1,1) a(2,1) --- a(Ny,n)]T and
b b nsPn

N = 3", Nj, ands = [In(S%2) In(S%2) ... jn(S9gty)

2.5.5 Apparent Diffusion Coefficient Imaging

Among the many complicated diffusion models there existnapi model, i.e.
ADC imaging, that is widely used for the classification ofibrdisorders [93],
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detection of malignant breast lesions [94], identifyiragss of cerebral infarction
[95] and diagnostic imaging of the kidney [96, 97], pros{&®&, 99] and ovaries
[100, 101]. ADC imaging is also used to solve challengingichl problems
such as differentiation of Parkinson’s disease from migtgystem atrophy and
progressive supranuclear palsy [102].

In essence, ADC imaging is a mono-exponential model fittiraplem. The
model for ADC imaging is given by

S=Sexp(—bD) (2.20)

whereSis the measured signal when the diffusion weighting fabtmr applied,
S is the observed signal in the absence of such a weightingrfacidD is the
apparent diffusion coefficient. The parameters to be estichareS, andD. In
ADC imaging the parameter of interestds(the ADC value).

The popularity of ADC imaging as a quantitative imaging tbas motivated
many studies investigating the reliability and reprodiitjpof ADC estimates
[103, 104, 96]. In the case of ADC imaging, an experimentglesonsists of the
b-values applied for measurements and their repetitions.inAritively appeal-
ing experiment design is the equidistant (ED) distributtdrsampling points on
a valid range of the independent varialdbev@lues). The range of valid sampling
points is determined by the biophysical aspects of the prokdt hand. For in-
stance, perfusion contamination at lowalues [105, 104] and SNR drop at high
b-values [106] limit the applicable range bivalues. The ED experiment design
method is widely used in the literature [107, 96, 108, 109jwdver, many studies
use non-systematic experiment designs [98, 110] that casiderably influence
the results.

Some studies have developed a theoretical framework bymzimg the vari-
ance of the estimated parameters [111, 112, 113]. In thedeest the Cramer-Rao
lower bound (CRLB) of the ADC value is minimized assuming ai§&aan noise
distribution. Hereinafter, we call this method GCRLB. Tlesult of GCRLB is
dependent on the range of ADC values to be imaged and thetyabidnoise
assumptions. In this thesis, a new D-optimal experimengdds proposed that
partly resolves these problems.

2.6 Applications of dMRI

Once the reconstruction step is done, depending on the model consideration,
a number of features/scalars/vectors the describing iymdgtissue characteris-
tics becomes available to be used in the downstream apphisatThe applica-
tions of dMRI (in brain imaging) mainly fall in to two groupga) detection of
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disease-associated WM changes (based on quantitatiusidifffeatures) and (b)
tractography-based diagnosis, surgical planning, etactdgraphy (combining
local micro-structure information to obtain neural patiraonnecting different
parts of the gray matter), is an active research area, gakey role in the human
connectomics. Connectomics is the study of the connegiivithe brain [114].
The dMRI technique provides a structural connectome of tié W

Developing accurate and robust approaches to describkedofission pat-
terns and thereof local micro-structures, is a crucial stepe dMRI processing
pipeline. This local micro-structural information is igt@ated to provide neural
pathways inside human brain. The task of reconstructing W fpathways is
called tractography and provides a powerful tool to studyroanatomy of the hu-
man brain. Tractography is commonly used for pre-surgitziming in clinics as
the only non-invasive way to probe the neural architectdith® human brain in
vivo [52]. Itis an input to brain structural connectome miaygpand brain network
analysis.

Two strategies have been taken for tractography: global@ral. The local
tractography methods fall into two groups: deterministid @robabilistic. They
build the pathways based on the information provided bylld&usion patterns.
Deterministic tractography starts from a given point (3esd follows the PDD
from one voxel to another. This is terminated if the algamtreaches the speci-
fied destination seed or the fiber runs into low FA regions @he@not supposed to
have oriented micro-structures). Positioning way-poe#ds is the usual way of
improving/regularizing these algorithms. The whole dffan process and micro-
structure estimation in turn, are based on probability theDeterministic trac-
tography ignores the uncertainty inherent in the local nedédiffusion. One
might be interested in the probability of the existence ahpto-point connec-
tions, in a more realistic perspective. This has led to podistic tractography
methods.

In contrast to local tractography, global tractography Gdnsiders each path
as a parameter to be optimized. The optimality can be definddraspect to
different objective functions. Generally, an objectiveadtion should in some
way measure the diffusion signal fit and concordance withptier knowledge.
The main drawback with GT is its high computational burdeherg has been a
concerted effort to overcome this drawback [115, 116, 118].1

Tractography-related studies are categorized into skgevaps: (i) studies
that aim to estimate fiber orientation distribution funoBqfODFs) as accurately
as possible [119, 120, 80, 121] (fODFs are the input to angllbactography
methods); (ii) studies that introduce new determinisaictography methods [122,
121,123, 124,125, 126]; (iii) studies that introduce neababilistic tractography
methods [121, 127, 124, 125]; (iv) studies that investigddal tractography (in
contrast to local tractography) [128, 115, 116, 117, 118]s{udies that provide
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a review or comparison of different tractography methods tweir applications
[129, 130, 131]; and (vi) studies based on connectome asdly32, 116, 114].
This thesis does not include contributions to this part oRdMnalysis. However,
the proposed optimal GESs improve the robustness of thenaftton input to
this step.

dMRI Acquisition SR dMRI Applications
> GES Design » Parametric . — > Tractograph.y. .
> Single-shell vs. Multi-shell = > Non-parametric » Probabilistic
» Model-free vs. Model dependent » ADC mapping, DT, DKI » Deterministic
: » Non-Gaussian models » Tissue classification

Figure 2.7: Diffusion MRI: Three main steps and correspngderminology.

To summarize this chapter, the three main steps of diffugitenging and
related terminology are shown in Figure 2.7. The first stega® acquisition
where one has to select a gradient encoding scheme (GES)gamamy other
acquisition settings. In the second step, namely recartginy acquired data is
processed and the underlying micro-structure is chailaetémusing parametric
or non-parametric models. A diffusion model can be as sinagléhe mono-
exponential decay (in the case of ADC imaging). However,evaaztlvanced mod-
els such as 4th order tensors or DKI are required to more tighly characterize
tissue alteration or complicated micro-structures. Inl#st step, the collective
information is used for tractography or differentiatingstile types.
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CHAPTER 3

Summary of the Thesis Work

This chapter briefly describes the work carried out in thestb. First, in the next
section we introduce the problems under consideration antpare experiment
design problems in dMRI with some general experiment degighlems. Then
we summarize the content of the appended papers in sepaletectsions where
we highlight our contributions and present the main results

3.1 Experiment Designin dMRI: Challenges and New
Solutions

Numerous diffusion models have been developed over thenastecades. These
models are used to characterise properties of the miauatates in living tissues.
Model fitting is complicated by the fact that the dMRI measoeats are inher-
ently noisy (a side effect of MRI signal acquisition). Dision parameters find
application in medical diagnosis/prognosis. This mogsgathe investigation of
the robustness, reproducibility and reliability of thesggmeters. One way to
achieve robust estimates of diffusion parameters is taropéi the data acquisi-
tion setting such that it minimizes the variance of the ested parameters. This
is an optimal experiment design problem (EDP). In the ca®€Ddf imaging, the
task is to find the set of appliddvalues while for DTI and DKI it involves the de-
sign/specification of a GES. In this thesis several EDPs amnsidered including
optimal experiment design for ADC imaging, diffusion tengoaging (second
and fourth order) and diffusion kurtosis imaging.

To better describe the problems at hand, two examples ofriexpet design
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Ty —— o
Tidy + yidy Si y ] wrdn +yide + 2fds + 2y si
Y — 2z — +2zizid13 + 22 d23

(@) (b)

Figure 3.1: Two examples of the problem in (2.8): (a) Hyptita experiment
design problem witt® = [d; do] anda; = [x Vi|. (b) Experiment de-
sign problem in second order DTI with= [d11 d22 d33 d12 di3 do3]
anday = ¢ 7 Z 2xyi 2%z 2yiz].

problems (EDPs) that satisfy (2.8) are presented in Figute &igure 3.1-(a)
shows a hypothetical experiment design problem Witk [d; da] anda; = [X Vi].
Figure 3.1-(b) describes the experiment design probleracorsd order DTI with
6 = [d11 22 d33 0h2 03 Gpg] @nday = [x2 y? 22 2xyi 2%z 2yiz]'. Both problems
are compatible with the formulation in (2.8) although thare key differences.
These differences complicate the EDP in several ways inujud

e The condition number of the problem in Figure 3.1-(a) can lha&nmzed
down to one (the ultimate minimum) while this is not possibl¢he pres-
ence of cross-terms (such»ag;) in the problem in Figure 3.1-(b); and

e For the problem in Figure 3.1-(a), the number of free desigrameters
(decision variables) for each measurement (two) is equiddaimension
of the design vectog while the number of free design variables for DTl is
less than the dimension of the design vector.

The EDPs in this thesis cannot be solved by straight forwppli@ation of ap-
proaches in the optimization literature for the followirggsons:

e The problems under consideration in this thesis, unlikélems in [133,
19, 18], are not convex; and

e The conventional experiment design problems (as in [1&k $& minimize
the objective function over a finite and thus countablegete. Vi : g € .«7.
In this thesis, howevery is not a countable set but includes the whole set
of feasible solutions.

The general formulation for GES design problems in thisithissas follows:

ming #(M~1)

st:M>0, |g|l=1i=1-,N. (3.1)

where.Z : R™" — R is a scalarization function (such as the trace, determjnant
condition number)n is the size of the information matrid and theg;s are the
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gradient encoding directions. The size of the informaticatrim depends on the
model under consideration. It is listed for even order DTKI@nd ADC imaging

in Table 3.1. It is noteworthy that in experiment design f@@ imaging, deci-
sion variables aré;s instead ofy;s (thus the constraints agp in (3.1) should be
replaced withbmin < bj < bmay. The problem above is not convex. However, it
can be converted to a convex problem and solved by semi-ggirogramming.

Table 3.1: Dimension of the information matrix)(in optimal experiment design
problems of dMRI

ModeI‘DTIZ DTI4 DTle DKI ADC
n ‘6 15 28 21 2

There exists a set of studies considering the same EDPssahésis. The pro-
posed method differs from the previous studies in sevesgla&ts. In contrast to
[35, 47], it does not utilize stochastic optimization teichues. It does not involve
any simplification/discretization of the original problems in [34, 35]. Unlike
[35, 34, 47], it provides theoretical and practical prosriof the obtained so-
lutions. In comparison to [28], it produces (exactly) raiatinvariant gradient
encoding schemes (in the case of D-optimal design). Finakgtablishes a gen-
eral theoretical framework for GES design in dMRI by extengdihe proposed
method to modern diffusion imaging techniques (e.g. HOTSRKI).

In following sections, a summary of our findings for each naslpresented.

3.2 Second Order DTI

The problem of GES design for 2nd order DTI is considereBapers A, Eand

F. The icosahedral scheme is well-known in the dMRI literatuHowever, a
simple algorithm to generate the icosahedral scheme forlatraay number of
measurements does not exist. Raper E such an algorithm is proposed. The
algorithm generates the exact (with the condition numbér®s811) and rotation-
invariant GESs although they are not necessarily UD.

In Paper F, a simple algorithm for the computation of the K-optimal GES
for second order DTI is proposed. The algorithm: (i) doesmesd stochastic
optimization; (ii) reveals several theoretical propestid K-optimal designs; and
(i) works for an arbitrary number of measurements. BB#pers EandF, were
based on conjectures giving the optimal information matceter, inPaper A all
these findings are proved and formulated under a unified freme

The unified approach to find analytical solutions for A,E,kKgptimal exper-
iment design problems for second order DTI is developeegiper A The infor-
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mation matrix (M in (3.1)) for 2nd order DTl is

[y I X7 23y 25 %z 23 %viE]
SXEVE Sy SR 23y 25Xz 23 Yz
Mo | X7 3¥F 374 23Zxy 23Zx 237 3.2)

25X 23y% 23 Zxyi ATKV 43 Xyiz 43 yxa
2y %7 2yyxz 2yZx  AYXviz AYXZ A3 XY
125 %viz 23V 237 AYYXZ AT 2y AYYVRZ |

Our proposed solution involves the following steps:

e Change decision/design variables, i.e. obtain optimal eris(e.g.5 x*)
instead of optimal directions (e.dx Vi z]). This reduces the number of
design variables (from8to 15, in the case 2nd order DTI).

e ConvertN non-convex constraints to one convex constraint as folldwgs
non-convex constraints imply that\ , ||gi||* = N. This is a convex con-
straint on new decision variables (convex relaxation).

e Solve the resulting semi-definite programming problem.
e Recover/retrieve the original design variables (gradéeicoding directions).

A summary of results follows. Common to all types of optimesiins (A/E/K/D),
odd moments must be zero (e.gxf’yi = ZXizini = 0). In the case of K-optimal
and E-optimal design, even moments are:

z>¢‘ SV =37 = zf’
Y,

SXR=SRZ = N (3:3)

=
The D-optimal design requires the even moments to satigfydthowing condi-

tions:
ZX4 syi=y7 =3,
YKV =3XZ=3ZY =

The A-optimal design requires the even moments to satighfdhowing condi-

tions: x4 y4 ;4
> > > 75677 5672’
X2 =3 X7 =y 7y = 74853 (3.5)

Further study/evaluation of the proposed GESs, yieldsath@#ing insights/conclusions
for second order tensors:

N (3.4)
15-

e The traditionally used icosahedral scheme is a subset gftibral designs.
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e The D-optimal design is rotation-invariant with respeclidour (A/E/K/D)
optimality metrics. (See the proof in Section 3.8.1).

e The proposed method can be used to compute the optimal diesigm
arbitrary number of measurements. In Figure 3.24&511 is deliberately
chosen to highlight this property.

e The determinant of the information matrix is a rotation inaat optimality
metric.

e ForN=6, the D-optimal design reproduces the icosahedral scliesecTa-
ble 3.2). However, the D-optimal design generates GESgithaate from
uniformity for large values oN (see Figure 2.4).

e One can re-run the proposed algorithm to find uniformly dsted D-
optimal solutions. For example, the solutions with the éstg@nin, among
1000 runs foN=11, 15, 20 and 30 are shown in Figure 3.2.

Table 3.2: D-Optimal GES design reproduces the well-knmssahedral scheme
[47, 32] forN = 6 with Bmin = Bmax= 63.4349. However, these exist
non-UD D-optimal solutions for large values l&f

Xi i Z

-0.0421] 0.3135 | -0.9487
0.1214 | 0.9808 | -0.1527
-0.3864| 0.6113 | 0.6906
0.8149 | -0.5156| 0.2648
0.8639 | 0.2843 | -0.4158
0.6511 | 0.4684 | 0.5973

Our Monte-Carlo simulations (Table 3.3) show that the Diropt design leads to
the minimum variance estimation of the diffusion parangetéhus, we conclude
that the D-optimal design is the most useful method for GESgheof 2nd or-
der tensors (because of rotation-invariance, UD solutamtsminimum variance
estimation of diffusion parameters).

Among existing methods, the ER scheme [28] is the most popuak As can
be seen in Table 3.3, the difference between the ER schem#haridtoptimal
scheme is negligible for 2nd order DTI. However, as showiPaper A it is well-
pronounced for high order models. In addition, the poggjhdf extensions to
GES design for high order tensors is demonstratgrhjper A Another important
theoretical contribution oPaper Ais that it provides the first mathematical proof
of optimality of UD GESs.
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Figure 3.2: The D-optimal design with the larg@sti, among 1000 runs for (a)
N=11, Bmin =41.7°; (b) N=15, Bmin =31.9"; (¢) N=20, Bmin =29.3;

Table 3.3: Statistics of the robustness test performedrdirgpto Algorithm 1
given in the previous ChapteN(= 20). The ER scheme is proposed
in [41, 28]. The parameter, G is defined in [61] to quantify the
uncertainty in the estimation of PDD

Schemel Mean(g(FA)) | Std(@(FA)) | MeanCUgs) | StdCUgs) | Bmin
D-opt 0.0480 0.0013 9.98 0.28 29.3
ER 0.0482 0.0013 9.98 0.30 28.8
K-opt 0.0492 0.0069 10.88 1.19 9.7

3.3 Fourth Order DTI

The problem of GES design for 4th order DTl is considereBaper B The opti-
mal GES design approach that was originally developed foorsg order DTI (in
Paper A is extended to fourth order DT estimation. In particuRaper Bpro-
poses K-optimal design for fourth order DTI. Comparisonghwarevious work
and theoretical results are also presented in this papaddition, part ofPaper
A is devoted to solving D-optimal GES design for fourth orddrl.On the pro-
posed methodRaper B, the K-optimal design problem for fourth order DTI is
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formulated as an SDP problem:

mingp o
s.t.: M(g) >0, | <pM(q)<al (3.6)
p>0, u'q=N.

whereM is the information matrix} is the identity matrix,a is the condition
number ofM, g € R* includes the moments of a GES (for examgle~ 5 x¢
andgio = ¥ X'y, u € R*is constant vector with only fifteen non-zero elements,
and p equals ¥Amin(M) (Amin denotes the minimum eigenvalue). The optimal
valuea™® in (3.6) is obtained by performing a line search mnLet the optimal
value of the following problem be¢ wherec is a real non-negative constant:

ming a

st.: M(g)>0, I <cM(g)<al, uTg=N (3.7)

Thena* =min {a¢|c € R, }. Details on variable change, convex relaxation and
the extraction of the original variables from the optimdbmation matrix can be
found inPaper B

Using the same notation/strategy, the D-optimal desigmlpro for fourth
order DTl is formulated as an SDP probleRapers A and €

ming —log de{M)

st.: M(q) >0, u'"g=N. (3.8)

The problems in (3.7) and (3.8) can be efficiently solved byllddIvers. In
summary, our findings concerning fourth order DT estimatnmtude:

e The D-optimal GES is rotation-invariant (See the proof ictis 3.8.2).

e The D-optimal design for the fourth order tensor is also Diropl for the
2nd order tensor, however, the converse is not true (Seedtloéip Section
3.5).

e The D-optimal design for fourth order tensors yields GESthwniform
coverage of the unit sphere, for a practical rangh of

e The icosahedral scheme is D-optimal for fourth order teestimation.

e The proposed method can be used to compute the D/K-optinsajrdéor
an arbitrary number of measurements.

e The odd moments of the K-optimal design are zero.
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Figure 3.3: A comparison of the K-optimal GESs for 100 runghef proposed
algorithm: 2nd and 4th order DTI are denoted by DTI2 and DTI4,
respectively. The condition numbers of the 2nd and 4th oirdfer-
mation matrices are shown lag andkg, respectively l = 30).

e The even moments of the K-optimal design are proportiondhéototal
number of measurements.

e The K-optimal design is not unigue, in general (See the proBaper B.
e The D-optimal design is not unique.

A previous study [27] compared existing GESs for 4th orded.Orhis study
emphasizes that the numerically optimized schemes (e.g.arERMCN) vary
with each optimizationPaper Brepresents a clear advancement by solving the
K-optimal design problem and describing the relationslefween different solu-
tions. Solutions of the K-optimal design problem (both 2nd dth order DTI)
for 100 runs of the proposed algorithm are compared in FigBelt can be seen
that: (i) the proposed algorithm consistently providesapgmal solution for both
2nd and 4th order DTI, (ii) the K-optimal GES for 2nd order O3 lsub-optimal
for 4th order DTI; (iii) the K-optimal GES for 4th order DTI sub-optimal for
2nd order DTI. Consequently, one should not use the same GHEf &-optimal
design for both 2nd and 4th order DTI (as was done in [27]); @wdthe K-
optimal designs for both 2nd and 4th order DTI are also dffiéin terms of the
uniformity of distribution of gradient encoding directi®n
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3.4 Diffusion Kurtosis Imaging (DKI)

The extension of the proposed method to non-Gaussian/matifusion mod-
els that require multi-shell acquisitions (such as DKIngigantly enhances the
theory/approach developed in this thesis. DKI is a techmitipat can provide
biomarkers reflecting pathological and developmental gharn the human bran
[88, 89, 90, 91]. Motivated by this fact, an optimal expenrnedesign method for
DKI is given in Paper C

In Paper C the D-optimal design problem for DKI is converted to thddal-
ing convex optimization problem:

min, —log de(M(p))
st.: M(p)>0, u'g=Ny, u'q =Ny, (3.9)
rTq=Ng, rTq' =Ng, tTg =Ny, tTq' = N,

wherer, t andu are some suitable constant vectorRitf, q andq’ are vectors
containg moments of a GES for the first and second shell, césply, N; and

N, are the number of points on the first and second shell paadR1’® (consists
of the variables i andq’). The solution to this problem describedRaper G

leads us to the following major findings:

e The conventional icosahedral scheme is approximately waabfor DKI.

e The proposed D-optimal design is rotation-invariant. (8eeproof in sec-
tions 3.8.1 and 3.8.2).

e There exists a D-optimal solution for DKI which is simultansly D-optimal
for 2nd and 4th order diffusion tensor estimation.

e The proposed method can be used to compute the optimal diesigm
arbitrary number of measurements and shells.

¢ D-optimality enforces the uniform distribution of gradieencoding direc-
tions for a typical number of measurements in DKI.

e The solution of the DKI D-optimal design problem is not urequ

e The proposed method optimizes both gradient encodingtairecandb-
values.

The work inPaper Cestablishes a theoretical foundation for the experiment de
sign in other diffusion imaging techniques that utilizeslan models. Importantly,
these theoretical findings provide the first mathematicabpof the optimality of
uniformly distributed GESs for DKI.
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3.5 Model-independent GES Design

From the material presented Rapers A, C, EandF, it can be seen that it is
possible to find a set of solutions that are D-optimal for sgvaiffusion models

at the same time. This set includes UD schemes (e.g. thehiedsal scheme).
Given that the UD schemes are widely used for diffusion imgdirrespective of

the diffusion model under consideration), the proposechotktan be regarded
as a model-independent GES design method. In other wordanibe used for
other diffusion imaging techniques as well.

The D-optimal GES for a high order model is also D-optimal d&irlower
order models. For example, there exist a DKI D-optimal desit is simulta-
neously D-optimal for second and fourth order DTI, as welhisTis discussed
in Paper C In addition, D-optimal design for fourth order DTI is sintaheously
D-optimal for DKI and second order DTI (See the proof belowhis enhances
the practical impact of the proposed method and extenddility tbeyond the
model under consideration (although the proposed methoddel-dependent by
construction).

Here, we prove that the D-optimal design for fourth order DS 'klso D-
optimal for second order DTI and DKI. The D-optimal designtfee fourth order
tensor is given by the following equations (obtainedPaper A:

=3y = zﬁ
T XY =3x8y = f zﬁf YA =y =5
5 Xyt = 3 X = zﬁf N (3.10)

SV =3 2y = 3 XVeR = e

The task is to compute values of all design moments requoe®KI (4th-,6th-

and 8th-order moments). The 8th order moments are alreaorkifrom the
definition of D-optimality for fourth order DTI. Thus, we né¢o show that 4th
and 6th order moments also take the DKI D-optimal valuesrginé®aper C Let

us start by computing 6th order moments. Given faty? +z* = 1, we multiply

this equation by® yielding:

FOOF 02 =6 = S SV 5EF = 5

==Y+ 2=Y (3.11)

Similarly one can compute all 6th degree moments of the desigey all take
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the DKI D-optimal values:

zx“’ S =57=% \
S =3 XA =X =57 =37y =54V =35 (3.12)
5 XYPZ = 1

Knowing the 6th degree moments, one can proceed with the wiatipn of the
4th degree moments:

X+ +7 =12 X+ XY+ 57 = (3.13)
=y + xR =yt syt =N W= '

Similarly one can compute all 4th degree moments of the ddsigee that they
take DKI D-optimal values:

3X=3 y“ z Z' = (3.14)
> XV = =2 2‘25 Yi = '
Similarly one can show that all 6th and 4th degree odd monaetequal to zero.
Thus, D-optimality for fourth order DTI ensures D-optintglior DKI and second
order DTI. It is worth mentioning that the converse is, in @&, not true.

3.6 Optimal Design for ADC imaging

The problem of optimal experiment design for ADC imagingddiessed ifPaper
D. ADC imaging is an estimation problem that conforms to (2l&)information
matrix is:

N —>yb
—3iibi YL, bP

whereN is the total number of measurements. Noting that minimiziegV —1)
is equivalent to maximizing dé¥l ) we need to solve the following problem:

M = (3.15)

max detM)
S.t.: M >0, bin<bi <bmagi=1,-,N. (3.16)
The explicit form of the objective function is:
o a2
detM) =N b — (> bi) (3.17)
250,

43



CHAPTER 3. SUMMARY OF THE THESIS WORK

o
© -

o
®

Standard Deviation of D (o, )

o I3
= N
T

o

x10°

o
3

o
o

o
o

o
b

o
»

O D-opt SNR=5

L| % GCRLBSNR=5

+ D-opt SNR=12.5
O GCRLB SNR=12.5

* k%

PREE R

Oq

Standard Deviation of D ( o, )

N

o
00000009999999999999999

F +

O D-opt SNR=5
# GCRLB SNR=5
+ D-opt SNR=125
O GCRLB SNR=125

n .
1 E 2 25
Apparent Diffusion Coefficient (D)

(a)N=2

1 1.5 2 215
Apparent Diffusion Coefficient (D) x10°

(b) N=10

Figure 3.4: Standard deviation of the estimated ADC valag3 for a range oD
values wherémin = 0, bjmax= 1500,S = 500, Nyc = 20000 (num-
ber of Monte Carlo trials) and SNFSs/ o (Rician distributed noise).
The proposed D-optimal method is compared to GCRLB [113].

Thus, one can see that for an arbitrarythe D-optimal experiment design is:

bi = bmin i1=1,---,n

bi = Bmax i =n+1,---,N (3.18)

wheren = N/2 if N is even, otherwise = (N+1)/2. The proposed theoreti-
cal framework for the optimal experiment design of monoeamgntial model fit-
ting has the following advantages: (i) in comparison to GBRL13], it imposes
fewer restrictions on the noise distribution; and (ii) imo@ast to GCRLB, the pro-
posed design is independent of the imaged parameters. dhegad D-optimal
experiment design for ADC imaging is compared to GCRLB [1ih3figure 3.4.
It can be seen that the D-optimal design consistently ofdgpas GCRLB.

3.7 A New Framework for Repeated Measurements
in DTI

This section briefly describes the studies presentdthpers GandH. In exper-
iment design theory, the optimal GES is obtained by miningzhe covariance
matrix of the estimated parameters in some sense, as medtamlier. In this re-
gard, K-optimal [47] and D-optimal (iRPaper A GES design methods have been
developed. It is known that the condition number is invariander repetition
[134]. Even the new optimality metrics, such as the deteamtiof the informa-
tion matrix are invariant under repetitions (degper A. The following choices
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are equally good (in terms of condition number/determin@tpptimizing for N;
unique directions, i.eNy = N;; (i) optimizing for Ny, = N /M unique directions
and repeating measuremeMdimes; and (iii) using a combination of optimized
GESs forN; andNo directions wherdN; + Ny = N;.

In the diffusion MRI literature, the question of whether giva fixed scan
time, it is better to make measurements in all unique dioestor to repeat mea-
surements in a smaller number of directions has receivesiderable attention
[134, 135, 136, 137, 138, 3, 139, 31]. Differences in what &ant by a re-
peated measurement arise as a consequence of where andisevwsrazcounted
for. There are two strategies: to estimate the signal frompdex-valued raw
data or from real-valued magnitude data. This distincti@s Wst highlighted in
[140] where a theoretical analysis for theximum likelihood estimatigiMLE)
of structural MR images was given. Inspired by [140], we stigate the effect
of choosing real or complex-valued data on the estimatiodiffdision param-
eters. Specifically, we propose a new acquisition/prongsgipeline based on
the second strategy. The lack of ground truth for real daththe intractability
of mathematical derivations make it difficult to investigahe effect of the pro-
cessing pipeline on the robustness of tensor estimationveMer, Monte Carlo
simulations can shed light on this problem.Rapers GandH, we have investi-
gated the issue of repeated measurements. The main ceiotndbaf these papers
are:

e A new approach for acquiring and processing repeated meEasmts in
DTl is presented.

e The new framework improves precision in the estimation dfudion pa-
rameters.

e The new framework allows us to exploit knowledge of the ndiséribution
to enhance the SNR.

Details can be found iRapers GandH.

3.8 Appendix

3.8.1 Proof of Rotation-invariance for D-optimal Design fa
2nd order DTI

The rotation-invariance property of the proposed D-optidesign for second or-
der DTl is illustrated irfPaper Ausing Monte Carlo simulations. The proof of this
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property (discussed in Section 3.2) is given here. Firsydalefine the following
notation:

q=y% =3y B=37

W=3XY G=3IXZF G=3ZY%

T=3yXYi OGg=3IXY Oo=3X7Z (3.19)

Ji0= EXi%g Qi1 = Zy?Za Oi2 = Zin.-3

Q3= Y XYz Ouu=3yXyZ 5=y XYiZ.
Let the moments of the rotated GES be denoted/hyThe D-optimal values of
the even moments are given in (3.4). The odd moments of Draptilesign are
equal to zero. Below, we prove the rotation invariancegior

Ga=3% =8 = of =3 (riax +riyi +r13z)*

= Guri;+Gerix +0ars

+6(0ar iy + el Lol 53+ s £17 1)

Jr12(‘113r%1f12f13 + q14r11r%2r13 + q15r11r12r§3)

+4(q7r3 M2+ Qgr 1113, + ol 3113+ Chor 1113

+Q11rf2r13 + Q12f12r§3)

= (r11+r12+r13)+6}\?(r11r Tt i+ riiris)
=5 +15+15)° =3

In the derivations above, we substitute D-optimal valueshefmoments and use
properties of a rotation matrix. The proof for other momestEmilar.

3.8.2 Proof of Rotation-invariance for D-optimal Design fa
the 4th order DTI

The proof of the rotation invariance of the proposed D-optidesign for fourth
order DTI (discussed in Section 3.3) is given below. Firs,define the following
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notation:

=3 R=3Y B=32

W=3X7Z =32V =YXV

07 =3XYZ =3 XYZ Go=3XY7Z

Qo=32y? qu=3Xy =3P

Q3=3yXZ Qu=3X2 qs=37Z)

Qie=3 XY Qur=3XY’ Gie=3 2%

Quo=3Z% Go=3ZY Oua=3YVZ

Q2= XY  Goa=3%Y  Goua=737Z% (3.20)
Uos=3 X'z Ue=3 Yz Q7 =3 ViZ

O28 = folyi?'Zi O29 = in“yi;-?’ Q30 = ny‘Ziin

Ge1=3 XYz Oeo=3XZY Gsz= 3 Xy'Z

Uaa=3 XYz O35 =3 XZYi Oze= Y Y ZX

0e7=3XZY Oss=3XZYi Oso=3XY %

Qao=3XZyi Qu=3xYz Qa2=73 VX

W3 =Y XVZ Qua=3 X7V das=3 XVZ.

The D-optimal values of even moments are specified in (3ADpdd moments
are equal to zero (for a D-optimal GES). Below, we prove rotainvariance for
g1 Let the moments of the rotated GES be denotedfby The proof can be
obtained as follows:

G=yx= % — Oﬁ = 3 (X +rgyi +r13z)8

= Quriy +0ary+ gars

+70(qer 115+ G5 150 13+ Gar 11773)

+56(0aor $1r12r 13+ Gaar11r$r1z + dar1araor$y)

+8(C2r {1112+ 023l 11r {5 + G5t L 13+ par 11r {3+ Gl Lol 13+ Qo7 126 {3)
+28(0uar §17 55 + 1ol 1479 + Guar 5 rig + 014l 14793+ GusF 5o §3 + o 1o 5s)
+56(Cl1er 715 + Q177147 7o + G197 717 73+ G187 1773+ G201 2or 13+ G21r 11 75)
+168(03a1 711251 13+ Olasl 4 12 15+ G371 311 3,0 13+ Ol36l 127 71 25+ Olagl 117 12r 35
+039r 1171 3)

+280(Cgl 1113, 13+ Oool T1M 121 35+ Oa1r 34 1o 13+ Ggor 12 for 35+ Olsor 3110 1
+Q33r11r :fzr ;_13)

+420(qgryy $or £3+ Qo 111 1o 33 + A7r £ 31 13)

+560(0a0r 21135 35+ Qarl 3 20 35+ Qual 311350 5)

= S +r+riy) + 70%%5“‘111#112 +rir g+ riirs)

2885 (r9yr o+ 1511+ o a4+ 1511+ 15y ia+15,r%s)

+420305 (11 1o s+ 1y rior s+ ripriyres)

CNZY 3 E S A TN
= g(ri1+r+ri)" =73.
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In the derivations above, we substitute D-optimal valuethefmoments and use
the properties of a rotation matrix. Using a similar apphgdbe proof for other
moments can be obtained.
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Conclusion and Future Work

In this thesis, the problem of optimal GES design for secamigroDTI was re-
formulated as an experiment design problem (EDP). This ED& non-convex
optimization problem. It is then converted into a convex S3kg convex re-
laxation. The proposed method guarantees a globally optialation and leads
to several important theoretical results. Then, the pregasethod is extended
to optimal GES design for fourth order DTI and diffusion lagis imaging. It is
also applied to ADC imaging. Several interesting findingsaddition to the new
theoretical findings relating to optimal GES design, inelu@) among design ap-
proaches offered by experiment design theory, it is the Drag design that leads
to rotation-invariant and UD GESs; (ii) the uniform distrtion of gradient encod-
ing directions is a necessity for D-optimal diffusion imagiwhen the number of
measurements is nearly equal to the number of unknown medaieters; (iii)
there exist UD designs that are simultaneously D-optintadéveral models; and
(iv) the proposed D-optimal design method improves theipi@t of estimated
parameters compared to state-of-the-art methods;

The following points highlight the contributions and pdiehimpact of this
thesis: (i) an exact/analytical solution is of scientifiteirest even if approximate
solutions are available. The difference between the preghasethod and the ex-
isting UD solutions is more pronounced when using higheeordodels; (ii) a
theoretically motivated method can be extended to similablems; (iii) exten-
sion of the proposed method to high order models that requiré-shell acquisi-
tion adds further support to the utility of the proposed rodth(iv) simultaneous
optimality for several models means that several partigsgudifferent models
can have the same optimal GES for data acquisition; (v) tbpgeed method
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does not require any prior information (in contrast to sorhthe existing meth-
ods); and (vi) the proposed method can optimize both gradieeoding directions
andb-values in multi-shell acquisitions.

Future Work

Further extension of the proposed work to higher order dMRtlats provides
scope for future work. Another possible avenue for futureki®the extension of
the proposed work to high order models (other than DKI) teguire multi-shell

acquisition. However, before proceeding with further tle¢éical developments, it
Is recommended that the existing theoretical results bdatald using real data.
Currently, the proposed method cannot be applied to n@atimodel estimation.
Extensions/modifications that allow experiment desigmfam-linear models can
be an important topic for dMRI research.
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