Silicon-Integrated 850-nm Hybrid-Cavity VCSEL
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Introduction Results

Silicon photonics is a promising energy-efficient and cost-effective platform for Light-current-voltage characteristics under continuous operation measured at 25°C

optical integrated circuits. However, due to its indirect bandgap silicon cannot be . Threshold currents: 0.3 mA to 1.2 mA (3 to 9 um aperture VCSEL)
used to produce effective light sources. An attractive solution to this is . Differential resistances: 50 Q to 120 Q (9 to 3 um aperture VCSEL)
heterogeneous integration of the GaAs-based vertical-cavity surface-emitting laser . Maximum output power: 1.6 mW (9 um aperture VCSEL)

(VCSEL) on silicon. The GaAs-based VCSEL has proven to be both high-speed and . Optical output wavelength: ~845 nm [4].

energy efficient, with data rates above 70 Gb/s [1] and less than 100 fJ/bit dissipated
power up to 50 Gb/s [2].

By employing ultra-thin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive
bonding [3] a “half-VCSEL” with a gain region and a top distributed Bragg Reflector
(DBR) has been attached to a dielectric DBR on silicon. This creates a hybrid cavity
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where the standing-wave optical field is extending into both the silicon and GaAs-

based parts of the cavity [4].
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Light-current-voltage characteristics for hybrid-cavity VCSELs.
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Too small gain-to-resonance detuning, caused by a too thin DVS-BCB

bonding layer.

The DVS-BCB bonding layer thickness should be increased by 20-40 nm.
Thermal impedance at 25°C: 7.5 K/mW to 12.3 K/mW (9 to 3 um aperture VCSEL)

~3 times higher than ordinary VCSELs

Due to limited heat transport through the dielectric DBR to the Si substrate.

The hybrid-cavity may eventually enable light to be tapped off to an in-plane
waveguide, e.g. using a high contrast grating (HCG) instead of the bottom DBR [5].
Replacing the whole bottom DBR with an HCG also gives the possibility to set the
wavelength according to the grating parameters, enabling fabrication of multi-
wavelength VCSEL arrays [6] that together with integrated wavelength multiplexers
could form 850-nm wavelength division multiplexed (WDM) transmitters [4].

Explains the early thermal rollover of the output power.
Additional heat-spreader could be included in future design [4].

: Conclusion
Processing

After bonding of the GaAs-based “half-VCSEL” epitaxial structure using the DVS-BCB
adhesive bonding, the GaAs substrate was removed by mechanical thinning and wet

A silicon-integrated hybrid-cavity VCSEL with emission at 850 nm has been
demonstrated by using DVS-BCB adhesive bonding. A 9 um oxide aperture diameter

VCSEL has a threshold current of 1.2 mA and a maximum output power of 1.6 mW at

etching followed by deposition of contacts, formation of oxide aperture, and _ o _
~845 nm. The performance is currently limited by the too small gain-to-resonance

lanarization with benzocyclobutene (BCB) [4].
P 4 ( )14 detuning and the high thermal impedance.
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