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The relation between the supramolecular structure of cellulose and its 
hydrolysability  

AUSRA PECIULYTE 

Division of Industrial Biotechnology 
Department of Biology and Biological Engineering 
Chalmers University of Technology 

ABSTRACT 

The liberation of fermentable sugars from cellulosic biomass during enzymatic hydrolysis 
is often incomplete. One of the factors limiting the efficiency of enzymatic hydrolysis is 
the structural properties of cellulose. The aim of the work presented in this thesis was to 
increase our understanding of the relation between enzymatic hydrolysis and the 
structural properties of cellulosic substrates. The enzymatic hydrolysis of a number of 
cellulosic substrates derived from softwood preparations used in the pulp and paper 
industry, as well as model substrates, were studied. The differences in cellulosic 
substrates before and after enzymatic hydrolysis are described on the nanometre scale in 
terms of their supramolecular structure, i.e. the lateral dimensions of fibrils and fibril 
aggregates, the accessible surface area, the crystallinity and porosity, using solid-state 
nuclear magnetic resonance spectroscopy. The substrates were imaged and structural 
changes in the cellulosic substrates were characterized in real time on the micrometre 
scale in terms of their molecular density, ordering and autofluorescence, employing 
nonlinear optical microscopy. A strong correlation was found between the average pore 
size and the specific surface area of the starting material and the enzymatic conversion 
yield. The overall degree of crystallinity and the lateral dimensions of the fibrils increased 
in some samples as a result of hydrolysis. Avicel had a higher carbon–hydrogen bond 
density and a different pattern of ordered structures than the never-dried pulp fibres, 
possibly reflecting the collapse of the macromolecular structures during drying and 
rewetting. Monitoring of the substrates during enzymatic hydrolysis revealed substrate-
characteristic hydrolysis pattern. The response of the most widely studied filamentous 
fungus for cellulase production, Trichoderma reesei, to cellulosic substrates with 
different supramolecular structures was studied. Substantial differences were found in the 
profile of the enzymes produced, despite the fact that there were only minor differences 
in the chemical composition of the cellulose-rich substrates. Culture filtrates from five 
filamentous fungi cultivations were evaluated regarding their ability to improve 
saccharification of the industrial cellulase cocktail Celluclast 1.5L. It was demonstrated 
that supplementing commercial cocktails with enzymes from carefully selected fungi can 
result in significantly more efficient saccharification of biomass.  

Keywords: CARS, Cellulases, Cellulose I, SHG, CP/MAS 13C-NMR, Imaging, MPEF, 
Secretomics, Trichoderma reesei
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1 Introduction 

Cellulose fibrils from wood samples several million years old have been shown to have 

the same structure as those from recent wood samples [1, 2], demonstrating that cellulose 

is highly recalcitrant. The natural resistance of cellulose to deconstruction to monomers 

is termed “recalcitrance” [3]. Cellulose is the most abundant organic polymer on earth, 

representing about 1.5 x 1012 tons of the total annual biomass production, and it is the raw 

material believed to be able to satisfy the increasing demand for sustainable and 

biocompatible products [4]. Apart from the production of paper and cardboard, use in 

building materials, cellulose has already found applications in biofuel production, 

pharmaceuticals, foodstuffs and medicine [4-7] and interest in cellulose is still growing. 

In most of the cellulose-based products of interest processes, enzymes play an important 

role. 

The world is currently in a transition from a fossil-based economy towards a bio-based 

economy. There is much debate on how a sustainable bio-economy can be established, 

where resources such as plant biomass, land and water are used in the most efficient way. 

The population of the world is currently over 7 billion, and is predicted to reach 9 billion 

by 2050, which will place great demands on the resources available. Therefore, it is 

necessary to use renewable resources in a sustainable manner. 

The biorefinery is a promising concept as an alternative to petro-based refineries [8, 9]. 

The term biorefinery was established in the 1990s [10]. According to the definition by 

the National Renewable Energy Laboratory, a biorefinery is “a facility that integrates 

biomass conversion processes and equipment to produce fuels, power, and chemicals 

from biomass”. The Borregaard biorefinery in Sarpsborg, Norway, which is based on the 

pulp and paper industry, is one of the world’s most successful biorefineries [11]. In 

Sweden, which is a densely forested country, forest products have been a cornerstone of 

the economy and a key export.  Sweden is the world’s third largest combined exporter of 

paper, pulp and sawn wood products (Swedish Forest Industries Federation, statistics 

from 2013). In a combined effort between the Swedish Government and various industrial 

sectors, a national research agenda [12] has been introduced to secure the future of the 

forest-based sector in Sweden through the development of products with a higher added 

value, using building blocks from forest-based biomass. In 2011, the Swedish Research 
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Council Formas, together with VINNOVA and the Swedish Energy Agency, prepared a 

national strategy for the establishment of a sustainable bio-based economy in which the 

forest industry was highlighted as an important area [13], and where renewable resources 

from other areas, such as agriculture and marine resources, were expected to play an 

important part in the longer term.  

The enzymatic hydrolysis of cellulose is generally considered to be a sustainable means 

of obtaining monosaccharides that can be converted into a number of products via 

microbial fermentation [8]. Enzymes are often preferred over inorganic compounds with 

catalytic capacity because they are environmentally sustainable. Bioethanol is a prime 

example of the conversion of monosaccharides into renewable transportation fuels 

employing fermentation [14]. However, the enzymatic hydrolysis of cellulose is often 

incomplete, and we do not yet have a full understanding of the process. The 

interdependence of the enzyme–substrate interaction, changes in substrate morphology, 

and non-hydrolytic cellulose disruption remains elusive. It has been suggested that 

substrate-related factors predominantly affect the rate of hydrolysis of cellulose [15, 16]. 

The aim of the work presented in this thesis was to contribute to a better understanding 

of the supramolecular structure of cellulose and its relation to enzymatic hydrolysability. 

As the supramolecular structure of cellulose is one of the key factors determining the 

efficiency of enzymatic hydrolysis, this was studied with different methodologies that 

provided information on its structure on both the nano- and micro-scales. 

Until recently, the types of enzymes required for the enzymatic hydrolysis of cellulose 

were divided into three major classes: (i) endoglucanases (EGs), which randomly break 

the cellulose chain, (ii) exoglucanases (or cellobiohydrolases (CBHs)), which liberate the 

D-glucose dimer cellobiose from the ends of the cellulose chain, and (iii) β-glucosidases

(BGs) which release D-glucose from the soluble oligomeric breakdown products [17, 18].

It has recently been demonstrated that the inclusion of a novel class of enzymes in

filamentous fungi, currently referred to as lytic polysaccharide monooxygenases

(LPMOs) (formerly called GH61) greatly increases the performance of cellulases [19].

Reese et al. [20] were the first to suggested that undefined enzymes could play a major

role in the disruption of the recalcitrant structure of cellulose, thus allowing attack by

traditional cellulases (EGs, CBHs and BGs). LPMOs may be useful in this respect as they

have been shown to render cellulose more accessible to traditional cellulases through their

oxidative action on cellulose polymers, introducing nicks, which in turn create more ends
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for cellulase action. The field of LPMO research is expanding rapidly, and they have been 

shown to act on various substrates such as chitin, cellulose, hemicellulose and starch. 

LPMOs are produced by a wide range of bacteria and filamentous fungi [19, 21-24]. 

Microorganisms, mainly bacteria and fungi, which are natural degraders of cellulose 

secrete a broad consortia of enzymes, among which many activities are still unknown, but 

may play an important role in biomass degradation. 

Cellulose has a simple chemical structure, being composed of β-D-glucan polymer chains, 

but the spatial organization of these polymer chains makes the structure of cellulose very 

complex. In its solid state, the cellulose polymers are packed together, forming fibrils and 

fibril aggregates. The complexity of the structure of cellulose could be one of the reasons 

why different enzyme activities are required in the enzymatic hydrolysis of cellulose. It 

has been hypothesized that the recalcitrant structure of cellulose is the cause of its 

incomplete enzymatic hydrolysis. The structure of cellulose can be determined on the 

macro-, micro- and nano-scale, depending on the technique employed. Although 

researchers have devoted significant effort to investigating the structure of cellulose over 

several decades, this is not yet understood in sufficient detail. 

A better understanding of the structure of cellulose may facilitate the identification of the 

conditions required for efficient enzymatic hydrolysis. The efficiency of the enzymatic 

hydrolysis of cellulose can be improved through different directions: (i) improvement of 

the performance of cellulolytic enzymes [25], (ii) improvement of the pretreatment 

technologies of cellulosic materials [26] and (iii) finding key structural determinants for 

efficient hydrolysis of cellulose. Figure 1 summarizes the topics covered in this thesis. 
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Figure 1. The main structural components of plant biomass are cellulose, hemicellulose and lignin 
present at varying amounts, depending on the plant species. Cellulose and hemicellulose can be 
hydrolysed using enzymes to form fermentable sugars. Plant biomass is very recalcitrant and 
pretreatment should be performed prior to enzymatic hydrolysis. The purpose of pretreatment is 
to partially break down the recalcitrant structure of cellulosic biomass to make the cellulose more 
accessible to enzymes. However, the enzymatic hydrolysis of cellulose is often incomplete. The 
overall aim of this work was to improve our knowledge on the structural determinants of cellulosic 
substrates that affect enzymatic hydrolysability.  

The analysis of the structure of cellulose is challenging as native cellulose is insoluble. 

According to its chemical composition, it can be regarded as a homogeneous substrate, 

however it is a heterogeneous substrate at the level of its supramolecular structure, 

consisting of a complex assembly of fibrils and fibril aggregates, depending on the source 

and method of isolation. The initial aim of this work was thus to utilize experimental 

methods to study the structure of cellulose and the influence of enzymatic action on 

the structure. The structure of cellulose can be studied on different scales: macroscopic, 

microscopic and nanometre. In Paper I, differences in cellulosic substrates are 

described on the nanometre scale in terms of their supramolecular structure, i.e. the 

lateral dimensions of fibrils and fibril aggregates, the accessible surface area, degree 

of crystallinity and porosity. Solid-state cross-polarization magic-angle spinning 

carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR) spectroscopy was used, 

which allowed measurements of the supramolecular structure of cellulose on the 

nanometre scale without prior sample treatment. In order to gain greater insight into the 

structural determinants of cellulose hydrolysis, a number of cellulosic substrates derived 

from softwood preparations used in the pulp and paper industry, as well as some model 

substrates such as Avicel and cotton, were enzymatically hydrolysed. Their conversion 
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was related to the cellulose structure in an attempt to identify the structural determinants 

that are important for efficient enzymatic hydrolysis.  

Various microscopy techniques can be used to obtain direct visualization of cellulosic 

substrates. The resolution of these techniques extends from the macro- to the nanometre 

scale. Some techniques allow real-time imaging. Some of them provide information about 

the surface morphology of the sample, while in others spatial resolution and/or sample 

imaging is based on the intrinsic chemical and physical properties of the sample. Some 

techniques require sample preparation prior to analysis. Paper II describes the 

investigation, on the micrometre scale, of cellulosic substrates in terms of their 

chemical and physical properties during enzymatic hydrolysis in real time.  Optical 

nonlinear imaging techniques, namely coherent anti-Stokes Raman scattering, 

second harmonic generation and multiphoton excited fluorescence were used to 

characterize cellulosic substrates in terms of their molecular density, ordering and 

autofluorescence. An advantage of these imaging techniques is that no sample 

preparation is required prior to analysis, and enzymatic hydrolysis could be performed 

under standard conditions (temperature, buffer solution). Furthermore, they provide 

three-dimensional images and semi-quantitative information.  

Filamentous fungi are among the most potent producers of the enzymes that are used to 

break down plant cell walls in order to release monosaccharides serving as source of 

carbon and energy. Trichoderma reesei (teleomorph Hypocrea jecorina) is the main 

industrial source of these enzymes, referred to as cellulases, and has the capability to 

produce and secrete large amounts of enzymes. T. reesei has a long history of strain 

improvement. Among the improved mutants, the widely studied T. reesei Rut C-30 strain 

is a parental strain of many commercial strains used today. Paper III describes a study 

on the response of T. reesei Rut C-30 to different cellulosic substrates with 

differences in their supramolecular structure, which would be reflected in the 

enzymes resulting from fungal growth. Cellulosic substrates have similar chemical 

compositions, so it could be expected that the enzymes produced by the fungus would 

be similar. The aim of this work was to explore this hypothesis.  

Novel enzyme-producing microorganisms are found in nature, and these may constitute 

an unutilized potential in the search for efficient enzyme mixtures. Filamentous fungi 

produce a very complex cocktail of enzymes which reflects both the individual fungus as 
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well as its growth substrate and conditions. In the study presented in Paper IV, the 

goal was to evaluate the potential of the enzymes produced by five filamentous fungi 

to improve the saccharification of the industrial cellulase cocktail Celluclast 1.5L. 

The study demonstrated that supplementing commercial cocktails with enzymes 

from a careful selection of fungi could result in enzyme cocktails that are 

significantly more efficient in biomass saccharification.  

In nature, microorganisms grow freely on plant biomass and produce enzymes with 

activities best suited to hydrolyse a certain chemical bond in the plant biomass or 

disassemble a particular structure of cellulose. In the laboratory (and in industry), a 

complex enzyme mixture is loaded in one dose with the intention of obtaining as complete 

hydrolysis as possible in only a few days. In light of this, I wanted to emphasize that the 

structure of cellulose is complex, and to give an indication of the different ways in which 

it can be studied.  
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2 History of cellulose research 

In 1838, the French chemist Anselme Payen determined the molecular formula of the 

resistant fibrous solid in all plant cell walls to be C6H10O5. He introduced the term 

“cellulose” to describe this material [4, 27]. However, Payen was not aware that the 

material he was studying also included other carbohydrates. So what Payen called 

“cellulose”, is now called “pulp” [28]. Cellulose already played an important role in 

history, being used for Egyptian papyri and as an energy source, in building materials and 

in textiles, long before its chemical composition was described. Before the chemical 

composition of ‘cellulose’ in plant cell walls had been determined, the English scientist 

Robert Hooke [29], who was one of the first inventors of the microscope, discovered plant 

cells while looking at cork in 1665 [30]. However, the observation of enzyme action on 

cellulose required a microscope with a higher resolution than that made by Hooke. The 

first direct study on the structural dynamics of enzymatic cellulose degradation on the 

cellulose surface was made using transmission electron microscopy, and was published 

in 1981 [31]. The crystalline structure of cellulose was first established by Carl von Nägeli 

in 1858 [32], and was later verified by X-ray crystallography. The introduction of solid-

state CP/MAS 13C-NMR in the early 1980s provided new insight into the structure of 

cellulose [33, 34].  

Elwyn T. Reese was a pioneer in studying the systems of cellulolytic enzymes, and he 

proposed a two-step mechanism for cellulose hydrolysis in 1950 [20]. The first step (C1), 

involving scission of the cross linkages in native cellulose by an unknown mechanism, 

was suggested to occur prior to the hydrolysis step (Cx). This provided a fundamental 

step towards our understanding of the synergistic action between the cellulose-degrading 

enzymes. The topics of cellulose research discussed in this chapter are summarized in 

Figure 2. However, despite all the research carried out and technical advancements, the 

structure of cellulose and its enzymatic hydrolysability is still not fully understood.  
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3 Sources of cellulose and its isolation

The major sources of cellulose are plants, where cellulose is usually embedded in a matrix 

of hemicellulose and lignin. The isolation of cellulose is important because it gives the 

opportunity to convert cellulose into useful products such as printing paper, board, 

textiles, cellulose nanoparticles [35] and paper-based biosensors [36]. It has also been 

suggested that cellulose-to-starch transformation been can address the food vs. biofuel 

dilemma [37]. Sixty years ago, Reese pointed out that the human diet depended heavily 

on starches, and asked, “Can we convert cellulose into starch, or starchlike food?” [38]. 

Today, we are not so distant from making it happen.   

Depending on the source of cellulose and its subsequent application, it is important to 

consider during its isolation whether we want to preserve its structure or break it down, 

and how pure the cellulose must be. In the present work, the primary source of cellulose 

was softwood. The greatest amounts of softwood are found in Sweden, where Norway 

spruce (Picea abies) and Scots pine (Pinus sylvestris) account for about 41% and 39% of 

the total standing volume in Swedish forests, respectively. The cellulose fibres were 

isolated during the chemical pulping process, namely pre-hydrolysis soda cooking. 

Therefore, the main focus of the work described in this thesis is on pulp fibres obtained 

from softwood, and the pulping process is used as an example of cellulose isolation (see 

Section 3.2).   

3.1 Sources of cellulose in nature 

Cellulose production is mainly attributed to plants as they are the major sources of 

cellulose. However, a large variety of organisms apart from plants produce cellulose [39], 

including a variety of bacteria [40], fungi, algae and cyanobacteria (which is the most 

ancient form of life on earth) [41], and even animals, i.e., the tunicates (marine 

invertebrates) [42]. The green alga Valonia ventricosa is known to produce one of 

nature’s most perfect crystalline forms of cellulose. It has been suggested that cellulose 

offered protection from dangerous ultraviolet radiation, and helped sustain early life 

forms in earth’s harsh primitive atmosphere [39]. Some bacteria have evolved to produce 
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cellulose pellicles that keep the bacterium floating on the surface [35]. This diversity 

provides evidence of the ancient evolutionary process of cellulose production [39].  

The cellulose in plants is made up of glucose, which is produced in the living plant cell 

during photosynthesis. In the oceans, most cellulose is produced by unicellular plankton 

or algae using the same type of carbon dioxide fixation found in the photosynthesis of 

terrestrial plants. Other cellulose-producing organisms that have no photosynthetic 

capacity require glucose or some organic substrate synthesized by a photosynthetic 

organism to form cellulose [43]. Cellulose provides structural support and tensile strength 

for plants to help them withstand wind, etc. Cellulose is surrounded by a matrix of 

hemicellulose and lignin in the secondary plant cell walls, which accounts for most of the 

carbohydrates in plant biomass; these three components are known collectively as 

lignocellulose [44]. Unlike other plants, cotton contains almost pure cellulose with small 

amounts of waxes and ash, and does not have a matrix of hemicellulose or lignin. Bacteria 

and algae also produce cellulose that is devoid of hemicellulose and lignin. Various 

cellulosic substrates originating from plants, bacteria and algae are used as model 

substrates in different kinds of studies (Table 1).  
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Table 1. Summary of the main characteristics of cellulosic model substrates 

Substrate Cellulose 
content 

(%) 

DCr SSA 
(m2 g-1) 

Description Reference 

Avicel 97 56 ± 3a 113 ± 
5a 

Microcrystalline 
powder, particle size 

~50 μm 

Papers I, 
II, III and 

IV 

Avicel + 
IL 

n.d. Reduced,
depending on 

the % of Avicel 
and water mixed 

with IL 

n.d. A mixed amorphous-
crystalline substrate 

[45-47] 

Cotton 98 65 ± 2a 90 ± 4a Dried fibres Paper I 

Never-
dried pulp 
fibres 

97 57 ± 1a 153 ± 
7a 

Pre-hydrolysis soda 
cooking and oxygen 

delignification 

Papers I, 
II, III    

and IV 

Dried pulp 
fibres 

97 57 ± 1a 94 ± 2a Oven drying of 
fibres 

Paper I 

BC n.d. 0.76–0.95b 200c Chemical treatment 
to eliminate the cells 

[48] 

Whatman 
No. 1 filter 
paper 

n.d. ~0.45b n.d. Has intact cellulose 
matrix and cell wall 

structure 

[48] 

PASC n.d. 0b 240c Prepared from 
cellulose powder by 

phosphoric acid 
treatment 

[48] 

Solka Floc 76 n.d. n.d. Powdered cellulose [49] 

Cellulose 
model 
films 

n.d. n.d. n.d. Studied by QCM-D 
technique 

[50] 

DCr: degree of crystallinity; SSA: specific surface area; IL: ionic liquid; BC: bacterial cellulose; 
PASC: phosphoric acid swollen cellulose; QCM-D: quartz crystal microbalance with dissipation; 

a measured with CP/MAS 13C-NMR; b measured with wide-range X-ray diffraction; c measured 
with the Brunauer-Emmett-Teller method; n.d.: not determined. 
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These substrates have different structural characteristics and are not necessarily 

chemically pure cellulose. Cellulosic substrates differ in their average degree of 

polymerization, DCr and SSA. Microbial and plant celluloses differ in their crystal 

structures having different ratio of α and β forms. Cellulose Iα  is dominant in bacterial 

and algal cellulose, and Iβ is dominant in higher plants [48]. 

3.2 Pulping processes 

The world’s first chemical (sulphite) pulp mill was established in Sweden in 1872, by the 

Swedish Engineer Carl Daniel Ekman [51]. Afterwards pulp and paper production started 

on a large scale in Sweden, and was an important component of Swedish industrialization 

[52]. Pulping is a process involving the liberation of lignocellulosic fibres from the plant 

matrix [51]. Pulping can be performed on both grasses and wood. Sweden is a country 

dominated by forests, mainly softwood. Therefore, sourcing fibres originating from 

softwood was a natural choice for this work. The part of wood used in pulp production is 

the longitudinal tracheids in softwoods, and these are referred to as “fibres” in the pulping 

process [51]. The fibres in wood are held together by the middle lamella, which consists 

mainly of lignin. Pulping can be done by mechanical or chemical means. During 

mechanical pulping the fibres are liberated by grinding, but no delignification occurs. In 

the chemical pulping process, chemical reactions degrade and dissolve lignin to liberate 

the wood fibres, while affecting the strength-bearing polysaccharides as little as possible 

[51]. Chemical pulping processes are further divided into kraft, sulphite and soda pulping 

[53].  

The cellulose fibres used in this work were obtained by pre-hydrolysis soda pulping 

followed by oxygen delignification (Figure 3). During pre-hydrolysis, a substantial part 

of the hemicelluloses is removed by water at elevated temperature, i.e. autohydrolysis 

[54]. Delignification takes place during soda cooking, where the cooking agent is the 

hydroxide ion (OH-). Lignin is removed in the following oxygen delignification step. This 

process results in a pulp with a cellulose content above 98%. The pre-hydrolysis step 

used before the addition of soda has been shown to open up the wood matrix [55]. This 

3.2 Pulping processes 
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was of importance in the present work as the pulp fibres were to be subjected to enzymatic 

hydrolysis, and an open cellulose structure provides a greater surface area for enzyme 

action.  

Figure 3. The main steps in a pre-hydrolysis soda cooking process.  

The major application of the chemical pulping process is in the production of paper pulp 

and dissolving pulp, however there is considerable interest in the production of new 

added-value products using the biorefinery concept [55-58] (Figure 4).  

Figure 4. Major applications of the chemical pulping process. Existing processes and applications 
are given in white boxes, while those in grey-shaded boxes are areas where significant research 
is being devoted to finding novel uses of these streams. The area of research described in this 
thesis is indicated in the grey-shaded box with a heavy black boarder. 

The development of new products from cellulosic materials is dependent on 

understanding the structure of cellulose that determines the properties of new materials. 

(Chapter 6 describes the structure of cellulose in greater detail.)  
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4 Cellulolytic enzymes 

Many different enzymatic activities are involved in the hydrolysis of plant biomass. 

However, in this chapter only the enzymes involved in the hydrolysis of cellulose will be 

discussed. For other enzyme activities that are important for the complete hydrolysis of 

pretreated lignocellulosic material the reader is referred elsewhere [59-61]. The terms 

“cellulases” or “cellulolytic enzymes” commonly used in the literature are synonymous, 

and refer to multicomponent enzyme systems. Recently, the understanding of enzymatic 

hydrolysis of cellulose based on CBHs, EGs and BGs working in synergy has been 

complemented with a new family of enzymes, LPMOs. The hydrolysis of cellulose is 

distinct from most other enzymatic reactions because it involves soluble enzymes acting 

on an insoluble substrate. For the enzymatic hydrolysis of cellulose to be possible, the 

cellulases must first be adsorbed onto the surface of the insoluble substrate. Cellulases, 

having different structures and preferences for the binding sites on the substrate work in 

synergy to hydrolyse insoluble cellulose to the final product glucose. However, this is not 

an easy task for the enzymes.  

4.1 Molecular structure and mechanisms of cellulolytic 

enzymes 

Cellulases are modular enzymes composed of independently folded, structurally and 

functionally discrete units, referred to either as domains or modules. Most of the 

cellulolytic enzymes have a modular structure containing three separate structural 

elements, a catalytic domain (CD), a carbohydrate-binding module (CBM), and an 

interdomain linker [62]. CBMs were previously defined as cellulose-binding domains 

(CBDs) as the first examples of these protein domains bound crystalline cellulose as their 

primary ligand [63, 64]. The main proposed functions of CBMs are to concentrate 

enzymes on the polysaccharide substrates, maintaining the enzyme in the proximity of 

the substrate, helping to direct the CD to the substrate [64]. It has been shown that CBMs 

from two different families that were appended to the same CD exhibited different 
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capabilities to degrade crystalline cellulose, implying that CBMs can recognize distinct 

regions of this otherwise chemically invariant polysaccharide [65]. It has been suggested 

that the presence of a CBM is an advantage for enzyme activity at low substrate loads, 

but a disadvantage at high enzyme loads [66, 67]. The generally accepted paradigm is 

that the CBMs of cellulases are required for efficient saccharification of insoluble 

substrates. Based on sequence data, a large proportion of identified cellulases seem to 

lack CBMs, and this finding raised the question of the role of CBMs in nature [67]. The 

interdomain linkers are heavily glycosylated to protect them from proteolysis. Besides 

serving as a tether between the CBM and the CD, it has been suggested that the linkers 

bind directly to cellulose, which increases the binding affinity over the CBM alone [68]. 

This information was obtained from simulations of molecular dynamics, however, 

concerns could be expressed that binding of the linker to the substrate would restrict the 

movement of the enzyme on the cellulose surface. 

Cellulolytic enzymes, glycosyl hydrolases (GHs), hydrolyse glycosidic bonds via the 

mechanism of general acid catalysis, which requires a proton donor and a 

nucleophile/base, denoted AH and B-, respectively in Figure 5. Hydrolysis, as the name 

suggests, leads to the breaking of bonds by adding water. Hydrolysis occurs via two main 

mechanisms, giving rise to either the retention or inversion of the anomeric configuration 

[69]. During the hydrolysis of the β-glycosidic bond by an inverting enzyme, a product 

with the α-configuration is created, whereas with retaining enzymes the β-configuration 

is preserved. 
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Figure 5. Schematic representation of the retaining (A) and inverting (B) mechanisms. The 
retaining mechanism proceeds in two steps. First, a covalently bound intermediate is formed 
through nucleophilic, B-, attack. In the second step, a water molecule frees the hydrolysis product 
from the enzyme and recharges the proton donor, AH. During the inverting mechanism, 
protonation of the glycosidic oxygen and release of the hydrolysis product are accompanied by 
the concomitant attack by a water molecule that is activated by the base residue, B-. (Reprinted 
from [69], copyright 1995, with permission from Elsevier). 

CBHs and EGs act on insoluble substrates [70]. Three-dimensional structures of the 

cellulases Cel6A (CBH II) [71] and Cel7A (CBH I) [72] have shown that the active sites 

of CBHs are located inside the tunnel. In Cel7A (CBH I), this tunnel is 50 Å long, while 

in Cel6A (CBH II) it is shorter, 20 Å. These tunnels have proved to be essential for the 

progressive action of CBHs to cleave cellulose chains from the reducing, Cel7A (CBH 

I), or non-reducing ends, Cel6A (CBH II), and to release cellobiose as a major product 

[70]. CBHs with shorter active site tunnels may exhibit some degree of EG activity. The 

structure of EG I [73] has revealed the presence of an open substrate-binding cleft rather 

than a tunnel. EGs cleave at random at internal disordered sites in the cellulose 

polysaccharide chain, producing oligosaccharides of various lengths, and consequently 

new chain ends [74]. In T. reesei Cel6A (CBH II) and Cel7A (CBH I) dominate over 

other cellulases. The action of CBHs includes ‘pulling’ the cellulose chain away from its 

neighbouring chains, which is considered difficult. In addition, CBHs perform 

simultaneous multiple hydrolysis reactions without dissociating from the substrate. The 

task of EGs is less demanding as they hydrolyse within the available chain and then 

dissociate [75]. BGs act on cellobiose and short soluble oligosaccharides. BGs are 

essential for the efficient hydrolysis of cellulosic biomass as they relieve the inhibition 

of the CBHs and EGs by reducing end product (i.e., cellobiose) inhibition [76]. T. reesei, 

the organism commonly used for the production of industrial cellulase cocktails, naturally 
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secretes only low amounts of BGs into the culture broth. Commercial cellulase mixtures 

are therefore often supplemented with BG activity originating from other 

microorganisms. 

4.2 Molecular structure and mechanism of lytic 

polysaccharide monooxygenases 

Copper-dependent LPMOs were recently found to be broadly spread in both the bacterial 

and fungal kingdoms [19, 24]. This discovery constituted a breakthrough in the 

understanding of the fundamental mechanisms of biomass utilization [21, 24, 77-79]. 

Initially, it had been thought that LPMOs acted on highly crystalline substrates, such as 

cellulose and chitin (a nitrogen-containing polysaccharide, chemically related to 

cellulose). However, LPMOs acting on water-soluble cellulose-derived oligosaccharides 

[80], hemicellulose [21] and starch [23] have recently been described. LPMOs promote 

the efficiency of cellulases by cleaving glycosidic bonds in polysaccharide chains through 

oxidative action, thus rendering the substrate more susceptible to hydrolysis by other 

cellulases. Many LPMOs contain CBMs [79], which suggests that LPMOs have specific 

and not random recognition of the substrate. LPMOs have been shown to form products 

oxidized in the C1 position [19, 24] and/or C4 position [80-82] of the sugars, and 

oxidation at the C6 position has also been debated in the literature. LPMOs use copper-

oxygen species as opposed to classical acid/base-facilitated hydrolysis (Figure 5) to 

initiate and promote polysaccharide breakdown. An external electron donor is also 

required for LPMOs to be active [78].  

Although it is only a few years since the discovery of LPMOs, they already play a central 

role in commercial enzyme preparations, e.g. the Cellic CTec enzyme products produced 

by Novozymes A/S. The roles of GHs and LPMOs have mostly been described in the 

context of biomass conversion. There is an emerging body of literature in which LPMOs 

have been associated with the pathogenicity of bacteria [22]. The range of action of 

LPMOs remains to be elucidated. 
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4.3 Classification of cellulolytic enzymes 

Cellulases can be classified in two main ways, based either on substrate specificity or on 

the structural similarities between the enzymes. The International Union of Biochemistry 

and Molecular Biology classifies enzymes based on the nature of the reactions that they 

catalyse, and the EC number system is used. All cellulolytic enzymes belong to the O-

glycosyl hydrolases (EC 3.2.1.x) [69]. Traditionally, cellulases have been classified into 

two distinct classes such as EGs (EC 3.2.1.4) and CBHs (EC 3.2.1.91). BGs (EC 3.2.1.21) 

are sometimes classified as cellulases, but they are not ‘real’ cellulases because they act 

on soluble oligosaccharides. 

It has been noted that the sequence-based families of GHs grouped together enzymes with 

different specificities. Therefore, the Carbohydrate-Active Enzymes (CAZymes) 

database (http://www.cazy.org), which uses sequence-based family classification for the 

enzymes that assemble, modify and break down oligo- and polysaccharides, has been 

proposed [83, 84]. The CAZy classification was accepted and, as a consequence, the T. 

reesei cellulases were renamed. For example, CBH II is now called Cel6A, where “Cel” 

denotes “cellulase”, “6” the GH family and “A” that this was the first reported family 6 

cellulase from this organism. LPMOs are classified into auxiliary activity class AA9 

(formerly GH61), AA10 (formerly CBM33), AA11 and AA13 in the CAZy database [85-

87]. LPMOs puzzled scientists for a while. They were originally classified based on 

measurements of very weak EG activity in one family member [88]. It took more than 10 

years after the GH61 family had been first recognized, for the reaction mechanism to be 

reported [19, 79].  

4.4 Enzymatic hydrolysis of cellulose 

Successful degradation of native cellulose requires the cooperative action of a 

multicomponent enzyme system. Originally, Reese et al. [20] suggested that undefined 

enzymes could play a major role in the step prior to hydrolysis (Figure 2). LPMOs are 

promising candidates for the unidentified enzymes responsible for the C1 step. LPMOs 
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have been shown to help overcome the recalcitrance of cellulose by disrupting its 

structure, followed by the action of cellulases [78]. LPMOs work in synergy with the 

classical cellulases discussed in Section 4.1. Non-hydrolytic proteins called expansin-like 

proteins, such as swollenin [89] and loosenin [90], have recently been suggested to 

function by enhancing hydrogen bond disruption and aiding in the amorphogenesis of 

cellulose. Cip proteins (Cip 1 and Cip 2) have also been suggested as relevant proteins in 

the enzymatic hydrolysis of plant biomass [91]. An idealized picture of enzymatic 

hydrolysis of cellulose is shown in Figure 6. 

Figure 6. Many enzymes are involved in the enzymatic hydrolysis of cellulose. Cellulose has 
crystalline (ordered) and non-crystalline (disordered) regions. Cellobiohydrolases (CBHs) work 
progressively from the reducing end (CBH I) and non-reducing end (CBH II) of cellulose, 
releasing cellobiose. Most of the cellulolytic enzymes have a modular structure containing a 
catalytic domain (CD), a carbohydrate-binding module (CBM), and an interdomain linker (L). 
Endoglucanases (EGs) introduce random cuts in the amorphous regions of cellulose. β-
glucosidase (BG) hydrolyses cellobiose and soluble oligosaccharides (up to a degree of 
polymerization of 6). Lytic polysaccharide monooxygenases (LPMOs) cleave glycosidic bonds 
in polysaccharide chains through oxidative action.  

For efficient enzymatic hydrolysis it is essential that enzymes work in cooperation, or 

synergistically. Synergy between cellulolytic enzymes occurs when the combined action 

of the enzymes leads to a higher rate of action than the sum of their individual actions 

[45, 74]. One of the possible reasons for the production of multiple cellulases for the 

hydrolysis of only one type of bond present in cellulose, the β-1,4 linkage, is that the 

supramolecular structure of cellulose is rather complex, as will be discussed in more 

detail in Chapter 6. Enzymes cover a large surface area during their action on cellulose. 
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The catalytic domain of Cel7A (CBH I) has been shown to cover 10 sugar units [92]. 

Although the GHs are “optimized” to hydrolyse β-1,4 linkages in cellulose polymers, 

they encounter numerous challenges. Steric hindrance of bound enzymes, called “traffic 

jams”, have been shown to reduce the hydrolytic efficiency of cellulase on the cellulose 

surface [16]. Cellulose is a heterogeneous substrate when it comes to its structure, and 

obstacles on its surface hinder enzyme action [93]. The efficiency of enzymatic 

hydrolysis also depends on the pH, mixing and temperature [66]. LPMOs also require 

copper, oxygen and a reducing agent to be active [78, 81]. Addition of non-ionic 

surfactants have also been shown to increase the glucose yield obtained from enzymatic 

saccharification of cellulosic substrates [94]. 
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5 Cellulase production and analysis 

Much can be gained by designing more efficient enzyme cocktails for the hydrolysis of 

plant biomass. Bacteria and filamentous fungi produce enzymes for biomass degradation 

in order to have a competitive advantage in their natural environment. Filamentous fungi 

are well known for their ability to decompose organic matter in general, and cellulosic 

substrates in particular. Generally, only a few bacterial species are cellulolytic. 

Filamentous fungi have been studied extensively with regard to the production of enzyme 

mixtures for biomass hydrolysis [74]. Among them, T. reesei is in widespread industrial 

use for enzyme production. It has been claimed that there is a correlation between the 

composition of the enzyme mixture produced by filamentous fungi and the composition 

of the carbon source [95]. 

Proteomics can be used for accurate determination of the protein composition of several 

hundred protein components produced by filamentous fungi. Enzymes produced by 

filamentous fungi for biomass degradation are mainly secreted outside the cell, therefore, 

the type of proteomics used to study secreted proteins is called “secretomics”. Studies of 

the enzymes produced by filamentous fungi in response to the carbon source may provide 

important information, making several improvements possible. Examples of these are: (i) 

the detailed characterization of an enzymatic cocktail reflecting the potential of the 

fungus studied, (ii) the improvement of industrial cellulase mixtures with complementing 

enzymatic activities, and (iii) the identification of novel enzymatic activities. 

Identification of LPMOs through secretomic analysis demonstrates the enormous 

potential of enzyme discovery [96]. In this work, the potential of enzymes produced by 

different filamentous fungi was evaluated to improve the saccharification ability of the 

investigated industrial cellulase cocktail (Paper IV), therefore attention will be focussed 

on filamentous fungi as cellulase producers. Enzyme production was studied by 

employing secretome analysis of T. reesei during its growth on different cellulosic 

substrates (Paper III). Therefore, T. reesei will be described in more detail in this 

chapter.  
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5.1 Cellulase producers in nature 

Microorganisms play an important role in the global carbon cycle by hydrolysing 

cellulose in plant cell walls. Cellulose serves as a carbon and nutrient source for the 

microorganisms. However, it is not readily available as a nutrient source because it exists 

as highly ordered linear β-(1,4)-D-glucan polymers bundled together in fibrils. 

Filamentous fungi secrete cellulases which hydrolyse β-(1,4)-D-glucan polymers to 

release glucose.  

Generally, aerobic microorganisms secrete individual cellulases from the cell. Many 

anaerobic microorganisms have evolved to degrade plant cell walls by the formation of a 

large extracellular enzyme complex called the cellulosome. The cellulosome consists of 

a non-enzymatic scaffolding protein and many bound cellulases. Cell-free and cell-bound 

cellulosomes have been described [61, 97]. The anaerobic rumen bacterium, Fibrobacter 

succinogenes, has recently been shown to be specialized for growth on cellulose, as it 

uses an array of hemicellulose-degrading enzymes only to gain access to cellulose, and it 

lacks many of the genes necessary to transport and metabolize the hydrolytic products of 

non-cellulose polysaccharides. Adherence of the bacterium to a solid cellulose substrate 

appears to be a requirement, it does not possess cellulosomes, and little cellulase activity 

is detected in culture medium [98]. Another unusual anaerobic soil bacterium, Cytophaga 

hutchinsonii, has been suggested to use EGs attached to the cell surface to attack insoluble 

cellulose while gliding along the fibres [99]. Nature exhibits a vast diversity of 

microorganisms whose mechanisms for degrading cellulose are not yet fully understood. 

Fungi employ different mechanisms when attacking wood biomass [60] (Table 2). Wood 

decay fungi have historically been classified into white rot, which degrades all 

components of wood cell walls, or brown rot, which leaves the lignin largely intact. 

Lignin-degrading phenol oxidases are the key enzymes of white-rot fungi [60]. Brown-

rot fungi have evolved from white-rot fungi [100]. It has been suggested that brown-rot 

wood decay involves initial non-enzymatic attack on the wood cell wall, generating 

hydroxyl radicals (·OH) extracellularly via the Fenton reaction. Fenton systems include 

mechanisms for extracellular H2O2 generation and for the reduction of Fe3+ to Fe2+, which 

might be accomplished by extracellular fungal metabolite such as hydroquinone or by 

extracellular enzymes such as cellobiose dehydrogenase. However, it is not understood 
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how·OH targets wood cell wall components [100, 101]. Moreover, a recent sequencing 

of the brown-rot fungus P. placenta, which has been suggested to use the Fenton reaction 

showed a number of AA9 (formerly GH61) genes [100], which raises questions about the 

actual mechanisms of wood degradation by brown-rot fungi. Little is known about the 

degradation of lignocellulose by soft-rot fungi. Soft-rot fungi typically attack materials 

with higher moisture, and lower lignin content [60]. The soft-rot fungus T. reesei, which 

is a model organism for cellulose and hemicellulose degradation, has been shown to have 

laccase activity [102], suggesting that it may have the ability to degrade lignin. A new 

categorization of rot types has been suggested based on the improved understanding of 

the genomics and biochemistry of wood decay [103].  

Table 2. Comparison of white-rot, brown-rot, and soft-rot fungi 

Mechanism Enzymes Parts of wood degraded Examples of 
fungi 

Reference 

White rot Hydrolytic 
enzymes and 
ligninolytic 

enzymes 

All parts of plant biomass; 
complete degradation of 
lignin to carbon dioxide 

Phanerochaete 
chrysosporium, 

Pycnoporus 
cinnabarinus 

[104, 105] 

Brown rot Mainly non-
enzymatic attack 
and relatively few 

cellulases 

Hemicellulose is 
hydrolysed first, then 

cellulose; lignin is modified 

Postia placenta, 

Serpula 
lacrymans 

[100, 101] 

Soft rot Cellulases and 
hemicellulases 

Carbohydrate polymers 
with low lignin content 

T. reesei,
Xylaria longipes 

[106] 

Filamentous fungi are important for the production of biomass-degrading enzymes in 

industry. Fungi have also been used to modify wood to produce a superior kind of wood 

which resembles that of a Stradivarius violin [106]. There is unutilized potential in the 

rich diversity of enzymes produced by filamentous fungi that could be used to design 

efficient enzyme mixtures for cellulose hydrolysis. Filamentous fungi produce a very 

complex cocktail of enzymes that are specific to the individual fungus and to its growth 

conditions. Fungal genome sequencing has also accelerated in recent years, an example 

is “1000 Fungal Genomes” project [107]. Emerging fungal genomes are revealing a large 

number of putative genes. The percentage of genes in fungal genomes without known or 

predicted function is around 30-45% with, on average, a higher percentage in 
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basidiomycetes than ascomycetes (R.P. de Vries, personal communication). Although in 

silico annotations of fungal genomes provide extensive amounts of information, 

experimental analyses are necessary to better understand the complex mixture of enzymes 

secreted in response to inducers. The study presented in Paper IV showed that the 

production of cellulolytic enzymes is strongly dependent on the nature of the carbon 

source. Enzymes from carefully selected fungi can result in enzyme cocktails that are 

significantly more efficient in plant biomass saccharification. 

5.2 Trichoderma reesei 

The research of cellulases started with the isolation of the filamentous fungus strain T. 

reesei, which caused considerable problems for the US army during World War II as it 

rotted their cotton fabrics. The advantage of the outstanding cellulolytic activity of this 

fungus was soon recognized [108]. T. reesei (teleomorph Hypocrea jecorina) was first 

identified as T. viride QM6a, but was later shown to be different from T. viride, and was 

therefore renamed T. reesei in honour of Elwyn T. Reese [17, 108, 109]. Interest in 

enzyme production by T. reesei increased during the oil crisis in the 1970s, when 

saccharification of cellulose to glucose and its subsequent conversion to ethanol for use 

as a renewable fuel became economically attractive. Among the improved mutants, a 

widely studied T. reesei strain, Rut C-30, was developed after three rounds of 

mutagenesis of wild-type QM6s [110, 111], which is still considered one of the best 

producers of cellulolytic enzymes in the public domain (Figure 7). Treatment of QM6a 

with UV light and selection for the ability to hydrolyse cellulose under carbon catabolite 

repression led to strain M7. (“Carbon catabolite repression” arises when the end product 

of cellulose hydrolysis, glucose, inhibits further enzyme synthesis.) The M7 strain was 

further mutagenized by chemical treatment under carbon catabolite repression. This led 

to the isolation of strain NG14, which showed a significant increase in secreted protein 

and cellulase activity, but still exhibited considerable catabolite repression. NG14 was 

subjected to another round of UV light irradiation, and screening for elevated cellulose 

hydrolysis levels and resistance to 2-deoxyglucose to eliminate carbon catabolite 

repression led to the identification of Rut C-30 [112]. The resulting strain produces twice 
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as much extracellular protein as its parental strain NG14, reaching more than 30 g L-1 in 

industrial fermentation, and it also exhibits catabolite derepression [17]. 

Figure 7. Pedigree of important T. reesei strains derived from the original isolate QM 6a by 
classical mutagenesis, including irradiation by linear particle accelerators (LA), or exposure to 
UV light (UV) or N-methyl-N′-nitro-N-nitrosoguanidine (NTG). All the strains except CL 847 
have been sequenced. Strain M7 is shown in the box with a dashed line as it is no longer available. 
(Figure from [17]). 

So far, numerous other mutations have been identified, in addition to the three mutations 

in T. reesei Rut C-30 found previously: 1) a truncation of the cre1 gene, which renders 

the strain carbon catabolite derepressed; 2) a frameshift mutation in the glucosidase II 

alpha subunit gene gls2α involved, which in turn increases protein secretion by an 

unknown mechanism; and 3) an 85-kb deletion that eliminated 29 genes, including 

transporters, transcription factors, and primary metabolic enzymes [112]. 

T. reesei represents a paradigm for the production of enzymes that hydrolyse biomass

polysaccharides [17, 108, 113]. T. reesei produces two CBHs (Cel7A and Cel6A), five

EGs (Cel7B, Cel5A, Cel12A, Cel61A and Cel45A), and two BGs (Cel3A and Cel1A)

[114]. Numerous genes encoding biosynthetic pathways for secondary metabolites may

promote the survival of T. reesei in its competitive soil habitat. Genome analysis provided

little mechanistic insight into its extraordinary capacity for protein secretion [113].
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5.3 Influence of the insoluble carbon source on the 

production of cellulases in T. reesei 

Various natural lignocellulosic substrates are able to induce the fungal production of 

secreted enzymes suitable for degrading specific combinations of polysaccharides and 

chemical bonds found in the carbon source [95]. Mary Mandels and E. T. Reese raised 

the question of the induction of cellulases by cellulose in the 1960s [115]: “The inducing 

substrate, cellulose, is insoluble. How then does the induction occur?”, and the answer 

has eluded researchers since then. Cellulosic substrates cannot cross the cell membrane 

due to their insoluble nature. Several explanations have been suggested, most of which 

involved the formation of a soluble, low molecular weight inducer from cellulose [116]. 

The generally accepted hypothesis for the induction of cellulases is that the low levels of 

constitutively expressed cellulases first hydrolyse cellulose to soluble sugars. These 

sugars are presumably converted into true inducers which enter the cell directly. 

Sophorose (two β-1,2-linked glucose units) is the most potent soluble inducer in T. reesei, 

and has for many years been considered to be the natural inducer of cellulases in T. reesei. 

The fact that sophorose formation requires the action of BGs has been discussed [95]. 

The regulation of cellulases is driven by specific transcriptional factors that bind to 

cellulase gene promoters acting either inductively or repressively. Among them, at least 

three transcriptional activators XYR1, ACE2 and HAP2/3/5, and the two repressors 

CRE1 and ACE1, are involved in the regulation of different cellulase genes in a 

coordinated way [95].  

Both the amounts of enzymes produced and which enzymes are produced by fungi 

depend on the cultivation conditions. Different temperatures, pH values and agitation 

rates have been investigated when evaluating the enzyme production potential of T. reesei 

Rut C-30 during growth on Avicel as the carbon source. It has been found that not only 

were the protein levels influenced by the fermentation conditions, but the expression 

profile was also influenced. This profile had a profound effect on the performance of the 

enzyme mixtures during the hydrolysis of biomass [91]. It has been suggested by some 

studies that application of enzymes to hydrolyse the same substrate as was used for 

enzyme production could be advantageous [49, 117], as reported in Paper IV. However, 

other studies revealed no such advantage [118]. 
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Numerous studies have been carried out in which insoluble cellulosic substrates were 

used as the carbon source for enzyme production by fungi, however, few attempts have 

been made to relate the enzyme profile of the fungus to the structural characteristics of 

cellulosic substrate. The hypothesis tested in the study described in Paper III was that 

the supramolecular structure of cellulose would have an effect on the profile of the 

enzymes secreted by T. reesei Rut C-30. One of the unique aspects of this study was the 

effect of the structural properties of cellulosic substrates on fungal response. Structural 

differences in the cellulose-rich substrates were found to cause T. reesei to produce 

different titres of proteins and exhibit different extracellular enzyme profiles. 

5.4 Secretome of T. reesei and its analysis 

Secretomic analysis (secretomics) refers to the systematic identification and 

quantification of all proteins (the secretome) of a biological system at a specific point in 

time. Apart from providing information on fungal physiology, secretome analysis has 

recently shifted towards the characterization of enzyme mixtures, in order to facilitate the 

development and optimization of specific enzymatic cocktails for the more efficient 

hydrolysis of biomass. In proteomic research, proteins are usually identified by the mass-

to-charge ratio of their peptides and fragments using mass spectrometry (MS) in 

combination with database searches. MS-based proteomics is characterized by a great 

variety of techniques and instrumentation [119]. Sample separation prior to MS analysis 

is generally required to reduce the biological complexity of the sample, in order to reduce 

the risk of ambiguous identifications. Biological samples often contain large numbers of 

proteins at highly varying concentrations. The risk is that abundant species may conceal 

less abundant ones if the sample is not pretreated. The separation techniques commonly 

used in proteomics can be divided into gel-based and gel-free approaches [120]. The 

currently most popular method among gel-based approaches is 2D difference gel 

electrophoresis, in which proteins from different samples are labelled with different 

fluorescent probes, enabling quantification of proteins from different samples in the same 

gel [121]. In the gel-free approach, protein separation by multidimensional liquid 

chromatography (LC) is combined with MS, the method often being denoted LC-MS/MS. 

Gel-free quantitative proteomics can be broadly categorized into label-based and label-
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free methods. The most common in vitro labelling method in multiple samples relies on 

chemical labelling, using isobaric mass tags such as iTRAQ® (Isobaric Tags for Relative 

and Absolute Quantitation) or TMT® (Tandem Mass Tag) [122]. Secretome analysis 

using TMT was used in the study presented in Paper III. Isobaric tags are applied after 

enzyme digestion of the protein samples to covalently label the peptides of different 

samples. The isobaric mass tags have different isotopic substitutions so, as the tags are 

cleaved off the peptides in the MS/MS mode, the result is reporter ions of different 

weight, thus enabling quantification of each protein from different samples [122]. These 

techniques provide only relative quantification of proteins, and cannot be used to 

determine absolute protein abundance in samples. Accurate estimation of protein 

abundance in multiple samples using MS-based proteomic strategies remains difficult 

[123]. No single method can provide complete information on all the protein components 

in a complex mixture, and different methodologies are usually required to provide 

detailed quantitative information [120]. 

Chundawat et al. [124] explored the protein composition of several commercial enzyme 

preparations from T. reesei using a proteomic approach. They demonstrated that in 

Celluclast 1.5L the major enzyme was Cel7A (CBH I), followed by Cel6A (CBH II). 

Interestingly, considerable amounts of accessory proteins, such as swollenin (4%) and 

Cip proteins (5%) were present. Proteins Cip1 and Cip2, which were found in T. reesei 

cultures by Lehmann et al. [91] were identified as relevant proteins for the hydrolysis of 

biomass, and were therefore suggested to study further [91]. Very little is known about 

Cip1 except that it has a secretion signal peptide and a CBM. Extracellular proteins 

secreted by T. reesei have been studied during fungal growth on lactose, cellulose and 

more complex lignocellulose substrates [91, 123, 125-131] (Table 3). Although T. reesei 

is known to be a poor producer of BG, its production has been shown to be favoured 

during growth in a lactose-based medium [128]. T. reesei is known to produce high levels 

of proteases [132], according to secretome analysis [123]. It has also been shown that a 

number of oxidative enzymes are formed by T. reesei during growth on cellulose [127]. 

In some proteomic studies several intracellular enzymes were detected in the culture 

filtrate. This indicates that enzyme secretion by T. reesei is accompanied by considerable 

autolysis or mycelial fragmentation, the possible roles for high enzyme production which 

have not yet been investigated [126]. Secretome analysis is usually performed on the 

culture filtrate. The tendency of the enzymes to adsorb onto the substrates productively, 
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due to the presence of CBMs, and non-productive adsorption on lignin [133] further 

complicates the picture, as the enzyme levels in the fungal culture supernatants might not 

give a true picture of the real enzyme production.  

Table 3. Distribution of cellulase components in crude extracts of Trichoderma 

Enzyme  Celluclast 1.5L a A B

Cel3A (BG) 3 2 2 

Cel7A (CBH I) 35 1 1 

Cel6A (CBH II) 13 14 8 

Cel7B (EG I) 6 n.d. 1 

Cel5A (EG II) 6 34 3 

Cel12A (EG III) 0.5 0.4 0.5 

Cel45A (EG V) 0.1 1 2 

AA9 (GH61A and GH61B) 1 1 3 

Hemicellulases and 
enzymes acting on starch 

21 23 37

Other proteins 13 24 43 

n.d.: not determined; a % protein composition from Chundawat et al. [124]; A: relative abundance
(%) from cultivation D from Lehmann et al. [91]; B: relative abundance (%) from cultivation
Avicel, L from Paper III.

5.5 Microorganism morphology 

The morphology exhibited by the filamentous fungus during growth will determine its 

enzyme production capacity. Filamentous fungi can grow as freely dispersed mycelium, 

aggregates of mycelium and very dense clumps also referred to as pellets, which can be 

up to several mm in diameter in submerged fermentation [134-136]. In the present work, 

T. reesei Rut C-30 formed pellets that consisted of hyphae and pulp fibres during growth

on the pulp fibres (Paper III). When the fibres were hydrolysed, the hyphae grew in a

dispersed manner. Which of these macroscopic morphologies dominates in a given
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submerged cultivation is determined by several factors, e.g. the strain used, the stirrer 

speed, the spore concentration of the inoculum and the pH during germination. Low 

inoculum concentrations of T. reesei Rut C-30 have been shown to result in pellet 

morphology, while increasing the inoculum led to pulpy growth with high concentrations 

of mycelium [137]. Dispersed hyphal growth is the preferred macroscopic morphology 

for enzyme production, as it allows almost all the individual hyphal elements to be in 

contact with the medium. However, this could be related to the specific organism and/or 

strain, rather than being a general feature of filamentous fungal morphology. In the case 

of pellet growth, the hyphal elements will be inside the pellets, resulting in problems in 

the diffusion of substrates and products. The major drawback of freely dispersed growth 

is the resulting high viscosity of the broth. This may also prevent the cultures from being 

well oxygenated during large-scale enzyme production. 

Not only the macroscopic morphology is important for the level of enzyme production 

by filamentous fungi, but also the microscopic one [138]. The microscopic morphology 

refers to the morphology of the individual hyphal elements, i.e., the diameter and length 

of the hyphal elements and the number of tips on an individual hyphal element. It has 

been suggested that there is a correlation between the number of tips and the enzyme 

secretion capacity [139, 140]. However, data on the actual secretion efficiency and tip 

density are not yet conclusive [140]. It is well-established that the majority of secreted 

proteins are secreted through the growing hyphal tips [141].  
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6 Cellulose composition and structure 

The structure of wood can be studied at different levels: (i) the macroscopic level, on the 

scale of millimetres and above, which includes large tissue elements; (ii) the microscopic 

level, on the scale of micrometres, which includes the main elements of the cell wall; (iii) 

the supramolecular structure (sometimes also referred to as the ultrastructure), on the 

scale of nanometres, which includes the assembly formed by fibrils and fibril aggregates; 

and (iv) the molecular level [142]. Regardless of the source, cellulose is always composed 

of β-(1,4)-D-glucan polymers arranged into fibrils and fibril aggregates, which form a 

complex assembly. How these β-(1,4)-D-glucan polymers assemble and their further 

arrangement into complex networks depends on the source, method of isolation and 

sample treatment prior to analysis.  

Cellulose I is the crystalline cellulose that is produced naturally. Native cellulose I can 

undergo reversible and/or irreversible conversion during various treatments, to form other 

polymorphs, such as cellulose II, III and IV, which are non-native forms of cellulose. The 

work described in this thesis was focussed on native cellulose I and, therefore, only 

cellulose I will be discussed in this chapter. The model of supramolecular structure of 

cellulose used in this work is described in Section 6.2. Findings from the study on 

supramolecular structure of cellulose during enzymatic hydrolysis, some of which are 

presented in Paper I, are discussed in Section 6.3. 

6.1 Native cellulose 

Cellulose I exists in the forms of fibrils, which are bundles of β-(1,4)-D-glucan polymer 

chains. Each β-(1,4)-D-glucan polymer chain is composed of anhydroglucopyranose units 

joined via β-(1→4)-glucosidic linkages. The repeating unit in the β-(1,4)-D-glucan 

polymer is cellobiose, which is composed of two anhydroglucose residues linked via β-

(1,4)-glucosidic bonds (Figure 8). The degree of polymerization in β-(1,4)-D-glucan 

polymer chains varies from 100 to over 15,000 depending on the cellulose source [48]. 

Since a molecule of water is lost during the formation of a β-(1,4)-glucosidic bond, the 
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glucose units in β-(1,4)-D-glucan polymer are referred to as anhydroglucose units. The 

C1-OH end of the β-(1,4)-D-glucan polymer has reducing properties, while the C4-OH 

end is an alcohol group which has non-reducing properties.  

Figure 8. The β-(1,4)-D-glucan polymer has a reducing and a non-reducing end. It is composed 
of repeating units of cellobiose (length 1.03 nm), which consist of two anhydroglucose residues 
linked via β-(1,4)-glucosidic bonds. 

Only at the reducing end of the polymer chain can the final ring open to expose an 

aldehyde end-group. Different chemical and enzymatic reactions (Figure 6) have a 

preference for the reducing or non-reducing end of the β-(1,4)-D-glucan polymer. 

Degradation of cellulose during pulping with alkali involves an undesired peeling 

reaction at the reducing end [51]. One of the most common reducing sugar assays used 

to evaluate the extent of enzymatic hydrolysis of cellulose is the dinitrosalicylic acid 

(DNS) method [143]. DNS reacts with the reducing end of glucose and the product is 

measured spectrophotometrically [144].  

6.2 Supramolecular structure of cellulose 

During biosynthesis, van der Waals forces and intermolecular hydrogen bonds between 

hydroxyl groups and oxygen atoms of adjacent molecules promote parallel stacking of 

multiple β-(1,4)-D-glucan polymers forming fibrils and fibril aggregates. The parallelism 

of polymers in cellulose I is also the result of biosynthetic constraints. Such parallel 

stacking is not seen, for example, in non-native cellulose (cellulose II), which suggests 

that it is not only the polymer interactions that are responsible for the parallelism (P.T. 
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Larsson, personal communication). There has been much discussion recently that 

hydrogen bonds cannot fully explain the insoluble nature of cellulose [145, 146]. Native 

cellulose I consists of two crystalline forms, called cellulose Iα and cellulose Iβ [33] 

which are present at various proportions depending on the source of the cellulose. The β-

(1,4)-D-glucan polymers are oriented parallel in cellulose I, where all the reducing ends 

are on one side and the non-reducing ends are on the other side (Figure 6). In cellulose I 

the β-(1,4)-D-glucan polymers are arranged to form the nanostructure known as a fibril. 

Fibrils and fibril aggregates are often called microfibrils or elementary fibrils, and 

macrofibrils, respectively. The dimensions of the fibrils vary according to source, for 

example, 3.5 x 3.5 nm in cotton, 6 x 6 nm in bacterial cellulose and 10 x 20 nm in algae 

cellulose, according to CP/MAS 13C-NMR measurements [33]. CP/MAS 13C-NMR 

spectroscopy and X-ray diffraction methods are commonly used to study the structural 

characteristics of cellulose I and are dependent on conceptual models, which include 

some assumptions affecting the interpretation of recorded data [147]. Therefore, before 

comparing data from different studied, one should be aware how the data were obtained.

Cellulose fibrils contain ordered (crystalline) and disordered (non-crystalline) 

components [148-150]. It is not clear exactly how the ordered and disordered regions are 

distributed within the fibril, nor the extent to which they occur. In recent years, a fibril 

has commonly been represented as 36-chain fibril model has been proposed based on 

atomic force microscopy (AFM) imaging [149]. Recently a “rectangular” fibril model 

with 18–24 chains has been suggested for softwood, based on information from X-ray 

scattering measurements [150], where it was seen that the degree of disorder in chain 

packing increased outwards from the fibril centre. Thomas et al. [151] also concluded 

that 18–24 chain models of the primary wall of celery collenchyma were most likely to 

fit the results; a 24-chain cross section being more likely. Valonia cellulose crystals have 

been suggested to have an irregular hexagonal shape with two narrow hydrophobic faces, 

to which enzymes preferentially bind [152, 153]. Molecular dynamics simulations have 

shown that the  surface structure of cellulose is different from that of bulk crystalline 

cellulose [154]. When water is sorbed to cellulose its properties differ considerably from 

those of bulk water [155]. Cellulosic substrates have been shown to constrain water to 

different degrees which had an effect on enzymatic hydrolysis studied by low-field NMW 

relaxometry [156]. Water constraint by model cellulose-rich substrates has been shown 

to be an advantage for enzymatic hydrolysis [156], however greater water constraint by 
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hemicelluloses has been shown to be inhibitory for cellulases [157]. Therefore, the 

picture of enzymatic hydrolysis of cellulose is more complicated than cellulose–enzyme 

interaction. Fibrils have a strong tendency to form aggregates due to hydrogen bonding 

interactions between the fibrils, and it has been shown that fibril surfaces within fibril 

aggregates are inaccessible to solvents [148], which in turn suggests that enzymes cannot 

access the surfaces of the fibrils within the fibril aggregate.  

The models discussed above refer to the architectural organization of β-(1,4)-D-glucan 

polymers within a single fibril and fibril aggregates of cellulose. However, fibril 

aggregates assemble into a network. Figure 9 depicts the model used in Paper I to 

interpret the results of CP/MAS 13C-NMR measurements on cellulosic substrates prior to 

and after enzymatic hydrolysis. This aim of this model is to describe the possible 

arrangement of fibrils and the complexity of the supramolecular structure of cellulose.  

Figure 9. Schematic representation of the model used in the present work to represent the 
supramolecular structure of cellulose, where fibril aggregates are shown as having square cross-
sections with the following key elements: a fibril which consists of a bundle of β-(1,4)-D-glucan 
polymers (1), which is a mixture of structures with a high degree of three-dimensional order 
(crystalline) (2) and disordered (non-crystalline) domains (3); a fibril aggregate (4), which is a 
structural element of cellulose composed of a bundle of fibrils; and a pore (5), which is a cavity 
between fibril aggregates. Modified from Paper I with permission.  

The arrangement of cellulose fibrils varies depending on the layer in the plant cell wall 

[142, 158]. Thus, the model in Figure 9 does not refer to a particular layer in the plant 
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cell wall. This model incorporates knowledge obtained from the literature: (i) a highly 

porous fibre wall morphology, which has been shown to be the result of the removal of 

non-cellulosic material [159]; (ii) ordered (crystalline) and disordered (non-crystalline) 

regions [160-162]; and (iii) refinement of the model over the years by several researchers, 

including Iversen, Wickholm and Larsson [148, 162], who used spectral fitting of signal 

components from CP/MAS 13C-NMR spectra to extract information on the relative 

amounts of cellulose allomorphs (Iα and Iβ), the average lateral dimensions of fibrils and 

fibril aggregates (LFD and LFAD), specific surface area (SSA), degree of crystallinity 

(DCr) and average pore sizes [163]. As the surface of cellulosic substrates must be 

accessible to enzymes for efficient enzymatic hydrolysis, the size of a typical fibre wall 

pore must be greater than the typical size of the enzyme molecules, which is around 10 

nm [152].  

6.3 Supramolecular structure of cellulose during 

enzymatic hydrolysis  

The supramolecular structure of cellulose I may change as the result of sample history, 

e.g. isolation procedure, drying, depolymerization reactions, etc. In the study described

in Paper I three cellulose-rich substrates, never-dried pulp fibres, cotton and Avicel, were

evaluated with respect to changes in the cellulose supramolecular structure during drying,

acid treatment and treatment with sodium hydroxide, as illustrated in (Figure 10). Sodium

hydroxide treatment was performed in an attempt to increase the SSA of the sample, and

was performed in such way that no detectable amounts of cellulose II were formed. Since

the substrates used in this study had a cellulose content exceeding 96%, the main

differences between the substrates were interpreted as being of structural nature. For a

more detailed discussion the reader is referred to Paper I.
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Figure 10. Illustration of the study on the changes in the supramolecular structure of three 
cellulosic substrates: (A) never-dried pulp fibres, (B) cotton and (C) Avicel, after different 
treatments. The never-dried pulp fibres were dried, and then subjected to acid hydrolysis and 
enzymatic hydrolysis. Cotton was treated with sodium hydroxide (NaOH). Avicel was subjected 
to enzymatic hydrolysis. The fibril aggregates are modelled as four fibrils, shown as rectangular 
yellow boxes (note that these are not drawn to scale). The dimensions of the fibrils and fibril 
aggregates are indicated in nm. The estimated degree of crystallinity (DCr) is given as 
percentages. The results depicted in this figure are from CP/MAS 13C-NMR measurements 
summarized from Paper I. 

The first observation was that never-dried pulp fibres had the largest SSA, i.e. the smallest 

LFAD, and cotton had the smallest SSA, i.e. the largest LFAD. Cotton and Avicel were 
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dried substrates. When never-dried pulp fibres were dried and rewetted, the LFD 

remained unchanged (4.7 nm) while the LFAD increased (from 17.5 to 28.3 nm), i.e. an 

increase in the degree of aggregation was observed (Figure 10A). Such a permanent 

increase in the LFAD has been observed in previous studies using CP/MAS 13C-NMR 

[164, 165]. It  has been suggested that a process called hornification takes place in the 

fibre cell walls, traditionally measured as an irreversible reduction in the water-binding 

capacity of pulp [166]. In papermaking, the reduction in wet fibre flexibility caused by 

hornification has been shown to decrease the tensile strength of the paper. However, the 

molecular mechanism behind hornification is not fully understood. Co-crystallization has 

been suggested as one of the mechanisms behind hornification, based on the results of 

CP/MAS 13C-NMR studies [167]. For co-crystallization to occur, the fibril aggregates 

must be parallel over a sufficient distance, there should be no obstruction by non-

cellulosic components, and the environment must be sufficiently plastic for the crystalline 

domains to be rotated or displaced so that adjacent surfaces can be brought together. 

There is a thermodynamic advantage, in that co-crystallization lowers the surface energy 

of crystalline domains [167]. An increased preference for the aggregation of surfaces with 

higher hydrophobicity in cellulose fibrils has also been suggested [168].  

One common explanation of the slowing down or cessation of enzymatic hydrolysis of 

cellulose is that after the cellulose that is more easily accessible to the enzymes has been 

converted into sugars, the cellulose remaining, i.e. the crystalline, cellulose, is recalcitrant 

to enzymatic hydrolysis. For details on the various techniques used to measure the 

crystallinity of cellulose, the reader is refereed to Park et al. [161]. In some studies, 

crystallinity has been found to have no significant effect on the hydrolysability of 

cellulosic substrates [169-171]. In Paper I it was found that DCr increased in some 

substrates and remained constant in others after enzymatic hydrolysis, and no correlation 

was found between DCr and hydrolysability.  

The LFD increased during both acid and enzymatic hydrolysis. The LFD of never-dried 

pulp fibres increased from 4.7 nm to 5.6 nm during acid hydrolysis, and from 4.7 nm to 

5.8 nm during enzymatic hydrolysis (Figure 10A). This increase was significant. Both 

NMR and wide-angle X-ray scattering have shown similar trends, i.e., increasing 

LFD/crystallite size as a result of reinforced prehydrolysis conditions used to produce 

pulp fibres [147]. The mechanism behind this is still unknown. During the biosynthesis 

of cellulose I fibrils in plant cell walls, the LFD is believed to be fairly monodisperse 
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within a plant species. Therefore, an explanation in terms of alterations to the underlying 

distribution of LFD, e.g. by preferential hydrolysis of fibrils with smaller LFD, is unlikely 

since this would require a significant initial fraction of fibrils as large as, or larger than, 

those remaining after hydrolysis. The observed increase in the LFD seems to contradict 

the assumption of initially monodisperse LFD, alternatively, some other hitherto 

unexplained mechanism is responsible for the increase in LFD.  

A tentative interpretation of these findings is that a mechanism similar to the well-

established Ostwald ripening process [172] may occur during crystal growth, where 

larger crystals increase in size at the expense of smaller ones (P.T. Larsson, personal 

communication) (Figure 11). As enzymatic hydrolysis proceeds and the fibres rich in 

cellulose I are successively converted into shortened cellulose particles, two major 

changes occur. The mechanical restrictions imposed by the fibre wall morphology are 

lifted, and the average fibril aggregate length (degree of polymerization) is decreased. 

Enzymatic cleaving of the fibril aggregates yields cellulose I particles with an increased 

number of polymer ends. After initially transferring a polymer end from one fibril to a 

neighbouring fibril, such a process could propagate throughout the entire length of the 

polymer, transferring a polymer between neighbouring fibrils with only a small part of 

the polymer being in a “dissolved” state at any given instant. 

Figure 11. Proposed interpretation of the observed increase in lateral fibril dimensions (LFD) 
observed during acid and enzymatic hydrolysis of cellulosic substrates. Larger fibrils are 
suggested to grow at the expense of smaller ones. The yellow areas represent adjacent fibrils, and 
the black, magenta and blue lines represent the transfer of a β-1,4-D-glucan polymer from one 
fibril to a neighbouring fibril. 

In such a situation, successive migration of surface polymers from one fibril to its 

neighbour may take place, thermodynamically driven by a decrease in the surface area. 

If such a process proceeds to the point where some fibrils have been completely 
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consumed to the benefit of their neighbours, an increase in the degree of crystallinity and 

the average LFD would be observed. It is conceivable that polymer migration could be 

kinetically favoured by the close proximity of fibrils in a fibril aggregate and an 

abundance of polymer ends, in agreement with the observations on hydrolysed samples. 

If such a successive polymer migration mechanism exists, it raises some interesting 

questions about the lateral size and cross-sectional shape of fibrils in isolated cellulose I 

materials, since both lateral fibril size and cross-sectional shape may be a consequence 

of the isolation procedure, rather than reflecting the properties of the native cellulose 

fibril. 

As discussed above, for enzymatic hydrolysis to occur, the surface of cellulose must be 

accessible to enzymes and the pore should be larger than the enzyme molecules. Pore size 

has proven to be an important determinant in enzymatic hydrolysis, and as drying reduces 

the size of the pores in cellulose, the enzymatic hydrolysability is also reduced (Paper 

I). The importance of the pore size for the initial rate of hydrolysis has been demonstrated 

previously [171], and is in agreement with a recent study by our group [169]. After the 

removal of non-cellulosic components, the pores in the never-dried fibre wall remain in 

the water-swollen state, however, they may collapse upon drying [173]. Different 

methods have been used to measure pore sizes [174-178]. These usually require either 

sample treatment and/or assumptions regarding the shape of the pores. In the study 

presented in Paper I a recently developed method was applied which allowed the 

measurement of the average pore size of the samples in the water-swollen state employing 

CP/MAS 13C-NMR and the fibre saturation point [163, 173].  
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7 Analysis of enzymatic hydrolysis of cellulose 

Generally, carbohydrates are recalcitrant and highly polar, have the properties of weak 

acids, have isobaric mass, are stereoisomers, have low water solubility, are insoluble 

above a degree of polymerization of 6, and are transparent in the UV and visible 

wavelength range. The chemical and physical properties of carbohydrates place 

constraints on the methods that can be used for analysis. During enzymatic hydrolysis 

soluble carbohydrates, i.e. glucose, and other oligosaccharides are released from cellulose 

into solution. High-performance anion-exchange chromatography (HPAEC) coupled 

with pulsed amperometric detection (PAD) provides high detection sensitivity for 

carbohydrates, monosaccharides and soluble oligosaccharides, provided standards are 

available for quantification. However, monitoring solubilized products, is likely to miss 

certain enzyme activities that function through modifying insoluble (ligno)cellulosic 

substrates, including polysaccharide oxidases, LPMOs and several lignin active enzymes 

[179]. 

Little is currently known about the role of progressive cellulose deconstruction in 

hydrolysis [15]. The analysis of a solid substrate prior to and during enzymatic hydrolysis 

can provide new insights into the relationship between the structure of cellulose and 

enzymatic efficiency. Various analytical techniques which have been used to characterize 

(ligno)cellulose after or during enzyme treatment could be categorized as: (i) primarily 

imaging techniques, (ii) physicochemical techniques, and (ii) micro-spectroscopy 

techniques [179]. The supramolecular structure of cellulose can be studied at nanometre 

resolution using CP/MAS 13C-NMR (discussed in Section 7.2). Imaging techniques used 

to study insoluble cellulosic substrates and cellulose-cellulase interaction are discussed 

in Section 7.3. More emphasis is put on nonlinear microscopy techniques used in Paper 

II. Cellulose can be characterized on the micrometre scale using nonlinear optical

microscopy, such as coherent anti-Stokes Raman scattering (CARS) second harmonic

generation (SHG) and multiphoton excited fluorescence (MPEF).
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7.1 HPAEC-PAD 

Only soluble hydrolysis products can be analysed using chromatographic techniques. The 

separation mechanism is based on the weakly acidic properties of sugar molecules. The 

pKa values of typical sugars are in the range 12–14. The ionization of the hydroxyl groups 

of the saccharides is achieved at a highly alkaline pH, yielding negatively charged 

species. The detection employs the ability of gold electrode surface to catalyze the 

oxidation of polar compounds in alkaline media [180]. In the present work, soluble 

hydrolysis products were analysed with HPAEC-PAD using a CarboPac PA 1 column 

(Dionex). A typical chromatogram of sugar analysis of plant biomass is shown in Figure 

12.  

Figure 12. Typical chromatogram showing a separation of different sugars by HPAEC-PAD. 
Based on the retention time and peak area of the standard sugars, peaks in the sample can be 
identified and quantified. Note that, although each sugar is present at the same concentration, the 
height and the area of the peaks are not the same. Arabinose (1), rhamnose (2), galactose (3), 
glucose (4), xylose (5), mannose (6). 

Although HPAEC-PAD has numerous advantages, it also has some limitations. Highly 

alkaline conditions may cause chemical modification of the compounds being analysed, 

and esterification is not stable under alkaline conditions, therefore, acetylated and non-

acetylated compounds (found in hemicellulose) cannot be separated.  
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7.2 CP/MAS 13C-NMR 

NMR techniques make use of the magnetic properties of atomic nuclei to provide 

information about the dynamics and structure of a sample. Some isotopes have a magnetic 

moment, which is utilized in NMR. The atomic nucleus in a molecule is magnetically 

shielded by the surrounding electron distribution, which varies at different positions in 

the molecule, yielding magnetic responses of different energies, hence a spectrum. One 

advantage of NMR is that distinct magnetically active isotopes have different magnetic 

moments, making it possible to study a single isotope, such as 13C, separately. In solid 

organic samples such as cellulose, the abundance and spatial distribution of protons form 

a network of strongly coupled spins. This is due to the nature of the solid samples, where 

the molecules have little or no mobility. In solid samples, anisotropic, i.e. orientation-

dependent, interactions between the nuclei are not averaged by rapid molecular motions, 

as is the case in solution-state NMR. This lack of rapid averaging is a source of line 

broadening in solid-state NMR spectra. In order to achieve high-resolution spectra from 

nuclei such as 13C in solids, three problems must be overcome: (i) broadening due to 

dipolar interactions between 13C and 1H in the cellulose sample, (ii) low sensitivity 

mainly due to the low natural abundance of 13C, and (iii) broadening due to chemical shift 

anisotropy [181]. 

In solid samples, molecules are normally oriented randomly with respect to the external 

magnetic field, and a superposition of all possible chemical shifts is observed for each 

nucleus. This gives rise to broad signals. Chemical shift anisotropy can be experimentally 

reduced by a process called magic angle spinning (MAS) [182], which involves rapid 

rotation of the sample at an angle of 54.7 degrees relative to the external magnetic field. 

Cross polarization (CP) is needed to compensate for the low natural abundance of the 13C 

isotope, which is only 1.1%. The main isotope of carbon, 12C, does not have a magnetic 

moment and can therefore not be detected with NMR. The low abundance of 13C results 

in reduced sensitivity of the NMR spectra and a lower signal-to-noise ratio. In the CP 

technique, signal enhancement is achieved by first exciting the 1H spins and then 

transferring the magnetization to the 13C spin system [183]. Proton decoupling is needed 

to remove dipolar interactions between 13C and 1H in order to achieve high resolution of 

the 13C nuclei. CP in combination with MAS and proton decoupling provides spectra with 
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high resolution. Cellulose-rich samples are usually soaked in deionized water prior to 

packing in a MAS rotor before recording spectra. 

A typical CP/MAS 13C-NMR spectrum from cellulose I contains six signals from the 

different anhydroglucose unit carbon atoms split into fine structure clusters due to the 

supramolecular structure of cellulose I fibrils [33, 148] (Figure 13A). The amount of 

information contained in this fine structure is high, but the accessibility of the information 

is hampered by severe overlap of the signals [184]. In order to obtain quantitative 

information on the supramolecular structure of cellulose, spectral fitting is therefore 

needed. Spectral fitting of the C4 region of CP/MAS 13C-NMR spectra has provided a 

detailed picture of the cellulose I supramolecular structure [148, 162]. Among the various 

regions of the spectrum of cellulose, the C4 region is distributed over a wider range of 

chemical shift than the signals from the other regions [148], therefore spectral fitting was 

applied to the C4 region. Spectral fitting of the C4 region consists of seven distinct lines 

(Figure 13B). Two signals (at about 84.3 and 83.3 ppm) are assigned to C4 atoms in -

(1,4)-D-glucan polymers that constitute the cellulose I fibril surfaces accessible to bulk 

water. Analysis of cellulose–water interfaces has shown that the C4 atoms (two signals 

from accessible fibril surfaces in Figure 13B) in cellulose chains located above different 

crystallographic planes have different mobilities [185]. These surfaces should also be 

accessible to the enzymes, provided there is no obstacle to their diffusion caused by the 

spatial distribution of fibril aggregates in the fibre cell wall (Figure 9). Another C4 signal 

(at about 83.8 ppm) is assigned to C4 atoms in -(1,4)-D-glucan polymers that constitute 

the cellulose I fibril surfaces inaccessible to bulk water, formed either by interior 

distortions or aggregation of fibrils. As the enzyme molecules are larger than water 

molecules, fibril surfaces inaccessible to bulk water are also considered inaccessible to 

the enzyme molecules. Three C4 signals arising from the crystalline fibril interior (87-

91 ppm) originate from the cellulose I polymorphs Iα, Iβ and a common overlapped 

signal I(α+β), in agreement with previous findings [33]. Polymers in a highly ordered 

state, but with conformations suggested to be intermediate between those of crystalline 

polymers and surface polymers have been interpreted as a para-crystalline form of 

cellulose giving rise to a signal the 87-91 ppm range, broader that the typical cellulose Iα 

and Iβ signals. The spectral behaviour of para-crystalline cellulose indicates that it has 

greater mobility than the crystalline cellulose [148]. 
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Figure 13. A representative CP/MAS 13C-NMR spectrum from cotton (A), together with a typical 
spectral fitting result, showing an enlargement of the C4 region of cotton cellulose (B). To 
determine the supramolecular structure of cellulose, the C4 region is fitted with a set of 
mathematical functions representing the signals originating from C4 carbons in cellulose Iα, 
cellulose Iβ, cellulose I(α + β), para-crystalline cellulose, C4 carbons in polymers on inaccessible 
fibril surfaces and C4 carbons in polymers on accessible fibril surfaces. (C) illustrates the model 
of the aggregated cellulose I fibrils used in calculations of the lateral fibril aggregate dimensions 
(LFAD) and lateral fibril dimensions (LFD). The model differentiates between crystalline regions 
(turquoise), para-crystalline regions (magenta), accessible surface areas (yellow) and inaccessible 
surface areas that result from the close proximity of fibrils in a fibril aggregate (grey). Modified 
from Paper I with permission.  
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A CP/MAS 13C-NMR spectrum recorded from cellulose, and subjected to spectral fitting 

of the C4 region, provides quantitative data on the nanostructure of fibre wall cellulose. 

Spectral fitting must be performed on lignin- and hemicellulose-free cellulose samples 

(glucose content > 95%) since interference from hemicellulose and lignin signals 

influences the calculations. Average values of the parameters describing the 

supramolecular structure (LFD, LFAD, SSA and DCr) present in cellulosic samples can 

be determined with high statistical precision using CP/MAS 13C-NMR. The cumulative 

length of a fibril (with a cross-section of 4 nm  4 nm) in 150 mg of cellulose (typical 

sample mass used for measurements), averaged during one measurement, corresponds to 

8 round-trips to the moon (P.T. Larsson, personal communication).  

7.3 Imaging of cellulose 

Various imaging techniques can be used to study cellulose. For a more thorough 

description of the methods used to characterize the structure of cellulose and cellulose–

cellulase interactions the reader is referred elsewhere [15, 179, 186-189]. In order to 

obtain a realistic picture of the enzymatic hydrolysis of cellulose, it is important to 

perform the study under relevant conditions [190]. Unfortunately, advanced imaging 

techniques often involve quite harsh conditions, such as vacuum chambers, low or 

extreme cryogenic temperatures, dry surfaces, or intense sample processing. AFM is a 

particularly powerful option as it allows direct assessment of enzyme activity in aqueous 

environments and ambient conditions [15]. A recent application of high-speed AFM 

provided a real-time information of cellulase action directly on cellulose fibrils [16]. In 

general, high-resolution imaging techniques (on the nanometre scale) can only be used to 

scan a small area. In order to study dynamic processes, such as enzymatic hydrolysis of 

cellulose, imaging speed is increased at the expense of spatial resolution and chemical 

resolution. Although the throughput of imaging techniques is relatively low, image 

analysis of microarrays of plant-derived oligosaccarides is an important exception with 

ability to screen enzyme activity on characterized oligosaccharides [191]. Summary of 

techniques allowing assessment of cellulase action on (ligno)cellulosic substrates is 

shown in Figure 14. 
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Figure 14. Comparison of imaging techniques that have been used to assess enzyme action on 
insoluble (ligno)cellulosic substrates. IR: infrared; ToF-SIMS: time–of–flight secondary ion mass 
spectrometry; XPS: X-ray photoelectron spectroscopy; MPEF: multiphoton excited fluorescence; 
CARS: coherent anti-Stokes Raman scattering; SRS: stimulated Raman scattering; SHG: second 
harmonic generation; SEM: scanning electron microscopy; TEM: transmission electron 
microscopy; AFM: atomic force microscopy; 2D: two–dimensional; 3D: three–dimensional. 
Imaging techniques used in Paper II are written in bold. 

Complementary imaging techniques are often combined with other methods to study the 

enzymatic hydrolysis of cellulose. An overview of imaging studies on (ligno)cellulose 

and cellulose–cellulase interactions are summarized in Table 4.
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Nonlinear microscopy techniques, CARS, SHG and MPEF, were used in the present work 

to assess the dynamics of enzymatic hydrolysis of three cellulosic substrates (Paper II). 

These techniques were chosen as the cellulosic substrates could be characterized without 

any sample preparation, as the recorded signals are derived from the intrinsic chemical and 

physical properties of the sample. The experimental set-up allowed enzymatic hydrolysis 

in an aqueous environment and incubation to be monitored. A comparison of the images of 

cellulosic substrates obtained from scanning electron microscopy and nonlinear 

microscopy techniques is shown in Figure 15. 

Figure 15. A dried pulp fibre imaged by scanning electron microscopy (A). A never-dried pulp 
fibre (B), Avicel (C) and acid-hydrolysed pulp fibre (D) imaged simultaneously with coherent 
anti-Stokes Raman scattering (blue), second harmonic generation (red) and multiphoton excited 
fluorescence (green) (Paper II). 

SHG can be used to probe non-centrosymmetric structures, and has been used to image 

cellulose in cotton [199, 200] and rayon fibres [200], cellulose derived from the bacterium 

Acetobacter xylinum [201, 202] and the alga Valonia ventricosa [202]. MPEF can be used 

to probe the intrinsic fluorescence of the cellulosic substrate, i.e. lignin [203]. CARS probes 

molecular vibrations, allowing chemically sensitive imaging, for example, to image 

carbon–hydrogen bond density in cellulose. CARS microspectroscopy has been used to 

study the effects of hydration on cotton and rayon fibres [200] and the chemically resolved 

structure of wood samples [196]. In Paper II, the regularity of low- and high-intensity 

regions and carbon-hydrogen density, allowed to distinguish between never-dried and dried 

cellulosic substrates. Monitoring of the substrates during enzymatic hydrolysis in real-time 

revealed the substrate-specific hydrolysis pattern. As the follow-up of the study, it would 

be interesting to investigate in more detail the structure in the areas of the substrates which 

are more and less susceptible to enzymatic hydrolysis.



53 

8 Conclusions 

In my thesis the complexity of the supramolecular structure of cellulose was demonstrated. 

The structural dynamics of cellulose during enzymatic hydrolysis were demonstrated, and 

it was shown that the structure of cellulose is an important factor in enzyme production. 

Avicel and cotton, which are considered to be model substrates, and softwood pulp fibres 

were studied. The pulp fibres closely resemble the native structure of cellulose due to the 

intact fibre wall morphology.  

In Paper I it was shown that drying of the substrates causes increased aggregation of the 

fibrils into larger fibril aggregates, accompanied by a decrease in the average pore size. 

Both enzymatic and acid hydrolysis were found to significantly increase LFD and the DCr 

through a mechanism which is not yet fully understood. One plausible explanation is that 

successive migration of surface polymers from one fibril to the neighbouring one may take 

place, thermodynamically driven by a decrease in surface area.  

For efficient enzymatic hydrolysis, it is desirable that as much surface area as possible is 

accessible to the enzymes, and the pores of cellulose-based materials should be larger than 

the enzyme molecules. The SSA and pore size were found to be important determinants of 

the enzymatic hydrolysability of cellulose, whereas the DCr of the substrate was not (Paper 

I).  

In Paper II, it was shown using CARS that, before enzymatic hydrolysis, Avicel had the 

higher carbon–hydrogen bond density than the never-dried pulp fibres. The regularity of 

low- and high-intensity regions (measured from the SHG signal) allowed to distinguish 

between never-dried and dried cellulosic substrates. Avicel showed a less regular pattern 

than the pulp fibres, possibly reflecting the collapse of the macromolecular structures 

during drying and rewetting.  Monitoring of the substrates during enzymatic hydrolysis in 

real-time revealed substrate-characteristic hydrolysis pattern. A double exponential SHG 

decay for the never-dried pulp fibres was observed, indicating two phases of the process. 

The hydrolysis of Avicel was more than an order of magnitude slower than that of the 

fibres. 
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The filamentous fungus T. reesei Rut C-30 was shown to secrete enzymes with different 

profiles when cellulosic substrates with different structures were used as the energy and 

carbon source for the fungus (Paper III). The cellulosic substrates had similar chemical 

compositions, so it could be expected that the enzymes produced would be similar if the 

chemical composition was the only determining factor for enzyme production. The most 

recalcitrant substrate to enzymatic hydrolysis studied in Paper I and Paper II, induced the 

highest enzyme titre in the fungus in Paper III.  

To explore the biodiversity of cellulose hydrolysis in nature, enzymes produced by five 

filamentous fungi were studied with the aim of improving the investigated industrial 

cellulase cocktail. The study described in Paper IV demonstrated that careful selection of 

fungi can result in enzyme cocktails that are significantly more efficient in plant biomass 

saccharification.  
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9 Future perspectives 

Analytics plays an important role in the study of the enzymatic hydrolysis of cellulose. The 

system of enzymatic hydrolysis consists of a solid substrate, water, enzymes and soluble 

products released from the solid substrate. The ultimate goal is to find the relation between 

cellulose structure and the enzymatic cocktail needed to provide complete conversion of 

plant biomass in a few days. All components of the enzymatic hydrolysis system are 

important.  However, the analysis of solid substrates is laborious, and it would be easier to 

render the substrate soluble and then analyse the soluble analytes, using powerful and 

sensitive techniques such as HPAEC-PAD and MS. However, this will only provide 

information about the chemistry of the analyte. Studies of insoluble heterogeneous 

cellulosic substrates could provide details about the chemical properties and/or the structure 

on different scales.  

The conversion of cellulose to glucose slows down with time, but it is not fully understood 

why. In some of the substrates used in this work, an increase in the average lateral 

dimensions of the cellulose fibrils was observed by CP/MAS 13C-NMR spectroscopy 

during enzymatic and acidic hydrolysis. However, the mechanism is not understood. The 

increase in the average lateral dimensions of the fibrils was approximately 1 nm, about the 

thickness of two glucan polymers, roughly a 25% increase in the average lateral dimensions 

of wood based cellulose fibrils. Direct verification of this by microscopy was not possible, 

and new ways of studying cellulose structure would have to be developed to confirm the 

tentative explanation. Nevertheless, CP/MAS 13C-NMR is a powerful technique for taking 

measures with nanometre or sub-nanometre precision, making it a state-of-the-art tool for 

the study of the supramolecular structure of cellulose.  

The recent discovery of LPMOs, which have been shown to have a considerable effect on 

the enzymatic hydrolysis of biomass, requires new methods to be developed to study their 

impact on the supramolecular structure of cellulose. It has been suggested that LPMOs 

oxidize the C1 and/or C4 carbons of the glucose molecule in cellulose with almost no 

release of any soluble product. In CP/MAS 13C-NMR, the C4 signal, where changes 

introduced by LPMOs are expected to occur, is particularly well resolved. Therefore, this 

technique could allow information to be obtained on the effects of LPMOs on the 

supramolecular structure of cellulose. A study by Eibinger et al. [45] is worth mentioning, 
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in which they demonstrated the direct action of LPMOs on cellulose for the first time, using 

a combination of fluorescent dye adsorption and confocal laser scanning microscopy. In 

the coming years it is expected that the application of label-free coherent Raman imaging 

methods which offer chemical specificity will increase significantly [188]. I believe that 

improved spectral range of fast coherent Raman imaging holds much promise for dynamic 

measurements to study the action of enzymes on insoluble substrate. Advances in 

quantitative analysis of coherent Raman imaging data will lead to ability to capture smaller 

changes in chemical composition of the substrate.  

The choice of model cellulosic substrates for studies of the enzymatic hydrolysis of 

cellulose requires attention. According to the literature, a variety of cellulases have been 

tested on a large number of substrates. Avicel, which is often used as a model substrate for 

native cellulose is supplied as a powder in which the morphology of the plant cell walls has 

been destroyed. A more representative substrate for native cellulose would be one in which 

the fibre wall morphology is retained. Materials referred to as cellulosic substrates in the 

literature are often composed of cellulose with residual amounts of hemicellulose and 

possibly lignin. Thus, caution should be exercised when interpreting the data and 

comparing the results to those from other studies. 

Enzymatic cocktails produced by fungi are very complex, and may contain over a hundred 

components, many of which have no specific role. The percentage of genes in fungal 

genomes with no known/predicted function is around 30-45% with, on average, a higher 

percentage in basidiomycetes than ascomycetes (R.P. de Vries, personal communication). 

It is thus desirable to find enzymes that play a key role in the enzymatic hydrolysis of plant 

biomass. One possible approach could be to fractionate a complex enzyme mixture and 

perform enzymatic hydrolysis with the enzyme mixtures lacking a particular fraction to 

evaluate which fraction contains the key enzymes. This approach has been successively 

implemented in the discovery of LPMOs [96] and offers an applied potential in finding new 

enzymatic activities complementing the known ones. Proteomic studies allow identification 

of proteins with high accuracy, provided the protein is available in the database. Large 

sequencing efforts of fungal genomes are expected to offer new possibilities of enzyme 

discovery. 

During secretome analysis, which is commonly employed to study the enzymes secreted 

by fungi, a whole pool of enzymes is analysed at once. However, fungi produce the 
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enzymes they need at any particular time. More detailed studies on specific enzymatic 

activities produced by fungi at specific times may help us understand which enzymatic 

activities are needed at any particular time during enzymatic hydrolysis to improve the 

process.  
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