Spatial Wireless Channel Prediction under Location Uncertainty

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:
IEEE Transactions on Wireless Communications (ISSN: 1536-1276)

Citation for the published paper:
Muppirisetty, L. ; Svensson, T. ; Wymeersch, H. (2015) "Spatial Wireless Channel
Prediction under Location Uncertainty". |EEE Transactions on Wireless Communications

Downloaded from: http://publications.lib.chalmers.se/publication/228143

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)


http://publications.lib.chalmers.se/publication/228143

Spatial Wireless Channel Prediction
under Location Uncertainty

L. Srikar Muppirisetty, Tommy Svensso8gnior Member, IEEEand Henk WymeerschiMember, IEEE

Abstract—Spatial wireless channel prediction is important for physical environment, including the locations of transemit
future wireless networks, and in particular for proactive resource and receiver, play an important role. The received signal
allocation at different layers of the protocol stack. Various sources power in a wireless channel is mainly affected by three major

of uncertainty must be accounted for during modeling and to d . hich t diff t lenath les: patls.|
provide robust predictions. We investigate two channel prdiction ~9YNamics, which occur at difierent length scales. patl;los

frameworks, classical Gaussian processes (cGP) and uncari Shadowing, and small-scale fading [9]. Small-scale fading
Gaussian processes (UGP), and analyze the impact of locatio decorrelates within tens of centimeters (depending on the
uncerte_linty during learning/training and p_rediction/test!ng, for  carrier frequency), making it infeasible to predict based o
scenarios where measurements uncertainty are dominated by |,cati0n information. On the other hand, shadowing is cor-
large-scale fading. We observe that cGP generally fails bbtin . .
terms of learning the channel parameters and in predicting he rela_ted up to tens of meters, depending on the propaga}tlon
channel in the presence of location uncertainties. In contist,  €nvironment (e.g., 50-100 m for outdoor [9] and 1-2 m for in-
uGP explicitly considers the location uncertainty. Using snulated ~ door environments [10]). Finally, path-loss, which captithe

data, we show that uGP is able to learn and predict the wireles deterministic decay of power with distance, is a deterrtimnis

channel. function of the distance to the transmitter. In rich scatgr
Index Terms—Gaussian processes, uncertain inputs, location environments, the measurements average small-scalegfadin
uncertainty, spatial predictability of wireless channels either in frequency or space provided sufficient bandwidth
or number of antennas [10]. Thus, provided that measure-

|. INTRODUCTION ments are dominated by large-scale fading, location-cigren

OCATION-based resource allocation schemes are exodels for path-loss and shadowing can be developed based
pected to become an essential element of emerging the physical properties of the wireless channel. With the
5G networks, as 5G devices will have the capability tbelp of spatial regression tools, these large-scale channe
accurately self-localize and predict relevant channelliyua components can be predicted at other locations and used for
metrics (CQM) [1]-[3] based on crowd-sourced databasessource allocation [1]. However, since localization ibjsat
The geo-tagged CQM (including, e.g., received signal gtitgn to various error sources (e.g., the global positioning esyst
delay spread, and interference levels) from users enabées (GPS) gives an accuracy of around 10 m [11] in outdoor
construction of a dynamic database, which in turn allows tlseenarios, while ultra-wide band (UWB) systems can give sub
prediction of CQM at arbitrary locations and future timesrC meter accuracy), there is a fundamental need to account for
rent standards are already moving in this direction thrahgh location uncertainties when developing spatial regressiols.
so-called minimization of drive test (MDT) feature in 3GPPP Spatial regression tools generally comprise a train-
Release 10 [4]. In MDT, users collect radio measuremeritg/learning phase, in which the underlying channel param-
and associated location information in order to assessanktweters are estimated based on the available training da&abas
performance. In terms of applications, prediction of sgatiand a testing/prediction phase, in which predictions ardena
wireless channels (e.g., through radio environment maps) aat test locations, given learned parameters and the tgainin
its utilization in resource allocation can reduce overlsemud database. Among such tools, Gaussian processes (GP) is a
delays due to the ability to predict channel quality beyongbwerful and commonly used regression framework, since it
traditional time scales [2]. Exploitation of location-awa is generally considered to be the most flexible and provides
CQM is relevant for interference management in two-tiggrediction uncertainty information [12]. Two importantiita-
cellular networks [5], coverage hole detection and préatict tions of GP are its computational complexity [13]-[16] atsl i
[6], cooperative spectrum sensing in cognitive radios [7$ensitivity to uncertain inputs [14], [17]-[21]. To allee the
anticipatory networks for predictive resource allocati@), computational complexity, various sparse GP techniques ha
and proactive caching [8]. been proposed in [13]-[15], while online and distributed GP
In order to predict location-dependent radio propagatiamere treated in [16], [22], [23] and [24]-[26], respectivelhe
channels, we rely on mathematical models, in which thepact of input uncertainty was studied in [17], [18], which
) ) showed that GP was adversely affected, both in training and
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Transmission). less channels with location uncertainty. In this paper, wigb



on and adapt the framework from [17], [18] to CQM predictiomoise. In [19], a Delta method was used for linearizationesnd
in wireless networks. Our main contributions are as followsthe assumption of Gaussian distributed inputs and proposed
« We show that not considering location uncertainty leads corrected covariance function that accounts for the input
to poor learning of the channel parameters and poBgise variance. For Gaussian distributed test inputs and/kn
prediction of CQM values at other locations, especiallffiaining inputs, the exact and approximate moments of the
when location uncertainties are heterogeneous; GP posterior was examined for various forms of covariance
« We relate and unify existing GP methods that accoufinctions [18]. Training on Gaussian distributed inputrsi
for uncertainty during both learning and prediction, byy calculating the expected covariance matrix was studied i
operating directly on an input set of distributions, rathdd 7], [18]. Two approximations were evaluated in [27], fiest
than an input set of locations; joint maximization of joint posterior on uncertain inputsca
« We describe and delimit proper choices for mean funfyperparameters (leading to over-fitting), and secondgusin
tions and covariance functions in this unified frameworld stochastic expectation—-maximization algorithm (at ahhig
S0 as to incorporate location uncertainty in both learnirfgPmputational cost).
and prediction; and We now review previous works on GP for channel pre-
« We demonstrate the use of the proposed framework fdiction, which include spatial correlation of shadowing in
simulated data and apply it to a spatial resource allocatiégllular [28] and ad-hoc networks [29], as well as tracking
application. of transmit powers of primary users in a cognitive network

The remainder of the paper is structured as follows. Sedtion [23]- In [28], GP was shown to model spatially correlated
presents the channel model and details the problem descfipadowing to predict shadowing and path-loss at any arbi-
tion for location-dependent channel prediction with lémat rary location. A multi-hop network scenario was considere
uncertainty. In Section IV, we review channel learning an@®], and shadowing was modeled using a spatial loss field,
prediction in the classical GP (cGP) setup with no locaiirat Ntegrated along a line between transmitter and receiver. |
errors. Section V details learning and prediction procegur23], @ cognitive network setting was evaluated, in which
using the proposed GP framework that accounts for unceytaif'€ transmit powers of the primary users were tracked with
on training and test locations, termed uncertain GP (uGEpoPeration among the secondary users. For this purpose a
Finally, numerical results are given in Section VI in adatiti istributed radio channel tracking framework using Kriged

to a resource allocation example, followed by our conchsioK@lman filter was developed with location information. A
in Section VII. study on the impact of underlying channel parameters on the

Notation: Vectors and matrices are written in bold (e.g spatial channel prediction variance using GP was presented

a vectork and a matrixK); K™ denotes transpose d; in [30]. A common assumption in [23], [28]-[30] was the

K| denotes determinant d&&; [K];; denotes entry(i, j) of pre;ence of perfec_t location information. This assymptias

K: T denotes identity matrix of appropriate sizeand0 are Partially removed in [31], which extends [30] to include the
vectors of ones and zeros, respectively, of appropriate sigffect of localization errors qn_spatlal channel predictitt

||| denotesLo-norm unless otherwise statei] denotes the Was found _that channel prediction pe_rforma_mce was degr_aded
expectation operator; Cay denotes covariance operator (i.e When location errors were present, in particular when eithe
Covly1,y2] = E[y1yT] —E[y1] E[y2]T); V'(x; m, %) denotes the shadowing standard dew_atlon or the shadovv_mg cormela_lt

a Gaussian distribution evaluated inwith mean vectonrm “ere large. However, [31] did not tackle combined learning
and covariance matri andx ~ A(m, ) denotes thak is and prediction under location uncertainty. The only worktth
drawn from a Gaussian distribution with mean veatorand €XPlicitly accounts for location uncertainty was [20], ifieh
covariance matrixS. Important symbols used in the papefNe Laplace approximation was used to obtain a closed-form
are:x; € R? is an exact, true locationy; € R?, D > 2 analytical soluﬂo_n for the ppstenor p_redlct|ve distriiioun. _

is a vector that describes (e.g., in the form of moments) thiPWever, [20] did not consider learing of parameters in
location distributionp(x;). For example in the case of GausPresence of location uncertainty.

sian distributed localization errop(x) = N (x;z,X), then a
possible choice is1 = [z7,vedX]]T, wherevec[X] stacks all
the elements o in a vector. Finally,z; = ¢(u;) € R? is
a location estimate extracted from through a functions(-) A. Channel Model
(e.g., the mean or mode).

IIl. SYSTEM MODEL

Consider a geographical regiod C R?, where a source
node is located at the origin and transmits a signal with powe
Prx to a receiver located ak; € A through a wireless

First, we give an overview of the literature on GP with unpropagation channel. The received radio signal is affected
certain inputs. One way to deal with the input noise is thfougnainly by distance-dependent path-loss, shadowing due to
linearizing the output around the mean of the input [19]][21obstacles in the propagation medium, and small-scale dadin
In [21], the input noise was viewed as extra output noisemy lidue to multipath effects. The received powgyx (x;) can be
earization at each point and this is proportional to the seflia expressed as [32, Chap. 2]
gradient of the GP posterior mean. However, the proposed
method works under the condition of constant-variancetinpu Prx(x;) = Prx go ||| 77 (x:) |h(x4)]?, Q)

II. RELATED WORK



wheregg is a constant that captures antenna and other proj
gation gainsy is the path-loss exponent(x;) is the location-
dependent shadowing adx;) is the small-scale fading. We A A
assume measurements avefagmall-scale fading, either in {Z,y}, 2 :
time (measurements taken over a time window), frequen :
(measurements represent average power over a large figqug '
band), or space (measurements taken over multiple anfen @ 1
[10], [33]. Therefore, the resulting received signal pofvem
the source node to a receiver nodean be expressed in dB T T T !

scale as . @
Prx (x;)[dBm] = Lo — 107 logyo([[x:|) + ¥(xs), (2)

where Ly = Prx[dBm] + G, with Gy = 10 log,,(g0) and

\I/(XL) = 1Q 10g10(1/)(xi)). A Common choice for mOdeI.m.g Figure 1. High-level comparison between cGP and uGP. Thetsnip cGP
shadowing in wireless systems is through a log-normalidistfuring learning are observatiogsand estimate of the (unobserved) actual
bution, i.e., ¥(x;) ~ N(nggp)' Whereggp is the shadowing locationsX where thoi_iobservlatior?s have beerlltzﬁ?shobtqinedl throggh
; ; ; ; ; a positioning system. The true locatioksare marked with a triangle and are
Va”an_ce' ShadOW'”ig’(Xi) is spatially Correlated’_W|th well- generally different from the estimated locatiodls marked with a blue and
established correlation models [34], among which the Gugkd dot. During prediction, cGP predicts received powerraestimated test
mundson model is widely used [35]. Let be the scaldr location,z*. In contrast, UGP considers the distribution of the loceix,

observation of the received power at nadevhich is written il L B CEEEE B L o e et losaton. Note.
asy; = Prx(x;)+n;, wheren; is a zero mean additive white that the amount of uncertainty (radius of the circle) camgea

Gaussian noise with varianeg’. For the sake of notational
simplicity, we do not consider a three-dimensional layout,
the impact of non-uniform antenna gain patterns, or diganc

dependent path-loss exponents.

classical GP uncertain GP

{U,y},u*

1) Learning construct a spatial model (through estimating
model parameter8, to be defined later) of the received
power based on the measurements;

) 2) Prediction determine the predictive distribution

B. Location Error Model p(Prx(x.)]y, U,0,x,) of the power in test locations

In practice, nodes may not have access to their true location x, and the distribution of the expecterkceived power,

x;, but only to a distributiorp(x;)3. The distributionp(x;) is p(Prx(u,)|y, U, 0, u,), for test location distributions

obtained from the positioning algorithm in the devices, and  wu,.

depends on the specific positioning technology (e.g., o8 GRve will consider two methods for learning and prediction:

the distributionp(x;) can be modeled as a Gaussian). We willjassical GP (Section 1V), which ignores location uncertai

assume that all distributiongx;) come from a given family of gnd only considersz; = ¢(u;), and uncertain GP (Section
distributions (e.g., all bivariate Gaussian distribupriThese /) which is a method that explicitly accounts for loca-

distributions can be described by a finite set of parametefign uncertainty. We introducX = [x7,xZ,...,x%5]" and
u; € R?, D > 2, e.g, a mean and a covariance matrig, — [T zT .. 27| as the collection of true and estimated

for Gaussian distributions. The set of descriptions of glcations respectively. A high level comparison of cGP and

distributions from the given famlly is denoted b'y C RP, uGP is shown in F|g 1, where cGP Operatesbrand v,
Within this set, the set of all delta Dirac distributions pveyhijle uGP operates oly andy.

locations is denoted byt C . Note thatX is equivalent
to the setA of possible locations. Finally, we introduce a IV. CHANNEL PREDICTION WITH CLASSICAL GP

function ¢ : & — A that extracts a position estimate from e first present cGP under the assumption that all locations

the distribution (in our case chosen as the mean), and dengiging learning and prediction are known exactly, based on

zi = ¢(u;) € A We will generally make no distinction (1] [36]. Later in this section, we will discuss the impact

between a distributiop(x;) and its representation;. of location uncertainties on cGP in learning/training and
prediction/testing.

C. Problem Statement

We assume a central coordinator, which collects a sbt cGP without Location Uncertainty
of received power measuremenys = [y1,...,yn]" With  We designatex; € A as theinput variable, andPgx (x;)
respect to a common source fral nodes, along with their as the output variable. We modelPrx(x;) as a GP with
corresponding location distributiod$ = [uf,uj,...,ux]". mean functionu(x;) : A — R and a positive semidefinite
Our goals are to perform covariance functiorC'(x;,x;) : A x A — R, and we write

1if measurements cannot average over small-scale fadimypthposed PRX(Xi> ~ gP(N(Xi>; C(Xivxj))v (3)
framework from this paper cannot be applied.

2\lector measurements are also possible (e.g., from multigée stations),  “4Here, Prx(ux) should be interpreted as the expected received power,
but not considered here for the sake of clarity. p(Prx(u:)]y, U,0,u.) = [ p(Prx(x:)]y, U, 8,x:)p(x.)dx., where

3p(x;) is used forp(x = x;) for notational simplicity. p(x+) is described byu.



where GP stands for a Gaussian process. The mean fur —10f"
tion® is defined aS/L(Xi) = Egj(xi)[PRx(Xi)] = Lo —
10m logyo(|lx:||), due to (2). The covariance function is —201
defined asC(x;,x;) = Cov[Prx(x;), Prx(x;)]. We will
consider a class of covariance functions of the form:

\
w
S

:

d power in dBm
L
(a)

R ||P
C(xi,%;) = 0% exp (_%) 050200 (4)

) . —50F
whered;; = 1 for i = j and zero otherwisep > 1, d. is g
the correlation distance of the shadowing, ang,. captures = _gol
any noise variance term that is not due to measurement ncgc:%’
(more on this later). Setting= 1 in (4), gives the exponential —~ —70+
covariance function that is commonly used to describe tt
covariance properties of shadowing [35], ane- 2, givesthe ~ —80

squared exponential covariance function that will turn wut ‘ ; ; ;

. . . 50 100 150 200
be useful in Section V.C. Note that the mean and covarian . .
Distance from BS in m

depend on
0= [Un, Oprocs de, Lo, m, 0\1,], (5) Figure 2. Impact of location uncertainty for a one-dimenaloexample:
the red curve depicts the received signal poark (x) as a function ofx
which may not be known a priori. (or equivalently, the distance to the base station), whike markers show

. L . . . . Prx(x;) as a function ofz; = ¢(u;). Training measurements are grouped
1) Learning: The objective during learning is to infer theint three regions: (+) corresponds to high uncertainty,corresponds to
model parametem® from observationg of the received power low uncertainty, and (*) corresponds to medium uncertairggpectively. The

at N known locationsX. The resulting training database ig°cation uncertainty results in output noise.
thus {X,y}. Due to the GP model, the joint distribution of
the IV training observations exhibits a Gaussian distributionys gistribution turn out to be [12]

p(y|X, 0)=N(y; n(X),K), (6)  Prx(x.) =p(x.) + kI K (y — p(X)) 9)
N
where pu(X) = [u(x1),pu(x2),...,u(xy)]T is the mean _ —17. (0 _ _
vector andK is the covariance matrix of the measured plxs) + Z[K lij (v — m(x5)) C(xs, %)

i,j=1
received powers, with entriéK];; = C(x;,x;)+ 02 §;;. The !

. i X N
mo_del parameters can b_e _Iearned through maximum !lkellhood —u(x.) + Z B; C (%, %5).
estimation, given the training databaS¥, y}, by minimizing p
the negative log-likelihood function with respectfo

Vax (x.) =kur — kf K 'k, (10)
6 = arg min{— log(p(y|X, 0))}. (7 N
i sty X 00) ke = Y K71 O30, %) O, %),
The negative log-likelihood function is usually not convaad i,5=1

may contain multiple local optima. Additional details oreth, hare B = ZN K Y4 (g — p(x;). In (9), p(x.) cor-
learning process are provided later. Oficis determined from responds to tﬁé deterministic path-loss componentcat

{X,y}, the training process is complete. _ which is corrected by a term involving the database and the
~2) Prediction: After learning, we can determine the prégorrelation between the measurements at the trainingitoeat
dictive distribution of Prx(x.) at a new and arbitrary testanq the test location. In (10), we see that the prior variance

location x., given the training databasgX,y} and 6. We 1 s reduced by a term that accounts for the correlation of

Yy NN “(X) K k* (8) . ) .

Prx(x4) wxe) || KD ke ’ B. cGP with Location Uncertainty

Now let us consider the case when the nodes do not have
access to their true location, but only to a distribution(x; ),
which is described byi; € U. Fig. 2 illustrates the impact of
location uncertainties assuming Gaussian location effiars
a one-dimensional example. The figure shows (in red) the
true received powelPrx(x) as a function ofx as well as
the measured powePrx(x;) as a function ofz; = ¢(u;)
for a discrete number of values of shown as markers. To

50ther ways of including the mean function in the model aresitbs, such clearly IHUStra.\te the impact of d.lf.fe.rent amounts on UIEHEII){ .
as to include it in the covariance structure, and transfdvenptrior model to  ON the position, we have artificially created three regions:
a zero-mean GP prior [12]. high location uncertainty close to the transmitter, medium

wherek, is the N x 1 vector of cross-covariances(x.,x;)
between the received powersat and at the training locations
x;, and k.. = C(x.,x.) is the prior variance (i.e., the
variance in the absence of measurements), givefi(y, x..).
Conditioning on the observations we obtain the Gaussian
posterior distributiorp(PRX(x*)|X,y,é,x*) for the test lo-
cation x,.. The mean Prx(x.)) and variance {rx (x.)) of



location uncertainty far away, and low location uncertafior not known exactly, especially when location error statsstre
intermediate distances. When there is no location unceytai heterogeneous. In this section, we explore several ptissbi
(70 m until 140 m from the transmitter)z; ~ x;, SO to explicitly incorporate location uncertainty. We rectiat
Prx(z;) ~ Prx(xi), and hence the black dots coincidé/ denotes the set of all distributions over the locations in
with the red curve. For medium and high uncertainatycan the environmentd, while X C U represents the delta Dirac
differ significantly fromx;, so the data point with coordinatesdistributions over the positions and has a one-to-one mappi
[z;, Prx(x;)] can lie far away from the red curve, especiallyo A.
for high location uncertainty (distances below 70 m). From We will describe three approaches. First, a Bayesian ap-
Fig. 2 it is clear that the input uncertainty manifests ftseproach where the uncertain input (i.e., the uncertain loohat
as output noise, with a variance that grows with increasing marginalized, leading to a non-Gaussian output (i.ee, th
location uncertain®§; This output noise must be accountedeceived power) distribution. Second, we derive a Gaussian
for in the model during learning and prediction. When thesspproximation of the output distribution through moment
uncertainties are ignored, both learning and predictidhbe matching and detail the corresponding learning and priedict
of poor quality, as described below. expressions. From these expressions, the concepts oftedpec
1) Learning from uncertain training locationdn this case, mean function and expected covariance function naturally
the training databaséZ,y} comprises locationg; = ¢(u;) appear. Finally, we discuss uncertain GP, which is a Gaussia
and power measuremenjs= Prx(x;) + n; at the true (but process with inputu from input set/ and outputy. We
unknown) locations;. The measurements will be of the formwill relate these three approaches in a unified view. For
shown in Fig. 2. The estimated model parameﬁémn take each approach, we detail the quality of the solution and
two forms: (i) assign very short correlation distandeslarge the computational complexity. We note that other approsche
dw, and smallé,..c, as some seemingly nearby events wikkxist, e.g., through linearizing the output around the mefan
appear uncorrelated: or (ii) assign larger correlatiotadises the input [19], [21], but they are limited to mildly non-liae
d,, smalleréy, and explain the measurements by assignirsgenarios.
a higher value togy,.oc [21]. In the first case, correlations
between measurement cannot be exploited, so that durK‘.gBayesian Approach

prediction, the posterior mean will be close to the prior mea | 5 . text | q dict by int i
and the posterior variance will be close to the prior varéanc N a bayesian context, we fearn and predict by integrating

In the second case, predictions will be better, as coroaiati the respective distributions over the uncertainty of tlaéning

can be exploited to reduce the posterior variance. However and test locations. As this method will involve Monte Carlo
model must explain different levels of input uncertaintythwi mtigrftlon,_wg g_'” ref;}r t(t) 't. as MdorltebCellrljo GPtﬁMCI:_kGP).
a single covariance function, which can make no distingtion ) eaming. Given Ihe training cata ag . v} the i e
between locations with low, medium, or high uncertaintyisTh“hoo_d functpn with gncertam training locationgy|U, 0). IS
will lead to poor performance when location error statistic?btamEd.by integratingp(y|X. 6) over the random training
differ from node to node. ocations:

2) Pred_|c_t|on at an uncertain test Iocatpnl:n the cqse p(y|U,0) = /p(y|X,0)p(X) dx, (11)
where training locations are exactly known (i.g.,= x;, Vi),

we may want to predict the power at an uncertain test Iocaﬂ%erep(X) _ HN p(x:). As there is generally no closed-
- 1=1 1)

u,, made available to cGP in the form = ¢(u.), while the ¢, expression for the integral (11), we resort to a Monte
true test locationx, is not known. This scenario can occui~ approach by drawing/ i.i.d. samplesX(™ ~ p(X)
when a mobile user relies on a low-quality localization egst | 2"y /"< that o ’

and reports an erroneous location estimate to the baserstati —

The wrong location has impact on the predicted posterior

distribution since the predicted meatiz.) will differ from p(y|U,9)
the correct meap(x, ). In addition k. will contain erroneous

entries: thej-th entry will be too small wher|z, — x;|| >

lx. — x| and too large wheffjz, — x;| < |[x. — x;||. This

will affect both the posterior mean (9) and variance (10}thkn

case were training locations are also unknown, Ze# X, where[K(™],; = C(x\"™ x"™)) + 62 4;; and u(X(™) =

%

1M
17 2 PyX™.6)

m=1

1M
17 2 Ny u(X) KM), - (12)

m=1

and z, # x,, these effects are further exacerbated by tﬁg(xg’”)),u(xg”)),--~7M(X%TL§)]T- Finally, an estimate ot
improper learning of. can be found by minimizing the negative log-likelihood func
tion

V. CHANNEL PREDICTION WITH UNCERTAIN GP

0 = arg mein{— log(p(y|U, 0))}, (13)
In the previous section, we have argued that cGP is unable _
to learn and predict properly when training or test locatiare Which has to be solved numerically.

8In fact, the output noise induced by location uncertaintf also depend “For the sake of notation, all integrals in this section aréttewr as
on the slope ofPrx (x;) aroundx;, since a locally flat function will lead to indefinite integrals, however they should be understoodédimite integrals
less output noise than a steep function, under the samedoaatcertainty.  over appropriate sets.



Remark 1. This optimization involves high computationalform a Gaussian approximation @f Prx (u.)|U,y,6,u,)
complexity and possibly numerical instability (due to thers for prediction. We will term this approach Gaussian ap-
of exponentials). More importantly, a good estimatefatan proximation GP (GAGP). The expressions that are obtained
only be found if a sampléX(™) is generated that is closein the learning of GAGP, namely the expectation of mean
to the true locationsX. Due to the high dimensionality [37,and covariance functions will be used later in the design of
Section 29.2], this is unlikely, even for large. Hence, (13) uncertain GP (described in Section V.C).

will lead to poor estimates . 1) Learning: Given the training databagdJ, y’}, the mean
_ 2) Prediction: Given the training databas¢U,y} and of p(y|U,#) is given by
6, we wish to determinep(Prx(u.)|U,y,0,u,) for

an uncertain test location with associated distribution E[}’IU,O]://yp(y|X,0)p(X)dXdy
p(x.), described byu.. The posterior predictive distri-
bution p(Prx(u.)|U,y,0,u.) is obtained by integrating ://(yp(y|x 8) dy) p(X) X
p(Prx (x.)|X,y,0,x,) with respect taX andx,: ’
p(Prx(u.)|U,y,0,u.) = /M(X)P(X) dXx
= / p(Prx (x.)|X,y, 0, %) p(X) p(x.) dX dx.. (14) = p(U), (18)

This integral is again analytically intractable. The Lagla Where u(U) = [u(wr), p(uz), ..., p(un)]™ and p(v;) =
approximation was utilized in [20] to solve (14), while herd 1(xi) p(xi) dx;. The covariance matrix op(y|U,6) can
we again resort to a Monte Carlo method by drawihg be expressed as

ii.d. samplesX(™ ~ p(X) andx\" ~ p(x.), so that

. Covy, y|U, 6]
p(PRX(u*)lU)Ya 0; u*)

| M o o = /ny p(y[X,8) p(X) dX dy — p(U)u(U)"
N o—— p(P (X*m )|X(Tn)5Yaé7X*m )
7 2 PP = / (K + p(X)u(X)") p(X) dX — p(U)p(U)"
M
- % Z N (Prx (x\™); Prx (X&m)% Vex (x™)).  (15) = Kut 4, (19)
m=1

= T 25 i ;
As M increases, the approximate distribution will tend to th\évhere [Kulij = Cu(w;, 1) + 07, 035 in which

true distribution. We refer to (13) and (15) as Monte Carlo GP

(MCGP). From (15), we can compute the medt}’€ (u.)) Cu(ui,uj) = /C(xi,xj)p(xi)p(xj)dxi dx; (20)
and the variancel{}i (u..)) [38, Eq. (14.10) and Eq. (14.11)]
as and A is a diagonal matrix with entries
M
_ 1 _
MC - (m)
AR = g7 2 P (o) Bl = [ icdpte) s - wt(w). @)
_ _ 2
Ve () = L > (PRX(xim)) — P%(C(u*)) We will refer to ;(u;) and C,(u;,u;) as theexpected mean
M= and expected covarianc&nction. We can now express the
1 M (m) likelihood function _aSp(y|U,0)Rs._/\/_(y_;/_L(U),Ku + A)_, o)
t Z Vex (x5 7). (17) that @ can be estimated by minimizing the negative log-
m=1 likelihood function
Remark2. Prediction is numerically straightforward, though X
it involves the inversion of anV x N matrix K for each 0= argmein{—log(N(y;u(U),Ku + A))}. (22)

of the M samplesX (™). In the case training locations are

known, we can utilize cGP to obtalr;dg good est|m13tcé @nd Remark3. Learning in GAGP involves computation of the
efficiently and accurately comput€gy-(u.) and Vgx~(u.).  expected mean in (18) and (21), as well as the expected
When both training and test locations are known, the aboygyariance function in (20). These integrals are geneegsin

procedure reverts to cGP. intractable, but there are cases where closed-form ejpress
exist [17], [18]. These will be discussed in detail in Seatio
B. Gaussian Approximation V.C. GAGP avoids the numerical problems present in MCGP

We have seen that while MCGP can account for locatid'd Will hence generally be able to provide a good estimate

uncertainty during prediction, it will fail to deliver adegte

estimates ob during learning (see Remark 1). To address this, 2) Prediction: Given the training database{U,y}
we can modifyp(y|U, 8) from (11) using a Gaussian approx-and 0, we approximate the predictive distribution
imation through moment matching. In addition, we can alge(Prx (u.)|U,y, 8,u.) by a Gaussian with meaR${ (u.)



and variancé/ 3 (u.). These are given by
P ()
= E[Prx(u.)|U,y,0,u,]

= /PRx(X*)p(X)p(X*)dXdX*

N
—pfw) + 3 [ B x) p(X) plx) X dx.. (23
=1
Note thatgs; is itself a function of allX's andx.. Similarly
V38 (u,) is calculated as
ViX ()
= E[PI%X(U*)|U7Y7 é? u*] - PS)?(U*)Q
= [ (Vi) + Prox(x.?) o0 plx.) dX b,

- PR (w)?.

(24)

(25)

Note that bothPrx (x.) and Vgx(x.) are functions ofX (see

(9)—(10)).

Remark4. Prediction in GAGP requires complex integrals

Cucp(ui,u;) : U x U — RT, which considers as inputs
u € U and as outputg € R. In other words,

Prx(w;) ~ GP(pucp (u;), Cucp (1i, uy)). (28)

The mean function is given by uugp(w;) =
Ex, [Ew(x,)[Prx(x:)]], already introduced as the expected
mean function in (18). However, for the mean function to
be useful in a GP context, it should be available in closed
form. As in cGP, we have significant freedom in our choice
of covariance function. Apart from all technical conditsoon
on the covariance function as described in [12], it is d&dira
to have a covariance function that (i) is available in closed
form; (ii) leads to decreasing correlation with increasimgut
uncertainty (even when both inputs have same mean); (iii)
can account for varying amounts of input uncertainty; (iv)
reverts to a covariance function of the form (4) wher X',
(v) does not depend on the mean functipfx). We will
now describe the mean functiom,gp(u;) and covariance
function Cygp (u;, u;) in detail.

The mean functionAccording to law of iterated expecta-
tions, the mean functiop(u;) is expressed as

p(u;) = Lo — 10 Ex, [logyo(||x:])]- (29)

to be solved in (23)—(25) for which no general closed-form

expressions are known. Hence, a reasonable approach

use GAGP to lear® and MCGP for prediction.

Remark5. In case training locations are known, i.&l,€ X,
(23) reverts to

N
P ) =ulw) + Y6 [ Clxxpx) dx. (@6)
1=1

and (25) becomes

Vi (us)

N
— oo = 31Ky [ Cxex) Clo ) plx) dx,
ij=1

+/u(x*)2p(x*)dx*+2§:6¢(/M(X*)C(X*7Xz‘)

N
xp(x*)dx*) + Z Biﬁj/C(X*,X,-)C(x*,xj)p(x*)dx*
ij=1

— PR ()2, (27)

iWhyjle there is no closed-form expression available for (29)

we can form a polynomial (:1pproximatio§:'j]=0 ajllx|l? =~
log;o(||xi]|), where the coefficients;; are found by least
squares minimization. For a given rangellef; ||, this approxi-
mation can be made arbitrarily close by increasing the arder
Whenp(||x;||) is approximately Gaussian (which may be the
case for|x; || 3> 0), p(w;) & Lo — 10n 37 a; Ex, [1x;]]
can be evaluated in closed form, since all Gaussian moments
are known. See Appendix A for details on the approximation.
The covariance functionWhile any covariance function
meeting the criteria (i)—(v) listed above can be chosen, a
natural choice is (see Section IV.A)

Cuap (w;, u;) = Cov[Prx (xi), Prx (x;)|u;, uy]

= COV[yi, yj|U, 0] - 52-]-0,3. (30)

Unfortunately, as we can see from (19), this choice does not
satisfy criterion (v). An alternative choice is the expelcte
covariance functiotC,, (u;, u;) from (20). This choice clearly
satisfies criteria (ii), (iii), (iv), and (v). To satisfy (i)we

can select appropriate covariance functions, tailoredhe t
distributions p(x;), or appropriate distributiong(x;) for a
given covariance function. Examples include:

both of which can be computed in closed form, under some Polynomial covariance functions for Gaussj(;) [17],

conditions, whenu(x) is constant ink [18, Section 3.4]. When

bothU ¢ X andu, € X, GAGP reverts to cGP.

C. Uncertain GP

[18].

« Covariance functions of the form (4) with= 1, x; € R,
for Laplacianp(x;).

« Covariance functions of the form (4) with= 2, x; € R?,
for Gaussianp(x;) (i.e., p(x;) = N(xi;zi, X;)). The

While GAGP avoids the learning problems inherent to
MCGP, prediction is generally intractable. Hence, GAGP is
not a fully coherent approach to deal with location uncatsai
To address this, we consider a new type of GP (UGP), which
operates directly on the location distributions, ratherath
on the locationsuGP involves a mean functiom,cp (u;) :

U — R and a positive semidefinite covariance function

expected covariance function is then given by [17], [18]
Cu(;p (ui, Uj) = C’u(ui, Uj) = (5,']‘ 0'2 (31)

proc
—1/2

+ 03‘1 725+ X,)(1 - bij)

X exp (—%(Zi —2;) (I+d*(Zi + X;)) (2 — Zj)) :

c



Note that the factofI + d;2(2; + £;)(1 — &;5)|71/?
ensures that inputs # j with the same mean (i.e., o _ (Prx (), Vigx (22))
z; = z;) exhibit lower correlation with increasing un- ¢GP | Leam | Predct "

certainty. The factofI + d72(Z; + X,))~! ensures that
ty ( + c ( it ])) i‘i)(“ri)'yi}ivl‘ {zié(ul),yi}i\;j Tz*=¢(u*>

the measurements taken at locations with low uncertaint)ﬁz
(smaller thand.) can be explained by a large value of
d., while for measurements taken at locations with high

Database

) . . . fuisvitizy
uncertaintyC', (u;, u;) will be small and decreasing with
increasing uncertainty. {us, i, (ui vty lu*
1) Learning: Given the training databas¢U,y} and
choosinguucp (u;) = p(u;) andCyap (u;, u;) = Cy(u;, uy), uGp Learn —»{  Predict |f———p
AT o (PRx (ux), VRx (ux))
the model parameters are found by minimizing the log-
likelihood function
0 = arg mein{f log(p(y|U, 6)} Figure 3. Learning and prediction phases of cGP and uGP. ifleeetice in
. learning in uGP compared to cGP is that it considers locatinoertainty
= arg meln{—log(/\/'(y;u(U),Ku)}. (32)  of the nodes. The estimated madel parametérsre derived during the

learning phase and are generally different in cGP compawedGP. The

Note that in contrast to GAGP, we have constructed uGkanPrx (z.) and variance/zx (z) of the posterior predictive distribution
so thatu(U) and K, are available in closed form makingi” CGP corresponds to a location. extracted fromu., which in turn
. L ’ representsp(xx). In contrast, the meaPrx (u«) and varianceVix (ux)
numerical minimization tractable. of the posterior predictive distribution in UGP pertainsthie entire location

Remark6. Learning of uGP (32) corresponds to the case gfstibution represented by...
learning (22) in GAGP forA = 0 (e.g., for constant mean
processes).

2) Prediction: Let Prx(u.) be the mean andix(u.)
be the variance of the posterior predictive distribution
p(Prx(u,)|U,y,0,u,) of uGP with uncertain training
and test locations, thenp(Pax(u.)|U,y,0,u,) =
N(Prx(u.); Prx (uy), Vex(us)). The expressions for
Prx(u,) and Vgx(u.) are now in standard GP form:

Prx(u) = p(u) + ki, K ' (y —w(U))  (33)
VRx (Ws) = Fuss — kE* Kgl K, (34)

wherek,,. is the N x 1 vector of cross-covariancés, (u., u;)
between the received power at the test distribuiignand at
the training distributionu;, and k.. is the a priori variance
Cu(u, uy). input set output set

Remark 7. In case the training locations are known, i.e.,

U € X, the meanpRX (u*) and the varianc®gix (u*) can be Figure 4. Relation between cGP, MCGP, GAGP, and uGP. All outare
obtained from the expressions (33) and (34), respectibsly, equivalent when the input is limited t& (grey shaded area).

setting®; = 0,Vi € {1,2,..., N}. Furthermore, the resulting

meanlrx (u.) is exactly the same as (26), obtained in GAGRenera) input distributions i#4, but leads to non-Gaussian
However, due to a different choice of covariance functiom, t o,iput distributions. Through a Gaussian approximation of
predicted variancérx (u.) is different from (27). these output distributions, GAGP can consider generaltinpu
Remark8. When the test location is known, i.a1, € X, the and directly determine a Gaussian output distribution.nBot
mean Prx (x..) and the variancézx (x.) are obtained from of these approaches (MCGP and GAGP) have in common
(33) and (34) by setting. = 0. that they treat the process with inpst € A as a GP. In
contrast, uGP treats the process with input ¢/ as a GP.
This allows for a direct mapping from inputsdhto Gaussian

D. Unified View LS o .
We are now ready to recap the main differences betwe%Htpm distributions. In terms of tractability for leargirand

. - : rediction, the four methods are compared in Table I. We see
CGP and uGP, and to provide a unified view of the fo{‘ at among all four methods, uGP combines tractability with
methods (cGP, MCGP, GAGP, and uGP). Fig. 3 describes the '

main processes in UGP and cGP, along with the inputs a%%Od performance.
outputs during the learning and prediction processes. dte f
methods are depicted in Fig. 4: all four methods revert to cGP
when training and predictions occur i, i.e., when there is  In this section, we show learning and prediction results
no uncertainty about the locations. MCGP is able to considefr cGP, uGP, and MCGP with uncertainty in training or test

all output dist.

-~

pmmmm——
~s

VI. NUMERICAL RESULTS AND DISCUSSION



Table | 1) cGP: We first consider a variant of cGP, denoted as
COMPARISON OF TRACTABILITY FOR AGP, MCGP, GAGPAND UGPIN cGP-no-proc, in whicle,, is fixed to zero. In cGP-no-proc,
LEARNING AND PREDICTION. . ., .
when A = 0, the estimatel. is non-zero. However, it can be

[ Method ] Learning | Prediction | observed in Fig. 5 (a), that with increase An d, decreases
cGP__ | tractable, poor quality| closed-form, poor quality quickly to zero. Hence, cGP-no-proc will model the GP as a
MCGP | complex, poor quality ractable white process with high varianag?, and thus cannot handle
GAGP | tractable in some cases intractable . . .
uGP tractable by design closed-form the location uncertainty. On the other hand, in cGP where we

estimatery,oc, dproc absorbs part of location uncertainty (see
Fig. 5 (c)). Consequently, the part of the observationsrthadt

locations. In Section VI.D, we describe a resource allocati b€ explained througlry is reduced, leading to a reduction
problem, where communication rates are predicted at fut®edw With A. Due to this, cGP considers the measurements
locations using cGP and uGP, in the presence of locati6Anstitute a slowly varying process, therefdrencreases with
uncertainty during training. The numerical analysis eatri A- An interesting observation is that the error barsdpmlso

in this section is based on simulated channel measuremeRgease withA. Hence, among cGP-no-proc and cGP, only
according to the model outlined in Section III. cGP can reasonably deal with location uncertainty.

2) MCGP: The behavior is similar to that of cGP, i.e.,
Table I an increase inl,., and a decrease ifiy, when increasing\.
SIMULATION PARAMETERS However,oy decreases more quickly with when compared
[Parameter | Value | Parameter | Vaiie | to cGP. Th_ese effects can be attribgted to_t\{vo causes: first
- = - o of all, the mherent problem of drawing a finite number of
o 001 To 0 dBm samples as detailed at the end of Section V.AL; secondly,
d. 15m o 10 dB the fluctuations in the estimated path loss expongntith
increasing)\ (see Fig. 5 (d)). The error bars of the estimates
in this case are even higher than in cGP. As expected, MCGP
is not suitable for learning.
A. Simulation Setup 3) uGP: As mentioned before, in UGH,,.. is determined

A geographical regiomd is considered and a base statioﬁﬁ“ne' The UG_P m_odel has the_ capab|I|ty_ 0 absorp the
is placed at the origin. A one dimensional radio propag ycation uncertainty into the covariance function. Dueliis t
tion field is generated with sampling locations at a res exibility, it can handle higher values of and still maintain

lution of 0.25 m using an exponential covariance functiod” alm(_)st cor_lstamic and &y with Increase in\. For fair
9 , comparison with cGP, we also consider the case whgrg
Cret(xi,%5) = 0y eXpSHXZ— - x]-H/dC), corresponding to

o is estimated as part of the learning, referred to as uGP-proc

the Gudmundson model. Small-scale fading is assumed 1{%an be observed in Fig. 5 (c) that,o. increases with

have been averaged 8ufThe simulation parameters used - case imy. When comparing uGP-proc to uGP, we observe

pbtaln _the numer!cal results are given |n2TabIe Il. We assumeger value ofsy and higher values of, and Fproc fOT @

isotropic localization errors, so thal; = o7 1. To capture the icjjar value oft. From this, we conclude that uGP should

effect of heterogeneous location errors, we draw the Ionatlbe preferred over uGP-proc, as it can explain the obsenatio

error st_anidard deviations from an exponential distribytio, ;i smalleré,.. and leads to simpler optimization. Finally,

ie., o; "= Exp()), where ) is the average location errornote that the error bars of the UGP estimates are relatively

standard deviation. For cGP and MCGP, in order to not providenall when compared to cGP.

any unfair advantage to uGP, we use a covariance function

of the form (4) withp = 1, in order to match the true o ) )

covariance functior¢(x;, x;). For uGP, we use (31). SinceC- Prediction Under Location Uncertainty

uGP exhibits a mismatch in the covariance function, we dbsor Four cases can be considered, depending on whether train-

this mismatch inr,,;.c, which is learned offline (more on thising or testing inputs are i’ or /. We will focus on the case

in Appendix B). We assume nodes knaw and L,, which whereeither training or test locations are uncertain, but not

be inferred using standard methods [36], [39], [40], so théyoth. From these, the behavior when both training and gstin

are not included in the learning process. inputs are inl/ can be easily understood: only uGP can give
reasonable performance among cGP, MCGP, and uGP, as the

) . . estimates of) in cGP and MCGP are of poor quality.
B. Learning Under Location Uncertainty 1) Uncertain training locations and certain testing loca-

Fig. 5 depicts the impact of location uncertainty on thdons: In this caseu; € U/ andu, € X. Fig. 6 (a) depicts
learning of hyperparametefd., 0w, oproc,n] for cGP, uGP, the prediction results in terms of the predictive mean and

and MCGP. The learning of the hyperparameters is detailedAffdictive standard deviation (shown as shaded areas) for a
Appendix B. particular realization of the channel field. It can be obedrv

that uGP is able to predict the received power comparatively
8In the case small-scale fading is not averaged out, the pespsamework b?tter than cGP and MCGP. uGP IS able to estimate the U_nder'
cannot be applied. lying channel parameters better with the expected covegian
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Figure 5. Impact of location uncertainty on learning the dngarameters using cGP, uGP, and MCGP. The hyperparanaeteestimated for each value of
the mean location error standard deviation and for 40 r&#dizs of the channel field. Results shown are the mean dstiofidhe hyperparameters and error
bars with one standard deviation. Impact of location umdety in shown when estimating: (&), (b) 0w, (C) oproc, (d) 1.

function, which takes in to account the location uncertaoft 2) Certain training locations and uncertain testing loca-
the nodes. In turn, this means that uGP can track the fadiens: In this caseu; € X andu, € U (with a constant
variations in the channel. cGP tries to model the true famncti location error standard deviatiom m). Now the perfor-
with a slow varying process due to very high Furthermore, mance must be assessed with respect to the expected received
cGP has higher uncertainty in predictions due to high,. power Prx ave(us) = [ Prx (x4) p(x.) dx., wherep(x,) =

(see Fig. 5 (c)). On the other hand, MCGP has slightly bett&f(z., o> I), in which z, is the mean of distribution described
prediction performance (the standard deviation is not showby u.. An example is shown in Fig. 7 (a), depictif}x ave as

but is slightly smaller than for cGP) compared to cGP duefunction ofz,, as well as the predictions from cGP, MCGP,
to the averaging by drawing samples from the distribution @ind uGP. It can be observed that uGP and MCGP follow well
the uncertain training locations. Averaging the predit@oror Prx ave. Specifically, MCGP track$’rx ave quite closely as
over multiple channel realizations, Fig. 6 (b) shows the medt is near-optimal in this case. In contrast, cGP follows the
squared error (MSE) of the received power prediction of cGittual received power &, rather than the averaged power.
and uGP with respect ta (MCGP is not shown due to its This leads to fast variations in cGP, which are not present in
similar performance to cGP). uGP clearly outperforms cGFGP and MCGP. Fig. 7 (b) shows the MSE of the received
(except fod = 0) due to its better tracking of the true channgbower prediction of cGP, MCGP, and uGP with respect to
(see Fig. 6 (a)) despite uncertainty on the training locetio o when averaging the prediction error over multiple channel
The reason for higher MSE in the case o= 0 for uGP is realizations. As expected, MCGP has the lower MSE than
due to its kernel mismatch. uGP and cGP. However, uGP performs better than cGP for
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Figure 6. Performance comparison of cGP, MCGP, and uGP wramsrtain training and certain testing locations. Insgtréaeived power prediction using
uncertain training locations with average location errbt\o= 8 m and certain test locations for single realization of anttel field. The shaded area (grey
for cGP and blue for uGP) depicts point wise predictive melais pnd minus the predictive standard deviation, and (b) M8&ormance of cGP and uGP
as a function of average location error standard deviatioifthe MSE is averaged for each value ofand for 50 realizations of the channel field is shown
are the mean of the MSE and error bars with one standard evidthe MSE is calculated a% >, e (PR (X5) — Prx(x+))?, whereT is the set
of test locations andl7 | denotes its cardinality.

True func. with avg
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Figure 7. Performance comparison of cGP, MCGP, and uGP weattain training and uncertain testing locations. Insgtréaeived power prediction using
certain training and uncertain test locations with a cortskacation error standard deviation = 5 m for single realization of channel field, and (b) MSE
performance of cGP, MCGP and uGP as a function of constaatitor error standard deviatiom on test locations. The MSE is averaged for each value
of o and for 50 realizations of the channel field is shown are thanmaf the MSE and error bars with one standard deviation. TB&E NS calculated as
ﬁ > ou, e7u (PRX avg (0s) — Prx(u+))?, whereT® is the set of test location distributions afiffi*| denotes its cardinality.

all consideredo, excepte = 0 (due to kernel mismatch). whereSNR(x.) = Pk (x.)/W'n, is the signal-to-noise ratio
Furthermore, the performance of uGP is very close to that af locationx.., W' is the receiver thermal noise ai§% (x..)
MCGP. is the received power, both measured in linear scale. The

average rate in the regioA, denoted as’s!, is defined as

D. Resource Allocation Example

1
= / r (% )dx., (36)
1) Scenario:In this section, we compare cGP and uGP for Al Ja

a simple proactive resource allocation scenario. We censid . )

user moving through a regioA and predict the CQM at eachWhere|A| denotes area c_)f the regioh The predlctt_ed rate for
location. The supported rate, expressed in bits per charseel & USer at a future locatior.., based on the predicted CQM
(bpu), for a user at locatior, is defined as values(Prx (%), Vex(x.)), is defined as

r(x) = logy (1 + SNR(x.)), (35) (x4, @) = logy (1 + SNR(x., @), (37)
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where « > 0 is a confidence parameterlearn the underlying channel parameters properly; (iidjote
SNR(x.,a) = Pl(x,,a)/Wi" and Prx(x.,a) = the expected channel quality metric. By introducing a GP
10 logyo (PR (x4, @) = Prx (%) — @ (VRX(X*))% ) that operates directly on the location distribution, we fin_d
2) Performance measureThe user moves through theuncertain GP (UGP), which is able to both learn and predict
environment according to a known trajectory. The basecstatiin the presence of location uncertainties. This translates
allocates bits to each future location, proportionat (s, , ). better _performance when using uGP for predictive resource
When the user is at locatiox,, only a fraction of the allocation.
bits, proportional tanin(r(x., &), 7(x.)) would be delivered. Possible avenues of future research include validatiamgusi

Therefore, the effective rate (x,, o) for the user at location 'eéal measurements, modeling correlation of shadowing in
i the temporal dimension, study of better approximations for
X, IS pp

¢ ' learning with uncertain locations, and the extension tdhad-
% (%, @) = min(r(x., @), 7(x)). (38)  networks.

The average effective rat&ff (o) for a given confidence level
o is then computed by spatial average ift (x.,a) over APPENDIXA
region A as APPROXIMATION OF EXPECTEDMEAN FUNCTION
1 Let d; = ||x;|| and recall from random variable transforma-
4 (@) = W/A r(x.,a) dx. € [0,7%].  (39) tion theory that

When r(x,,a) > r(x.), a part of the allocated bits cannot /10g10(||xi||)p(xi)dxi = /logw(di)p(d,-)ddi. (41)
be delivered. The total fraction of undelivered bits oves th

environment is given by We assumep(x;) = N(z;,02 1), sop(d;) follows a Rician
distribution
S r(xe,0) = (x,, ) dx,
U(a) = €[0,1).  (40) d: 112 4 g2 M d
J 4 r(xs, @) dx, o G Nzl + lzilldi
A p(d;) P exp( 257 )IO( p ) d; >0, (42)

Hence,7ff (o) describes the rate that the user will receive _ - )

(penalizing under-estimation of the rate), wHilée) describes where Ij(.) is a modified Bessel func_tlon of zero-th ord(_ar.

the loss due to lost bits (penalizing over-estimating ofrite).  FOr l[zill/oi = 3, p(d:) can be approximated as a Gaussian
3) Predicted communication rates with uncertain traininglistribution

locations: We predict the CQM at known test locatiors < 1 (||2i]| — di)?

X, based on training with uncertain locations (considering PGauss(di) = /202 eXp(_ 202 ) (43)

A € {0,10} m), all within a one-dimensional regiod. The . ) ! ' i

average effective rate®ff (a) and the fraction of undelivered The integral (41) still does not have a closed form expressio

bits U(a), as a function ofa, are shown in Fig 8 (a)- With paauss(d;). Now approximating théog, ,(.) function with

. . J a
(b), respectively. As expected, increasingeads to a more @ Polynomial function of the formo(d;) = 3_;_ a; d; then
conservative allocation, thus reducing betf (o) andU(e).  (41) can be written as

For a specific value of;, increase im\ decreasesf («). This Foo
is due to the fact that with increase } the meanPyx (x.) /10g10(||xi||)P(Xi) dx; ~ / w(ds) paauss (di) dds,
is of poor quality and the variandé:x (x..) is high for CQM o (44)
predictions. which can be computed exactly.
It is evident that whem\ = 0, uGP and cGP attain similar
performance, both in terms offf () and U(«). When X is APPENDIX B
increased to 10 m, cGP suffers from a significant reduction in L EARNING PROCEDURE

effective ratef‘jf(a), while at the same time dropping up to
4.5 % of the bits. This is due to cGP’s poor predictions, whic
are either too low (leading to a reduction 7i‘1j{*(a)) or too
high (leading to an increase 0i(«)). In contrast, uGP, which
is able to track the channel well despite uncertain trainin
achieves a higher effective rate, especially for high camfiod
values (e.g., around 2 times higher rate for= 3, for U(«a)

In this appendix, we detail the learning of =
On, Oproc, de, Lo, m, ow] for cGP, uGP, and MCGP. We con-
sider nodes know,, and L, therefore they are not estimated
ﬁs part of the learning process. Let the remaining set of
yperparameters b = [opr0c, de, ow]| andn .

less than 0.1%). cGP
Based on Section lll, we can write the received measure-
VII. CONCLUSION mentsy with their corresponding training locationX in

Channel quality metrics can be predicted using spati@atrix form as
regression tools such as Gaussian processes (GP). We have
studied the impact of location uncertainties on GP and have
demonstrated that, when heterogeneous location undégtainwhere ¥ = [¥(x1),... ¥(xy)]T, n = [n1,...,nn]T, and
are present, the classical GP framework is unable to K). = —10[log;,(||x1]),.--,logo(|xn|)]T. Assuming the

y=1TLo+h.n+ ¥ +n, (45)
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Figure 8. Resource allocation example for cGP, and uGP withdifferent values of localization error standard dewiasi A € {0, 10} m) and for different
values of the confidence parameter The results are averaged for each value\afith 50 channel realizations. Inset (a) the effective naj%(a), and (b)
the fraction of undelivered bit&/(«).

measurements are uncorrelated, then the least squareatestiAgain,o?,, = 1/N Zf;l[‘ru]?, is the variance of the process.

of the path-loss exponent can be computed as As a resultgy becomesiy = o7, — 0 — 62, and due to
_ this 1(0) is now only a function ofl.. We solve (49) and find
- T 1.7 T - ¢
= (hche) " he (y—1"Lo). (46) d. by an exhaustive grid search.

Once the path-loss exponent is estimated, the mean comlN€ learning process can be simplified for uGP: singe.

ponent of the received measurements can be subtracted®3y captures kernel mismatch irrespective of the location
Y. =y — 1Ly — h. 7. Then, Y. becomes a zero-meancertainty and path loss, the valuedf;,. can be obtained off-

Gaussian process. Now the likelihood function (6) becomie With noise-free training locations by performing leag

1(0) = p(Yo|X,0) = N(Y;0,K). The hyperparamete as in the case of cGP, but with a covariance function of the
are estimated by minimizing negative logarithmi¢®) form (4) for p = 2. This approach gives an advantage to cGP
and thus makes the comparison between uGP and cGP more

6 = arg mein{f log(p(Y.|X,0)} fair for all values ofA > 0.
— ; T -1
= argmeln{log K|+7Y. K TC}. (47) MCGP
We calculate the variance of the proce¥s as o2, — It is no longer feasible to estimatg first and subtract

1/N fo\il[‘rc]?' The variance of the process should be ca;SQ make the process zero mean, because of summe_ltic_)n in
tured by the hyperparametess,o., o,,, andoy. We define the Monte Carlo integration (12). Therefore, we optimize
2 2 2 _ 2 as aresuli(#) becomes a function (13) with respect to the hyperparameteysand 6 using

Oproc = OTot — 9 — N . .
of only d. andoy. We solve (47) and find,. and &y by an fminsearch function of Matlab.

exhaustive grid search. Onde andéy are found, thedproc
~2 2 42 ACKNOWLEDGMENT

can be calculated a8},,. = 67, — 07 — 0.
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In this case, the path-loss exponent is estimated as
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