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We are all in the gutter, but some of us are looking at the stars.
- Oscar Wilde





Abstract

The main objective for digital image- and video camera systems is to repro-
duce a real-world scene in such a way that a high visual quality is obtained.
A crucial aspect in this regard is, naturally, the quality of the hardware
components of the camera device. There are, however, always some unde-
sired limitations imposed by the sensor of the camera. For example, the
dynamic range of light intensities that the sensor can capture in a given
image is much smaller than the dynamic range of common daylight scenes
and that of the human visual system. Thus, the scene content in certain re-
gions is not properly captured due to over- or underexposure of the sensor.
The dynamic range limitation is addressed by signal processing methods
that produce a high dynamic range representation of an original scene by
fusing information from a sequence of images. Digital cameras systems, in
addition to producing images of high visual quality, are increasingly being
used for automatic image analysis tasks, where a computer algorithm an-
alyzes the captured image data and outputs some extracted information.
Image analysis results also rely on the use of image data that represents the
relevant content of real-world scenes.

This thesis is concerned with the opportunities and challenges of high
dynamic range imaging, in the contexts of high quality image reconstruction
and motion analysis by optical flow estimation. A method is proposed that
produces a high dynamic range image and jointly enhances the spatial image
resolution by exploiting the fact that the input image sequence provides
complementary spatial information of the scene. Key characteristics of the
human visual system are taken into account in the problem formulation
in order to improve the perceived image quality. In addition, a method
is proposed for optical flow estimation in high dynamic range scenarios,
that benefits from using image sequences with differently exposed frames
as input. The produced motion information can be used in motion analysis
applications, including active safety systems in vehicles.

Keywords: high dynamic range, super-resolution, image reconstruction,
optical flow, motion analysis, inverse problem, human visual system, digital
camera system, multiple camera settings
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Introductory chapters





Chapter 1

Introduction

Prehistoric cave paintings are testament to the longstanding human fasci-
nation of making images of the world. The relatively modern technique
of photography, which has enabled us to record realistic looking images in
an instant, first saw light about 200 years ago. Earlier variants of cam-
eras date back much further, to ancient times. Nowadays, it is safe to say
that the technology has matured significantly, however much is expected
still in the development of the modern digital camera technology. For most
people, cameras are strongly associated with photography. Cameras are
used to take pictures with, of family and friends, vacation travels, beautiful
nature and much more. However, aside from producing visually pleasing
images, digital camera technology is increasingly being used for automatic
image analysis [1, 2]. Generally speaking, image analysis is about extract-
ing meaningful information from images. It has widespread everyday use
for tasks such as reading bar codes on the items in the local grocery store. A
current, hot application is motion analysis and tracking of vehicles in traffic
situations, which provides information to driver assistance and active safety
systems [3, 4]. Computerized image analysis is further included in medical
imaging systems [5, 6]. Thus, as in the case of medical imaging, the imag-
ing device is not necessarily a conventional camera. It can be any imaging
modality that has an array of sensor elements or in other ways can pro-
duce images from measuring physical quantities. The list of scientific and
industrial areas where digital image analysis is applied can be made long,
and include astronomy, geoscience, identification, machine vision, material
science, microscopy, remote sensing and robotics [1].

As the thesis title suggests, this work deals with image reconstruction,
which has to be defined in this context. Image reconstruction methods
attempt to retrieve information of the original real-world scene that has
been lost in the imaging process. When we, as human beings, observe a real-
world scene, an image is formed in our eyes. If the same scene is imaged
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Chapter 1. Introduction

by a camera, useful information is lost due to limitations of the camera
sensor. In other words, cameras are more restrictive than the human eye in
certain crucial aspects. To exemplify, most of us have probably experienced
the difficulty of taking good pictures in circumstances where there is bright
sunlight in combination with shadow areas, or of indoor environments with
a bright window. Such a scenario contains a wide range of light intensities,
or in other words, a high dynamic range. Whereas the human eye is capable
of seeing indoor and outdoor environments at the same time, an image taken
with a camera results in over- or underexposure of certain image regions, due
to the insufficient dynamic range of the camera sensor hardware. Currently,
so called high dynamic range (HDR) image capture is emerging as a new
functionality of consumer camera devices [7]. The aim is to capture a similar
range of light intensities to what the human eye is capable of. In order
to produce an HDR image, information from multiple differently exposed
images is combined [8, 9]. At least two images are used, one taken with
a short exposure duration and the other with a long exposure duration.
In overcoming the dynamic range limitation, reliable HDR functionality
should actually be seen as quite revolutionary for digital camera technology.
However, there are challenges, particularly for non-static scenarios. In order
to fuse multiple images robustly, the images first need to be aligned to
compensate for camera movement and possible movement within the image.
If the pose of an object has changed from one image to the next, that has
to be accounted for in order to avoid reconstruction artifacts in the fused
image.

A somewhat related field of research to HDR image reconstruction is
that of super-resolution (SR) image reconstruction [10–12], which is used in
order to enhance spatial resolution by utilizing multiple images. With the
market dominance of high-definition television HDTV (1920 × 1080) and
other high resolution displays, there is a clear application and potential for
SR to convert low resolution, low quality video (image sequence) to be pleas-
antly viewed on these devices. Both techniques, HDR and SR, attempt to
combine information from an image sequence of the same real-world scene,
in order to produce a single image of high visual quality. In particular, these
respective techniques may help to provide images with higher contrasts, ow-
ing to the increased dynamic range, and improved clarity of visible details,
thanks to a higher spatial resolution. The extension of these techniques
from producing a single output image to full video sequences is straightfor-
ward. A sliding window approach on the frames of the video sequence may
be used to enhance each frame separately. Thus, all the discussed methods
applied to reconstruct a still image could be used on video data, by simply
repeating the same method for each frame. The terms image as well as

2



video frame will be used interchangeably as seen appropriate. Furthermore,
input images to SR reconstruction are referred to as a low resolution (LR)
images, and the reconstructed image of enhanced resolution are referred to
as a high resolution (HR) image.

In the image reconstruction methods discussed throughout this thesis,
the aim is to acquire as much meaningful data about the original scene as
possible, or as necessary with respect to what a human can perceive. The
next step, if we consider a full camera system, is concerned with how to code
the raw data (all the observations of the scene), in order to visualize it on
a display device, or for storage. Image (and video) formats that are widely
used today are designed for the hardware that has been available over the
last several decades. That essentially means that, due to the relatively low
dynamic range (LDR) of both capture and display devices historically, mod-
eling of the human visual system (HVS), that serves as the basis for image
coding, is less mature for high dynamic range scenarios. HDR technology
was not around to influence standardization of these earlier formats, but
with HDR technology now becoming more common, so is work on HDR
coding for use in standardization [13]. SR techniques may also be subject
to future use in image coding. For example, it has been suggested for use
in image compression [12]. In addition, SR techniques are of interest for
displaying video sequences of a given resolution on a device with a higher
resolution, as an alternative to traditional, simpler interpolation. In terms
of hardware, having a small pixel size comes at the cost of increasing the
exposure duration [14], which can cause undesired effects such as motion
blur. Thus, under such circumstances, the size of the pixels could be kept
larger, while instead using SR to achieve the same total resolution. Custom
sensor equipment has been proposed to accommodate this [15].

This thesis further deals with optical flow estimation [2,3,16,17], an au-
tomatic image analysis task that produces low-level motion estimates that
describe apparent motion of each individual pixel element. Optical flow
(OF) estimation is automatic in the sense that no user intervention is re-
quired to produce the output. The produced motion information can for
instance be used to boost performance of image segmentation [18] or to
determine motion of specific higher-level objects, such as vehicles in traf-
fic scenarios for application to driver assistance systems [3, 19]. Another
application is to spatially align time-series of image data, for instance in
medical imaging [20]. Finally, the essential motion information used for im-
age alignment in SR methods is often obtained by OF estimation [21–24].
Thus, the research topics of this thesis clearly overlap. Furthermore, the
mathematical approaches used to solve both these problems share many
similarities. Optical flow is defined as the pattern of apparent motion that
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Chapter 1. Introduction

can be perceived by a given sensor, such as the eye. OF methods typically,
including in this thesis, use two or more images from a standard camera as
input to estimate flow. Each image pixel is assigned a vector that describes
the projected flow onto the 2D image plane of a corresponding real-world
point between the time-instances of two captured images. The quality of
the input images naturally impacts the result of the estimated flow. Thus,
in HDR scenarios, the limited dynamic range of camera sensors can be an
issue for the performance of OF methods, just as it is for the case of high
quality image reconstruction.

1.1 Aim of the thesis

Two main topics are discussed in this work. They are both separate and
at the same time interlinked. The first topic of the thesis addresses the
following question. Given a set of related images of the same real-world
scene, how can the information in the respective images best be utilized
in order to produce one enhanced image representation that is perceived
to have a high resemblance with reality? This requires highlighting the
impact of the human visual system in the problem formulation. The second
topic revolves around using high quality image data as input to motion
estimation by optical flow techniques. While this topic enters into the first,
it is pursued mainly for its own purposes. Specifically, the thesis aims to

I Present a unified survey of image reconstruction methods based on
multiple input images, as well as of optical flow estimation for motion
analysis applications, and as a part of image reconstruction meth-
ods. This provides a broad view of the research areas, in which the
contributions of the included papers are placed.

II Propose a method for joint image reconstruction of high resolution,
high dynamic range images that is influenced by important character-
istics of human visual perception.

III Propose a method for optical flow estimation in HDR scenarios that
is based on using image sequences with differently exposed frames.

1.2 Thesis outline

This thesis is divided into two parts. In Part I, the research areas of image
reconstruction and OF estimation based on multiple images are discussed,
providing a background for the three papers that are appended in Part II of
the thesis. Particularly, a selection of work which is relevant to the proposed
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1.2. Thesis outline

methods of joint SR and HDR image reconstruction (Chapter 4, Paper 1)
and OF estimation for HDR scenarios (Chapter 6, Papers 2 and 3) is dis-
cussed. The chapters on the proposed methods are relatively short, with
the details instead available in the respective papers. In Chapter 2, an in-
troduction to digital camera systems is given, including relations to relevant
aspects of human visual perception. The mathematical image acquisition
model for the camera that is used throughout the thesis is also presented
therein. Chapter 3 treats reconstruction of high dynamic range images from
differently exposed LDR input images (Section 3.2) as well as reconstruction
of images with enhanced spatial resolution by the use of a super-resolution
method (Section 3.3). In Chapter 4, SR of HDR image sequences is dis-
cussed, and a method is proposed that takes perceptual characteristics of
human vision into account in the mathematical formulation. The method
thus improves over previous work on joint SR, HDR reconstruction where
the problem is formulated in an unsuitable image domain and no regard is
taken to human perception. In Chapter 5, image-based motion estimation
is discussed, particularly focusing on OF methods. In Chapter 6, the OF
estimation problem is extended to image sequences with differently exposed
frames, and a solution method is proposed. A summary of the included
papers (in Part II) is given in Chapter 7, and concluding remarks are given
in Chapter 8.
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Chapter 2

Human vision and digital camera
systems

Digital camera systems technology is in many aspects designed to mimic
the visual system of its developer and user, the human. The use of cameras
is primarily to capture still images or video for digital reproduction of real-
world scenes. A more recent, alternative application is (automatic) image
analysis, which has developed along with increasingly abundant computer
processing power. To reproduce an image of a natural scene, the entire
digital camera system must be considered, from the characteristics of the
scene itself to the final step, the human observer. An overview of a general
digital camera system is depicted in Figure 2.1. To the left of the figure

Figure 2.1: A digital camera system. Data of an original scene is captured
with a camera, coded with some algorithm and visualized on a display
device. The goal is typically that the produced image should be perceptually
similar to directly observing the scene.

is a real-world scene, which may be observed either directly by a human
observer, or on a display device as an image which has been captured and
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Chapter 2. Human vision and digital camera systems

processed digitally. The intermediate steps, divided into three steps here,
impact the characteristics of the output image. First, there is the camera,
the acquisition device which collects data from the scene. Secondly, the
captured data is coded suitably (in the camera itself or in a computer),
such that it retains the essential information of the scene, and outputs that
data to the third and final step, the display device, in a suitable format.
In summary, the typical objective of the system in Figure 2.1 is to enable
to visualize, on some display device, a high quality image of the original
scene. For image analysis applications, however, the objective for the digital
camera system differs. The physical data from the camera sensor should
then be utilized to perform a certain task, for instance the task of segmenting
a specific class of objects. Thus, the code part differs and so does the
visualization step, which may consist of highlighting segmented objects. In
general, there are numerous automated image analysis applications where
the image data should not be visualized at all, but instead be used to trigger
some action based on a detected event. For example, motion information
analysis of a traffic scenario may be used in a vehicle to issue a warning to
the driver or to perform an intervention such as automatic braking.

A scene to be imaged is perceived as it is due to the light reflectance
properties of its contained objects. An incident spectrum of light from the
scene passes the lens of an eye or a camera and is registered by the cone
cells in the retina of the eye or the pixel elements of the camera sensor re-
spectively, producing a visual sensation or an image. The spectral response
of the sensor determines what fraction, as a function of wavelength, of the
incoming light that is registered. In mathematical terms, the registered
light is the inner product of the incident light spectrum and the spectral
response of the sensor. Thus, a scalar output value is produced, that may
or may not be in the operational range of the sensor [25]. In the case of the
camera, these scalar outputs from each pixel element is the raw data, for a
given image, that is available for image coding.

An important question that arises related to the digital camera system
is: how is image quality assessed? The question can be posed in the con-
text of comparing an image to the underlying real-world scene, and in that
case, first of all, relates to the acquisition of data. The captured image data
should have a sufficient dynamic range, and it should provide a high spatial
resolution with crisp (not blurred) image content, in order to be of high
visual quality. Quality assessment can also be framed as comparing a de-
graded image (as a general example, this could for instance be a compressed
image) to an original image. This has to do with how the specific available
image data is coded, in order to maintain fidelity of colors, contrasts and
to provide a natural looking images. The image coding aspects, of course,
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2.1. Key concepts in digital image processing

are equally important for the case of quality assessment with regard to the
underlying scene. Some objective image quality measures, that are used at
later stages of this thesis, are presented in Section 2.1.4.

The motivation for this work essentially stems from the limitations im-
posed by the sensor of the camera, in terms of dynamic range of registered
light, as well as spatial resolution, two concepts that are discussed in upcom-
ing sections of this chapter. By using the camera in Figure 2.1 to capture
multiple images of the scene, the total information acquired enables to pro-
duce and display an image that is free from over- and underexposure, and
has a high spatial resolution, properties that are both crucial for a high
perceived visual quality. For motion estimation, the more critical of the
two discussed camera sensor limitations is the insufficient dynamic range.
Thus, using multiple differently exposed images enables to estimate motion
in areas that would otherwise be too poorly exposed. Before presenting
a mathematical model for the camera, some key concepts in digital im-
age processing and how they relate to the different parts in Figure 2.1 are
discussed.

2.1 Key concepts in digital image processing

2.1.1 Dynamic range

For some arbitrary positive quantity Q, the dynamic range is defined as the
ratio of the largest and smallest value that the quantity can take, that is

DR(Q) = Qmax/Qmin. (2.1)

For analogue signals that contain noise, this definition is too vague. Thus,
consider a signal Q that is the input signal to a sensor, with the logarithm
of Q plotted against the (normalized) output in Figure 2.2. At low signal
levels, the signal is drowned in electrical noise. At some level, denoted Qmin,
the signal becomes statistically distinguishable from the noise. Similarly, at
signal levels above Qmax, the signal saturates the sensor. These definitions
are thus used in (2.1). If Q is quantized, Qmin and Qmax are fixed as the
lowest and highest quantization levels.

The dynamic range of an image of a real-world scene refers to the light,
in the unit of illuminance1, that is incident on each individual sensor pixel
element,

X =

∫ ∞
−∞

S(λ)V (λ)dλ, (2.2)

1If V (λ) is the luminous efficacy curve, X is a photometric illuminance value. In
this thesis, however, the term illuminance is used for X as long as V (λ) approximately
mimics the human perception.
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Figure 2.2: The input-output relationship for a signal Q to a sensor.

where S(λ) is the incident light spectrum, as a function of the wavelength
λ, on the surface of the sensor element and V (λ) is the spectral response of
the sensor element, specifically of its color filter layer. Let X be an image
which consists of the illuminance values, given as in (2.2), of all pixels of
the camera sensor. Then, the dynamic range of a given, pixelated scene is
DR(X) = max(X)/min(X).

As such, a general image X has no dynamic range restrictions. However,
for an image generated from a single camera exposure, things are different.
Depending on the brightness level of the scene, the camera sensor is exposed
for an appropriate duration ∆t. Thus, the sensor exposure is

E =

∫ t0+∆t

t0

X(t)dt. (2.3)

For the mathematical modeling of the camera, however, it is assumed that
X(t) is constant over the time interval of the exposure, thus E = ∆tX. A
camera sensor element has a fixed interval [Emin, Emax] of absolute exposure
values that provides a signal-to-noise ratio (SNR) that is deemed to be
satisfactory (a design choice). The dynamic range of the camera sensor
is then DR(E) = Emax/Emin. Unfortunately, this sensor dynamic range
is often lower than that of real-world scenes, which causes the sensor to
be either over- or underexposed. However, by varying ∆t between different
images (or alternatively, varying the aperture setting), diverse scene content
in terms of illuminance values can be captured, and the information fused
into one HDR image X.
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Direct sunlight corresponds to an illuminance in the order of 105 Lux,
while a clear night sky is on the order of 10−3 Lux [26]. These conditions are
naturally never experienced simultaneously. However, common real-world
scenes, such as an indoor scene with a sunlit window, or a daytime outdoor
environment containing shadow areas, have a dynamic range that often
greatly exceeds that of the camera sensor of professional cameras. Table 2.1
presents an illustrative example of the dynamic range for the different parts
of the digital camera system portrayed in Figure 2.1. A scene may, not
uncommonly, contain a dynamic range of about 105, which is about the
level that the HVS can perceive at a given adaptation level. The HVS is
able to adapt to illuminance differences up to ten orders of magnitude, under
varying conditions. A camera typically only captures a dynamic range on
the order of 103 in each image. In the field of photography, the dynamic
range of a camera is typically expressed in the base-2 logarithm, as the
number of Stops = log2(DR), in the unit Exposure Value (EV).

Dynamic Range Stops
Original real-world scene 105 16.6
Camera (acquisition device) 103 9.97
LCD monitor (display device) 103 9.97
Human visual system (observer) 105 16.6

Table 2.1: An example with representative dynamic range values, where the
real-world scene has a high dynamic range.

Typically, to visualize HDR content on a display device, such as an
LCD monitor, a dynamic range restriction is presented yet again, due to
that display devices have a low dynamic range. This issue is, however,
practically overcome by tonemapping (see Section 3.2.1) the HDR image
information to an LDR image in such a way that it, to the HVS, is perceived
similarly as the original image that it was created from [13]. The contrasts
are particularly decreased at distinct image edges, a change that is less
noticeable to the HVS than compressing contrasts within textured areas.
After tonemapping, the image is coded (and possibly stored) in a general
device independent LDR image format, that can be visualized on a display
using its LDR intensity interval. The raw HDR image can be retained in a
specific HDR format.

2.1.2 Spatial resolution

In a digital camera, a scene is imaged by a sensor that consists of a discrete
set of pixel elements in a planar array. The number of pixels horizontally
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times the number of pixels vertically is the pixel resolution of the sensor.
This typically exceeds the pixel resolution of digital display devices, which
then determines the spatial resolution of the full system in terms of pixels
per inch (PPI). If a digital image is to be printed on a paper, the dots
per inch (DPI), a term related to but with a slightly different meaning than
PPI, should be relatively high to obtain a high quality of a print of relatively
large size. Thus, for that purpose, a high pixel resolution of the image is
required.

The term spatial resolution refers to pixels per unit length. However, it is
also often used, in a non-strict manner, as a term for the pixel resolution of a
digital image, and in doing so effectively gives a distinction from the related
temporal resolution of video frames. To emphasize the spatial dimension,
spatial resolution is used with its wider meaning throughout this thesis.

For a fixed size of the sensor chip, the natural way to increase the pixel
resolution is to reduce the size of the pixel elements. However, reducing
the size of a pixel also reduces its light sensitivity. Thus, in order to reach
the same SNR in the sensor element, the exposure duration ∆t needs to be
increased [14]. That is, there is a tradeoff between two desired properties.
An increase in the pixel resolution gives a requirement for a longer exposure
duration, which reduces the temporal resolution that is essential for video
capture, and makes images more susceptible to motion blur. Additionally,
to manufacture sensors with smaller pixel elements comes with a higher
cost. Generally speaking, increasing the size of the image sensor helps to
improve image quality. Even so, enlarging the sensor size is not feasible for
devices that are required to be compact. The above tradeoff, as well as the
cost benefit, serves as a motivation for super-resolution techniques to be
used.

2.1.3 Color properties of camera sensors

The standard digital camera is equipped with a so called Bayer filter, which
is an array of color filters, on top of its sensor elements. Only the light
that passes through the filter is converted to electrical signals in the sensor
elements. Figure 2.3 shows the mosaic pattern of the Bayer filter on top of
the sensor elements, displayed in grey.

The color filter elements are designed so that they roughly match the
average human eye [25]. Thus, red, green and blue (RGB) color primaries
are used, although their spectral responses may differ between different
vendors (thus, there are numerous RGB color spaces). The HVS similarly
has three types of cone cells, and like the Bayer filter has a better spatial
resolution for brightness than for color perception. The signal at each sensor
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Figure 2.3: The color filter array of the Bayer pattern.

element, that was presented in (2.2), can now be specificed further as

Xc =

∫ ∞
−∞

S(λ)V c(λ)dλ, (2.4)

where V c(λ) is the spectral response for either of the red, green or blue
filters, c = {r, g, b}, in the Bayer pattern. Each pixel only has informa-
tion about one of these color channels. To obtain values for the two miss-
ing color components, an interpolation process called demosaicing is per-
formed [27]. The demosaicing could alternatively be formulated within the
super-resolution framework, as discussed by Farsiu et al. in [28]. Com-
monly, however, the SR reconstruction is performed on demosaiced images.
Thus, the color filter process, which registers different color spectra for the
same scene content depending on how the images are shifted relative to each
other, is not modeled. This is the approach taken in this thesis. Greyscale
images, sometimes used for experimental simulations, are given as a function
of the r,g,b-values of demosaiced images.

2.1.4 Image quality measures

Image quality assessment is a delicate matter, much due to the perception of
the HVS. Proposed objective quality measures are thus tested and assessed
for how well they correlate with quality scores from extensive subjective
test procedures on human subjects [29]. Even for the use of more estab-
lished objective quality measures, the evaluated images should be presented
alongside to enable visual inspection.

Objective image quality measures can be categorized in the two classes of
reference quality measures and no-reference quality measures. The former,
where an image of interest is assessed with relation to a second image, a ref-
erence image, is (by far) the most common. No-reference quality assessment
is only practically applicable for the case where the type of degradation is
known, for instance a JPEG compressed image could be assessed without
the uncompressed original at hand. Other criteria for no-reference quality
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assessment could be to estimate the sharpness of an image, or the propor-
tion of saturated image areas. No-reference image measures can be used to
determine the respective weights when fusing multiple images by weighted
average, for example in order to give saturated image areas less weight.

For the case of reference image quality assessment, the mean structural
similarity (MSSIM) index provides relatively reliable results [29]. Unlike the
peak signal-to-noise ratio (PSNR), which is useful in many applications of
signal processing, but at best provides a crude benchmark for image process-
ing, the MSSIM method compares image structure rather than individual
pixels by themselves. In fact, the MSSIM is a product of a mean intensity
comparison (for image blocks), a constrast comparison and a structure com-
parison. For more details on MSSIM (and its superiority to PSNR), refer
to the original paper by Wang et al. [29]. MSSIM, and several other qual-
ity measures, treats each color channel individually, and thus says nothing
about the quality of how colors are perceived. Color fidelity, instead, relies
on the use of a proper color space.

2.2 The human visual system

So far, an image has mainly been referred to as a discrete set of pixel values
in the illuminance domain. However, digital images are typically stored or
processed in standardized pixel value domains, image formats, of a relatively
low bit depth. This raises the question of how these digital images related
to the discussed illuminance images. The answer to that stems from the
properties of the Human Visual System, some of which are discussed here.

To begin with, the human visible spectrum is, roughly, light of wave-
lengths λ ∈ [380, 700] nm. Furthermore, the spectral sensitivity of the eye
differs depending on the wavelength within the visible spectrum, as a conse-
quence of the composition and properties of the three different types of cone
receptor cells (responsible for daytime vision) in the eyes [25]. In combi-
nation, the spectral responses of each cone type determine both how colors
are perceived as well as perceived brightness. If vision is considered as a
greyscale phenomena, which is conceptually simpler, the luminous efficacy
curve describes what fraction of light at each wavelength that contributes
to greyscale illuminance.

The registered illuminance is in turn interpreted by the brain in a highly
nonlinear manner. Perceived brightness as a function of illuminance is ap-
proximately logarithmic, although more accurate models are used in prac-
tice. The key feature is that the eye is more sensitive to differences in
illuminance at low levels than at high absolute illuminance levels [25]. To
accommodate this feature, the exposure (2.3) of a camera image (propor-
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tional to the illuminance) is gamma compressed by a nonlinear concave
function before it is quantized to a lower bit depth. This is the case, for
example, in standard 8-bit LDR formats. The visual sensation is addition-
ally influenced by the brightness of the area surrounding a viewed object
on different scales, both by the immediate surround but also by the overall
brightness level of the background [13].

As for color vision, different light spectra can produce the same per-
ceived color. Furthermore, the same visual sensation can be expressed us-
ing different sets of three basis functions, referred to as color primaries.
In color science [30, 31], several subjective terms are defined and objecti-
fied as standardized units, in order to quantify effects of image processing.
To exemplify, some color spaces aim to define a basis of color primaries in
which color, as perceived by the HVS, is uniformly distributed, some aim
to orthogonalize perceived brightness on the one hand and color sensation
on the remaining two basis functions. The property of color uniformity are
not well fulfilled by r,g,b-spaces (among other), which may lead to a loss of
color fidelity as a result of image processing in the r,g,b-space.

2.2.1 Perceptual uniformity in HDR imaging

In the traditional LDR case, image processing is performed in various per-
ceptually uniform image domains. For example, gamma compressed r,g,b
spaces (often denoted r’,g’,b’) are approximately perceptually uniform with
respect to brightness, although no special care has been taken to assure
color fidelity is maintained when manipulating the image in that domain.
For the L*a*b* color space, the L*-component is essentially the cube root
of the greyscale illuminance (which is in turn a linear function of the r,g,b-
values), and thus an approximation for subjective brightness, sometimes
denoted Lightness. The a* and b* components are so called color opponent
dimensions, that express the color sensation in a way which is perceptually
orthogonal to the lightness dimension. Conventional color spaces such as
L*a*b* are however not directly applicable to HDR data, because they are
typically designed based on modeling of the HVS for a lower dynamic range.
Thus, the modern HDR capabilities should serve as a motivation to advance
new HDR formats.

As far as this thesis is concerned, the proposed joint SR and HDR im-
age reconstruction method in Chapter 4 addresses the nonlinear relation of
illuminance to perceived visual brightness. This is the property that will
otherwise cause the most severe reconstruction artifacts, should it not be
considered, due to that small reconstruction errors in terms of illuminance
have a large perceptual impact in dim image areas. Hence forth, any image
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domain that attempts to approximate the nonlinear behavior of the HVS,
in particular the nonlinear response of perceived brightness as a function of
illuminance, will be denoted a Perceptually Uniform (PU) domain. Objec-
tive quality measures, such as the ones discussed in Section 2.1.4, should be
applied in a PU domain [32].

2.3 Camera model

This section presents a mathematical model of a digital camera, which is
later used to derive formulations of image reconstruction algorithms, in-
cluding motion compensation through spatial alignment. The images that
the camera delivers are used as input to methods that aim to enhance their
dynamic range, spatial resolution, or both. Throughout the thesis we use
simplified variants of the camera model, which is formulated to be suffi-
ciently general to encompass all treated problems. For motion estimation
between pairs of similarly exposed images, including conventional OF meth-
ods, no camera model is typically specified. However, we revisit the camera
model and its use for optical flow estimation on image sequences with dif-
ferently exposed frames in Chapter 6. Consider a sequence of high quality
digital images, {Xk}, k = 1, . . . , K, each of size (resolution)M×N , that are
in the greyscale illuminance domain (the extension to color images is simply
to consider each color channel separately). These images are merely a mod-
eling construction, representing undegraded versions of the actual available
images, {Ik}, k = 1, . . . , K, as depicted in Figure 2.4. The Ik images are
observations of the Xk images, according to the camera model introduced
shortly in this section. Both Ik and Xk are images, of different quality, of
an underlying real-world scene.

Because images are assumed to be taken in a sequence, for instance with
a single hand-held camera, the Xk will generally differ, both due to camera
movement and due to motion within the scene. To express the relation
between the Xk, let Xr denote a reference image, that should later be
reconstructed from {Ik}. Assuming brightness constancy of scene objects,
let the other images be related to the reference according to

Xk(i, j) = Xr(i+ Ukr(i, j), j + Vkr(i, j)) (2.5)

where (i, j) is the pixel location in the image array and Ukr(i, j) and Vkr(i, j)
denote respectively the horizontal and vertical components of the displace-
ment field

Ukr(i, j) , (Ukr(i, j), Vkr(i, j)), (2.6)

that describes the (local) motion of each pixel in image k to its position in
the reference image. Notice that (2.5) only holds for pixels (i, j) that are
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Figure 2.4: An example of K = 5 observed images Ik, that could be used
to reconstruct a reference image Xr of, for example, a higher resolution or
a higher dynamic range, or to estimate the motion of each pixel in Xr.

non-occluded in Xr, such that a motion vector exists. Since pixel indexes are
integer numbers, the displacements, with this formulation, are limited to be
integer numbers as well. As an alternative, matrix-vector representation is
often used to represent images and image operations. Using xk = vec(Xk),
of size (MN)× 1 , n× 1, equation (2.5) is re-expressed as

xk = T{Ukr}xr, (2.7)

where T{Ukr} is a matrix of size n× n, parameterized by the M ×N × 2
displacements Ukr, that relate xk and xr through a warping operation [33].
The matrix-vector representation is only notation used for analysis, the im-
plementation is realized by image processing operations that for instance
allow non-integer pixel displacements in T{Ukr} to be evaluated using in-
terpolation [12,23].

The camera model that provides observations ik = vec(Ik), of size
(n/L2)× 1, is

ik = f(∆tkDC{Hk}xk + nk) + qk. k = 1, . . . , K (2.8)

For each of the multiple observations, C{Hk} of size n × n represents 2-
dimensional (2D) convolution on the vectorized HR image xk with the con-
volution kernel Hk of support H1 × H2. Different assumptions are made
for Hk, with respect to what it models and what its parametrization is, de-
pending on the reconstruction method employed, as discussed further in the
next couple of sections. The downsampling matrix D, of size (n/L2) × n,
decimates the spatial resolution a factor L in the x- and y-direction, and
∆tk is the exposure duration. The noise in the camera sensor is modeled by
nk and quantization noise is represented by qk, both are of size (n/L2)× 1.
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The exposure on the camera sensor is ek = ∆tkDC{Hk}xk + nk. For
each pixel i ∈ {1, . . . , n/L2}, the exposure [ek]i is mapped by the pixelwise,
nonlinear Camera Response Function (CRF),

f(E) =


0 , E ≤ Emin

fop(E) , Emin ≤ E ≤ Emax

1 , E ≥ Emax

, (2.9)

where fop is a concave mapping to quantized 8-bit pixel values, I ∈ {0, . . . , 1},
in the PU (LDR) image domain of ik. The CRF has an operational range of
exposure values, [Emin, Emax], which does not cause over- or underexposure.
Exposure values outside of this interval are clipped by the CRF and cannot
be recovered (from that single image). This is what causes the observed
images to be of low dynamic range. For example, [Emin, Emax] = [0.01, 10]
gives a sensor dynamic range of 103, as in the fictive example of Table 2.1.
The CRF is made up of several nonlinear components of the physical cam-
era capture process [25]. On top of that, it is adjusted in the design process
to achieve the purpose of mapping the sensor exposure data to a PU output
domain. For simulation purposes, fop(E) in the CRF may be modeled as a
parametric function, for example

fop(E) =
( E − Emin
Emax − Emin

)γLDR
, (2.10)

where the choice of γLDR = 1/2.2 is the same exponent as often used for
gamma correction applications [34, 35]. This description of fop(E) helps
to contextualize the design of a similar concave mapping to a PU domain
in the HDR scenario, for instance to be used in the formulation of image
reconstruction methods, as is discussed in Chapter 4.

Quantization of the input signal takes place twice. First, the Analog-to-
Digital (A/D) converter digitizes the exposure data to a relatively high bit
depth, typically 12-14 bits [25]. This effect takes place before the CRF, and
is thus taken to be part of nk. Then, after the mapping by f(·), the image
is quantized to the 28 uniformly spaced quantization levels. In a device
independent interpretation, the quantization levels are commonly referred
to as pixel values in the (integer) set {0, . . . , 255}.

In summary, the observed images ik, generated by (2.8), are related to xr
due to (2.7). An overview of the generative process is shown in Figure 2.5. A
spectrum of light from an original scene is incident on a pixel grid, included
in the figure to stress that no attempt is made to include demosaicing,
discussed in Section 2.1.3, in the model. Then, the image xr, which is
presently considered as a single channel greyscale image but could contain
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Figure 2.5: The generative camera model.

(demosaiced) r,g,b information, may be warped, blurred and downsampled,
as decided by the scenario of interest to model. The exposure image is then
mapped by the CRF and finally quantized to produce ik.

In the following chapters, image sets {ik} are used to reconstruct images
of increased dynamic range (Section 3.2), spatial resolution (Section 3.3) and
of both increased dynamic range and spatial resolution jointly (Chapter 4).
Ultimately, the ambition is to reconstruct (estimate) a HR, HDR image xr,
but the more restrictive reconstruction methods are treated along the way.
To conclude this chapter, we comment briefly on the the role of the camera
model for automatic image analysis and provide some basics on spatial as
well as photometric image alignment that are both re-occurring parts of the
presented algorithms throughout the thesis.

2.3.1 Automatic image analysis

As opposed to the case of image visualization, processing or reconstruc-
tion, human perception is not necessarily central to image analysis. Thus,
how the exposure data is coded by fop in (2.9) is of lesser consequence.
Furthermore, downsampling and blurring by D and C{Hk} are specifically
included in the camera model for image reconstruction purposes and have
no use here.

For image analysis purposes, the main point is to give a high weight to
physical data with high SNR, excluding human perception. In relation to
that, there is a possible, slight shortcoming in the fact that input images to
most image analysis methods are taken directly in the pixel value domain
without specifying a camera model, when the raw physical data may be
more suitable. The issue of saturated image data, naturally, persists in
the area of image analysis. If the sensor exposure on a pixel element falls
outside of the operational range, [Emin, Emax], the information associated
with it cannot be recovered from that image, which can have a negative
impact on the performance of image analysis tasks. In a HDR scenario, to
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avoid this from happening, multiple images with varying ∆tk can be taken
such that their combined dynamic range exceeds that of the imaged scene.

2.3.2 Spatial image alignment

To describe spatial alignment, consider a pair of two images. Each pixel (i, j)
in the first image has a corresponding location in the second image, that
differs if the pixel has moved. Spatial alignment is performed by shifting the
pixel values of each pixel of the second image back to original location in the
first image, an operation called warping. The relation in (2.7) constitutes
a backward warping T{Ukr}xr of the reference image data xr to the pixel
grid of xk. The warped image xWarped

r = T{Ukr}xr is equal to xk under
the established assumption of brightness constancy. Forward warping, on
the contrary, is used for the case where the motion vectors that relate a
pair of images are parameterized with respect to the pixel locations of the
reference image. In other words, forward warping, T{Urk}xk, is based
on evaluating Xk(i + Urk(i, j), j + Vrk(i, j)) where (i, j) are coordinates of
the reference image. For non-integer displacements, warping necessarily
includes interpolation to evaluate non-integer pixel locations.

A condition which is important to spatial alignment of image data is
forward-backward consistency which holds if

Urk(i, j) + Urk(i+ Ukr(i, j), Vkr(i, j)) = 0. (2.11)

In terms of the matrix-vector notation, T{Urk}T{Ukr} = Id, where Id
is the Identity matrix, holds for consistent points. In practice (for non-
static scenarios), there are always points that violate this condition, due to
occlusion or moving outside of the imaged area. For estimation of displace-
ment fields, a forward-backward consistency check can be useful to detect
occluded image areas and discard erroneous estimates at such locations. For
image reconstruction purposes, consider the expression
xk = T{Ukr}xr, that tells the corresponding location of each point xk(i, j)
in xr. A set of points in xk are not visible in xr due to being occluded there.
Observations xk(i, j) of such points (i, j) are thus useless in trying to add
information to xr. From the opposite perspective of the reference image,
there is a set of points that are visible in xr but occluded in xk. Information
from these points would be useful for reconstructing a high quality image
xr but unfortunately it does not exist in xk.

Finally, to contrast with spatial image alignment, image registration is
a widely used concept and a research area in itself for alignment using the
best fit of a given global motion model [36,37].
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2.3.3 Photometric image alignment

A set of images are photometrically aligned if the the pixel values of each
image ik represent intensities on a shared photometric scale. For example,
photometric alignment of a set of images taken according to the camera
model (2.8) with different exposure durations is achieved by mapping the ik
images with the approximate inverse of the CRF, denoted by g(·) (' f−1(·),
barring quantization and saturation effects in f(·)), and dividing the result-
ing exposure values with their respective exposure durations to retrieve the
(estimated) illuminance values. If the raw exposure data is available for
each image, photometric alignment is achieved directly by dividing with
the exposure durations.
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Chapter 3

Image reconstruction problems

In this chapter, the separate topics of high dynamic range image reconstruc-
tion (Section 3.2) and super-resolution image reconstruction (Section 3.3)
are presented. These tasks are then treated jointly in Chapter 4. First, some
theoretical concepts that are at the core of image reconstruction methods,
as well as of OF methods, are introduced in Section 3.1.

3.1 Robust norms, regularization and learned
statistics

Common to all the image reconstruction methods and optical flow methods
treated in this thesis is that they solve an inverse problem, in other words, a
problem where the objective is to estimate a set of parameters that describe
the process of producing the observed data. For an inverse problem in linear
form, the task is to estimate the variable x, given observed data

b = Ax + n, (3.1)

where A is a system matrix and n is a noise term. In the general case,
A contains uncertain parameters. In the SR case, the uncertainty in A
is due to incorrectly estimated blur or motion parameters. If A is deter-
ministic and known, and the elements of n are independent and identically
distributed zero mean Gaussian variables, the estimate x̂ that minimizes
the mean squared error ‖Ax̂−b‖2, the maximum likelihood (ML) estimate
in a statistical sense, is

x̂ = A†b, (3.2)

where A† denotes the pseudo-inverse. Formulated as a minimization prob-
lem, the minimizer of ‖Ax−b‖2 with respect to x provides the best estimate
under the criteria of minimizing the mean squared error (or equivalently the
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Chapter 3. Image reconstruction problems

PSNR). In the SR literature, alternative norms and norm-like distance func-
tions have been proposed due to the actual noise distribution, and to errors
in the system matrix. Farsiu et al. show that, even when the noise term is
Gaussian, minimizing the L1 norm of the residual Ax−b rather than the L2
norm gives better estimation results due to the uncertainty in the blur and
motion parameters of A [38,39]. The robust Lorentzian norm (not really a
norm since it violates the triangle inequality) is adopted in our work on SR
reconstruction, as an improvement over using the L1 or L2 norms [40,41].

Super-resolution reconstruction is often imprecisely referred to as an ill-
posed problem (in the sense of Hadamard). In more detail, depending on
the relation between the downsampling factor and the number of available
LR images, estimating the HR image often corresponds to solving an un-
derdetermined system of linear equations, which implies that the problem
is ill-posed. If the system matrix of the inverse SR problem is a square
or a tall matrix and has full rank, the problem is no longer ill-posed, but
it is still often severely ill-conditioned due to the blur and downsampling
operators. In the case of an underdetermined problem, regularization of the
problem is needed in order for it to have a unique solution. Regularization
is achieved by adding additional equations that enforce a certain condition
on the solution. Thus, the original objective, to minimize ‖Ax − b‖, is
altered to

x̂ = arg min
x
‖Ax− b‖2

2 + λρ(x). (3.3)

The new, regularized problem consists of a data term ‖Ax − b‖2
2 and a

regularization term ρ with weight λ. For certain applications, a good choice
for the regularization term is ρ(x) = ‖x‖. Then, the resulting estimate

x̂ = arg min
x

∥∥∥∥ [Ax− b√
λx

] ∥∥∥∥2

2

(3.4)

is the minimum-norm solution among the set of solutions to the original
underdetermined problem. Such a regularization term, however, is not suit-
able for image reconstruction methods, as the zero solution (or constant
solution, if the image data representation is shifted to be symmetric about
zero) typically does not represent a reasonable prior for images. On the con-
trary, regularization terms for image reconstruction are commonly based on
the observation that images are typically piecewise smooth, consisting of a
set of objects with relatively constant intensities. Due to that, the regular-
ization term should penalize differences in image intensity between nearby
pixels on the same imaged object. For SR, being an ill-conditioned problem,
a regularization term is typically warranted even if sufficient LR images are
available, in order to make the inverse problem more robust to noise (an
exception being the case where a very large number of LR images are used).
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3.2. HDR image reconstruction

Regularization is often described as being either deterministic or stochas-
tic [10]. In the Bayesian, stochastic case, the unknown image is distributed
according to a prior (representing prior knowledge of x) that roughly models
image statistics, also being the result of a trade-off with the need for a prac-
tical mathematical expression. Farsiu et al. [38] (a deterministic approach)
adopt a regularization term for SR that seeks to minimize the Total Vari-
ation (TV) of the image intensities [42–44]. Thus, the TV regularization
term penalizes the L1-norm of the image gradient magnitudes. The popular
approach of compressed sensing has also been proposed for SR [45]. Sev-
eral authors formulate their SR methods using a Bayesian framework and
discuss reasonable formulations of image priors [24,46–48]. Statistical justi-
fication for using certain image priors is most often based on rather simple
observations. More direct attempts to include knowledge of natural image
statistics through learning also exist [49, 50]. In the OF literature, notable
but rare work to learn statistics for the design of a robust data term norm
as well as for regularizing the flow solution is done by Sun et al. [51]. A
further discussion on regularizing optical flow is presented in Section 5.2.2.

3.2 HDR image reconstruction

This section discusses how an HDR image can be reconstructed from a
set of differently exposed LDR images, {ik} [7]. The raw sensor exposure
of each image is recovered and then merged in the illuminance domain,
following spatial alignment of the image set. For HDR image reconstruction,
as for the methods presented later, specific assumptions are made with the
respect to the operators in the generative camera model (2.8) for ik. Here,
no downsampling is included, which means that no attempt is made to
enhance the spatial resolution. In terms of the model in (2.8), D = Id. The
blur matrix C{Hk} is excluded as well. That is not to say that there is no
blur in the images, it is just not modeled.

Based on the above, assume that there is an HDR image xr (the reference
image), observed through the differently exposed LDR images

i1 = f(∆t1xr + n1) + q1,

ĩ2 = f(∆t2T{U2r}xr + ñ2) + q̃2,
(3.5)

where ∆t1 < ∆t2 is a short exposure duration that results in underexposure
in dim image areas, and ∆t2 is a longer exposure duration that causes bright
image areas to be overexposed. The two images have a high combined
dynamic range, that should ideally be larger than the dynamic range of the
original scene in order to completely avoid over- and underexposure in the
reconstructed xr.
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Chapter 3. Image reconstruction problems

The first step, in order to reconstruct xr, is to spatially align the observed
images to the pixel grid of the reference image. In this case, i1 shares the
same pixel grid locations as xr, whereas the observations of xr(i, j) available
through ĩ2 need to be aligned to the reference grid by warping to yield

i2 = T{Ur2}̃i2. (3.6)

If the displacement field between xr and ĩ2 adheres to a global translational
model, that is Ur2 is constant for all pixel locations, and the translational
shifts are integer numbers of pixels, it follows that, neglecting the image
boundaries that are shifted out of the image, T{Ur2}T{U2r} = Id. Fur-
thermore, because f(·) is a pixelwise function,

i1 = f(∆t1xr + n1) + q1,

i2 = f(∆t2xr + n2) + q2.
(3.7)

Thus, i1 and i2 are two differently exposed, spatially aligned observations of
xr. If, on the other hand, the translational shifts are non-integer numbers,
i1 and i2 will not be perfectly aligned as suggested by (3.7). This is because,
in that case, interpolation is included in T, and thus T{Ur2}T{U2r} 6= I.
Rotation, change of scale or more complex local motion all likewise give rise
to interpolation in T. Furthermore, because the warp operator T{Ur2} is
applied outside of f(·), another small imperfection occurs. These effects are
in practice always the case, since the subpixel displacements are arbitrary
in an uncontrolled environment. Such imperfections in the alignment are
not desired, however they may not be crucial for this application, since, on
average, adjacent pixels (that incorrectly spill over due to alignment errors)
have similar pixel values. Occluded image regions, however, are not possible
to align at all, which may lead to a lack of information in those regions.

In practice, image alignment of differently exposed LDR images is a
difficult task. This is due to that motion estimates of high precision are re-
quired. For the application to HDR image reconstruction, many approaches
to motion compensation exist under the shared name HDR deghosting. Tur-
sun et al. propose a taxonomy of HDR motion compensation methods, in
which optical flow based methods is one category [9]. New optical flow based
methods report increasingly promising results [52, 53]. The earlier method
by Zimmer et al. results in severe ghost artifacts for challenging scenarios,
according to an evaluation where the patch-based alternative by Sen et al.
gives better results [54, 55]. The more recent OF based method by Hafner
et al., however, improves over both [53]. In their method, the optical flow
and the HDR image are estimated jointly, as opposed to the method by
Zimmer et al. where the image alignment is performed as pre-processing.

26



3.2. HDR image reconstruction

For image regions with complex motion patterns, the best choice may still
be to discard incorrectly aligned data altogether from the reconstruction.

Given a set of K spatially aligned images ik, for instance K = 2 as
above, or a larger number, photometric alignment should be performed
in order to reconstruct a HDR image xr. If the CRF f is unknown, it
can be estimated from the ik images, for example using the non-parametric
method of Debevec and Malik [8]. More precisely, the (approximate) inverse
CRF g, introduced in Section 2.3, is estimated directly. A set of P pixel
positions are selected at random, to provide sample points from each image
ik. If some image areas were not possible to align spatially, these should be
avoided in the selection of the sample points. Then, g(I) is estimated for all
input values it can take, I ∈ {Imin, . . . , Imax} = {0, . . . , 255}, jointly with
the unknown illuminance values [xr]i of the P sample point pixel positions
i ∈ p, by minimizing

∑
i∈p

K∑
k=1

{w([ik]i)[ln(g([ik]i))− ln([xr]i)− ln(∆tk)]}2+

+ λ
Imax−1∑
I=Imin+1

w(I)g′′(I)2,

(3.8)

where

w(I) =

{
I , I ≤ 127

255− I , I > 127
(3.9)

is a function that is designed to give a higher weight to image data in the
middle of the exposure range, which typically exhibits the best SNR. More
recent research has shown how to improve the weighting function based on
more careful modeling of the noise properties of the camera sensor [56].
As seen in (3.8), the minimization is performed in the logarithmic domain,
which is much closer to perceptual uniformity than linear illuminance. A
smoothness term with weight parameter λ is used to enforce a slowly chang-
ing slope of g(I) in the solution. The second derivative can for example be
implemented as g′′(I) = g(I − 1)− 2g(I) + g(I + 1). The objective is easily
re-written in a matrix formulation, and the optimum is obtained by solv-
ing a standard Least Squares problem in a matrix formulation, see [8] for
details. The total number of unknowns are 256 + P . Thus, disregarding
the influence of the smoothness term, P and K should be chosen to ful-
fill (P − 1)K > 256. More points can readily be used for a more robust
estimator.

In Figure 3.1, an estimated g(I) function is shown. The relation be-
tween pixel values I ∈ {0, . . . , 255} to the exposure E ∈ {g(0), . . . , g(255} =
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Figure 3.1: From left to right: (a) Results of estimating the inverse CRF
from the four LDR images in Figure 3.2, using the method of Debevec and
Malik [8]. (b) A plot that shows the combined dynamic range of the LDR
observations.

{Emin, . . . , Emax} = {0.0106, . . . , 11.383} is depicted in Figure 3.1 (a). The
dynamic range of the camera is thus DR(E) = 1.07 · 103. Figure 3.1 (b)
shows the operational range of illuminance values, [Emin, Emax]/∆tk, plotted
in the base-2 logarithmic domain, for each of the K = 4 differently exposed
images. That is, the horizontal axis shows log2E shifted by − log2(∆tk),
for each of the exposure durations. The dashed green line is log2E itself
(equivalent in values to illuminance, should ∆tk = 1). The exposure dura-
tions used in the example are {∆t1,∆t2,∆t3,∆t4} = {3.2, 0.8, 0.25, 0.0167}.
The combined dynamic range captured is,

2([log2(Emin)−log2(∆t1)]−[log2(Emax)−log2(∆t4)]) = 2.06 · 105.

Generally speaking, if the exposure durations are selected with appropriate
care, as few as 2 images ik are often sufficient to capture HDR scenes. At
the least, 2 images give a substantial improvement compared to a single
image, in terms of overcoming dynamic range limitations of the camera.
An alternative to estimating g(·) as in the method of Debevec and Malik,
discussed above, is to use a parametric approach. For example, Choi et al.,
use a third degree polynomial parameterization of g(·), as the inverse of fop
in (2.9), and estimate the polynomial coefficients [57].

With the estimated g(·) at hand, the illuminance information of the
LDR images is obtained as

yk = g(ik)/∆tk, (3.10)

such that they become photometrically aligned in a shared domain. The
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3.2. HDR image reconstruction

yk images are fused by pixelwise weighted average in the logarithmic (PU)
illuminance domain [8, 9]. That is, the pixels values of the reconstructed
HDR image xr are given as

[xr]i = exp
(∑K

k=1w([ik]i)(ln g([ik]i)− ln ∆tk)∑K
k=1w([ik]i)

)
. (3.11)

Note that a zero weight (w(I) as in (3.9)) is given to pixels valued 0 or
255, that are likely to be saturated. To exemplify the reconstruction of a
HDR image, consider the set of K = 4 spatially aligned, differently exposed
images

ik = f(∆tkxr + nk) + qk, (3.12)

taken with the same exposure durations as above. Such an image set, as
shown in Figure 3.2 (a)-(d), is often referred to as an Exposure stack. It is
used here to reconstruct xr according to (3.11).

In order to display the reconstructed HDR image, which has a dynamic
range that exceeds that of typical LDR display devices, such as commercial
digital monitors or printers, it is tonemapped to an LDR format suitable
for visualization. Figure 3.2 (e) and (f) show two different tonemapped
results, using the simple tonemapping function in Matlab (e) and the
more sophisticated tonemapping function of iCAM06 [13], which is able to
better preserve a natural look of colors. The next section gives an overview
of existing tonemapping operators.

3.2.1 Tonemapping of HDR images

An image, whether it is generated from an LDR scene or if it contains
HDR content, is typically stored in a device-independent format, commonly
with three 8-bit color channels. The discrete pixel values, {0, . . . , 255},
are interpreted by the display device’s driver files, and thus mapped to
appropriate output luminance values depending on the dynamic range of
the device. For conventional LDR images, captured as a single image with
an LDR camera device, the mapping from raw sensor data to pixel values
is done using standard, well established mappings, that include some form
of gamma compression to a PU domain.

Images of HDR content, such as the xr discussed earlier in this chapter,
also need to be represented in a standard format that can be interpreted
and output on a display device. At this stage, much research is done on how
to tonemap HDR images to a PU 8-bit domain, for visualization on LDR
devices. Due to the higher dynamic range of the imaged content, however,
the 256 quantization levels that 8-bit formats offer is perhaps too restrictive,
and higher bit depths may thus be desirable. The simplest tonemapping
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Figure 3.2: Top and middle rows: (a)-(d), Differently exposed LDR in-
put images. Bottom row: Tonemapped HDR result, using the method of
Matlab to the left (e), and iCAM06 [13] to the right (f).

operators (TMO) simply compress the HDR data linearly by a pixelwise,
global function, however in a PU domain rather than directly in the illumi-
nance domain. The Matlab TMO does just this, with the compression of
the dynamic range taking place in the L*a*b* domain. As was seen in the
result of Figure 3.2 (e), the Matlab TMO does not preserve colors well,
hinting that compressing the dynamic range in the L*a*b* domain for a
HDR image may not be the best choice.

More sophisticated methods perform various kinds of local processing,
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3.3. SR image reconstruction

depending on the surrounding image content. For example, the iCAM06
TMO separates the image into a base layer (low-pass filtered image) and a
detail layer, and performs different operations on each layer [13]. Contrasts
are compressed only for the base layer, that is, across different image seg-
ments, rather than on the details within image segments. This method also
takes into account background light conditions, and furthermore compen-
sates for various other (peculiar) effects of perception. The various opera-
tions in the iCAM06 TMO, in addition, are implemented in a number of
different color spaces.

To judge how well a TMO performs its task, subjective evaluation is
used for a set of essential perceptual attributes. For a survey of this sort,
see for example the work by Cadik et al. [58]. A conclusion that is drawn
by the authors from their survey is that, while local processing or multi-
resolution decompositions may be of use, the most essential part in order to
obtain good perceptual results is how the actual dynamic range compression
is performed (globally). That is, it is crucial to select a color space (more
generally denoted as image domain) that is perceptually uniform, both with
regard to brightness and color sensation.

3.3 SR image reconstruction

In this section, a set {ik} of low resolution images are used to reconstruct,
by a super-resolution method, an image xr of a higher resolution [10–12].
All LR images are assumed to be taken with the same exposure duration.
Thus, the reconstructed image will be a low dynamic range image similar
to the input images. What makes SR reconstruction work is that each of
the ik images provides new information of xr, as depicted in the example of
Figure 3.3. The images, for this to be the case, need to be shifted relative
to each other by non-integer subpixel level shifts, or blurred by different
(known or estimated) blur functions. The LR image ir in Figure 3.3 (b)
provides information about xr in Figure 3.3 (a), but it is not sufficient to
determine, for example based on the upper-left pixel value, what all four
pixel values should be in the corresponding location of xr (which has a
resolution L = 2 times higher per dimension than ir). Taking into consider-
ation more observations, such as those in Figure 3.3 (c) and (d), additional
information about xr is given.

For the discussion on SR in the traditional case where the ik have the
same exposure setting, we divert from the camera model presented in (2.8)

31



Chapter 3. Image reconstruction problems

Figure 3.3: Top row, from left to right: (a) The HR reference image. (b)
The LR observation of the reference image. Bottom row: (c)-(d) Two more
LR observations, that provide additional information by sampling the xr
pixels using different basis functions. Each square in the grids correspond
to the a pixel in the respective image.

and alternatively use the camera model

ik = DC{Hk}T{Ukr}f(∆t xr) + nk =

= DC{Hk}T{Ukr}zr + nk, k = 1, . . . , K
(3.13)

where the quantization noise term is left out of the expression, instead
considered to be included in nk. The HR image zr = f(∆t xr) is estimated
directly in the pixel domain, due to ∆tk = ∆t,∀k. This is the camera model
that has been used traditionally in the literature on SR reconstruction of
LDR images. It was first when differently exposed images were considered
that authors on the topic of SR reconstruction for HDR images adopted
the model in (2.8), which is more natural considering the physics of the
camera, see for example Gevrekci and Gunturk [59]. It is possible that the
camera model in (3.13) is adopted regardless partially due to its pleasant
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linear formulation.
A convenient notation for the model is obtained by stacking the LR

observations in a vector i = [iT1 , . . . , i
T
K ]T and introducing the noise vector

n = [nT1 , . . . ,n
T
K ]T , both of size (nK/L2)×1, and defining the system matrix

H , [(DC{H1}T{U1r})T , ..., (DC{HK}T{UKr})T ]T (3.14)

of size (nK/L2)× n, such that

i = Hzr + n. (3.15)

In order to obtain a unique solution to zr given i, and for a given downsam-
pling factor L, the number of observed images K should satisfy K ≥ L2,
otherwise the system of equations is underdetermined.

To show the possible usefulness of SR methods, before proceeding to
the discussion of (some of) its challenges, an example with K = 3 images is
presented that compares SR reconstruction using the inverse problem for-
mulation with two interpolation approaches. The model in (3.15) is used to
generate {i1, i2, i3}, where the original zr is a pixel valued image normalized
to {0, . . . , 1}, and the noise n consists of zero-mean Gaussian components
with variance σ2

n = 10−4. In this example, D performs downsampling by
a factor L = 2, the Hk represent a mean operator on an image patch of
L × L pixels (averaging the illuminance, which is an intensity measure)
to model a simple, idealistic point spread function (PSF) of the camera
sensor. The (global) subpixel shifts used are (Dx

1,r = 0.5, Dy
1,r = 0) and

(Dx
3,r = 0, Dy

3,r = 0.5). Both the PSF and the subpixel shifts in this exam-
ple match the illustrations in Figure 3.3 (b)-(d). Perfect knowledge about
the operators in H is assumed in the reconstruction.

The results of the comparative example are shown in Figure 3.4. Fig-
ure 3.4 (a) displays the original image zr. Figure 3.4 (b) shows ir upsampled
by a factor L = 2 using bicubic interpolation. The second upsampling ap-
proach, shown in Figure 3.4 (c), is the average of the three upsampled
and aligned observations. For that case, zero-order hold (ZOH) interpo-
lation was used for the upsampling of the ik, as it gave a better MSSIM
score compared to using bicubic interpolation on the three ik. Finally, in
Figure 3.4 (d), the result from the SR reconstruction with the regularized
inverse problem formulation

ẑr = arg min
zr

‖Hzr − i‖2
2 + λ‖Γzr‖2

2 (3.16)

is shown. Each color channel in zr is treated separately, by solving the
minimization problem three times with the corresponding color channel in
i. If not for the linear regularization term Γzr, of weight λ = 10−3, the
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Figure 3.4: Top row, from left to right: (a) Original image zr. (b) Bicu-
bic interpolation of i2. Bottom row: (c) Average of the zero-order hold
interpolated ik images. (d) Result of solving the SR problem in (3.16).

minimization for the given example would not provide a unique solution,
due to the nullspace of H. The nullspace exists because only K = 3 <
L2 = 4 images are available. The matrix Γ, of size n × n in this example
represents 2D convolution on the vectorized image zr with a 3×3 Laplacian
convolution kernel that penalizes the second order derivative to enforce a
smooth solution. Table 3.1 presents MSSIM image quality scores of the
respective greyscale versions of the results from the three approaches.

In the remainder of this chapter, some of the challenges for SR recon-
struction based on the inverse problem formulation are presented. The next
section recaps image alignment strategies used for SR reconstruction. Then,
the objective function in the SR minimization of (3.16) is analyzed in more
general terms, with respect to the properties of the system matrix H, the
choice of norm function for the data residual and the choice of regularization
function. Finally, the full SR algorithm is outlined.
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Method MSSIM [29]
1. Bicubic Interpolation of ir 0.7416
2. Upsampled (ZOH interpolation) average 0.8035
3. SR using the inverse formulation (3.16) 0.9396

Table 3.1: MSSIM results that show the superiority of solving the inverse SR
problem compared to interpolation methods, for the example in Figure 3.4.

3.3.1 Estimation of displacement fields

If images are taken with, for instance, a handheld camera, as is commonly
the case, camera movement will cause the images to be shifted relative to
each other. These shifts are typically well described by a planar global
motion model, for example with affine motion parameters. Furthermore,
regardless of if the images are taken with a tripod, most scenes contain
moving objects that are displaced with relation to the other images in an
image sequence. This motion is described as local motion within the im-
age. For reconstruction of an HR image from LR images captured under
real-world conditions, the displacement fields Ukr (contained in H) should
therefore be estimated, using a suitable model. For a high quality SR result,
the precision of the displacement estimates is critical. The matter is further
complicated by the fact that only downsampled LR images are available for
estimating the displacement field, which should be expressed with relation
to the HR pixel grid.

To estimate Ukr, several authors of SR literature assume a global motion
model and use low-dimensional parameterizations for the displacements,
thus not attempting to model motion within the scene [36, 37]. A global
motion model may be a good description for the majority of the image
content, the static parts of the scene, which can be useful in itself for some
applications. For instance, if the global method is combined with a method
which detects where the motion estimation is accurate and forms an image
mask containing those areas, the image enhancement method can be applied
there, while areas in zr for which motion estimation is unreliable can be
reconstructed with a simple upsampling method from a single ik image.
Additional examples of global alignment strategies include using the Scale
Invariant Feature Transformation (SIFT) method [60] along with Random
Sample Consensus (RANSAC) [61] to estimate global affine transformation
parameters [62], and frequency domain approaches, for instance as proposed
by Vandewalle et al. [63], that estimate planar translation and rotation. A
class of methods that estimate non-parametric displacement fields, in order
to model local motion, are optical flow methods. Seminal papers by Horn-
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Schunk [16], for global OF models, and Lucas-Kanade [64], for local OF
models, have been the basis for developing OF methods for SR applications.
For instance, Baker and Kanade extend the Lucas-Kanade OF method to
the specific application of SR reconstruction [21].

Moving objects in the images are referred to as being either rigid or
non-rigid (deformable) objects, where a swaying tree or a moving wave
are examples of the latter category. These presents larger challenges for
flow estimation, and consequently for multi-image reconstruction methods
in general. Thus, similarly as for occluded objects that always cause in-
valid motion estimates, detection of non-rigid motion should be included
in an implementations of image alignment methods, and accounted for in
subsequent image reconstruction [12].

An alternative, or rather complementary, approach to perform subpixel
scale image alignment is that of blind super-resolution (BSR) [65]. The
method is similar to Multichannel Blind Deconvolution (MBD), with the
extension of downsampling [66, 67]. Both the unknown image and (non-
parametric) kernels of a fixed support, one for each related image ik, are
estimated, typically by alternating minimization. Both subproblems are
convex in their standard formulations, however the problem is unfortunately
non-convex in the kernels, {Hk}, and the image jointly. Prior to perform-
ing BSR reconstruction, the input images are approximately aligned by a
conventional method. Then, the alignment is fine-tuned by the estimation
of the blur kernels, that include both the blur kernels as well as small-scale
spatial shifts.

3.3.2 The inverse SR problem

Earlier in this chapter, the SR problem was posed in an example as solving
the minimization problem (3.16), in order to obtain an estimate of the
HR image zr, given observed image data i. The specific objective function
contained in (3.16) is a special case of the more general formulation,

ẑr = arg min
zr

ρ1(Hzr − i) + λρ2(ψ(zr)), (3.17)

where ρ1(Hzr − i) is the data term, ρ2(ψ(zr)) is a regularization term of
weight λ, ψ is a function of zr and ρ1(·), ρ2(·) are norm-like functions (not
necessarily norms in the strict sense). Naturally, the HR image should
match the observed data. That is, the residual Hzr − i should be small
in ρ1(·), which should preferably be a function that makes the residual
robust, both to noise in the observations i, and to errors in the system
matrix H [39], due to model mismatch or estimation errors in the model
parameters. Robust norm functions are discussed in several papers on SR.
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The L1-norm has been proposed as an improvement over the L2-norm, for
its ability to better handle errors in the model parameters, for instance
related to the motion estimation [38]. The Lorentzian norm, which acts as
the L2-norm for small residuals and as the L1-norm for large residuals, has
shown promising results for various noise assumptions [41].

If the minimization of the data term by itself is underdetermined, due
to insufficient observations K < L2, there is an infinite number of solutions
to the problem, and thus a regularization term, ρ2(ψ(zr)), must be added
to enforce a solution of desired properties. Even if K ≥ L2 and H is a full
rank matrix, regularization is typically used to improve the otherwise poor
condition number of the overall problem, (3.17), at the cost of fidelity of
the data term. Note that, if the minimization problem is non-linear, the
condition number refers to linearizations of the objective function, that are
used in order to solve the problem iteratively.

Generally speaking, a common type of regularization is to penalize the
norm of the unknown vector, such that the minimal-norm solution is ob-
tained from the set of solutions. However, because images are known to be
relatively smooth (they contain mostly low frequencies), a better alterna-
tive is to penalize the first or second derivative of zr to enforce a smooth
solution. Several authors adopt nonlinear regularization functions that are
designed not to over-penalize strong image edges between different image
segments, noting that images are somewhat better described as piecewise
smooth [38,41]. The use of a regularization function can similarly be thought
of in a Bayesian framework, where it would represent a prior density on the
HR image, and (variational) Bayesian inference could then be used in order
to perform the SR reconstruction [48,68].

3.3.3 The SR algorithm

Up until now, the two main ingredients of the full SR algorithm, that is,
estimating the displacement fields, as well as the HR image, have been
discussed separately. A high level SR algorithm, in which displacement
field- and HR image estimation may be iterated until some stop condition
is met, is presented in Algorithm 3.1.

First, the (HR) image displacements Ukr are estimated for a selected
motion model. In the initial estimation, this is done either on ik images
that are upsampled by interpolation to the higher resolution or on ik them-
selves, followed by upsampling the estimated displacement field. The cur-
rent estimate of zr may then be used in the subsequent iterations of the
displacement field estimation, if the estimation process is iterated. Next, zr
is reconstructed by solving a minimization problem of the form in (3.17). If
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Chapter 3. Image reconstruction problems

SR algorithm
while ∼stopflag
1: {Ûkr} ← estimate the displacement fields,
2: ẑr ← solve (3.17) to reconstruct the HR image,
3: stopflag ← check if stop condition is met,
end

Algorithm 3.1: A high level SR algorithm consisting of two main estimation
steps.

a nonlinear objective function is adopted, or if the dimension of the problem
is very large, such that an iterative minimization method must be used, the
estimate may be initialized using an upsampled version of ir. A gradient
update step of (3.17) is

ẑ(n+1)
r = ẑ(n)

r − β
(
∇ρ1(ẑ(n)

r ) + λ∇ρ2(ẑ(n)
r )
)
, (3.18)

where β is the step length,

∇ρ1(ẑ(n)
r ) = T{Ukr}TDTCT{Hk}ρ′1

(
DC{Hk}T{Ukr}ẑnr − ik

)
, (3.19)

and the regularization term is left unspecified for the purpose here, which is
to analyze the transposed operators in (3.19). The linear operator CT{Hk} =
CT{H̃k} is implemented by 2D convolution with the (real-valued) kernel
Hk flipped in horizontal and vertical directions about its origin, such that
H̃k(i, j) = Hk(−i,−j). Next, DT implements upsampling from the LR
pixel grid to corresponding HR locations (without interpolation). Finally,
whereas T{Urk} in the camera model and the objective function (3.17)
performs backward warping of the HR image zr to the locations of each ik,
T{Ukr}T = T{Urk} in (3.19) denotes forward warping [23]. The forward
displacement field Urk cannot directly be obtained from Urk, since multiple
pixels in Xr may map to the same pixel (i, j) in Xk. Thus, it needs to be
estimated separately.

If BSR is included in the SR algorithm of Algorithm 3.1, an extra step

1b : {Ĥk} ← estimate kernels that represent blur and small-scale shifts

is added. In the BSR case, the SR algorithm should necessarily be iterated
(at least steps 1b and 2) in order for the estimates to converge. Choices of
a stop condition could be a fixed number of iterations, or a threshold value
for some minimum difference on the updated estimates compared to that
of the previous iteration. If BSR is not included (which it seldom is), it is
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3.3. SR image reconstruction

not rare that only one iteration is performed, thus estimating displacement
fields and the HR image in a sequence. However, recent methods typically
perform multiple iterations to refine both estimates [23, 24, 46]. While the
presented SR algorithm is fairly general, there are methods that fall outside
of it. Notably, an extension of non-local means denoising performs SR
reconstruction without explicit motion estimation [69].
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Chapter 4

Joint SR and HDR image
reconstruction

Similarly to the case of separate HDR or SR image reconstruction, an image
set {ik} is used here to reconstruct a single image, which can benefit from all
the information in the multiple observations. In this chapter, the ik provide
both spatial diversity and differently exposed observations of an underlying
HDR scene. Thus, a HR, HDR image xr may be reconstructed.

To begin with, corresponding illuminance domain images, yk, are ob-
tained from the ik as in (3.10). Using the model (2.8) for ik, it follows
that

Wkyk = Wk(g(ik)/∆tk) =

= Wk(DC{Hk}T{Ukr}xr + nk), k = 1, . . . , K
(4.1)

where Wk is a diagonal weight matrix of size (n/L2) × (n/L2). It gives
zero weight to pixels in yk that are over- or underexposed, that is, pixels
that have an exposure value outside the operational range of f(·) in (2.8).
This clipping in the ik is not invertible by g(·), and thus the impact of the
resulting erroneous information, with respective to the HDR information
to be reconstructed in xr, is excluded by Wk. The introduction of Wk

leads to that the second equality in (4.1) holds. All the pixel exposures
that are in the operational range are given the same weight of one, although
downweighting the low and high extremes would likely improve performance
in a real case. For mathematical convenience, the impact of the quantization
noise qk is neglected in the inverse problem formulation (quantization is
nevertheless used when generating yk), as it typically is small in relation to
other sources of reconstruction errors, such as the image alignment.

Introducing the notation, y = [yT1 , ...,y
T
K ]T , v = [nT1 /∆t1, ...,n

T
K/∆tK ]T ,

both of size (nK/L2)× 1, and W = diag(W1, ...,WK), of size (nK/L2)×
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HDR SR algorithm
while ∼stopflag
1: {Ûkr} ← estimate the displacement fields,
2: ĝ(·) ← estimate the mapping from pixel value to exposure,
3: x̂r ← estimate the HR, HDR image,
4: stopflag ← check if stop condition is met,
end

Algorithm 4.1: A high level SR algorithm for differently exposed images.

(nK/L2), a compact equivalent form of (4.1) is

Wy = W(Hxr + v), (4.2)

where H is the same system matrix as in Section 3.3. Now, somewhat
analogously to the reconstruction of a HR image in Section 3.3, which was
achieved by minimizing (3.17), one could solve

x̂r = arg min
xr

ρ1(W(Hxr − y)) + λρ2(ψ(xr)) (4.3)

in order to obtain a reconstruction of a HR, HDR image, based on the
information in {ik}. Similarly to in Chapter 4, the functions ρ1(·), ρ2(·)
are norm-like functions and ψ(·) is a regularization function. There is a
subtle difference, however. Traditionally, SR reconstruction is performed on
similarly exposed LDR pixel valued images, as was the case in Section 3.3.
Whereas the pixel value domain is perceptually uniform, the illuminance
domain of y and xr in (4.3) is not. On the contrary, residuals ρ1(W(Hxr−
y)) have a higher perceptual impact for low absolute illuminance levels of
xr.

The published work, so far, on HDR SR has in common that the re-
construction takes place in the illuminance domain. For example, see the
papers by Choi et al., Schubert et al. and Zimmer et al. [52, 57, 70]. An
objective function of the form of (4.3) is minimized in order to obtain the
resulting HR, HDR image. Recently, Traonmilin and Aguerrebere presented
a method where that specifies a weight matrix W that depends on the pixel
value intensities of the unknown HR, HDR image, but the impact of human
perception is not mentioned [71]. In the last section of this chapter, we
alter the objective function (4.3) in such a way that the residual vector is
expressed in a perceptually uniform domain. First, however, consider the
HDR SR algorithm presented in Algorithm 4.1. It is similar to Algorithm 3.1
with the difference that, unlike the case in Chapter 4, the ik here are differ-
ently exposed, which adds the step of photometrical alignment. The most
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common approach, if neither the displacement fields or the inverse CRF
are known, is to first estimate the displacement fields. The displacement
field estimates are used to warp the ik such that they are aligned spatially,
at least for certain image areas. Then, for photometric alignment, g(·) is
estimated based on spatially aligned image areas, and used to retrieve the
illuminance domain information images yk. Having aligned the LR, LDR
observations both spatially and photometrically, the HR, HDR image is
finally estimated.

4.1 Spatial and photometric alignment of dif-
ferently exposed images

This section discusses the case where neither the displacement field or the
CRF is known, but mainly the case where the CRF is known or where raw
illuminance information of the images is retained. The image displacements
are generally not known and thus need to be estimated. To align the ik im-
ages both spatially and photometrically, including estimating the CRF, is
more challenging than performing either spatial or photometric alignment
alone. Gevrekci and Gunturk discuss different approaches as to go about
with the task [72]. The most common approach, which Gevrekci and Gun-
turk also adopt, is to first align the differently exposed images spatially,
and then to estimate the (inverse) CRF to perform photometric alignment.
An alternative approach is to first estimate g(·) based on, for example,
a histogram-based approach, followed by spatial alignment of images that
have been photometrically aligned [73].

If the CRF is known or if the raw exposure information of each image
is available, the spatial and photometric alignment for HDR SR reduces
to a separate step of spatial alignment of differently exposed images (with
different regions being saturated in each image), similar to the case for
HDR image reconstruction in Section 3.2. However, as is always the case
for SR methods, the motion estimation is extra challenging due to the need
to perform it on downsampled images, low resolution images compared to
the HR pixel grid. The proposed methods for joint SR and HDR image
reconstruction to date use optical flow based methods for spatial alignment.
These OF based algorithms should detect troublesome image areas with
regard to accurate displacement field estimation, just like other types of
HDR deghosting techniques often do [9]. Thus, to increase the robustness
of image reconstruction methods that rely on the estimated displacement
fields, Hu et al. propose a method that includes a routine for detection of
non-rigid motion [74]. These areas then receive special treatment in the
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Chapter 4. Joint SR and HDR image reconstruction

image reconstruction methods, typically by the use of some less ambitious
reconstruction method.

An example of a method that uses OF as part of HDR SR reconstruc-
tion is that of Zimmer et al. The flow method employed is also their own
work, and includes some sophisticated elements. Ultimately, a displacement
field between two images is computed by minimizing an energy functional
in a gradient image domain, that includes robust penalization functions for
outlier handling, due to, for instance, occlusion [75]. At the time of pub-
lication, it was reported to be the top ranked method at the Middlebury
benchmark [76, 77] for evaluations of optical flow methods, but new meth-
ods by other authors now show improved results. Still, the precision of the
OF method is not sufficient to avoid severe reconstruction artifacts [55].
Hafner et al. provide an improved method that estimates optical flow and
a HDR image jointly, however without attempting any resolution enhance-
ment. Once the optical flow (or other motion information) between image
frames has been established, image warping can be performed to align the
images. Then, a method for photometric alignment, that typically maps
pixel valued images (or raw exposure data) to the HDR illuminance do-
main, is applied [8, 78].

4.2 Proposed objective function for SR recon-
struction of HDR images

In this section, which leads up to the appended Paper 1 of this thesis, which
is summarized in Chapter 7, an alternative objective function to that of
(4.3) is proposed. The illuminance domain formulation of the minimization
problem in (4.3) is thus generalized to

x̂r = arg min
xr

ρ1(rdata(xr)) + λρ2(ψ(xr)), (4.4)

where rdata(xr) is a residual vector related to the data term, and ψ(xr), as
before, is a regularization function. If ρ1(·) and ρ2(·) are confined to be the
L2-norm, (4.4) can be expressed as

x̂r = arg min
xr

‖r(xr)‖2
2 = arg min

xr

∥∥∥∥ [ rdata(xr)√
λψ(xr)

] ∥∥∥∥2

2

. (4.5)

Unless the data is completely noise-free and the system parameters of H are
estimated perfectly, any choice of objective function will result in some re-
construction errors. Consider the task of minimizing the data term residual
W(Hxr − y) for the case where a unique solution exists, that is, K ≥ L2
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4.2. Proposed objective function for SR reconstruction of HDR images

and rank(W) > MN . If the relative motions between the observed images
are small, such that they can be completely included in the support of Hk

(thus, T(Ukr) is the Identity matrix), and if in addition the elements of Hk

are 0 except for a single element which is 1, denoted delta sampling here,
then cond(H) = 1, where cond(·) is the condition number of a matrix. The
unique solution will differ from xr due to noise, but noise will be suppressed
rather than amplified.

However, as soon as resolution enhancement is attempted in the recon-
struction, which means that L > 1, delta sampling (which would still allow
cond(H) = 1) is no longer a realistic point spread function. An idealistic
PSF, as modelled by Hk, would rather be an L × L mean filter (at some
position within the support of Hk). Along these lines, Baker and Kanade
report that, for any PSF that is a reasonable model of the camera sensor, be
it an L×L square PSF or for example a Gaussian PSF of support equal to
or greater than L×L, the condition number always grows at least quadrat-
ically with L [79]. Furthermore, cond(H) increases linearly with the size
of the image vector xr. Thus, ill-conditioning is a severe problem for SR
reconstruction. Reconstruction errors are largest near image edges. This is
because the noise amplification when solving the inverse problem is large
for high frequency components, due to the low-pass characteristics of the
forward camera model. Adding more observations (increasing K) somewhat
improves the condition number of the problem, but even so, a regulariza-
tion term is typically required to further improve the conditioning, and thus
limit the noise-amplification.

If the general problem (4.4) is taken as the illuminance domain for-
mulation of (4.3), even small reconstruction errors, of the type discussed
above, will cause clearly visible edge artifacts in the dim region across im-
age edges. The numerical errors are of the same magnitude on both sides
of the edges, but the perceived impact of the reconstruction errors will be
much larger at low illuminance regions. To alleviate this issue, the illumi-
nance data, y, is first normalized to [0,1] (the same notation, y, is kept).
The data residual is then taken to be rdata(xr) = W(f̃(Hxr)− f̃(y)), where
f̃ = (·)γHDR , γHDR < 1 is a concave, pixelwise function. An interpretation
of f̃ is that it is a global tonemapping operator. It maps illuminance values
at each pixel to a PU image domain. Note that W(f̃(Hxr −y)) would not
correspond to the perceived size of the error, as the absolute illuminance
level is lost when taking the difference.
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As a regularization function, ψ(xr) = ΓLf̃(xr), where Γ is a matrix that
represents 2D convolution on a vectorized image with the Laplacian kernel

L =
1

8

1 1 1
1 −8 1
1 1 1

 (4.6)

may be used. A smooth solution is thus enforced by penalizing the second
derivative. The larger the regularization weight λ, the better the condition
number of the overall problem, albeit this comes at the cost of less fidelity of
the data term. It is crucial that the regularization term is chosen such that
it enforces a structure in xr that corresponds to natural image statistics. For
this purpose, a piecewise smooth solution is typically preferred, which can
be implemented using an edge-preserving regularization function. Learning-
based methods could also be used to avoid penalizing some common image
textures, but these are outside of the main scope of this thesis.

If the (norm) function ρ2(·) is selected appropriately, the penalization
of strong image edges can be downgraded. For example, the Lorentzian
norm, which acts as the L2-norm for small values and as the L1-norm
for large values (as set by a threshold parameter), can be used [41]. The
Lorentzian-Laplacian norm then effectively fulfills the similar purpose as
the often used, nonlinear, edge-preserving Bilateral Total Variation (BTV)
regularization function [38]. Better experimental results than the BTV are
reported by [41]. Zimmer et al., in their work on optical flow and HDR SR
methods, use an amended regularization method, based on the work of Sun
et al. [51] that only includes smoothing constraint along image edges, and
not across image edges [52,75]. This same function is also used for regular-
ization of displacement fields, where it avoids blurring flow discontinuities
that are present around image edges. Nagel and Enkelmann presented the
theoretical foundation for the method employed by Zimmer et al., and derive
a method to obtain the local image orientations [80].

At this stage, a PU domain has been formulated for the HDR SR prob-
lem. For the remaining discussion in this chapter, consider the L2-norm of
the proposed data- and regularization term, contained in the minimization
problem

x̂r = arg min
xr

∥∥∥∥
[
W(f̃(Hxr)− f̃(y))√

λΓLf̃(xr)

]∥∥∥∥2

2

. (4.7)

Numerical reconstruction errors are of the same magnitude for any choice
of γHDR in the expression of f̃(·), but the large perceptual impact in low
illuminance regions is avoided thanks to the PU domain which is achieved
for a suitable choice of γHDR. The value which should be used is not en-
tirely clear. As a comparison, the value for γLDR that is used in gamma

46



4.2. Proposed objective function for SR reconstruction of HDR images

correction for common LDR formats is 1/2.2. For the HDR case, a value
as low as γHDR = 1/6 is necessary to achieve a residual function rdata(xr)
that is perceptually uniform with respect to the HVS. This value is based
on empirical experiments and coincides with the value used in the work
by Fairchild and Johnson on the image appearance model iCAM [81]. To
perform tonemapping with their updated model, iCAM06, an (gamma) ex-
ponent of 1/3 is used to encode the illuminance component of a low-pass
filtered base layer of the image, followed at a later step by a further expo-
nent in the range of [0.6, 0.85] (depending on the viewing condition) in the
r,g,b-space, for an overall gamma (somewhat loosely speaking, since differ-
ent color spaces are mixed, and additional manipulation is also made) in the
range of [1/5, 1/3.53] [13]. The importance of exact perceptual uniformity
as well as color fidelity in f̃(·) is not as crucial as for the TMO that is used
to visualize HDR images. Rather, a function that gives a mathematically
sound problem formulation should perhaps be seen as satisfactory for the
HDR image reconstruction procedure.
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Chapter 5

Image-based motion estimation

In previous chapters, compensating for motion of pixels has been discussed
as a part of image reconstruction methods. In this and the following chapter,
the focus is shifted to estimating such motion. Particularly, the focus is
on optical flow estimation, a technique that produce a dense motion field
estimate, that can describe local motion information of rigid as well as non-
rigid (deformable) objects. Some alternative motion estimation techniques
are presented to provide a context for Optical Flow (OF) methods. First,
however, we discuss the concepts of motion and optical flow in formal terms.

Motion, generally speaking, refers to the 3-dimensional (3D) motion of
real-world points. A motion field is a dense representation of 3D motion, or
of its projection on the 2D image plane. The motion field can be defined
as the time-derivatives of the image location of each point. To estimate it
from an image sequence, a pair of images are typically used to produce a
time-integrated motion field estimate between the two images, using dis-
crete derivative approximations. Optical flow is a concept that comes from
ecological psychology, particularly the study of the perception of the visual
world by animals (and humans) [82]. It is the pattern of apparent motion
that can be observed by, for instance, the human eye, or in our context, the
camera sensor. The rotation of a perfect sphere with constant reflectance
across its surface is an example of motion that is not visible. It moves, but
it is not a case of apparent motion to the human observer or to the cam-
era sensor. Apparent motion, or flow, for a camera connected to an image
analysis algorithm, is loosely speaking the displacements of brightness pat-
terns, which may be due to illumination changes, including shadows, and
not due to actual motion. A human, on the contrary, is able to infer from
the structure of the scene that such effects are in fact not due to motion.

Global motion estimation is the task of estimating motion parameters
that are shared for the whole image region [37]. Such a parametric model
can for instance describe translational, rotational or affine motion. The
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dimension of the parameter representation is typically very low (relative to
the number of pixels in the image). Global motion of an image relative to
a reference image can be estimated by maximizing a similarity function, for
instance based on a correlation or mutual information measure. Another
motion estimation approach is to detect a sparse set of points per image
that have distinctive features, and to match each feature descriptor in the
first image with a similar feature descriptor from the second image [60, 83,
84]. The information of matched points can then either be interpreted as
separate motion corresponding to those particular points (or to the image
segments that they belong to), or all the feature matches can be used jointly
to reach a consensus of global motion parameters [61,62].

5.1 Dense motion estimation

The objective for dense motion estimation methods is to estimate the mo-
tion corresponding to each pixel location in an image. The term dense
is introduced to contrast versus sparse techniques, where only a subset of
the image region, typically a set of scattered points, are considered. OF
methods, by convention, provide dense flow field estimates of the apparent
motion seen in the 2D image plane. In Figure 5.1, a pair of overlaid im-
ages from the Middlebury [76] Grove2 sequence are shown together with
matches of sparsely extracted SURF image features [83], as well as a flow
field estimated by an OF method (the one in Section 5.2.4). The maximum
ground truth 2D displacement has a magnitude of slightly above 5 pixels,
thus the overlaid images coincide to the degree that it looks like one im-
age. The color encoded flow field describes estimated pixel displacements
between the two input images. The ground truth flow is essentially the
projection of global 3D motion that results from panning of the camera. No
local object motion is present. Upon careful inspection of Figure 5.1 (a),
two clear mismatches of the respective SURF features are seen to exhibit
far too large displacements to fit the global motion of the scene. One of
these mismatches is shown in the zoomed in area at the bottom left corner.

Certain 3D flow cannot be estimated from a set of 2D images taken
from the same view (static camera position) due to geometrical reasons, in-
cluding occlusion. The 3D counterpart of optical flow methods, scene flow
methods, typically use a stereo camera setup to circumvent this issue and
provides 3D flow vectors as well as their corresponding 3D real-world coor-
dinates based on pairs of stereo images [3]. Alternative methods that use
a single, moving camera to capture different views of the scene also exist
for 3D flow estimation [85]. Such methods go by the name structure from
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5.1. Dense motion estimation

Figure 5.1: From left to right: (a) Two overlaid images. The respective
matched subsets of their extracted SURF features are denoted by circles
and plus-signs. Matches are connected by a line. A zoomed-in area is
shown in the bottom left corner. (b) Visualization of an estimated flow field.
Each pixel has corresponding 2D flow vector with direction and magnitude
encoded according to the color chart shown in the upper right corner.

motion. Scene flow methods are far less common than OF methods, but are
gaining in interest, particularly for research related to autonomous driving.
The intended application of the corresponding motion analysis system de-
termines whether a stereo camera hardware setup should be prioritized over
a single camera. If depth information is required, an alternative is to use
optical flow data in combination with a separate depth (range) sensor. The
mathematical formulation of scene flow estimation is very similar to using
an OF formulation but involving a larger number of images. Typically, sep-
arate OF estimation cost terms and stereo disparity estimation (which is
essentially OF estimation for 1-dimensional flow) cost terms are coupled in
a joint optimization, from which 3D flow is obtained.

5.1.1 Performance assessment

There are a number of popular performance benchmarks for evaluating
dense motion estimation techniques, particularly optical flow methods (2D
motion estimation). The benchmark websites provide rankings of OF meth-
ods on different error metrics for estimated flow fields relative to the ground
truth flow ugtrk, averaged over a set of test image sequences. The most widely
used error metric is the average endpoint error (AEPE) of the estimated flow
vectors ûrk. The pointwise endpoint error is EPE = ‖ûrk − ugtrk‖. Aside
from the test sequences, the respective benchmark datasets also contain
equally challenging training sequences with public ground truth data avail-
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able. These can be used to tune or train OF algorithms. The introduction
of new datasets has historically contributed significantly to showing where
previous methods fail. Access to publicly available image sequences with
ground truth flow information is clearly valuable, since it allows researchers
to compare the performance of their methods to existing algorithms.

A classical benchmark whose dataset is still widely used to date is Mid-
dlebury [76, 77]. Only a few years after its introduction in 2007, OF meth-
ods performed very well on its image sequences. Thus, to help distinguish
between the performances of state-of-the-art methods, a new benchmark,
MPI Sintel [86, 87], introduced image sequences of animated but realistic-
looking data that contain several challenging aspects that are missing in the
Middlebury sequences. These challenges are natural illumination changes,
motion blur as well as large displacements (flow magnitudes) that in addi-
tion to being a challenge in their own right lead to larger occluded regions.
Particularly, large displacements of small objects are hard to estimate and
often lead convergence of the numerical solution to poor local minima when
solving the OF estimation problem. This is because small objects vanish at
coarse resolution levels where their large displacement need to be estimated.
Furthermore, motion that includes severe object deformations is also hard
to estimate and tends to be oversmoothed in estimated flow fields. Another
recent benchmark is KITTI [88, 89], which specializes on road sequences
captured from inside a moving vehicle. It specifically targets and facilitates
research towards autonomous driving. Because the sequences are taken
outdoor, they contain many natural illumination changes. In its original
release, ground truth flow was provided only for static scenes, that include
large displacements but not of small or deformable objects. A new release
was made in 2015 where accurate OF (as well as scene flow) ground truth
has been established for sequences that contain dynamic scenes with mov-
ing traffic. Moving objects (vehicles) are described by a rigid body motion
model [90].

Comparing the results of OF methods on MPI Sintel and KITTI, it is
clear that each dataset rewards certain characteristics of the OF method. In
other words, how well an OF method works is highly data dependent. This
points to the inherent tradeoff between generalization versus specialization
of an OF algorithm. Should it work sufficiently well for all possible scenar-
ios, or specialize on the demands of a certain end application. Prominent
researchers and practitioners within the OF field of research aim to raise
a more active discussion on performance analysis in a broader sense than
merely evaluating flow error metrics [91]. They observe that new OF meth-
ods are published at a rate so high that the achievements of existing OF
methods are not consolidated to a satisfactory degree. A more systematic
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way to analyze performance, dealing with whether motion can be estimated
all, confidence measures associated with the flow estimates (at each point)
and robustness with respect to model violations, would help an engineer to
choose among the numerous published methods for a specific application.
Furthermore, publication of reference implementations of OF methods is
encouraged, to allow the research community to dissect and compare all
details of an OF implementation. Due to their data dependent nature, it
is hard to give conclusive answers as to what elements of OF methods are
best. An example of a systematic performance evaluation is performed by
Vogel et al. [92], but they only use image sequences from Middlebury and
KITTI, which again makes it questionable how well their systematic results
generalize. Sun et al. investigate the performance of numerical implemen-
tation choices, regarding for example the interpolation method and discrete
derivative approximations, and unveil some "secrets" of optical flow [93].

5.2 Variational optical flow estimation

Optical flow estimation methods are often formulated using variational
mathematics [94–96]. Observed images are thus seen as time-discrete sam-
ples of an underlying image function I(x, t), where x = (x, y) are the spatial
coordinates and t denotes time. A flow field estimate is obtained by min-
imizing a cost functional expression with respect to the flow that relate
the points of the input images. Whereas the word domain is also used to
describe the representation of image intensities (for instance linear or log-
arithmic domain), its proper usage in the variational context is to describe
the extent of the continuous-valued spatial locations x, that take values
on the domain Ω ⊂ R2. The variational formulation fits nicely with the
subpixel nature of flow data and the fact that optical flow is defined in
continuous time. This, together with the solid mathematical foundations
of the calculus of variations are the reasons for its widespread use in the
OF research community. In numerical implementations, continuous deriva-
tives are replaced by discrete approximations and non-integer points x are
evaluated by interpolation.

Connected to the variational formulation, some notation needs to be re-
introduced. Images are denoted by Ik(x) = I(x, tk). They are considered
to be greyscale images Ik : Ω→ R unless otherwise stated. A displacement
field parameterized with respect to the points of a reference image Ir is
denoted by urk = (urk(x), vrk(x)). It describes the time-integrated flow
between the sampling time instances. The corresponding locations of a point
x in Ik is thus x + urk. If tk = tr + 1, as assumed from here on, a flow field
estimate is given directly as the estimated displacement field, otherwise it is
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given by scaling with 1/(tk−tr). The ground truth flow urk is the actual 2D
projected motion, discussed in Section 5.1. However, to estimate it based on
image data, we have to rely on some assumption to relate points in different
images. The most common and traditional approach is to assume that any
given point has a constant brightness along its motion trajectory, and use
this as a basis to formulate OF estimation mathematically. This assumption
is called the Brightness Constancy Assumption (BCA), or the optical flow
constraint (the word constraint is often used in a sloppy manner and should
not be confused with constraints in optimization). Under the BCA, the best
estimate ûrk satisfies Ik(x + ûrk)− Ir(x) = 0. In practice, the OF data cost
term is based on relaxing the left hand side and minimizing

Ik(x + urk)− Ir(x), (5.1)

with respect to urk in a suitable norm or norm-like distance function as part
of a total cost functional. Because the flow field contains two unknowns,
horizontal and vertical flow, for each point, an additional criteria is needed
for the problem to have a unique solution for arbitrary images. There are
two primary approaches used to handle this, both based on the assumption
that nearby points move in a similar manner. In other words, the flow
field is assumed to be smooth. One approach is to assume that every pixel
in a local neighbourhood share the same flow and include that into the
OF formulation [64]. The second approach, which is the more common for
optical flow methods nowadays, is to add a regularization term that enforces
a spatial condition on the flow solution globally. Its formulation is based on
statistics of flow patterns or, rather, at least on the observations that flow
is typically piecewise smooth, due to that images consist of a collection of
objects where the points of each object exhibit similar flow [16]. Naturally,
mixtures of these so called local and global approaches also exist [97].

Focusing on the case of a pixelwise data cost and a global regularization
term, the overall OF cost functional to be minimized is

Etotal(urk) = ED + αSES =

∫
Ω

FD + αSFS dx, (5.2)

where αS is a regularization weight and FD, FS are corresponding pointwise
terms to ED, ES. There are many design choices for the data term as well
as for the spatial regularization term, as discussed in turn in the next two
sections. These two are the fundamental terms in variational OF estimation.
An additional term is sometimes included to enforce temporal coherency
of flow estimates. Furthermore, modeling of natural illumination changes
between input images can be attempted. These additions are discussed
in Chapter 6. Recent methods often include a term that penalizes the
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flow solution against sparse flow estimates derived from pre-matched image
features. The purpose of such a term is to aid the iterative minimization
method in avoiding poor local minima, as discusses in Section 5.2.3.

5.2.1 OF data cost term

The OF data cost term typically has the form

FD = ΨD(T (Ik(x + urk))− T (Ir(x))), (5.3)

where ΨD is a distance function, for instance a norm, and T denotes an
arbitrary operation of the pixel values. The standard BCA based data term
is obtained when T is the Identity. More general expressions ΨD(Ir, Ik,urk)
exist, sometimes with an extra variable l(x) to model illumination changes,
and including additive mixtures of different data costs, for instance com-
bining the BCA with a second data term based on the gradient constancy
assumption (GCA) [33]. Many proposed formulations were recently evalu-
ated by Vogel et al. on the Middlebury and KITTI datasets, including the
conventional data term based on the BCA, a version of the BCA that uses
structure-enhanced input images obtained via a structure-texture decom-
position of the original images, a normalized cross-correlation measure, a
mutual information data term and finally one based on census transformed
images [92]. On the Middlebury sequences, the simple approaches, such as
the BCA based data term, perform equally well or better than the other.
However, on the KITTI sequences, the patch-based census transform and
a proposed convex approximation of it significantly outperform the sim-
ple pixelwise data terms [98–100]. Nevertheless, many highly ranked OF
methods use variants of the BCA and GCA in combination with a normal-
isation scheme that prevents undesirable overweighting of the data term at
large image gradient locations [101, 102]. A recent publication reports im-
proved results on the KITTI benchmark when adding an illumination offset
variable and learning characteristic brightness transfer functions that vary
across different imaged objects [103]. The authors argue that discarding in-
formation about absolute contrast magnitudes, which the census transform
does, degrades performance. Among the proposed data terms in the liter-
ature, only a few methods explicitly deal with occlusion in its formulation,
notable exceptions include [104–107].

5.2.2 Spatial regularization for optical flow

The OF spatial regularization term is designed based on the statistical prop-
erties of flow fields, and aim to penalize deviations from those properties.
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The expression
FS = FS(∇Ir,∇urk,∇vrk), (5.4)

where the arguments are the first order derivatives of the reference im-
age and the flow covers many of the proposed formulations. Weickert and
Schnörr discuss regularizers on that form using the categorization of flow-
driven versus image-driven, and isotropic versus anisotropic regularization
terms [108]. Image-driven formulations are based on the observations that
the flow edges in an image tend to be a subset of the image edges, and
thus less penalty is given to flow edges if their location coincide with image
edges. Flow-driven formulations, on the other hand, does not use any in-
formation of image data. Particularly image-driven regularizers are either
isotropic or anisotropic. In the isotropic case, a function of the gradient
magnitudes of the reference image simply acts as a spatially dependent
weight term c in FS = c(‖∇Ir‖)ΨS(∇urk,∇vrk), where ΨS(∇urk,∇vrk) is
a purely flow-driven expression. Anisotropic image-driven regularizers in
addition use edge orientation information to smooth the flow solution along
but not across image edges [51, 101].

Other variants of spatial regularization terms include higher order deriva-
tives of the flow. The most popular such method is the total generalized
variation (TGV) penalty term, particularly its second order variant (the
first order is the traditional TV penalty) that enforces the solution to be
piecewise affine [109]. In general, a TGVk regularizer of order k assigns zero
cost to polynomials of order k − 1. TGV2 outperforms first order methods
on the KITTI benchmark [88,89], due to its dataset consisting primarily of
flat surfaces such as roads and houses whose flow solution is affine. There is
also a non-local TGV regularizer that achieves improved boundary localiza-
tion and robustness to scale changes between images by incorporating larger
neighborhoods into the regularizer [110]. Finally, it should be mentioned
that a number of recent top performing OF methods use a rather different
technique to enforce spatial coherency of flow estimates. They start from
a sparse set of matched points and obtain dense flow field estimates by
performing edge-preserving interpolation [102, 111]. These sparse-to-dense
methods nevertheless include a (post-processing) refinement step where a
conventional OF estimation method is used to obtain subpixel precision.

5.2.3 Coarse-to-fine iterative minimization

Variational OF that consists of minimizing a cost functional of the form (5.2)
is typically solved using a coarse-to-fine, iterative warping strategy [33,112,
113]. The warping strategy includes performing successive linearizations
of the non-convex data cost term (5.3) about the current estimate u

(0)
rk ,
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according to

FD = ΨD(Ik(x + u
(0)
rk ) + (∇Ik)Tdurk − Ir(x)), (5.5)

where ∇Ik = ∇Ik(x + u
(0)
rk ) and durk = urk − u

(0)
rk . The coarse-to-fine ap-

proach is started by initializing the flow to zero and minimizing (5.2) for
downsampled and smoothed versions of the input images. After a num-
ber of iterations, the OF estimation proceeds by re-scaling the current flow
estimate to a finer resolution level, and continues up until the original reso-
lution of the input images. This is essentially a heuristic method that works
well in many cases in its aim to avoid convergence to poor local minima.
A pseudo-algorithm for the coarse-to-fine iterative minimization scheme is
given in Algorithm 5.1. First, re-sampled images Isr , Isk are produced at
each of the S pixel resolution levels of the coarse-to-fine image pyramid. At
each resolution level, flow update terms are obtained by solving the Euler-
Lagrange equations associated with the linearized cost functional. An outer
iteration loop over n is included that updates the warping point in each
iteration, thus linearizing the argument of the data term about the current
estimate u

(0)
rk as in (5.5). An additional inner iteration loop is required for

the general case of non-linear, robust distance functions ΨD,ΨS, that con-
sists of fixing the occurrences of the flow field variable inside the expressions
of the derivatives Ψ′D,Ψ

′
S to the flow estimate at the previous iteration in

order to reach a linear expression for the original cost functional. Additional
details are available for a similar case in the appendix of Paper 2 and for
example in the work of Brox et al. [33].

Despite the almost universal use of coarse-to-fine minimization in OF
methods, its limitations have become clear in recent years, when the OF
cost functional formulations in modern state-of-the-art methods are consid-
ered to be relatively good. The main difficulty, it is argued, is to effectively
find the global minimum of the OF cost functional, whose numerical im-
plementation on the image pixel grid is of a very large dimension [114].
The iterative minimization methods that are employed face the challenge of
avoiding massive amounts of local minima. To guide the solution towards
the global minima, several recent methods perform pre-matching of a sparse
set of image locations that contain highly discriminative image features and
introduce the motion information from the feature matches into the OF es-
timation procedure. The introduction of the feature matching information
is achieved using one of two different approaches. A first set of methods
include a third term EM to the overall cost functional expression (5.2) and
minimize it within the conventional coarse-to-fine estimation strategy while
reducing the influence of the feature matches as the resolution levels become
finer [107, 114–118]. Another set of methods use edge-aware interpolation
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Coarse-to-fine warping algorithm

generate image pyramids {Isr}, {Isk}, initialize u
(0)
rk = 0, ∀x

for s = 1, . . . , S − 1

re-sample u
(0)
rk to the current resolution level

for n = 0, . . . , N − 1

compute ∇Isk for the current warping points x + u
(0)
rk

set du
(n,0)
rk = 0, ∀x

for l = 0, . . . , L− 1

compute Ψ′D{·}(n,l) and Ψ′S{·}(n,l)

du
(n,l+1)
rk ← solve the associated Euler-Lagrange equations

end

u
(n+1)
rk = u

(n)
rk + du

(n,L)
rk

end

u
(N)
rk → u

(0)
rk , new warping point

end

output u
(N)
rk → ûrk

Algorithm 5.1: Optical flow estimation by minimizing a variational cost
functional with the coarse-to-fine warping strategy.

of the flow from the sparse feature matches to obtain a dense, segmented
representation of the flow, that is used as initialization to a one-level refine-
ment step [102,111,119,120]. The pre-processing step to extract and match
features is typically performed using approximate nearest neighbor (NN)
methods [121, 122]. A method that is well suited to perform matching for
repetitive image structures is the multi-layered technique of DeepFlow [117].
A downside with using pre-matched features is the significant risk of intro-
ducing false matches that can lead to poor initialization of the flow in certain
image regions, that are likely to persist in the end result. Due to this, it is
important with careful selection of what features to match. For example,
including feature matches for image regions where the OF method fares well
regardless only introduces an unnecessary risk.

5.2.4 Real-time implementation

From an optical flow application perspective, the ability to compute quality
flow field estimates in real-time is often necessary. In 2007, Zach et al.
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proposed a solution strategy to (5.2) that achieves real-time performance at
30 frames per second for video inputs at a resolution of 320× 240 pixels for
a GPU-accelerated (graphics processing unit) implementation [123]. The
minimization of Etotal(urk) in (5.2) is performed by forming an equivalent
equality constrained problem

min.
ũrk,urk

∫
Ω

FD(urk) +
1

2θ
‖urk − ũrk‖2

2 + αSFS(ũrk) dx,

s.t. ũrk = urk,

(5.6)

where ũrk is an auxiliary variable. Then, the equality constraint is relaxed
and the unconstrained version of (5.6) is solved using alternating minimiza-
tion of the two coupled subproblems

min
ũrk

∫
Ω

αSFS(ũrk) +
1

2θ
‖urk − ũrk‖2

2 dx, (5.7a)

min
urk

∫
Ω

FD(urk) +
1

2θ
‖urk − ũrk‖2

2 dx (5.7b)

with a coupling weight decided by θ, embedded in a coarse-to-fine multireso-
lution framework. The cost functionals in (5.7) can be minimized efficiently,
with closed-form expressions for their minimizers, if for example

FS =
√
‖∇ũrk‖2

2 + ‖∇ṽrk‖2
2, (5.8a)

FD = |Ik(x + u0
rk) +∇ITk urk − Ir(x)| dx, (5.8b)

where FS integrated over the domain Ω corresponds to the (isotropic) to-
tal variation semi-norm ‖ũrk‖TV [124]. With these expressions, the first
subproblem (5.7a) corresponds to the classic Rudin-Osher-Fatemi denois-
ing problem that can be solved efficiently using a dual formulation of the
TV expression [42, 125–127]. The second subproblem (5.7b) is solved by
a soft thresholding operation [3, 123, 127]. Steinbrücker et al. propose to
solve (5.7b) without warping or linearizing the data term, and instead use
an exhaustive search, such that each subproblem in (5.7) is solved globally
(which still does not guarantee convergence to the global minima of the
original problem) [128]. While their proposed method is slower, it shows
some improvements over using the coarse-to-fine solution strategy. In Pa-
per 3, we minimize an OF cost functional formulation using a primal-dual
algorithm which can be derived similarly as in (5.6), but instead setting the
auxiliary variable to be equal to the gradient of the flow [127, 129]. The
dual subproblem then corresponds to optimizing the convex conjugate of
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FS with respect to the dual variables associated with the introduced equal-
ity constraint [130]. The solutions to both subproblems are obtained by
evaluating their respective proximal operators [131].

To conclude the section, it seems that systematically investigating dif-
ferent solution strategies to minimize an OF cost functional is of major
interest, with regard to computational speed, quality of the convergence
point, and the trade-off between these two aspects. Many options can be
considered, for instance comparing traditional coarse-to-fine minimization
of the original (primal) cost functional Etotal to primal-dual alternatives.
If the cost functional is formulated using non-linear expressions of ΨD,ΨS,
which is the case for both the total variation expression and the absolute
value in (5.8), as well as for the commonly used TGV2 term, these expres-
sions need to be regularized. For instance, the expressions in (5.8) need
to be re-formulated according to

√
z2 →

√
z2 + ε2, |z| →

√
z2 + ε2, where

ε is a small constant. The primal-dual solver readily handles these non-
differentiable expressions. What are the consequences of this difference?
OF methods that incorporate pre-matched features to initialize or guide
the minimization process towards the global minima may perform its pre-
processing step to match features using exact nearest neighbor. In other
words, they include an exhaustive search similar to what Steinbrücker et
al. use, but only for a subset (although sometimes large) of the pixels as
opposed to for every pixel. Is there a good balance point with regard to
how many features locations to include in an exhaustive NN search to guide
the OF estimation? What is the consequence of switching the exact search
to an approximate NN search method?
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Optical flow estimation for HDR
scenarios

Image-based optical flow estimation is traditionally performed using two
or more similarly exposed images. That setup is clearly limiting in HDR
scenarios, where an image taken with any given exposure setting contains
regions that are either over- or underexposed, due to the insufficient dynamic
range of the camera sensor. The dynamic range limitation can be overcome
by adding more input images, taken with a different exposure setting, to the
OF estimation. To use only two images with different exposure settings is
worse than the original setup of two similarly exposed images, as the amount
of points that are visible in both images is reduced. The default setup in
this chapter is to use image sequences {Ik(x)} with 4 frames. The images
I1, I3 are taken using exposure setting I, which is adjusted to the dim image
regions and thus contain other regions that are overexposed. The images
I2, I4 are taken using exposure setting II, which is adjusted to the bright
image regions and therefore leads to other regions being underexposed. The
aim is that the combined dynamic range obtained by using two exposure
settings is high enough such that all image regions are properly exposed
(unsaturated) for at least one of the exposure settings. An example image
sequence is shown in Figure 6.1. Four frames from the Sintel [86] Alley2
sequence have been altered by clipping high intensity regions in I1, I3 and
low intensity regions in I2, I4 to simulate a HDR scenario. Such animated
sequences are useful for performance assessment, as ground truth flow data
is available. Before proceeding to discuss a revised camera model and the
proposed OF method for image sequences with differently exposed frames
in the next two sections, we review some related work on motion estimation
in HDR scenarios, particularly with a focus on OF methods.

Optical flow estimation, in our work, is pursued mainly for its own pur-
poses as an enabler to motion analysis applications. Other OF methods
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Figure 6.1: An image sequences {Ik(x)} with 4 frames taken with alternat-
ing exposure settings every other frame.

exist in the HDR context as part of HDR image reconstruction methods [9].
Most methods for HDR image reconstruction, however, do not estimate
dense motion. They typically opt for simpler motion compensation meth-
ods, using a global motion model, in combination with HDR deghosting
techniques to avoid reconstruction artifacts [9, 70, 72, 132, 133]. Zimmer et
al., however, use optical flow based image alignment as pre-processing in
their SR, HDR image reconstruction method [52]. As input they use sets of
5 to 9 images, each taken with a different exposure duration relative to the
others. Hafner et al. estimate optical flow and a HDR image jointly using
alternating minimization for a common cost functional [53]. Their results
indicate that the joint approach benefits both the flow- and the HDR im-
age estimates. The flow estimate benefits from using estimates of the HDR
image in an image-driven, anisotropic spatial flow regularization term.

6.1 Image sequences with differently exposed
frames

For the proposed method in this chapter, an image is assumed to be gener-
ated according to the camera model

Ĩk(x) = f(Φk(X(x) +Nk(x))), (6.1)

where X(x) is the (filtered) illuminance incident on the sensor for the spe-
cific lightning condition of the imaged scene at the time instance of the image
Ĩk(x) and Nk(x) is a noise term. The camera response function, f , as in
(2.9), clips the sensor exposure Ek(x) = Φk(X(x)+Nk(x)) outside of its op-
erational range [Emin, Emax]. The function Φk models the specific exposure
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setting used for image k. Under the assumption of brightness constancy,
another image Ĩk+1 of the same scene can be related to the non-occluded
regions of Ĩk through

Ĩk+1(x + uk(x)) = f(Φk+1(X(x) +Nk+1(x))), (6.2)

where uk denotes the displacement (i.e. the integrated optical flow between
the time instances of Ĩk and Ĩk+1) of point x in Ĩk. The camera model spec-
ified by (6.1) and (6.2) is more general than in the related work on optical
flow methods for HDR image reconstruction, where only the exposure du-
ration is altered. This model, in addition, allows other exposure settings to
be changed, for example to use flash illumination every other frame. If the
images are generated using the same camera settings, such that Φk+1 = Φk,
OF estimation between Ĩk and Ĩk+1 reduces to the traditional case. For the
case where Ĩk, Ĩk+1 are taken with different exposure durations ∆t1,∆t2,
and all other exposure settings are equal, they are given by

Ĩk(x) = f(∆t1(X(x) +Nk(x))),

Ĩk+1(x + uk(x)) = f(∆t2(X(x) +Nk+1(x))).
(6.3)

The images can be aligned photometrically by inverting the effect of the
CRF in its non-saturated regions and scaling with the inverse of the respec-
tive exposure durations. In the remainder of the chapter, we denote image
sequences whose frames are photometrically aligned version the correspond-
ing Ĩk, if there exists a mathematical expression for the Φk to relate them,
without the tilde as {Ik(x)}. For the case when Ĩk+1 is taken with flash
but Ĩk is not, the flash illuminates the scene in a spatially varying manner,
causing changes to X(x) that are difficult to model. It may still be possible
to implicitly align the images photometrically by using transformed image
functions such as the census transform [98]. Nevertheless, the proposed
method in Section 6.3 is designed to handle even such cases where the dif-
ferently exposed images cannot be aligned photometrically. An advantage
of using flash instead of a long exposure duration in order to capture low
intensity image regions is that the issue of motion blur can be mitigated.
A prototype camera system, mounted on a vehicle, that uses near-infrared
flash illumination every other frame is discussed in Paper 2. Sellent et al.,
however, design an OF method based on adding a long exposed image in be-
tween two short exposed images, and specifically aims to model the motion
blur in order to aid the OF estimation [105]. Thus, motion blur in the input
image sequence is not strictly undesired. In any case, flash illumination is
useful if a high frame rate is required.
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6.2 Proposed method for OF estimation of HDR
image sequences

In this section, which leads up to the appended Paper 2 and Paper 3, sum-
marized in Chapter 7, we outline our proposed method for optical flow
estimation on sequences with differently exposed frames. In particular,
we consider image sequences {Ik(x)} = I(x, {tk}), k = 1, . . . , 4, assuming
tk+1 = tk + 1, ∀k, where every second frame is taken with exposure set-
ting I and II respectively. The objective is to estimate the flow field u2,
that describes the optical flow at the time instance and with respect to the
spatial locations of the reference frame, fixed here as I2. Three flow fields
uk = (uk(x), vk(x)), k = 1, 2, 3 are used to form data cost terms

FD13 = Ψ((I3(x + u2)− I1(x− u1))2),

FD24 = Ψ((I4(x + u2 + u3)− I2(x))2),

FD23 = Ψ((I3(x + u2)− I2(x))2),

(6.4)

where Ψ is a robust distance function. These terms are summed to form a
total data cost

FD = θ13FD13 + θ24FD24 + θ23FD23, (6.5)

where θ13(x), θ24(x), θ23(x) are weights that are set to be non-zero for image
regions for points where the respective image pair is mutually non-saturated,
and in the case of θ23, if the differently exposed I2 and I3 are photometrically
aligned. Importantly, θ23 is set to zero for regions where one of I2, I3 is
saturated but not the other, as such regions provide false correspondences.
Note that the flow fields are not parameterized as I1(x + ũ1), I3(x + ũ3),
I4(x+ũ4) to directly relate each of the non-reference images to the reference
coordinates x. Instead, the flow field terms in (6.4) describe flow increments
between a pair of adjacent frames with respect to the locations of each point
in the reference frame [134]. For example, u3(x) describes the flow between
frames I3, I4 of the point that was in location x in the reference image I2.

A flow estimate û2 is obtained by minimizing the cost functional

Etotal({uk}) =

∫
Ω

FD + αSFS + αTFT + αMFM dx (6.6)

with respect to its arguments u1,u2,u3, where FS is a spatial regulariza-
tion term, FT is a temporal regularization term, FM is a feature matching
term and αS, αT , αM are their respective weights. The spatial regulariza-
tion term FS can either consist of a sum of separate terms for each flow
field, such as the expression in (5.8a), or it can be formulated jointly [134].
The temporal regularization term FT penalizes differences between the flow
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terms to enforce the flow to be temporally (piecewise) smooth. Finally, the
feature matching term FM integrates a sparse set of pre-processed feature
matches into the minimization, in accordance with the motivation in Sec-
tion 5.2.3. Additional variables, lk(x), can be added to the data term of
(6.6) to model natural illumination changes that occur between similarly
exposed (or photometrically aligned) image pairs, along with a regulariza-
tion term that enforces piecewise smooth illumination changes. Additive
illumination offsets have successfully been integrated into conventional OF
formulations [103, 107]. Statistical deviations from the BCA can thus be
learned from the image data.
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Chapter 7

Summary of included papers

This chapter provides a brief summary of the three papers that are included
in Part II of the thesis and how they relate to Part I. The papers have been
reformatted to comply with the layout of the thesis. The contents have
not been changed, aside from some adaptation of notation, stated at the
end of the chapter, to match that of Part I. The first paper addresses SR
reconstruction of HDR images, and incorporates the perceptual character-
istics of the HVS into the problem formulation. Papers 2 and 3 address OF
estimation for HDR scenarios.

Paper 1

In Paper 1, a method is proposed that performs reconstruction of HR, HDR
images by solving an inverse problem in an image domain that is designed
to be perceptually uniform with respect to the HVS, as opposed to previous
work where the problem is formulated directly in the illuminance domain.
To a certain extent, Paper 1 is a continuation of Chapter 5, that elaborates
on the mathematics of the PU formulation of the HDR SR problem. A
nonlinear objective function of the form in (4.4) is proposed. Other choices
for ρ1(·) and ρ2(·) than the L2 norm in (4.7) are discussed at greater lengths
and specifically the use of the Lorentzian norm is evaluated. Whether the
image reconstruction is performed in the proposed PU domain or in the illu-
minance domain, the reconstructed image contains numerical errors across
image edges that are of similar magnitudes. Illuminance domain image data,
however, needs to be tonemapped for visualization, contrary to the PU do-
main image that is already in a tonemapped domain. Then, the numerical
errors in the darker (low illuminance) regions exhibit themselves as severe
artifacts in the tonemapped result. Experimental reconstruction results are
presented alongside the objective quality measures PSNR and MSSIM and
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demonstrate the benefit of using a PU domain formulation, such as (4.7),
as compared to the illuminance domain formulation (4.3). Results on color
image sequences, as well as MSSIM quality maps, are provided in our earlier
conference papers [135,136].

Paper 2

In Paper 2, a method is proposed for OF estimation on sequences with differ-
ently exposed frames. This setup is useful in HDR scenarios, to avoid poor
flow estimates in image regions that contain saturated data. The method
is formulated such that any number of input frames can be used, as well
as any number of exposure settings. The default setting, however, is to
use 4 frames that are taken with two different exposure settings every other
frame, as described in Chapter 6. The method works well even when images
taken with different exposure settings cannot be related mathematically by
photometric alignment, thanks to the flow parametrization in (6.4). We
show qualitatively that the performance of OF estimates is degraded due to
saturation in the input images. A set of different OF data terms are eval-
uated quantitatively among themselves and compared to the conventional
setup of image sequences that are captured using a single exposure setting.
Experimental results are given for two cases, one where the image sequences
is generated using different exposure durations and the other where the im-
age sequence is generated using flash illumination every other frame. In the
latter case, photometric alignment is not attempted. The best performing
data term in a HDR scenario is adopted in Paper 3.

Paper 3

Paper 3 builds on the results of Paper 2, and extends the method for OF
estimation on sequences with differently exposed frames to handle challeng-
ing scenarios such as natural illumination changes and large displacements
of small objects. Illumination changes are included in the modeling of the
OF method and flow information from nearest neighbor feature matches are
included to aid the estimation of points that exhibit large displacements.
The improved performance of flow estimates due to these two additions is
shown in qualitative experimental results. The OF estimation is performed
by minimizing an OF cost functional using an efficient primal-dual method.
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Notational differences

There are a few noteworthy differences in notation between the introductory
chapters in Part I and the appended papers. For Paper 1, the notation is
completely consistent with that of Part I of the thesis. However, compared
to the published version of the paper, ik and yk are interchanged. For Paper
2 and Paper 3, the significant notational differences are listed in Table 7.1.

Thesis Part I Papers 2 and 3
Camera response function f CRF

Illuminance X R

Exposure E X

Table 7.1: Different notation used in Papers 2 and 3 compared to the in-
troductory chapters.
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Chapter 8

Concluding remarks

Part I of the thesis is concluded with these final words. Throughout the
introductory chapters, two main topics have been discussed; image recon-
struction of HR, HDR images as well as optical flow methods. In Chapter 2,
the relevance of human visual perception and its connection to digital cam-
era systems was emphasized. The concept of high dynamic range imaging,
also introduced therein, has been a theme throughout most of the chapters.
In Chapter 3, high dynamic range and super resolution image reconstruc-
tion were treated as separate topics. Joint reconstruction of HR, HDR
images was discussed in Chapter 4, including a proposed method that takes
human visual perception into account in its inverse problem formulation.
Interesting future work includes to consider other formulations of the objec-
tive function for the inverse SR problem, perhaps replacing the pointwise
PSNR-like measure with a structure-aware measure, inspired by MSSIM,
that correlates better with perceived image quality. Conventional optical
flow methods that estimate motion based on two or more images of the
same scene were introduced in Chapter 5, as a background to the proposed
method for OF estimation in HDR scenarios in Chapter 6. It is of major
interest to perform a measurement campaign to capture real-world HDR
scenes with differently exposed frames, as a basis for further investigation
of the proposed OF method. The three papers that are appended in the
thesis were summarized in Chapter 7, to bridge between the introductory
chapters and Part II.
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