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Abstract

We present the design and implementation of a novel programming model
and software development suite for interactive, distributed web applications
using the Haskell programming language. The suite includes the JavaScript-
targeting Haste Haskell compiler which improves on the current state of
the art by producing smaller and leaner JavaScript code while preserving
compatibility with standard Haskell as well as with the de facto standard
GHC compiler.

We also describe the Haste.Foreign lightweight, portable interface for
interoperating with JavaScript code, which allows boilerplate-free incorpora-
tion of JavaScript libraries in Haskell programs and vice versa. Haste.Foreign
is implementable as a client library, and does not require any compiler mod-
ifications. While designed for the Haste compiler, the interface is portable
across a range of Haskell dialects and high level target platforms.

Finally, we present the Haste.App programming model for distributed
web applications, which abstracts over the separation of client and server
to allow distributed applications to be written and type checked as a
single program. The Haste.App model stands in stark contrast to the
conventional way of developing web applications as separate client and
server programs communicating explicitly over some network protocol.
Haste.App reduces the amount of boilerplate code required to implement
distributed web applications, and provides type safety across the network
separating the client and server parts. This shortens development times
and eliminates costly and embarrassing runtime failures at the boundaries
between networked components. Like the foreign function interface, this
programming model is implementable entirely as a library without any
compiler modifications, and is thus similarly portable.
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Introduction

We spend large parts of our daily lives in a web browser: everything from so-
cializing with friends and dating, to shopping, filing our taxes and banking,
increasingly takes place on the Internet, which to most people is synony-
mous with their web browser. In response to the public’s ever increasing
appetite for more, and more sophisticated, online services, JavaScript has
emerged as the sole language of choice for client side web application
development. The web as an application platform offers many benefits: it
is a relatively uniform and standardized platform, web applications are
easy to deploy, and web based interfaces offer a degree of commonality,
lessening friction with new users. Any language community that wishes to
stay relevant for developing end user-targeting applications would do well
to keep a close eye on the development of the web application platform.

Layout of this thesis This thesis describes the design and implementation
of a comprehensive programming environment for building web-targeting
Haskell applications. Chapter 1 gives an overview of this programming
environment, its background and related work, and the contributions made
by this thesis. Chapter 2 describes the design and implementation of Haste,
a Haskell compiler with a JavaScript backend. Based on the state of the art
GHC Haskell compiler, Haste produces small, efficient JavaScript programs
from idiomatic Haskell code. Chapter 3 describes the Haste.Foreign high
level foreign function interface, which is specifically geared towards the
challenges of interoperating with JavaScript code. This interface has a
surprisingly lightweight implementation, and is portable across Haskell
compilers and dialects as well as target languages. Chapter 4 describes
the Haste.App web application programming model. Haste.App allows the
development of client-server web applications which are type safe even
across the network separating the client and server parts. This stands in
contrast to traditional web applications, where the client and the server
may be individually type correct, but not guaranteed to interoperate in a
type safe manner.

1
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Together with an extensive web standard library, these components
make up the Haste development suite. The Haste suite has been used with
good results in industry as well as in academia and in teaching, and is
available as free software from its website at http://haste-lang.org.

While each chapter is followed by a short discussion and summary,
the main discussion and analysis of the results of this thesis, including a
discussion of related work and a summary of its contributions, are presented
as a whole at the end of chapter 1.

1 Background

1.1 Unconventional compilation

The compilation of functional languages to unconventional architectures
has a long and proud history. In the 1980’s, functional languages performed
poorly on stock architectures which led to the invention of specialized
computer architectures such as the Normal Order Reduction MAchine
(NORMA) [49]. Unconventional compilation targets were seen as a way
to gain performance parity with the lower level languages of the time.
This line of research went into decline as processors became faster and
mass production of conventional chips made the economic case for special
purpose architectures untenable, although the recent popularity of FPGAs
seems to have the potential to reinvigorate the field [38].

Since the late 1990’s, research into unconventional compilers has rather
made a 180 degree turnabout: instead of producing blazing fast programs
for newly invented physical machines, papers started appearing about
producing relatively slow programs for established virtual machines, such
as the Java Virtual Machine with its promised “write once, run anywhere”
approach to program execution [4]. With the rise of the web as an appli-
cation platform, just about every functional language now has a compiler
targeting JavaScript: LuvvieScript [25] for Erlang, Ocsigen [3] for O’Caml,
AFAX [41] for F#, several for Haskell [15, 19, 39], and so on.

1.2 JavaScript as a compilation target

As a target for compilation, JavaScript differs markedly from traditional
assembly languages as well as more modern intermediate languages like
the JVM or LLVM. Unlike the aforementioned target languages, JavaScript
was designed for programmers, not compilers, and operates at a markedly
higher level of abstraction. As a consequence, JavaScript has some unusual
properties for a target language:

http://haste-lang.org
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• The only numeric data type available is double precision IEEE754

floating point numbers. Despite this, said Number type still provides
the full range of bitwise operators; all of which except one act as
though their operands were 32 bit signed integers.

• There are no labels or unstructured jumps, even within delimited
bodies of code. Any language features dependent upon arbitrary
jumps must be simulated using higher level control structures.

• JavaScript has full support for first class functions, even allowing
serialization and reification of arbitrary functions, which as dis-
cussed in chapter 3 has some positive implications for interfacing
with JavaScript code.

JavaScript: the good parts One upshot of JavaScript’s high level of ab-
straction is the possibility of a relatively direct mapping between source
and target language. Source language functions are often representable
by plain JavaScript functions, and expressive control structures make for
relatively structured target code. Whereas significant tooling is required
to productively debug programs compiled for native architectures, ma-
chine generated JavaScript code, and the compiler that produced it, is often
debuggable to an extent by merely reading the generated code.

An execution environment meant for human consumption also brings
to the table a rich set of APIs and runtime functionality. Unlike language
implementors targeting more traditional environments, implementors tar-
geting JavaScript can make use of the language’s built-in facilities for
garbage collection and other labour intensive parts of a language’s runtime
system instead of implementing their own. Both the language implementa-
tion itself and programs written in it are able to rely on the existence of a
relatively rich set of standardized libraries for purposes ranging from string
processing to graphical interfaces and network communication. This may
in turn lead to less complex and labour intensive language implementa-
tions, smaller compiled programs, and greater cross platform compatibility,
compared to languages targeting lower level platforms.

The other side of the coin JavaScript does have some significant draw-
backs as a compilation target, however. As the language supports neither
unstructured jumps nor native tail call optimization, supporting functional
languages, which to a large extent require tail call optimization for cor-
rect operation, is problematic. In this way, the straightjacket imposed by
structured control flow may hinder efficient compilation of some programs.
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While the generous amount of functionality built into the language
makes implementation of many features easier than in a lower level envi-
ronment, the implementation enabled by said features is usually not ideal.
Take as an example the memory behaviour of Haskell programs, which tend
to allocate and discard large amounts of immutable data with a relatively
short lifespan. This behaviour is not an ideal match for a JavaScript garbage
collector which is tuned for programs which allocate relatively modest
amounts of long-lived, frequently mutated data. While it is possible for
implementors to use their own garbage collection schemes and fall back to
a lower abstraction level, this generally entails giving up most or all of the
benefits previously described [27].

The browser is also a constantly moving target. APIs are frequently
introduced or modified, often with subtly differing semantics between
different browsers, and new optimizations in JavaScript interpreters may
render a program which used to be slow quite fast, or vice versa. While
this is true to some extent for traditional architectures as well, they tend to
move significantly slower and place a premium on backwards compatibility.

2 Related work

The Haste suite is not the only software development suite aiming to enable
web development at a higher level of abstraction than what JavaScript
natively provides. As previously stated, almost every popular language
in existence has a JavaScript compiler these days. As discussing them
all would be relatively impractical, this section focuses on the areas of
research most immediately relevant to this thesis: compilers from functional
languages to JavaScript and their foreign function interfaces, and web-
targeting distributed programming environments.

2.1 Other compilers and FFIs

Clean The Clean compiler is able to generate JavaScript through the Sapl
intermediate language [7]. Its compilation scheme is relatively similar
to that of Haste, but the compiler uses a different source language as
well as abstract machine and differs on certain key choices regarding data
representation and runtime system. In particular, it uses an array model
for the representation of algebraic data types as well as thunks, which we
show in section 5 of chapter 2 to be relatively inefficient. Unfortunately,
the actual compiler and benchmarks referred to in this paper are no longer
available, making a direct performance comparison quite difficult.

The Clean language sports a foreign function interface which differs
slightly from the rest of the compilers presented here. In Clean, the module
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system makes a difference between definition modules, where abstract types
and functions are declared, and implementation modules, where implementa-
tions are given for the types and functions declared in the corresponding
definition modules. Instead of using a special “foreign import” syntactic
form, Clean allows developers to write system implementation modules:
modules where the implementations of functions defined in a definition
module may be written in a language other than Clean [46]. However,
only primitive types may be passed to this foreign code and no guarantees,
making higher level interoperability cumbersome. Clean’s FFI is thus more
flexible than the foreign function interface of GHC, but less so than the
solutions used by Fay, GHCJS, Haste or Idris.

Fay Haste’s FFI was partially inspired by the foreign function interface of
the Fay language, a “proper subset of Haskell that compiles to JavaScript”
[16]. While the two are very similar in syntax, allowing users to import
typed strings of host language code, Fay’s solution is highly specialized. The
compiler takes a heavy hand in the marshalling and import functionality,
parsing the host language code and performing certain substitutions on
it. While marshalling of arbitrary types is available, this marshalling is
not easily controllable by the user, but follows a sensible but fixed format
determined by the compiler. This approach makes sense, as the interface is
designed to support the Fay language and compiler alone, but differs from
our work which aims to create a more generally applicable interface.

GHCJS GHCJS [39] is, similar to Haste, a GHC-based compiler from
Haskell to JavaScript, albeit with a different focus of development. Whereas
Haste aims to produce small, fast JavaScript code and is willing to com-
promise certain features that are available in vanilla GHC to reach that
goal, GHCJS aims to maximize compatibility with vanilla GHC at any cost.
GHCJS compiles Haskell into continuation passing style, using a global
trampoline to combat stack overflow, and partially manages its own heap on
top of the JavaScript garbage collector. While this elegantly enables certain
features which are not presently available in Haste – most prominently
weak references – a heavy price has to be paid in terms of execution speed
and code size as discussed in section 6 of chapter 2.

GHCJS provides no mechanisms of its own to facilitate the development
of distributed web applications, but the Haste.App library described in
chapter 4 could be implemented on top of GHCJS just as easily as on top of
Haste.

GHCJS uses the relatively recent JavaScriptFFI GHC extension, which has
unfortunately been rarely described outside a GHCJS context, to the point
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of being conspicuously absent from even the GHC documentation. Much
like Fay, this extension parses and performs substitutions over imported
host language code to make imports slightly more flexible, allowing for
importing arbitrary expressions rather than plain named functions. It
also enables additional safety levels for foreign imports: safe, where bad
input data is replaced by default values and foreign exceptions caught and
marshalled into Haskell equivalents, and interruptible, which allows host
language code to suspend execution indefinitely even though JavaScript is
completely single threaded. This is accomplished by handing interruptible
functions a continuation in addition to their usual arguments, to call with
the foreign function’s “return value” as its argument when it is time for the
foreign function to return and let the Haskell program resume execution.

The JavaScriptFFI extension preserves the regular FFI’s onerous re-
strictions on marshallable types however, and while GHCJS comes with
convenience functions to convert between these more complex types and
the simple ones allowed through the FFI, marshalling is not performed
automatically and functions in particular are cumbersome to push between
Haskell and JavaScript. Due to the complex runtime and memory manage-
ment required for GHCJS to support weak references, Haskell functions
can not be straightforwardly exported as library code, as this may cause
memory leaks and other undesirable behaviors; exporting a GHCJS function
essentially entails exporting a raw Haskell heap object.

Idris Idris is a dependently typed, Haskell-like language with backends
for several host environments, JavaScript being one of them [6]. Like
Haskell, Idris features monadic IO, but unlike Haskell, Idris’ IO monad is,
in a sense its foreign function interface. IO computations are constructed
from primitive building blocks, imported using a function not unlike our
host function described in section 2 of chapter 3, and parameterized over the
target environment. This ensures that Idris code written specifically for a
native environment is not accidentally called from code targeting JavaScript
and vice versa.

Idris’ import function does not necessarily accept strings of foreign
language code, but is parameterized over the target environment just like
the IO monad; for JavaScript-targeting code, foreign code happens to
be specified as strings, but could conceivably consist of something more
complex, such as an embedded domain-specific language for building
Idris-typed host language functions.

UHC The UHC Haskell compiler comes with a JavaScript backend as
well. Unlike Haste and GHCJS, UHC bears no relation to GHC, being



thesis_print December 9, 2015 13:09 Page 7 �
�	

�
�	 �
�	

�
�	

2 Related work 7

implemented from scratch using attribute grammars [15]. Like Fay, UHC
provides automatic conversion of Haskell values to JavaScript objects, as
well as importing arbitrary JavaScript expressions, with some parsing and
wildcard expansion. Also like Fay, the JavaScript representation produced
by this conversion is determined by the compiler, and is not user con-
figurable. UHC does, however, provide several low level primitives for
manipulating JavaScript objects from within Haskell, both destructively
and in a purely functional manner.

2.2 Foreign interfaces with quasi quotes

Quasi quoting represents another, more radically different, approach to
the problem of bridging with a host language [33]. Allowing for the inline
inclusion of large snippets of foreign code with compile time parsing
and type checking, quasi-quotes have a lot in common with our interface,
even eclipsing it in power through anti-quotes, which allow the foreign
code expressions to incorporate Haskell data provided that the proper
marshalling has been implemented. Recent work by Manuel Chakravarty
has extended the usefulness of quasi-quotes even further, automating large
parts of the stub generation and marshalling required for using quasi-
quoted host language code as a foreign function interface [9].

This usefulness comes at the price of a more involved implementation.
Quasi quoting requires explicit compiler support in the form of compile
time template meta programming as well as special extensions for running
the quasi quoters themselves. In order to make full use of its compile time
parsing and analysis capabilities an implementor also need to supply a
parser for the quoted language.

2.3 Web-targeting distributed platforms

Several other approaches to seamless client-server interaction exist. In
general, these proposed solutions tend to be of the “all or nothing” vari-
ety, introducing new languages or otherwise requiring custom full stack
solutions. In contrast, Haste.App, our approach to writing distributed web
applications, can be implemented entirely as a library and is portable to
any pair of compilers supporting typed monadic programming. More-
over, Haste.App has a quite simple and controlled programming model
with a clearly defined controller, which stands in contrast to most related
work which embraces a more flexible but also more complex programming
model.

The more notable approaches to the problem are discussed further in
this section.
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Conductance and Opa Conductance [24] is an application server built on
StratifiedJS, a JavaScript language extension which adds a few niceties such
as cooperative multitasking and more concise syntax for many common
tasks. Conductance uses an RPC-based model for client-server communi-
cation, much like our own, but also adds the possibility for the server to
independently transmit data back to the client through the use of shared
variables or call back into the client by way of function objects received via
RPC call, as well as the possibility for both client and server to seamlessly
modify variables located on the opposite end of the network. Conductance
is quite new and has no relevant publications. It is, however, used for
several large scale web applications.

While Conductance gets rid of the callback-based programming model
endemic to regular JavaScript, it still suffers from many of its usual draw-
backs. In particular, the weak typing of JavaScript poses a problem in that
the programmer is in no way reprimanded by her tools for using server
APIs incorrectly or trying to transmit values which can not be sensibly
serialized and deserialized, such as DOM nodes. Wrongly typed programs
will thus crash, or even worse, gleefully keep running with erroneous state
due to implicit type conversions, rather than give the programmer some
advance warning that something is amiss.

We are also not completely convinced that the ability to implicitly pass
data back and forth over the network is a unilaterally good thing; while this
indeed provides the programmer some extra convenience, it also requires
the programmer to exercise extra caution to avoid inadvertently sending
large amounts of data over the network or leak sensitive information.

The Opa framework [47], another JavaScript framework, is an improve-
ment over Conductance by introducing non-mandatory type checking to
the JavaScript world. Its communication model is based on implicit infor-
mation flows, allowing the server to read and update mutable state on the
client and vice versa. While this is a quite flexible programming model, we
believe that this uncontrolled, implicit information flow makes programs
harder to follow, debug, secure and optimize.

Google Web Toolkit Google Web Toolkit [54], a Java compiler targeting
the browser, provides its own solution to client-server interoperability
as well. This solution is based on callbacks, forcing developers to write
code in a cumbersome continuation passing style. It also suffers from
excessive boilerplate code and an error prone configuration process. The
programming model shares Haste.App’s client centricity, relegating the
server to serving client requests.
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Cheerp Cheerp [45] is a C++ compiler targeting the web, written from
the ground up to produce code for both client and server simultaneously. It
utilizes the new attributes mechanism introduced in C++11 [52] to designate
functions and data to live on either client or server side. Any calls to a
function on the other side of the network and attempts to access remote
data are implicit, requiring no extra annotations or scaffolding at the call
site. Cheerp is still a highly experimental project, its first release being only
a few months old, and has not been published in any academic venue.

Like Conductance, Cheerp suffers somewhat from its heritage: while
the client side code is not memory-unsafe, as it is not possible to generate
memory-unsafe JavaScript code, its server side counterpart unfortunately is.
Our reservations expressed about how network communication in Cheerp
can be initiated implicitly apply to Cheerp as well.

Sunroof In contrast to Conductance and Cheerp, Sunroof [5] is an embed-
ded language. Implemented as a Haskell library, it allows the programmer
to use Haskell to write code which is compiled to JavaScript and executed
on the client. The language can best be described as having JavaScript
semantics with Haskell’s type system. Communication between client and
server is accomplished through the use of “downlinks” and “uplinks”,
allowing for data to be sent to and from the client respectively.

Sunroof is completely type-safe, in the DSL itself as well as in the
communication with the Haskell host. However, the fact that client and
server must be written in two separate languages – any code used to
generate JavaScript must be built solely from the primitives of the Sunroof
language in order to be compilable into JavaScript, precluding use of general
Haskell code – makes code reuse hard. As the JavaScript DSL is executed
from a native Haskell host, Sunroof’s programming model can be said to
be somewhat server centric, but with quite some flexibility due to its back
and forth communication model.

Ocsigen Ocsigen [3] enables the development of client-server web appli-
cations using O’Caml. Much like Opa, it accomplishes typed, seamless
communication by exposing mutable variables across the network, giving
it many of the same drawbacks and benefits. While Ocsigen is a full stack
solution, denying the developer some flexibility in choosing their tools, it
should be noted that said stack is rather comprehensive and well tested.

AFAX AFAX [41], an F#-based solution, takes an approach quite similar
to ours, using monads to allow client and server side to coexist in the same
program. Unfortunately, using F# as the base of such a solution raises the
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issue of side effects. Since any expression in F# may be side effecting, it is
quite possible with AFAX to perform a side effect on the client and then
attempt to perform some action based on this side effect on the server. To
cope with this, AFAX needs to introduce cumbersome extensions to the
F# type system, making AFAX exclusive to Microsoft’s F# compiler and
operating system, whereas our solution is portable to any pair of Haskell
compilers.

HOP, Links, Ur/Web and others In addition to solutions which work
within existing languages, there are several languages specifically crafted
targeting the web domain. These languages target not only the client and
server tiers but the database tier as well, and incorporate several interesting
new ideas such as more expressive type systems and inclusion of typed
inline XML code [11, 13, 51]. As this thesis aims to bring typed, seam-
less communication into the existing Haskell ecosystem without language
modifications, these languages solve a different set of problems.

Haxl Facebook’s Haxl language, which specializes in fast data access,
presents an interesting solution to the problem of concurrent access to
distributed data sources [34]. A client side application must often fetch
several distinct data sets in order to perform its functionality: a product
view in a web shop may need to fetch information about the product, but
also information about related products and about the user’s shopping cart.
These data sets are conceptually distinct and often not rendered in the same
place, so in the interest of clarity we don’t want to clump these data fetches
together. Moreover, not all of this data may come from the same source,
which further complicates any attempt at merging the requests. However,
performing these fetches one after another is slow: each fetch needs to
perform a complete network roundtrip, increasing the rendering time of
the application by several times!

Marlow et al presents an abstraction for Haxl under which logically
separate data fetches are merged and performed at the same time. Fetches
from different data sources are performed in parallell and multiple fetches
from the same source are batched, reducing the required latency of the set
of fetches as a whole. The abstraction is based on an extension of Claessen’s
concurrency monad [12], but dispenses with explicit forking. Instead, the
abstraction exploits the fact that every monad is also an applicative functor,
handling batching, parallel requests and blocking implicitly in the <*>
operator of the monad’s Applicative instance.
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3 Conclusions

This thesis presents a comprehensive programming environment for rich
client web applications. This environment consists of the JavaScript-targeting
Haste Haskell compiler, the Haste.Foreign high level foreign function inter-
face, and the Haste.App library and distributed programming model for
client-server web applications.

As a whole, the Haste development suite aims to simplify and advance
modern web development through the application of core functional pro-
gramming techniques in novel ways. While not yet as mature or polished
as less exploratory programming environments, the Haste suite provides a
compelling combination of distribution, type safety and ease of use. The
Haste suite bridges the gap between the JavaScript and Haskell communi-
ties, allowing users to draw upon the best of both worlds; the user-centric
design and the “bells and whistles” of contemporary web development,
and the safety and correctness-focused, highly principled abstractions of
the functional programming world.

The Haste compiler The Haste compiler provides a base upon which
to build further research into client side web development using lazy,
functional languages. It aims to provide fertile ground for experimentation
and research as well as less exploratory web application development. To
this end, Haste employs a minimalistic runtime system and a relatively
straightforward translation scheme as described in chapter 2, and a sports
an implementation that emphasizes code reuse and maximal utilization of
previous work.

In addition, the Haste compiler improves upon the current state of the
art in web-targeting Haskell dialects by providing superior performance and
small code output while retaining near complete1 compatibility with GHC
Haskell. While these minor incompatibilities preclude or complicate certain
use cases – higher order functional reactive programming being one – only
the lack of weak references (unless supported by the underlying JavaScript
execution environment) is intrinsic to the compiler’s design. Considering
the code footprint and performance benefits gained by this approach, as
well as the ability to export Haskell code to native JavaScript programs
without having to deal with complications in memory management, we
deem this an acceptable sacrifice to make.

1 Lack of support for weak references and the Template Haskell extension being the
exceptions.
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Haste.Foreign The Haste.Foreign interface enables frictionless interop-
erability between web-targeting Haskell code and its native JavaScript
execution environment. Not only does it allow Haskell programs to draw
upon the vast library of third party code in the JavaScript ecosystem, but it
also allows the export of parts of Haskell programs as a JavaScript library,
for the quite common case where a complete conversion of an existing
JavaScript code base into Haskell is not an option. While designed and
implemented for the Haste compiler, the concepts of the interface are ap-
plicable to other functional languages targeting a wide range of high level
environments as well.

We have given a number of optimizations, improving the performance
and safety of the interface and lightening the restrictions placed on the host
environment. Additionally, we have given a library-only implementation
of our interface for the Haste compiler, which is also portable across web-
targeting Haskell dialects with a minimum of modification.

Finally, we have used this implementation to further extend our mar-
shalling capabilities to cover functions, as well as generic default mar-
shalling for arbitrary data types, contrasted our approach with a variety of
existing foreign function interfaces, and demonstrated that our library does
not introduce excessive performance overhead compared to the vanilla FFI.

While our interface is currently not applicable to Haskell implemen-
tations targeting low level, C-like environments, it brings significant re-
ductions in boilerplate code and complexity for users needing to interface
their Haskell programs with their corresponding host environment in the
space where it is applicable: Haskell implementations for high level target
platforms.

Haste.App With Haste.App we present a programming model which
improves on the current state of the art in client-server web application
development. In particular, Haste.App combines type safe communication
between the client and the server with functional semantics, clear demarca-
tion as to when data is transmitted and where a particular piece of code is
executed, and the ability to effortlessly share code between the client and
the server.

Our model is client-centric, in that the client drives the application
while the server takes on the role of passively serving client requests,
and is based on a simple blocking concurrency model rather than explicit
continuations. It is well suited for use with a GUI programming style based
on self-contained processes with local state, and requires no modification
of existing tools or compilers, being implemented completely as a library.

As we saw in section 2, there exists a wealth of frameworks for dis-
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tributed application development. While Haste.App is less versatile than
some, for instance insisting on client centricity and a strict request-response
model instead of allowing arbitrary communication or even cross-network
access to mutable variables, we believe that this restriction is not so much a
limitation as a strength. In nudging the programmer towards what we be-
lieve is a sensible approach to application development, we hope to reduce
the complexity, and by extension the number of defects, in web applications
written using Haste.App.

Similarly, in allowing only explicitly exported functions to be executed
remotely, instead of allowing arbitrary client-side composition of server-
side code, a significant source of security issues is eliminated. To illus-
trate why such arbitrary composition may be dangerous, imagine a situ-
ation where an application’s server component supplies two operations:
fireMissiles, which launches a flurry of ballistic missiles against some tar-
get, and isPresident, which checks whether the user is the president of the
United States and thus authorized to launch missile strikes. Using these
two operations, an application may implement the missile launch button
as onServer (when isPresident fireMissiles). If the server side computation were
built on the client and then shipped to the server for execution, a malicious
user could easily remove the isPresident check from the computation before
shipping it off to the server for execution, allowing anyone with a web
browser and basic web programming skills to launch missile strikes at will!

In order to make the same mistake with Haste.App, the programmer
would need to export isPresident and fireMissiles separately, and explicitly
call onServer isPresident followed by onServer fireMissiles. Not only does this
explicit notation make the mistake much easier to spot, but it makes it
much harder to make in the first place, considering that doing the right
thing – exporting when isPresident fireMissiles as a single, atomic server side
computation – is easier and requires less code than taking the insecure
approach.

Contributions to the field In summary, this thesis makes the following
contributions to the field:

• We present the Haste compiler which allows programs written in
standard GHC Haskell to compiled to and executed performantly in
a web browser environment, while allowing Haskell code to be incor-
porated in native JavaScript programs and vice versa. We describe
in detail the compilation scheme and runtime system of the Haste
compiler and analyze its performance, showing it to produce code
which is significantly faster and smaller than the current state of the
art.
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• We investigate the performance impact of several optimizations re-
lating to tail call elimination and trampolining, as well as several
schemes for representing Haskell values in JavaScript, showing that
the techniques used in the Haste compiler have a positive performance
impact compared to these other techniques.

• We present a design for the the lightweight, compiler agnostic
Haste.Foreign foreign function interface for high level target envi-
ronments such as a web browser. Haste.Foreign is implementable in
pure Haskell on top of the vanilla foreign function interface, with-
out compiler modifications, and enables the import and export of
complex, high level data such as algebraic data types and overloaded
higher order functions without any boilerplate code. Programmers
may override this automatic marshalling and take control over how
data is marshalled using Haste.Foreign as needed.

• We give a reference implementation of the Haste.Foreign interface
for the Haste compiler and evaluate its performance. We show this
reference implementation to perform at least on par with the vanilla
foreign function interface of GHC.

• We describe the novel Haste.App programming model for distributed
web applications, using program slicing to allow applications to be
written, type checked and compiled as a single program. Haste.App
enables type safety across the network boundary, eliminating boiler-
plate code, bugs and incompatibilities in the communication between
the client and server components. It also allows significant code
sharing between the client and the server components.

• We give a reference implementation of Haste.App on top of the
GHC and Haste compilers, showing that the programming model is
implementable in pure Haskell, without compiler modifications.

• We survey the field of distributed web frameworks as well as for-
eign function interfaces for functional languages, and contrast the
approaches taken in this thesis with the current crop of the field,
arguing the efficiacy of our solution vis a vis these other frameworks.

Statement of contributions Chapter 1 presents the background and re-
sults of this thesis. It is part original work, part based on the two papers
which chapters 3 and 4 are based on. The work for this chapter was
performed in its entirety by the author. Chapter 2 is original work, a con-
tinuation of the author’s Masters’ thesis. Chapter 3 is a slightly revised
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version of a paper currently under consideration for publication in the pro-
ceedings of the 2015 Implementation and application of Functional Languages
workshop. The work – original ideas, design, implementation and writing –
for chapters 2 and 3 was performed in its entirety by the author. Chapter
4 is a revised version of a paper published in the proceedings of the 2014

Haskell Symposium workshop, coauthored with Koen Claessen. The work
on this paper – design of the programming model, implementation and
writing – was mainly carried out by the author, while the idea to distribute
applications by compiling the same program with two different compilers,
as well as feedback and revision work on the paper itself, came from Koen
Claessen.

4 Future work

Investigating alternative compilation targets JavaScript is the current de
facto gold standard of web development, but it does have certain short-
comings as a compilation target as well as a major performance penalty
compared to native code. Mozilla’s ASM.js technology attempts to close
this performance gap by compiling a low level subset of JavaScript into
efficient native code before executing it [27]. With the recent announcement
of WebAssembly, a cross-browser effort to create a common binary assembly
language for web browsers, compilation for this type of target is starting
to become an interesting proposition [17]. Investigating the viability of
porting Haste’s compilation scheme to ASM.js and WebAssembly opens up
the possibility of writing even smaller, faster functional web applications,
and may allow the application of traditional compilation techniques to a
greater extent than when targeting JavaScript.

Improving the FFI While our interface is designed for web-targeting
Haskell dialects, extending its applicability is generally a venue worthy of
further exploration.

By combining two optimizations given in section 3 of chapter 3, the
restriction of our safe_host function to only accept statically known strings
and the elimination of calls to eval for statically known strings, it is possible
to lift the restriction that a potential host language support dynamic code
evaluation: if all foreign imports are statically known, and we are able to
eliminate eval calls for all statically known functions, it follows that we
are able to eliminate all eval calls. While the actual implementation of
this idea has yet to be worked out, guaranteeing the complete absence
of eval from the generated host code would remove the restriction that
our host language supports dynamic code evaluation at runtime, notably
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making our interface implementable on recent versions of the Java Virtual
Machine. Implementing this interface for the Java Virtual Machine, with the
prerequisite Haskell-to-JVM compiler, would lend additional applicability
to our interface.

Haste.Foreign does not currently catch and marshal host language ex-
ceptions, but requires foreign language code to take care of any exceptions.
While the actual implementation is quite specific to a particular host envi-
ronment, automatically converting exceptions would be a useful feature
even so. Investigating the degree to which this feature could be imple-
mented in a host platform agnostic manner would be a possible extension
of this work.

Due to the hard requirement that our host language be garbage collected,
our interface is not currently applicable in a C context. This is unfortu-
nate, as C-based host environments are still by far the most common for
Haskell programs. It may thus be worthwhile to investigate the compro-
mises needed to lift the garbage collection requirement from potential host
environments.

Information flow control Web applications often make use of a wide
range of third party code for user tracking, advertising, collection of statis-
tics and a wide range of other tasks. Any piece of code executing in the
context of a particular web session may not only interact with any other
piece of code executing in the same context, but may also perform basically
limitless communication with third parties and may thus, inadvertently or
not, leak information about the application state. This is of course highly
undesirable for many applications, which is why there is ongoing work in
controlling the information flow within web applications [26].

While this does indeed provide an effective defense towards attackers
and programming mistakes alike, there is value in being able to tell the two
apart, as well as in catching policy violations resulting from programming
mistakes as early as possible. An interesting venue of research would be to
investigate whether we can take advantage of our strong typing to generate
security policies for such an information flow control scheme, as well as
ensure that this policy is not violated at compile time. This could shorten
development cycles as well as give a reasonable level of confidence that any
run time policy violation is indeed an attempted attack.

Generalized distributed computing While the two most prominent parts
of a web application are the client and the server-side program, they are
not the only pieces of the puzzle by far. Modern web applications often
make use of several external services, and the server component is often
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connected to at least one database as well. It is also not hard to imagine
an application making use of more specialized code on the client as well
as on the server, possibly adding components written in several different
domain-specific languages to the mix as well.

In order to safely and efficiently program such heterogeneous systems,
the current Haste.App model is not enough. A promising line of future
research investigates possible ways of generalizing this programming model
to enable clients to utilize a range of different, possibly chained, servers. The
performance of this generalized programming model might be enhanced
by incorporating the work of Marlow et al on concurrent data access [34].

High performance JavaScript through EDSLs The code produced by
Haste is generally relatively performant compared to that produced by
other JavaScript-targeting compilers for lazy functional languages. How-
ever, there is still quite a wide performance gap between lazy functional
languages and performance oriented languages like C and C++, even with-
out factoring in the overhead of being executed on a JavaScript virtual
machine. Performance-oriented embedded domain specific languages such
as Feldspar [2] have been used with good results to turn high level func-
tional code with some restrictions into highly optimized C programs. By
modifying Feldspar to produce JavaScript code, it may be possible to pro-
duce code which is several times faster than what can be produced from a
full Haskell program, especially if targeting the high performance ASM.js
[27] subset of JavaScript.

Moreover, by using the techniques described in chapter 3, it should be
possible to create a seamless bridge between Haskell and Feldspar programs,
automatically compiling and loading Feldspar code on demand. This would
allow a developer to implement performance intensive calculations in the
fast but restricted Feldspar language while still using standard Haskell for
high level business logic, completely transparently and without losing type
safety.

Real world applications As the Haste suite is relatively new technology,
it has yet to be used in the creation of large scale applications. While
we have used it to implement some small applications, such as a spaced
repetition vocabulary learning program, a cloud-based media player and a
more featureful variant on the chatbox example given in chapter 3, further
investigation of its suitability for larger real world applications through the
development of several larger scale examples is an important area of future
work.
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A Haskell compiler for browser
environments

This chapter describes the design and implementation of Haste, a web-
targeting Haskell compiler. Section 1 gives a general background to the
problem and a brief introduction to the overall design. Sections 2 and
3 describe the implementation of the compiler’s runtime system and the
in-memory representations of the constructs used by the Haskell language
and the runtime itself. Sections 4 and 5 describe in detail the actual
translation from Haskell to JavaScript and the program transformations
and intermediate formats used throughout the process. Finally, section 5

evaluates the performance of the Haste compiler relative to the current state
of the art, investigates the performance impact of the optimizations, runtime
and data representations chosen, and summarizes our contributions to the
field.

1 Overview of the Haste compiler

Countless contributors have spent thousands upon thousands of person
hours developing efficient Haskell compilers, as well as improving the
JavaScript ecosystem. Duplicating this effort by attempting to create from
scratch a highly optimizing compiler from Haskell to JavaScript, complete
with custom garbage collection, JavaScript optimization and runtime facili-
ties, would demand quite significant effort – well beyond the scope of this
thesis. Instead, the Haste compiler adopts, somewhat tongue in cheek, a
single guiding principle: it’s someone else’s problem.

Background Considering this principle, it may seem odd to implement
a Haskell to JavaScript compiler at all. After all, both the GHCJS [39]
and UHC [15] Haskell compilers are perfectly able to produce JavaScript
executables. Unfortunately, both the aforementioned compilers tend to-
ward very large code output. While the size of a binary may not be very

19
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20 A Haskell compiler for browser environments

interesting when it is mainly stored on and executed from a hard drive
with several terabytes of storage capacity, it matters quite a bit when de-
livered repeatedly to clients over an expensive and possibly slow network
connection.

The UHC compiler also has the problem of producing relatively slow
programs. A program compiled with UHC is often more than an order of
magnitude slower than the same program compiler with GHC [19], making
it a poor starting point for a JavaScript backend which will invariably
have a performance handicap relative to any native compiler. UHC also
lacks support for many popular Haskell extensions supported by the GHC
compiler, making it a relatively poor starting point for a client side Haskell
web development suite.

GHCJS, on the other hand, is today a more promising starting point.
Based on GHC, it boasts excellent compatibility with language features and
third party code, and produces relatively fast programs to boot. However,
at the time work started on Haste, GHCJS was in its infancy, still far from
being usable in a larger context. Since then, GHCJS has improved by leaps
and bounds, but still retains the aforementioned propensity towards large
code output. Additionally, GHCJS aims to implement GHC Haskell as
closely as possible, even where it is not obvious that doing so makes sense
in a browser context.

Haste aims to produce significantly smaller output than either GHCJS
or UHC. It also explores a different point in the design space than GHCJS:
instead of emulating vanilla GHC to the extent possible, it aims to do
so to the extent possible while producing reasonably small, fast and idiomatic
JavaScript.

1.1 Outsourcing to GHC

There is really only one freely available industrial strength Haskell compiler:
GHC. The bulk of the work that goes into improving the Haskell language
happens in GHC, including a wide range of non-standard language exten-
sions which have by now become so ubiquitous that it is hard to imagine
writing Haskell code without them. To avoid having to continuously chase
after GHC, never quite keeping up on performance or features, Haste in-
stead incorporates it to provide a major part of the compilation process.
Figure 1 provides an overview of the Haste compiler, and how it integrates
with GHC.

However, while deciding to outsource compilation to GHC is all well and
good, this is not the only decision that needs to be made. A Haskell program
evolves through several intermediate formats during GHC’s compilation
process. When targeting a high level language such as JavaScript, which of
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Figure 1: The Haste compilation pipeline.

these intermediate languages makes the most sense to use as our source
language?

• Plain Haskell source comes in several flavors within GHC: parsed, type
checked, and desugared, where syntactic sugar such as do-notation
has been translated into equivalent unsugared Haskell expressions.
The parsed source is first type checked and the type checked source
is then desugared. A shared characteristic of all these flavors is that
no optimizations have been performed at this stage.

• The desugared Haskell source is then translated into GHC’s Core
intermediate language, more formally known as System FC. System FC
is essentially a non-strict, higher order polymorphic lambda calculus
extended with algebraic data types. This is the stage where GHC
performs most of its optimizations.

• The optimized Core is translated into the STG language. The main
difference between STG and Core is that in STG the evaluation of
thunks is explicit whereas in Core it is implicit. Further optimizations
are performed at this stage.

• Finally, the optimized STG is translated into C--, a high level assembly
variant, in preparation for code generation. This language is geared
towards native code generation, and contains information relevant to
register allocation, garbage collection and other pertinent low level
details.

At first glance, as our purpose is code generation, using C-- as our input
language would seem to make sense, as this is the role it performs within
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GHC compilation pipeline. Certainly, we want to plug into the pipeline at
as late a stage as possible in order get the most out of the work put into the
GHC compiler. However, as described in chapter 1, JavaScript has several
idiosyncrasies when compared to traditional low level compilation targets.
As we want to make use of JavaScript’s high level features and avoid low
level concepts which are not easily or efficiently representable in JavaScript
– pointers and arbitrary jumps being chief among them – C-- is too low level
a target.

Instead, the next step up – STG – provides a sweet spot: memory
management and function representation is still implicit, while most of the
optimizations implemented by GHC have been applied at this stage and
thunk evaluation has been made explicit.

2 The runtime system

A language implementation is not only defined by its translation into
executable code and its chosen data representations, but also by its runtime
system: the supporting functions and processes that a compiled program
relies on for correct operation. While the GHC compiler comes with a
complete, highly tuned runtime, it is much too geared towards execution
on actual machine architectures for our purposes. Ideally we would like
to make use of the browser’s JavaScript runtime as much as possible, to
avoid reinventing any wheels and to reduce the size of the code that will
eventually be shipped to users’ browsers.

Memory management, function definition and application, and basic
program execution can trivially be outsourced to the JavaScript engine.
There are however three major concepts which have no counterpart in
JavaScript, and which we consequently need to implement ourselves: lazi-
ness, tail call elimination, and curried functions.

2.1 Laziness

The concept of laziness – also known as lazy evaluation or call by need seman-
tics – refers to the Haskell property that no piece of data is evaluated unless
it is needed and that the result of said evaluation is shared, preventing
programs from performing unnecessary computations. This property is
sometimes a great boon for both clarity and modularity, as described in
[28]. Unfortunately, this boon comes at the price of reduced performance.
This is particularly troublesome when the target language is a high level
language with no inherent support for laziness, ruling out pointer tagging
and other low level optimizations used by vanilla GHC [37].
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Laziness is customarily implemented using thunks, updatable heap ob-
jects which either point to a concrete value, or to a block of code computing
that value – the body of the thunk [35]. When a thunk is evaluated for the
first time, its body is invoked to compute its value, which is then cached
to avoid recomputation. Evaluating the thunk again merely returns the
cached value computed during that first evaluation. There also exist a class
of non-updatable thunks, which are guaranteed to be evaluated at most
once and which thus do not need to cache the result of their computation.

In Haste, thunks are implemented using a JavaScript class T, which
has two fields: f , which initially points to a closure containing the body
of the thunk; and x, which initially contains a reference to a sentinel
object specifying the thunk’s behavior on evaluation: whether the thunk
is updatable or not. After evaluation, this field will contain the thunk’s
computed value. To reduce pressure on the garbage collector and to avoid
unnecessary computation, Haste aggressively optimizes away thunks which
are statically known not to compute ⊥ and to perform no computation
beyond allocation – literal constants and numeric types being two common
instances – which often leads to such thunks being represented solely by
their raw values.

When a thunk t is evaluated the Haste runtime first determines whether
t is an instance of T, and immediately returns t unchanged if it is not, as
we can then deduce that this is one of the “raw value thunks” mentioned
above. After the runtime has established that t is indeed a “proper” thunk,
t.x is inspected to determine how it should be handled. If t.x is a reference
to the __updatable sentinel object, the thunk is updatable.

In this case, we overwrite t. f with another __blackhole sentinel object,
indicating that the thunk is being evaluated. Blackholing, as this is commonly
called, has two purposes. First, it indicates to the garbage collector that the
function computing the thunk is no longer reachable, so that the thunk does
not prevent collection of any heap objects mentioned in its body. Second,
it allows for the detection of infinite loops: if we try to evaluate a thunk
which has already been blackholed but not yet completely evaluated, we
know that we have an infinite loop and can throw an appropriate exception
[35].

After blackholing, we call t. f , the body of the thunk, in order to compute
its value. When the body returns, t.x is updated with the computed
value, which is then finally returned to the calling function as the resulting
expression of evaluating the thunk.

If t. f is instead a reference to the __blackhole object and t.x still refers to
__updatable, we know that we have entered an infinite loop and terminate
the program using a host language exception. This does not detect infinite
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recursion in non-updatable thunks, but considering that non-updatable
thunks are so by virtue of only ever being entered once, infinite recursion in
a non-updatable thunk is impossible. If t.x is not a reference to __updatable
at this point, we know that t has already been evaluated, and so we simply
return t.x.

2.2 Proper tail recursion

In functional programs, proper tail recursion, or tail call optimization as it
is sometimes called, is of utmost importance. In the absence of loops,
programmers must be able to use recursion to arbitrarily repeat tasks,
possibly infinitely many times. However, the conventional implementation
of function calls involves creating a new stack frame for each call, leading
to infinite (or just deeply nested) recursive programs eventually running
out of memory.

Fortunately, a special class of function calls can easily be implemented
in constant space. A tail call, as these functions calls are called, is a function
call which occurs in tail position: when the call is the last thing that happens
before the calling function returns. Whenever you see a function definition
reading f x = g (... x ...), you are looking at a tail call.

A traditional compiler can exploit the fact that nothing can happen
between a tail call and the return of the calling function. Since this means
the entire stack frame used by the caller is not used after the tail call, it is
possible to reuse this stack frame for the tail call by appropriately arranging
the arguments to the tail callee in the current stack frame and replacing the
function call with a jump instruction. This process is what is referred to as
tail call optimization.

Trampolining Unfortunately, when compiling to a high level language,
we do not have the luxury of arbitrary jumps at our disposal, making us
dependent on the target language natively supporting tail call optimization.
The quite recently ratified sixth edition of the ECMA-262 standard intro-
duces native support for tail call optimization to the JavaScript language
but it will be quite some time before this support is ubiquitous in JavaScript
engines, and even longer until it can be relied upon to be present in most
users’ devices [55].

Until then, we must simulate tail calls using a construction known as
a trampoline: whenever a function wishes to make a tail call, it does not
make the call itself but rather returns a closure performing the call. Each
call site is then instrumented with a loop which inspects the call’s return
value. If a tail call closure is returned, the closure is called and the loop
performs another iteration, repeating the process. If a value which is not a
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tail call is returned, we know that the chain of tail calls has ended for now
and return the value as we normally would [53]. The name of the construct
lends a helping hand in gaining an intuitive understanding of the principle:
functions “bounce” on the trampoline for as long as they keep tail calling,
and “jump off” as soon as they are done.

While the performance impact of trampolining on the Haste compiler
has not been explicitly measured, Baker gives the performance impact as a
2-3 times slowdown for a C implementation. With Haste’s implementation
of trampolining, each tail call causes two additional function calls: one to
the trampolining instrumentation, which is not manually inlined to avoid
complicating the code generator, and one to the closure making the tail
call itself. Considering this, along with the fact that tail calls are always
made to functions which are not statically known under this scheme, it is
reasonable to assume at least a similar slowdown for Haste.

Through various optimizations, it is possible to reduce the performance
impact of trampolining. The measures taken by Haste to this end are
described in section 5. The significant performance boost obtained when
optimizing and, where possible, removing the trampolining instrumentation
lends some credibility to the above assumption that trampolining takes a
relatively heavy toll on performance.

2.3 Curried functions

In Haskell, there is conceptually no such thing as a function of multiple
arguments: all functions have the type a → b. This does not mean that
it is impossible to write Haskell functions over multiple arguments – a
quite unreasonable proposition. Instead, a binary function f : (a, b)→ c is
encoded as a unary function f : a→ (b→ c) returning a second function,
which captures the argument of the first to form a closure, with n-ary
functions following the same pattern. Such functions are known as curried
functions. This scheme makes partial application of functions quite natural
as there is simply no conceptual difference between applying, for instance,
a ternary function f : a → b → c → d to one, two or three arguments;
the only difference is in the return type being b → c → d, c → d or d
respectively.

n-ary functions While convenient for the user, the efficient implemen-
tation of curried functions can be tricky. Haste’s implementation quite
closely follows the one given by [36]. Implementing the application of an
n-ary function to m arguments as a series of m unary function applications
would be quite inefficient, so n-ary Haskell functions are represented in
generated code as n-ary JavaScript functions. This brings us to another
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Name Purpose

fun Reference to the function under application.

args Array of arguments to which fun has been partially applied.

arity The arity of the PAP; equivalent to fun.length− args.length.

Table 2.1: Structure of a partial application object

conundrum: when all functions are conceptually unary, what does the term
“n-ary function” even mean?

For performance reasons, given a function f : a → b → c we want to
represent f as a function from two arguments a and b to a first order value
c to the extent possible, as opposed to a function from a to another function
b→ c. GHC’s optimizer already does a good job determining where this is
possible, so an STG lambda expression λ x1 ... xn → ... of syntactical arity n
is always represented by Haste as the corresponding JavaScript function
f unction(x1, ... xn) {...} of the same arity. Whenever the arity of a function
can be statically determined, we can use JavaScript’s native function calls
to apply it to its arguments.

From here on, we will use the term “n-ary function” to mean a function
that has an STG representation with syntactical arity n.

Partial applications However, due to partial application it is not always
possible to determine the representation arity of a function, as described
by Marlow and Peyton Jones [36]. Thus, partial application gives rise to
another function representation: partial application objects, or PAPs for short.
A PAP simply consists of a reference to a non-PAP function object, a list of
arguments to which the PAP has been applied so far, and the arity of the
PAP object. The arity of the PAP object is always strictly less than or equal
to the arity of the underlying function applied to zero arguments. The
members of a PAP are listed in table 2.1. Note that in JavaScript the length
property is, slightly confusingly, used to indicate the arity of a function, as
well as the length of an array.

Generalized function application When encountering a function whose
arity cannot be statically determined, the code generator can no longer
punt the function application to JavaScript’s native facilities. It must instead
generate a call to an apply runtime function which performs a far more
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heavyweight function application, inspecting the function object f being
applied and and an array of given arguments args:

• If f is not a PAP, let f be a new PAP using f as the function reference,
the empty list as its list of arguments, and f .length as its arity.

• If f.arity = args.length, the application is no longer partial and f.fun
can be immediately applied to f.args++args through JavaScript’s native
function call.

• If f.arity > args.length, the function is being partially applied. In this
case, apply creates a new PAP from f.fun and f.args++args with its arity
set to f.arity− args.length.

• If f.arity < args.length, the function is being overapplied, indicating
that f returns a function which expects to receive the extra arguments
from args. In this case, f.fun is applied to the first f.arity elements
of args appended to f.args. Its return value is then applied to the
remaining elements of args using apply.

Additionally, due to the quite heavy nature of this function application
procedure Haste’s runtime provides specialized versions for functions of
several common aritites, making the actual use of the general application
relatively rare.

3 Data representation

Closely related to the implementation of the runtime system, is Haste’s
encoding of Haskell values into their JavaScript counterparts. The kinds of
data operated upon by programs written in JavaScript and Haskell respec-
tively are generally quite different. While both languages share the concept
of first class functions, Haskell also provides the traditional set of types for
compiled languages – signed and unsigned integers of various bit widths as
well as single and double precision floating point numbers – as well as the
algebraic data types common to most functional languages. JavaScript, on
the other hand, only provides a single numeric type – sometimes behaving
as a double precision floating point number, sometimes as a 32 bit integer –
plus strings, arrays and objects consisting of key–value mappings. With this
impedance mismatch, finding the appropriate mapping from Haskell values
to their JavaScript equivalents is not always a straightforward proposition,
even without the additional complication of laziness which needs to be
handled as performantly as possible. Table 2.2 gives an overview of how
different Haskell types are translated into JavaScript.
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Haskell type JavaScript representation

Char Number

IntN/WordN (N 6 32) Number

IntN#/WordN# (N 6 32) Number

Int64/Word64 goog.math.Long

Integer goog.math.Integer

Algebraic data types Object

Functions and closures Function/Object

Table 2.2: Haste type representations

3.1 Numeric types

As JavaScript only has a single numeric type, the choice of representation
for machine types is severely restricted: if we want any semblance of
performance, we are forced to rely on the Number type. As the internal
representation of Number is – at least nominally – a double precision
IEEE754 floating point number we are able to represent any floating point
value, or any integer value of 53 bits or less due to the 53 bit mantissa of
double precision floating point numbers. For our purposes this essentially
makes the browser a 32 bit architecture, and all integer arithmetic in Haste
is consequently performed modulo 232.

Note that, as described in section 3.2, certain lifted types are actually
represented in JavaScript as though they were unlifted. This crucially
includes numeric types which is why table 2.2, perhaps surprisingly, gives
the same representation for lifted and unlifted types.

Machine integers Using a floating point representation for integer types
may seem like an exceptionally bad idea. Not only is floating point math
generally slower than its integer counterpart, but it also lacks a wide range
of operations expected of integers: modular arithmetic, integer division,
bitwise operations, etc. Fortunately, JavaScript recognizes the need for
these operations. Somewhat bizarrely, values of the Number type provide a
modulo operator, a 32 bit integer multiplication operation, and the normal
set of bitwise operations, under which values of the type behave as 32 bit
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signed integers.1

As Number values behave as floating point numbers under all other
arithmetic operations, we must manually ensure that the results of those
operations never exceed the bounds set by the machine types we are
using them to emulate. Thus, arithmetic operations on machine integer
types are performed modulo 2n by taking the bitwise OR of the result
and zero, which results in a number in the 32 bit signed integer range
as described above. This unfortunately comes with a performance hit
compared to the judicious insertion of range-preservation operations by
a human programmer; although JavaScript engines try hard to identify
integer arithmetic and eliminate any intermediate conversions, this analysis
is only an approximation.

Integers and 64 bit arithmetic While the Number type is large enough to
accommodate all machine types, provided that we treat the browser as a 32

bit machine, it does unfortunately not suffice when it comes to representing
64 bit integers or the arbitrary precision Integer type, both of which are
frequently used in Haskell code.

For these types, we must instead come up with an appropriate repre-
sentation of our own. Implementing efficient arbitrary precision integer
arithmetic from scratch would take significant time and effort – as evidenced
by the use of the GMP numeric library for this purpose by vanilla GHC –
and while 64 bit arithmetic is not quite as daunting, an efficient implemen-
tation is still a decidedly non-trivial proposition. In the spirit of someone
else’s problem, Haste instead uses the long.js [56] and bn.js [29] libraries to
represent 64 bit integers and arbitrary precision integers respectively.

3.2 Algebraic data types

Algebraic data types are the most obvious example of a Haskell concept
which does not map directly onto JavaScript. Hence, we must make do
with what facilities it does give us to model compound types: arrays and
objects. Haste uses several different representations for algebraic data types,
depending on the characteristics of the particular type.

• For enumeration types – types with one or more data constructors, each
of which has exactly 0 arguments – Haste uses a Number identifying
the data constructor used to construct a value of the type as its
representation. The Bool type is a special case of this, where the True

1 Except for the zero-fill right shift operator, which treats its left operand as a 32 bit unsigned
integer.
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and False constructors are represented by their JavaScript true and
false constants respectively.

• Newtype-like types – types with exactly one constructor, with a single,
unlifted argument – are represented by the argument itself. Due
to the introspection-based tagging approach to representing thunks
described in section 2.1, a thunk may be represented solely by its
result, removing the need to wrap unlifted types in lifted ones at
runtime. Removing this layer of indirection provides a considerable
reduction in the amount of packing and unpacking code needed for
numeric calculations, as well as reduced memory usage.

• All other algebraic data types are represented as JavaScript objects
with a member idtag identifying the tag of the data constructor used
to create the value, and the constructor’s arguments making up the
rest of the object’s members id1..n.

As JavaScript engines are in constant flux, choosing an overall “best”
in-memory representation for algebraic data types is not entirely straight-
forward. The memory consumption, allocation time, lookup time and other
properties of JavaScript arrays relative to those of JavaScript objects vary
significantly from JavaScript engine to JavaScript engine and even from
version to version. As such, this is still an active area of experimentation,
with the “optimal” representation of algebraic data types still a matter of
debate.

For Haste’s use case, the main contenders are plain arrays, anonymous
objects, and – for lack of a better word – “classy” objects: objects created
using the new keyword and a constructor function. Arrays and anony-
mous objects share the characteristics of being simple to create: both can
be constructed using simple literals, giving them a small footprint when
it comes to code size and making them trivial to produce for the code
generator. Classy objects, on the other hand, have one constructor function
per JavaScript type, potentially giving the JavaScript engine valuable infor-
mation regarding the structure of such values which may be used to guide
optimizations. It also makes the syntax of their creation slightly wordier,
and requires some boilerplate code for each type present in a program.

Haste employs classy objects for its representation of algebraic data
types. The aforementioned advantages of providing the JavaScript in-
terpreter with more static information seems to pay off greatly for most
programs, making classy objects significantly faster than its two competi-
tors. The performance of the three different methodologies is evaluated in
section 6.3.
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Haskell expression JavaScript representation

Just x :: Maybe t {_: 1, a: x}

Nothing :: Maybe t {_: 0}

(x, y, z) :: (t0, t1, t2) {_: 0, a: x, b: y, c: z}

(x : y : []) :: [t] {_: 1, a: x, b: {_: 1, a: y, b: {_: 0}}}

LT :: Ordering 0

I# 42# :: Int 42

Table 2.3: ADT representations in JavaScript

Table 2.3 shows the JavaScript representations of a selection of different
expressions of algebraic data types.

4 From STG to JavaScript

As mentioned in section 1, Haste uses GHC’s STG intermediate representa-
tion as the input language of its JavaScript translation. In this section we
take a cursory look at the STG as an intermediate language, Haste’s inter-
mediate JavaScript representation, and how the two combine to produce, in
the end, an executable JavaScript program from Haskell source code.

4.1 The STG language

STG is more than an intermediate representation, however: it is a complete
abstract machine, with well defined data representations and compilation
strategies [42]. As STG is intended for compilers targeting a low level,
native platform, it is not always possible or desirable for Haste to adhere
to these representations. If it were, this entire chapter would be quite
unnecessary except as a slightly updated recap of the cited paper! From
here on, we use the term “STG” to refer to the STG language, giving our
own translation into JavaScript to set it apart from the original abstract
machine itself.

The syntactic forms of the STG language, slightly simplified for read-
ability, are given by table 2.4. A valid STG program must adhere to the
following rules:
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Construction Purpose

l Machine value literal

v STG name

f a1..n Function application

conApp(c, a1..n) Data constructor application

opApp(op, a1..n) Primitive operation application

λv1..n.e Lambda abstraction

case v0@e0 of Conditional expression

c1 v1..m → e1

...

cn v1..m → en

let v = e0 in e1 Let-binding

let_no_escape v = e0 in e1 Let-no-escape-binding

Table 2.4: The STG language

• Only atoms – identifiers and literals – are permitted as arguments to
functions, data constructors or primitive operations.

• Application of data constructors and primitive operations is always
saturated.

• Nullary functions are permitted, and are interpreted as thunks.

The first property is of little consequence to our code generation apart
from making our compilation scheme slightly simpler. As we are gener-
ating code for a high level language, we don’t care much about whether
function arguments are identifiers or other expressions and a post genera-
tion optimization pass removes most of the extra identifiers introduced by
this property by replacing redundant assignments with simple expression
substitution. The other two rules have practical implications however, as
we shall see when we discuss Haste’s translation from STG to JavaScript.

No escape? The let_no_escape construct may require some additional ex-
planation. Like the normal let-binding, a let-no-escape binding binds a
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variable to an expression. Unlike a normal let-binding, however, it has
some rather severe restrictions. A let-no-escape binder is guaranteed to
never escape the scope of the bind – for instance by being referenced in
a thunk that escapes the bind – and to always be tail called at least once
before the stack is unwound. Thus, it can be thought of as encoding a join
point; a labeled block of code which may be entered using a simple jump
instruction and does not need to be stored on the heap. This is indeed its
use within the GHC compiler. Its treatment by Haste is discussed further
in section 4.3.

Primitive operations In addition to the functionality expected of a lan-
guage based on the lambda calculus, STG also supports primitive operations:
the smallest building blocks that make up any program, defined outside
the language itself. These operations are made up of functionality spanning
everything from logic and arithmetic over various machine types, to primi-
tives implementing mutable arrays, concurrency and CPU-specific vector
instructions. As there are several hundred different primitive operations,
giving their translations in this thesis would be rather impractical. The
nature of their being basic building blocks also makes the vast majority of
them rather uninteresting. Thus, we are content to note that Haste imple-
ments all primitive operations required to support its feature set. Efficient
JavaScript implementations of some primitive operations, mainly those
relating to pointer arithmetic, is still an area of active work, however.

4.2 The simplified JavaScript AST

Haste does not immediately translate STG into JavaScript program text but
into an intermediate format, slightly uncreatively referred to simply as “the
AST”. The AST is in essence a slightly restricted abstract representation
of JavaScript, with the added concepts of thunks, evaluation and tail calls.
Like JavaScript, the AST is divided into statements and expressions. Tables
2.6 and 2.5 show the expressions and statements of the AST respectively.

Statements A program is, at the top level, a series of assignments termi-
nated by a stop, with one of the assignments being the program’s entry
point function. Statements are divided into two groups: terminating and
non-terminating statements. The former group is made up of the different
ways in which an AST subprogram may end. The continue and forever
constructs correspond directly to the JavaScript statements continue and
while(true) { ... } respectively. It should not come as a surprise that continue
is a terminating statement as its JavaScript semantics simply transfer control
back to the top of the innermost enclosing loop. Less obvious is the case
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Statement Purpose

switch(exp) { c1 : stm1, ..., cn : stmn } ; stmcont Conditional statement

(exp0 ‖ var v) := exp1 ; stmcont Assignment

forever { stm } Infinite loop

continue Jump to head of loop

stop No-op break

ret f exp Return from function

rett exp Return from thunk

tailcall f (x1, ..., xn) Tail call invocation

Table 2.5: Statements in Haste’s AST

Expression Purpose

v A variable

l A literal JavaScript value

exp1 (+‖ − ‖ ∗ ‖...) exp2 Binary operator expression

fun(v1, ..., vn) { stm } Function creation

f (exp1, ..., expn) Function call

ftr(exp1, ..., expn) Trampolined function call

[exp1, ..., expn] Array creation

exparr[expix] Array indexing

{idtag : l, id1 : exp1, ..., idn : expn} Object creation

exp.id Object member lookup

thunk(fun(){ stm }, upd) Thunk creation

eval(exp) Thunk evaluation

Table 2.6: Expressions in Haste’s AST
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of forever as JavaScript permits loops to be broken out of at will. The AST,
however, does not permit this. The only way to leave a f orever statement is
to return from the enclosing function.

The ret f and rett both correspond to the JavaScript return statement,
the distinction only made for the benefit of the optimizer being able to
distinguish between the two at need. The stop statement fills a similar niche,
representing a no-op code flow termination, its JavaScript counterpart
simply a blank line. The tailcall f (...) statement morally corresponds to the
JavaScript statement return f(...), but has one crucial difference: it uses the
trampolining machinery described in section 2.2 to avoid growing the call
stack.

The non-terminating statements have a rather more direct correspon-
dence to proper JavaScript. The switch statement corresponds directly to
JavaScript’s switch, and variable assignment is the direct equivalent of its
JavaScript counterpart as well. Note that there is a slight distinction be-
tween the assignment forms var v = exp ; ... and exp0 = exp ; ... in that
the former always creates a fresh variable in the current scope, whereas the
latter mutates an already existing l-value.

Expressions If the statement language of the AST has some idiosyncrasies
when compared to JavaScript, the expression language is quite a bit less
restricted. Expressions representing the usual JavaScript constructs – literals,
variables, binary operators, array creation and indexing, and function
expressions – all correspond directly to their JavaScript namesakes.

Function calls are implemented according to the scheme laid out in
section 2.3, but do not handle calls to the trampolined functions described
in section 2.2. Instead, this is the domain of the ftr trampolined function
call, which may be seen as functionally superseding the regular function
call in that it is able to deal with calls to any function. It is, however, more
expensive than the normal function call, and so the AST provides the faster
operation to be used when possible. The creation and evaluation of thunks
is implemented as described in 2.1. The expression thunk( f , upd), where
f is a nullary function, creates a thunk object with f as its body and its
updatable flag set to the value of upd. Its counterpart eval(t) evaluates the
thunk t as previously described and returns the resulting value.

With the relation between the AST and proper JavaScript established,
from this point we will forego any further discussion of this mapping and
instead focus on Haste’s translation from STG to AST.
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4.3 Translating STG into AST

The translation from STG into AST is for the most part relatively straightfor-
ward. STG expressions are compiled into their corresponding AST expres-
sions – almost a 1:1 correspondence – with the exception of let-bindings and
case expressions. The general idea of the compilation scheme is to translate
an STG expression e into an AST expression E(e), and a supporting statement
continuation λcont.S(e, cont), which consists of any switch statements, vari-
able assignments, and other statements depended on by E(e). When the
end of a code path is reached, the continuation is plugged by an appropriate
terminating statement: stop for the branches of a switch statement and top
level bindiings, rett for thunks, and ret f for functions. Post-generation, an
optimization pass is then run over each function which eliminates unneces-
sary variable assignments and attempts to reduce the performance impact
of the trampolining machinery. The non-trivial optimizations performed by
Haste are described further in section 5.

The definitions of E and S are given in tables 2.7 and 2.8 respectively.
Due to the comparatively complex nature of case expressions, their transla-
tion into supporting statement continuations are given separately in table
2.9. This translation in turn makes use of the following definitions:

• L(l) gives the translation of an STG machine literal l into a corre-
sponding AST literal according to the data representations defined in
section 3.

• V(n) gives the translation of an STG identifier n into a corresponding
AST identifier.

• upd(t) gives the update flag for a thunk as described in section 2.1.

• prim(op) gives the AST implementation of a primitive operation op.
Primitive operations are further discussed in section 4.1.

• fresh(v) gives a fresh, unique identifier based on v. This construct is
used to introduce new, predictable identifiers for storing the result of
a case expression.

A Haskell module, represented in STG as a list of bindings, is translated
into AST by applying S to each binding:

compileModule :: [StgBinding] → [AST]

compileModule = map (λbnd → S(bnd, Stop))

This results in a list of AST bindings, which are then optimized and
stored as an AST module consisting of identifier–binding pairs. The set
of available such modules and a root symbol, corresponding to the main
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E(l) = L(l)

E(v) = V(v)

E( f a1..n) =

{
E( f )tr(A(a1), ...) if n > 0

eval( f ) otherwise

E(conApp(c, a1..n)) = {idtag : tag(c), id1 : A(a1), ...}

E(opApp(op, a1..n)) = prim(op)(A(a1), ...)

E(l@(λ(). e)) = thunk(fun(){S(e, rett E(e))}, upd(l))

E(λv1..n. e) = fun(V(v1), ...){S(e, ret f E(e)}

E(case v@e of a1..n) = fresh(v)

E(let v = e0 in e1) = E(e1)

E(let_no_escape v = e0 in e1) = E(e1)

A(a) =

{
L(a) if literal a
V(a) otherwise

Table 2.7: Expression translation

S(case v@e of a1..n, s) = C(v, e, a1..n, s)

S(let v = e0 in e1, s) = var V(v) := E(e0) ; S(e1, s)

S(let_no_escape v = e0 in e1, s) = var V(v) := E(e0) ; S(e1, s)

S(_, s) = s

Table 2.8: Statement translation

function of a Haskell program, constitutes the input of the linking process
described in section 4.4.

The observant reader will note that the given translation of STG into
AST does not make use of all of the ASTs syntactic forms. Some are only
introduced by post-generation optimization passes, and some are used
extensively by Haste’s implementation of various primitive operations but
scarcely otherwise.

The treatment – or rather, non-treatment – of the let_no_escape also
deserves some explanation. Initially, Haste’s code generator treats let-no-
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C(v0, e0, a1..n, s) = S(e0,

var V(v0) := E(e0) ;

switch(tag(v0)) {

altTag(a1) : alt(a1, v0),

...

altTag(an) : alt(an, v0)

} ; s)

alt((_, v1..n, e), v0) = var V(v1) := E(v0).id1 ;

...

var V(vn) := E(v0).idn ;

S(e, var fresh(v0) := E(e) ; stop)

altTag((c, _, _)) =

{
t if conApp(t, ...) = c
L(c) otherwise

tag(v) =

{
V(v).idtag if algebraic v
V(v) otherwise

Table 2.9: case expression translation

escape bindings no different from the standard let bindings. Let-no-escape
bindings may be mutually recursive, and so would be slightly tricky to
implement efficiently during initial code generation in the absence of an
unstructured jump construct. Instead, a post-generation optimization pass
attempts to inline local single call functions, including those generated
by entering let-no-escape bindings, avoiding unnecessary function call
overhead. Those let-no-escape bindings that are not recursive are instead
handled by the tail call machinery described in sections 2.2 and 5, as
any other bindings. While a more efficient treatment of these bindings is
indeed possible, the additional complexity of implementation has so far
outweighed the performance benefits.
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4.4 Symbol level linking

After code generation is complete, we end up with a program consisting
of a list of bindings, one of which is the program’s entry point if we are
compiling an executable as opposed to a library. However, this program will
in all likelihood not be complete: except for the very lowest level building
blocks of the standard library, any program will always depend on external
code, and thus need to be linked together with its dependencies.

To avoid unnecessarily inflating the size of its final JavaScript output,
Haste performs linking on the symbol level, assembling a list of all symbols
and their definitions needed to execute the program being linked. Starting
from the entry point of the program being linked, the linker looks for
references to non-local symbols. Whenever one is found, the symbol is
looked up in Haste’s library environment and its definition prepended
to the list of definitions necessary for program execution. This process is
then repeated recursively until no more previously unencountered external
symbols are encountered. The list of definitions is then turned into a
complete AST program, consisting of the assignments of external definitions
to their symbols followed by a call to the program’s entry point function.

After the linking stage, a whole program optimization pass is optionally
run over the resulting program, to perform the same inlining and other
optimizations as were performed on a per function basis, but this time over
the whole program.

5 Optimizing JavaScript

Optimization is one area where Haste’s guiding philosophy – it’s someone
else’s problem – shines the brightest. As explained in section 1.1, using
GHC’s intermediate STG representation as our source language gives us
a full suite of state of the art optimizations for our Haskell programs, as
well their various intermediate representations, essentially for free. We also
get the quite powerful framework of rewrite rules – the ability to specify
equivalences between a source expression and a (hopefully) more efficient
but possibly more complex target expression to guide the optimizer – at our
disposal. These optimizations apply to Haskell and GHC’s intermediate
formats in general; there is ample space for further optimization of the
generated code, tuning it specifically for execution in the web browser. This
space also benefits from Haste’s outsourcing principle.

JavaScript is a major application language for a platform where code size
is an important factor, owing to the frequent on-demand redownloading of
JavaScript programs. Execution speed, while not quite as important due
to the current state of processor time being cheap whereas bandwidth is
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quite expensive, is also a concern due to the meteoric rise of handheld
devices with limited computing power. With this in mind, it comes as
no surprise that there exist a wealth of JavaScript-to-JavaScript optimizers,
often called minifiers due to their focus on reducing code size and thus
bandwidth requirements. Haste integrates directly with Google’s Closure
compiler, one advanced such optimizer, adding another full suite of state
of the art optimizations to its stable, this time for the generated JavaScript
code.

There exists, however, yet another optimization niche which is filled by
neither of these approaches: optimizing the resulting JavaScript code using
knowledge and assumptions about our source language, runtime system
and source program. GHC cannot do it because it does not know it is
optimizing for JavaScript code generation and Closure cannot do it because
it knows nothing about Haskell, STG, laziness or the controlled appearance
of effects; neither knows anything about Haste’s runtime system. These
optimizations consist mostly of relatively uninteresting cleanup: removing
unnecessary assignments, shrinking expressions to smaller or more efficient
equivalents, and so on. Some optimizations performed are larger in scope,
however, and deserve a more in-depth treatment.

5.1 Tail call elimination

As explained in section 2.2, JavaScript does not support proper tail calls,
and Haste thus needs to make use of trampolining to support general tail
calls. The procedure to turn a “normal” function call in tail position into a
proper tail call is trivial. We first recursively turn all intermediate assignments
– variable assignments of the form var x = e ; return x – into substitu-
tions, replacing any such assignments by return e. Then, all occurrences of
return f (...) are converted into a special syntactic form tailcall f (...), which
returns a continuation object performing the call to f for evaluation by the
trampolining instrumentation as described in section 2.2.

Loop transformation However, in the more specific – and quite common
– case of simply tail recursive functions, we can make the tail recursion
quite a bit faster by employing JavaScript’s looping constructs. If the body
b of a function f contains at least one occurrence of tailcall f (x0, ..., xn),
it is simply tail recursive and we can replace the body of f with a loop.
This loop executes b but replaces the tail call to f (a0, ..., an) with a series
of assignments var x0 = a0, ..., xn = an followed by a continue statement.
Figures 2 and 3 give an example of a tail recursive multiplication function
before and after this loop transformation respectively.
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function mul(x, y, accumulator) {

if(y === 0) {

return accumulator;

} else {

tailcall(mul(x, y-1, accumulator+x));

}

}

Figure 2: Tail recursive multiplication function

function mul(x, y, accumulator) {

while(true) {

if(y === 0) {

return accumulator;

} else {

y = y - 1;

accumulator = accumulator + x;

continue;

}

}

}

Figure 3: Tail loop-transformed multiplication function

Loop transformation in the presence of closures However, the loop trans-
formation optimization fails subtly in the case where the function body
contains function closures. In JavaScript, closures capture variables by
reference. As we recall, function arguments may be mutated between each
“invocation” of a tail loop transformed function. If a closure is created in the
loop body b which captures one of these mutating variables, those variables
will most likely have mutated between the time the closure is created and
the time it is entered!

Haste makes use of the fact that JavaScript function arguments are
always passed by value to solve this problem, wrapping each iteration of
the loop in an anonymous function taking all of the mutating variables as
arguments. The result is that each mutating variable is explicitly copied for
each iteration of the loop. Each created closure thus captures its own copies
of the mutating variables, instead of capturing the mutable references it
would have had without this explicit copying.

This essentially creates a local, specialized trampoline for each affected
function. While this is more expensive than the pure loop optimization, the
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function mul(x0, y0, accumulator0) {

while(true) {

var result = (function(x, y, accumulator) {

if(y === 0) {

return accumulator;

} else {

y0 = y - 1;

accumulator0 = thunk(function(){return eval(accumulator) + x}, true);

return __continue;

}

})(x0, y0, accumulator0);

if(result !== __continue) {

return result;

}

}

}

Figure 4: Closure-correct loop transformation

specialization and comparatively fewer levels of indirection still makes it a
cheaper construct than the general trampoline. Figure 4 gives an example
of this transformation for a version of the mul function from figure 2 which
is lazy in its accumulator, necessitating explicit argument copying.

5.2 Mitigating trampolining overheads

While loop transformation of simple recursive functions is all well and good,
the general problem still remains: trampolining is slow. To make matters
worse, we invoke our trampoline for all function calls, even though the vast
majority may not even need it! Fortunately, it is possible to eliminate the
trampolining instrumentation from many call sites where it is unnecessary,
as well as convert some slow tail calls into fast “normal” calls without using
any additional stack frames.

Eliminating acyclic tail calls The point of tail call elimination is to allow
a chain of tail calls of arbitrary length to execute in constant space. By
finding finite chains of trampolined tail calls up to a certain length and
converting them into normal function calls we can reduce the trampoline
instrumentation overhead while maintaining a constant upper bound on
the amount of stack space consumed by the tail call. This optimization,
proposed by Loitsch and Serrano [30], is implemented in Haste as follows.

We begin by finding all functions which are guaranteed to never perform
a tail call and convert all tail calls to those functions into normal, fast,
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function calls. In this way we eliminate the overhead of creating and calling
a trampoline object for those functions while guaranteeing that no chain of
tail calls will grow the call stack by more than at most one frame.

Repeating this procedure n times, we can eliminate all tail call chains of
length n or less while bounding call stack growth to n frames. After we’ve
finished converting tail calls into normal calls, we can remove the tram-
polining instrumentation from all call sites where the callee is guaranteed
to never make a tail call, completely removing the trampolining overhead
from a significant number of call sites.

In practice, while many statically known function calls can be de-
trampolined, the amount of actual tail calls eliminated by this optimization
drops off sharply as n increases. With the aggressive inlining performed by
GHC, practical programs usually end up with few acyclic tail call chains,
and few of those are longer than one or two calls. Haste uses a value of
three for n, which bounds call stack growth to three stack frames. This
eliminates virtually all finite tail call chains, and carries an extra overhead
of only a single stack frame, compared to the tail call instrumentation which
itself has an overhead of two additional stack frames per call chain.

Trading space for speed Even after eliminating tail calls statically deter-
mined to be unnecessary, there is still room for improvement. Not only are
actual cyclic call chains unaffected by the above optimizations, but so are
functions whose identity cannot be statically determined as well – a com-
mon occurrence in a higher order language. To improve the performance
of the general tail call machinery, we employ an optimization described by
Schinz and Odersky to trade stack space for speed [50].

The runtime system keeps track of a chain counter, which records the
length of the current chain of tail calls. While this counter is below a certain
threshold, no tail calls are made at all. Any tail call made below this threshold
will cause the chain counter to be incremented by one and a normal, fast,
stack-growing function call to be made. When a tail call is made after
this threshold is reached, however, the normal tail call procedure comes
into play and a trampoline object is returned to the caller, which returns it
back to its own caller and so on, until the object reaches the trampolining
instrumentation at the bottom of the call chain. Here, the chain counter is
reset to 0, and the trampoline object invoked.

This way, we can use fast function calls for n tail calls in a row, only
resorting to the slow trampolining machinery once every n tail calls. This
allows each chain of consecutive tail calls to grow the call stack by at
most n additional stack frames, amortizing the cost of the trampolining
instrumentation over the calls. Regular trampolining, where the call stack is
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not allowed to grow at all, can be seen as a special case of this optimization,
where n is equal to 1.

5.3 Reducing indirections

In vanilla GHC, numeric types are implemented using one level of indirec-
tion. A value of type Int will thus be stored on the heap as a pointer to a
thunk object, which in turn will have a reference to either a computation
which produced a value of type Int, or to an actual machine level integer.
This is necessitated by the implementation strategy described by Marlow
and Peyton Jontes [36]. However, as discussed in section 2.1, As Haste uses
a slightly different approach, inspecting thunks from the outside rather
than unconditionally entering them, we are able to represent values of some
types using one less level of indirection than vanilla GHC.

Haste has the concept of newtype-like types, conservatively defined to
consist of all types with a single data constructor, that in turn has only a sin-
gle, unlifted, argument. All such types are represented in Haste as though
they were newtypes: the representation of such a type constructor application
C x is the representation of its argument x. Crucially, this definition includes
all the basic numeric types. This allows us to get rid of a significant amount
of boxing and unboxing operations, as boxed and unboxed numeric types
now share the same representation. Furthermore – and more importantly –
this also reduces pressure on the garbage collector. While boxed numeric
types may have relatively little overhead in vanilla GHC, this overhead is
quite significant for Haste, which has to resort to a JavaScript representa-
tion of algebraic types. While most computationally heavy Haskell code
usually ends up unboxed by GHC’s optimizer, removing a large chunk
of the overhead caused by boxing and unboxing still produces code with
smaller footprints for both code size and memory consumption.

6 Performance evaluation and discussion

As indicated at the beginning of this chapter, reducing code size is one
of the primary motivations for the Haste compiler. However, program
execution time is also an important factor. This section presents a series of
benchmarks, taken from the nofib [40] benchmark suite, to measure Haste’s
performance compared to the GHCJS compiler as well as the performance
impact made by the optimizations described in section 5. The programs
were selected from the compatible ones in the suite – several benchmarks
cannot be completed by Haste or GHCJS due to reliance on missing native
libraries – to give a balanced view of the code size, raw computation
performance, and performance under GC pressure.
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The Haste programs were compiled using Haste version 0.5.3 with
the --opt-all flag and, for the minified versions, the --opt-minify flag as well
which calls the Closure compiler with the ADVANCED_OPTIMIZATIONS
compilation flag on the generated output. The GHCJS programs were
compiled with the latest development version of GHCJS as of October 2015,
using the -O2 flag for optimizations. The resulting JavaScript programs were
executed using version 4.1.1 of the Node.js interpreter.

6.1 Relative performance of the Haste compiler

We measure the performance of the latest version of Haste as compared
to the latest development version of the GHCJS compiler on two counts:
code size, and execution speed. As GHCJS is considered by many to
be the de facto standard web-targeting Haskell compiler and the state
of the art in Haskell to JavaScript compilation, it is the natural target of
performance comparisons. GHCJS also uses STG code produced by GHC
as its input format, but uses a completely different compilation scheme,
compiling programs into continuation-passing style, and a more involved
runtime system [39]. Comparing against GHCJS thus gives an opportunity
to evaluate the relative performance of the two approaches to JavaScript
compilation without interference from, for example, compiler frontends of
differing quality.

Execution time The results of the speed benchmarks are given in table
2.10. All run times are given in seconds. The Haste-min columns gives the
execution time of the relevant program compiled with Haste and minified
using the Closure compiler, with the ADVANCED_OPTIMIZATIONS com-
pilation flag. The corresponding execution times are not given for GHCJS
entries, as the GHCJS programs give incorrect results when minified.

For this set of benchmarks, Haste holds a significant advantage in exe-
cution speed across the board, with the binary-trees and queens benchmarks
being more than twice as fast when compiled with Haste than with GHCJS.
This may be attributed to Haste having a relatively straightforward and id-
iomatic implementation of function calls, whereas GHCJS CPS-transformed
code is quite heavily trampolined. The advantage is less dramatic, but
still significant, for the rest of the programs. The smallest difference in
execution speed can be seen in the power benchmark, which is dominated
by time spent computing over integers of arbitrary size. As Haste and
GHCJS outsource this particular functionality to the same JavaScript library,
the relatively small difference in execution speed comes as no surprise.

For this set of benchmarks, minification seems to have a relatively
neglibible impact on execution times, with only the circsim benchmark
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Program Haste Haste (min.) GHCJS Diff.

binary-trees (n=16) 5.1 s 5.5 s 12.3 s 2.4

queens (n=12) 2.7 s 2.6 s 6.5 s 2.4

integrate (n=100k) 1.6 s 1.5 s 3.2 s 2.0

power (n=25) 0.5 s 0.5 s 0.8 s 1.6

circsim (8 bits, 100 cycles) 1.1 s 1.0 s 1.6 s 1.5

Table 2.10: Code execution speed

Program Haste Haste (min.) GHCJS GHCJS (min.)

binary-trees 157 KiB 86 KiB 1336 KiB 349 KiB

queens 82 KiB 23 KiB 1003 KiB 226 KiB

power 100 KiB 37 KiB 1200 KiB 295 KiB

anna 592 KiB 375 KiB 3427 KiB 1166 KiB

Table 2.11: Emitted code size

standing out with its 10 % shorter execution time compared unminified
counterpart. Interestingly, the binary-trees program actually runs about 10

% slower when minified, showing that minification is not always beneficial
to execution speed.

Code size The size of its generated code becomes particularly interesting
as reduced code size is a main motivator for Haste. Several of the programs
from the nofib benchmark suite were compiled with Haste as well as with
GHCJS, and the size of their respective outputs were inspected. The results
are given in table 2.11.

Haste emerges as the clear winner of the code size benchmarks, with a
larger margin than for the speed benchmarks. Depending on the program,
the code generated by GHCJS is larger by a factor of 6 to 10, although the
difference shrinks with increased program size. Both Haste and GHCJS
programs seem to respond very well to minification. Although minification
presently breaks the GHCJS programs, either changing their semantics or
causing them to abort with an error message, its effect on the size of the
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generated code is significant, and is likely to remain so were the problems
resulting in broken code to be fixed.

6.2 Performance of tail call optimizations

The trampolining optimizations described in section 5 – loop transformation,
acyclic tail call elimination and tail chain counting – all in all have a
significant impact on performance, albeit in different circumstances. The
most generally applicable optimization is the acyclic tail call elimination,
which removes unnecessary tail calls and trampolining during a whole
program optimization pass. Turning this optimization off results in a 10 %
slowdown across the entire set of benchmarks.

The utility of the loop transformation optimization is less universal, but
its effect on execution speed can be more pronounced where the optimiza-
tion applies. For the queens benchmark, disabling the loop transformation
optimization results in a 25 % slowdown. For the binary-trees benchmark,
disabling this optimization led to a slowdown of more than 10 %. The other
benchmarks saw no significant performance improvements – or penalties –
as they are relatively light on the tail recursion.

Together with the loop transformation optimization, the tail chain
counter optimization becomes highly situational: quite many tail calling
functions compile into simple loops, which are covered by the loop trans-
formation. Consequently, the only benchmarks in which this optimization
made a difference one way or the other – or even appeared in the gener-
ated source – were the binary-trees and queens benchmarks. However, once
this optimization kicks in it is highly effective: for binary-trees disabling
the tail chain counter resulted in a 30 % slowdown. For queens, disabling
the optimization resulted in a 30 % slowdown as well, but only if the tail
loop transformation was also disabled. Taken together, this indicates that
while there is quite some overlap between the loop transformation and the
tail chain counter optimizations, the tail chain counter provides a useful
mitigation for the tail recursive cases which are not covered by the simple
loop.

The lower applicability of these two optimizations is not surprising: the
acyclic tail call elimination reduces the general overhead of trampolining
on non-tail recursive functions, which appear in generous quantities in
virtually any program. Tail recursion, while quite common in functional
programs, is not nearly as ubiquitous.
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Program Classy Anonymous Arrays

binary-trees (n=16) 5.1 s 4.9 s 5.7 s

queens (n=12) 2.7 s 5.9 s 8.0 s

integrate (n=100k) 1.6 s 2.0 s 2.6 s

power (n=25) 0.5 s 0.5 s 0.6 s

circsim (bits=8, cycles=100) 1.1 s 2.0 s 3.2 s

Table 2.12: Performance comparison of ADT representation candidates

6.3 ADT representation: objects versus arrays

Haste’s abstract syntax makes it relatively straightforward to experiment
with different data representations for algebraic data types by swapping out
the JavaScript serialization of the data constructor and accessor primitives.
In order to evaluate the performance of the three different ADT representa-
tions discussed in section 3 – classy objects, anonymous objects and arrays –
the benchmarks used throughout this section were compiled and run with
all three different representations. The results are listed in table 2.12.

Judging by these benchmarks, the classy objects approach is significantly
faster than the other two representations, at least on the V8 virtual machine
used by Node.js. While the binary-trees benchmark is about 4 % slower,
the substantial difference in execution speed for the queens, integrate and
circsim programs more than makes up for this slight deficiency. Comparing
with the GHCJS tests from the previous section, Haste does quite well on
the binary-trees benchmark with either representation. Similarly, the power
benchmark is dominated by time spent in external libraries, which may
explain the relative lack of difference in performance for this benchmark.

Although not presented in the table, the classy approach also proved
more amenable to minification than the other approaches, seeing the rela-
tively encouraging performance improvements described in the previous
section. Meanwhile, minification impact on execution speed was relatively
hit and miss for anonymous objects and arrays, having a negative impact
on execution speed as often as a positive one.

6.4 Summary

In this chapter we have presented the design and implementation of a
web-targeting Haskell compiler. We have discussed the design choices



thesis_print December 9, 2015 13:09 Page 49 �
�	

�
�	 �
�	

�
�	

6 Performance evaluation and discussion 49

made in the design of the compilation scheme as well as the runtime system
and chose data representations, and contrasted them with the existing
state of the art for performance as well as code footprint. While none of
the techniques used in the Haste compiler are entirely novel in and of
themselves, the Haste compiler is to our knowledge the first combined
application of these techniques – the high level translation scheme and
data representation, the extensive trampolining optimizations, and the fine
grained linking – in a JavaScript-targeting compiler for a lazy functional
language.

As shown in our performance evaluation, the application of these tech-
niques results in a compiler which produces code which is both faster and
smaller than the current state of the art, by factors of two and six respec-
tively. To our knowledge, ours is the first evaluation of implementation
techniques for a web-targeting compiler for a lazy functional language.
Thanks to the shallow runtime system and high level translation scheme
our approach combines high performance with simple interoperability, the
applications of which are explored in chapter 3.
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Interoperating with JavaScript

This chapter is based on the paper Foreign Exchange at Low, Low Rates [20],
which is under consideration for publication at IFL ’15, and describes the
Haste compiler’s foreign function interface.

In section 1 we describe the challenges of interfacing with high level
foreign code using the vanilla foreign function interface of GHC in a web
environment, and propose a list of qualities we would like to see in a
foreign function interface for a web environment. In section 2 we present
the Haste.Foreign foreign function interface which has all the properties
set forth in section 1, and give its implementation for the Haste compiler.
In sections 3 and 4 we propose several extensions to the basic interface
which extends its scope and improves on its performance, and in section
5 we evaluate the performance of Haste.Foreign compared to the vanilla
foreign function interface of GHC. In section 6 we discuss the limitations of
Haste.Foreign, as well as possible means of lifting or working around said
limitations.

1 Background

Interfacing with other languages is one of the more painful aspects of
modern day Haskell development. Consider figure 5, taken from the
standard libraries of GHC; a piece of code to retrieve the current time [57].
A relatively simple task, yet its implementation is surprisingly complex.

This code snippet is more akin to thinly veiled C code than idiomatic,
readable Haskell; an unfortunate reality of working with the standard
foreign function interface.

While Haste initially made use of the conventional Foreign Function
Interface extension [8] to interface with its browser target environment, this
presented certain difficulties. The modern web browser environment is
highly reliant on callback functions and complex data types, none of which
are trivial to pass through the FFI, making browser-interfacing Haste code
relatively clunky and byzantine.

51
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data CTimeval = MkCTimeval CLong CLong

instance Storable CTimeval where

sizeOf _ = (sizeOf (undefined :: CLong)) * 2

alignment _ = alignment (undefined :: CLong)

peek p = do

s ← peekElemOff (castPtr p) 0

mus ← peekElemOff (castPtr p) 1

return (MkCTimeval s mus)

poke p (MkCTimeval s mus) = do

pokeElemOff (castPtr p) 0 s

pokeElemOff (castPtr p) 1 mus

foreign import ccall unsafe "time.h gettimeofday"

gettimeofday :: Ptr CTimeval → Ptr () → IO CInt

getCTimeval :: IO CTimeval

getCTimeval = with (MkCTimeval 0 0) $ λptval → do

throwErrnoIfMinus1_ "gettimeofday" $ do

gettimeofday ptval nullPtr

peek ptval

Figure 5: Foreign imports using the vanilla Foreign Function Interface

To rectify this situation, we construct a more expressive FFI on top
of the old one. We decompose interactions with the host environment
into its constituent parts: marshalling arguments into the target language,
performing the actual foreign call, and finally marshalling the results back
into Haskell. We implement these parts in Haskell itself to the extent
possible, only reaching out to the host environment through the FFI for our
lowest level building blocks. The result is a foreign function interface which
to a high degree automates the tedium involved in communicating with a
foreign environment.

Traditionally, Haskell programs have used the Foreign Function Inter-
face extension to communicate with other languages. This works passably
well in the world of native binary programs running on bare metal, where
C calling conventions have become the de facto standard of foreign data
interchange. The C language has no notion of higher level data structures
or fancy data representation, making it the perfect lowest common denom-
inator interlingua for language to language communication: there is no
ambiguity or clash between different languages’ built-in representation of
various higher level data structures, as there simply are no higher level data
structures.

The same properties that make Haskell’s traditional foreign function
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interface a good fit for language interoperability make it undesirable as
a vehicle for interfacing with the web-targeting code: the guest language
commonly relies on the browser environment for a large part of its run-
time, and internally uses many of its native high level data structures and
representations, making the forced low level representations of the vanilla
foreign function interface an unnecessary obstacle rather than a welcome
common ground for data interchange.

With this background, we believe that low level interfaces such as the
vanilla FFI are not ideally suited to the domain of functional languages
targeting the web browser and other high level environments. More specifi-
cally, we would like a foreign function interface for this domain to have the
following properties:

• The FFI should automatically take care of marshalling for any types
where marshalling is defined, without extra manual conversions or
other boilerplate code.

• Users should be able to easily define their own marshalling schemes
for arbitrary types.

• The FFI should allow importing arbitrary host language code, not just
named, statically known functions.

• Finally, the FFI should be easy to implement and understand, ideally
being implementable without compiler modifications, portable across
guest language dialects and host environments.

Making this list a bit more concrete in the form of an example, we would
like to write high level code like that in figure 6, without having to make
intrusive changes to our Haskell compiler.

Contrasting this with the standard FFI code from figure 5:

• The low level C types are gone, replaced by a more descriptive record
type, and so is the peeking and pokeing of pointers.

• The imported function arrives “batteries included”, on equal footing
with every other function in our program. No extra scaffolding or
boilerplate code is necessary.

• Whereas the code in figure 5 had to import the gettimeofday system call
by name, its actual implementation given elsewhere, we have actually
implemented its JavaScript counterpart at the location of its import,
without having to resort to external stubs.



thesis_print December 9, 2015 13:09 Page 54 �
�	

�
�	 �
�	

�
�	

54 Interoperating with JavaScript

data UTCTime = UTCTime {

secs :: Word,

usecs :: Word

} deriving Generic

instance FromAny UTCTime

getCurrentTime :: IO UTCTime

getCurrentTime =

host "function() {\\

\\var ms = new Date().getTime();\\

\\return {secs: ms/1000,\\

\\ usecs: (ms % 1000)*1000};}"

Figure 6: Foreign imports using our FFI

In section 2, we present the design and implementation of an interface
fulfilling the above criteria. The basic interface is implementable using
plain Haskell ’98 with only the Foreign Function Interface extension, and is
extensible by the user in the types of data which can be marshalled between
Haskell and host language, as well as in how those types are marshalled. It
allows for context dependent sanity checking of incoming data from the
host language, improving the safety of foreign functions.

While designed and described for web-targeting Haskell dialects in
general and the Haste compiler in particular, the interface is applicable
outside the web domain as well, and the implementation we give is valid
for dynamically typed host languages that support garbage collection, first
class functions, and a construct for dynamic code evaluation at runtime
such as the eval function of JavaScript, Python, PHP, and others.

To be clear, the idea of a higher level foreign function interface is by
no means novel in itself; there already exists a large body of work in this
problem domain, solving several of the problems of figure 5, which is used
here as an example mainly to establish the baseline for foreign function
interfaces.

We discuss these related approaches in section 2 of chapter 1, contrasting
them with our approach. To our knowledge, our solution is the first to
address all of the aforementioned criteria however. In particular, we are
not aware of any other FFI framework that can be implemented entirely
without compiler modifications.
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2 An FFI for the modern web

2.1 The interface

This section describes the programmer’s view of our interface and gives
examples of its usage. The Haskell formulation of the interface is given in
figure 7.

As the main purpose of a foreign interface is to shovel data back and
forth through a rift spanning two separate programming worlds, it makes
sense to begin the description of any such interface with one central ques-
tion: what data can pass through the rift and come out on the other side
still making sense?

The class of data fulfilling this criterion is embodied in an abstract HostAny

data type, inhabited by host-native representations of arbitrary Haskell
values. A data type is then considered to be marshallable if and only if it
can be converted to HostAny and back again.

Having established the class of types that can be marshalled, we can
now give a meaningful definition of importable functions: a function can be
imported from the host language into our Haskell program if and only if:

• all of its argument types are convertible into HostAny;

• its return type is convertible from the host-native HostAny; and

• its return type resides in the IO monad, accounting for the possibility
of side effects in host language functions.

These definitions give rise to a workflow for interacting with host
language code:

• define the appropriate ToAny and FromAny instances for any custom types,
either automatically using the generic default instances as showcased
by our motivating example in figure 6, or by defining them manually
if a particular host language representation is desired; then

• import arbitrary host language symbols or expressions over any set
of types instantiating ToAny or FromAny, using the host function.

We let the classic “hello, world” example illustrate the import of simple
host language functions using the interface described in figure 7:

hello :: String → IO ()

hello = host "name ⇒ alert(’Hello, ’ + name);"

To further illustrate how this interface can be used to effortlessly import
even higher order foreign functions, we have used our library to implement
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type HostAny

class ToAny a where

toAny :: a → HostAny

default toAny :: (GToAny (Rep a), Generic a)

⇒ a → HostAny

class FromAny a where

fromAny :: HostAny → IO a

default fromAny :: (GFromAny (Rep a), Generic a)

⇒ HostAny → IO a

class Import f

instance (ToAny a, Import b) ⇒ Import (a → b)

instance FromAny a ⇒ Import (IO a)

-- Instances for functions and basic types

instance FromAny Int

instance ToAny Int

...

instance Import f ⇒ FromAny f

instance (FromAny a, Exportable b) ⇒ ToAny (a → b)

instance ToAny a ⇒ ToAny (IO a)

host :: Import f ⇒ String → f

Figure 7: The programmer’s view of our interface

bindings to JavaScript animation frames for the Haste compiler, a mechanism
whereby a user program may request the browser to call a certain function
before the next repaint of the screen occurs:

type Time = Double

newtype FrameHandle = FrameHandle HostAny

deriving (ToAny, FromAny)

requestFrame :: (Time → IO ()) → IO FrameHandle

requestFrame = host "window.requestAnimationFrame"

cancelFrame :: FrameHandle → IO ()

cancelFrame = host "window.cancelAnimationFrame"

The resulting code is straightforward and simple, even though it per-
forms the rather non-trivial task of importing a foreign higher order func-
tion, automatically converting user-provided Haskell callbacks to their
JavaScript equivalents.

In the rest of section 2, we give an implementation of the basic Haskell
’98 interface for the Haste compiler. We then extend it with features requir-
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ing some extensions to Haskell ’98 – most notably generics and default
signatures – in section 4, to arrive at the complete interface presented here.

2.2 Implementing marshalling

As usual in the functional world, we ought to start with the base case:
implementing marshalling for the basic primitive types that lie at the
bottom of every data structure.

This is a simple proposition, as this is the forte of the vanilla foreign
function interface.

foreign import ccall intToAny :: Int → HostAny

foreign import ccall anyToInt :: HostAny → IO Int

instance ToAny Int where toAny = intToAny

instance FromAny Int where fromAny = anyToInt

...

We might also find a HostAny instance for ToAny and FromAny handy. Of
course, HostAny already being in its host language representation form, the
instances are trivial.

instance ToAny HostAny where toAny = id

instance FromAny HostAny where FromAny = return

However, if passing simple values was all we wanted to do, then there
would be no need to look any further than the vanilla foreign function
interface. We must also provide some way of combining values into more
complex values, to be able to represent lists, record types and other conve-
niences we take for granted in our day to day development work. But how
should these values be combined? Depending on our host language, we
may have different primitive data structures at our disposal.

Fortunately, JavaScript, as well as virtually any other language for which
our interface is implementable as described in section 1, support two basic
aggregate types, which are sufficient to represent values of any type: arrays
and dictionaries.

For the sake of brevity, we assume that we have access to two functions
arrToList :: FromAny a ⇒ HostAny → [a] and listToArr :: ToAny a ⇒ [a] → HostAny

which are used to implement the FromAny and ToAny instances respectively for
lists; they are trivial to implement either in Haskell using the vanilla foreign
function interface to gradually build a list of HostAny values, or on the host
language side exploiting knowledge of the compiler’s data representation.

For dictionaries, the conversion is not as clear-cut. Depending on the
data we want to convert, the structure of our desired host language represen-
tation of two values may well be different even when their client language
representations are quite similar, or even identical. Hence, we need to
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foreign import ccall newDict :: IO HostAny

foreign import ccall set :: HostAny → HostString → HostAny → IO ()

foreign import ccall get :: HostAny → HostString → IO HostAny

mkDict :: [(String, HostAny)] → HostAny

mkDict xs = unsafePerformIO $ do

d ← newDict

mapM_ (λk v → set d (toHostString k) v) xs

return d

getMember :: FromAny a ⇒ HostAny → String → IO a

getMember dict key =

get dict (toHostString key) >>= fromAny

Figure 8: Dictionary manipulation

put the power over this decision into the hands of the user, providing
functionality to build as well as inspect user-defined dictionaries.

We will need three basic host language operations: creating a new
dictionary, associating a dictionary key with a particular value, and looking
up values from dictionary keys. From these we construct two functions
to marshal compound Haskell values to and from dictionaries: mkDict and
getMember, as shown in figure 8.

This gives us the power to represent any composite or primitive data
type with user-defined dictionary keys. Figure 9 shows a possible mar-
shalling for sum and product types using the aforementioned dictionary
operations.

It is worth noting that the implementation of getMember is the reason for
fromAny returning a value in the IO monad: foreign data structures are rarely,
if ever, guaranteed to be immutable and looking up a key in a dictionary is
effectively following a reference, so we must perform any such lookups at a
well defined point in time, lest we run the risk of the value being changed
in between the application of our marshalling function and the evaluation
of the resulting thunk.

2.3 Importing functions

Implementing our host function turns out to be slightly trickier than mar-
shalling data between environments. The types of our imported functions
need to differ depending on the arity of the imported host language code.
This necessitates host returning some variadic function. Fortunately, there
is a well known trick to accomplish this which uses an inductive class
instance to successively build up a list of arguments over repeated function
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instance (ToAny a, ToAny b) ⇒
ToAny (Either a b) where

toAny (Left a) = mkDict [("tag", toAny "left"),

("data", toAny a)]

toAny (Right b) = mkDict [("tag", toAny "right"),

("data", toAny b)]

instance (FromAny a, FromAny b) ⇒
FromAny (Either a b) where

fromAny x = do

tag ← getMember x "tag"

case tag of

"left" → Left <$> getMember "data"

"right" → Right <$> getMember "data"

instance (ToAny a, ToAny b) ⇒ ToAny (a, b) where

toAny (a, b) = toAny [toAny a, toAny b]

instance (FromAny a, FromAny b) ⇒
FromAny (a, b) where

fromAny x = do

[a, b] ← fromAny x

(,) <$> fromAny a <*> fromAny b

Figure 9: Sums and products using lists and dictionaries

applications, and a base case instance to perform some computation over
said arguments after the function in question has been fully applied [1]. In
the case of the host function, that computation would be applying a foreign
function to said list of arguments.

This suggests the following class definition.

type HostFun = HostAny

class Import f where

import_ :: HostFun → [HostAny] → f

For our purposes, the base case is a nullary computation in the IO
monad. The list of arguments is converted from a list to a host language
array in order to squeeze it through the vanilla foreign function interface,
and the value we get back is marshalled back into a proper Haskell value:

foreign import ccall apply :: HostFun → HostAny → IO HostAny

instance FromAny a ⇒ Import (IO a) where

import_ f args = apply f (toAny args) >>= fromAny

Note the use of a foreign import in our base case. As the application of
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a foreign function to a foreign list of foreign arguments is clearly, well, a
foreign matter, we must call out to the host language for this final step. This
function is specific to the host language in use. A possible implementation
of apply for a JavaScript host environment may look as follows:

(f, args) ⇒ f.apply(null, args)

The inductive case is not much more complex: we only need to marshal
a single argument and recurse.

instance (ToAny a, Import b) ⇒ Import (a → b) where

import_ f args = λarg → import_ f (toAny arg : args)

With this, we have all the building blocks required to implement the
host function. With all the hard work already done, the implementation is
simple. For the sake of brevity, we assume the existence of a host language
specific HostString type, which may be passed as an argument over the vanilla
foreign function interface, and a function toHostString :: String → HostString.

foreign import ccall eval :: HostString → HostFun

host :: Import f ⇒ String → f

host s = import_ f []

where f = eval (toHostString s)

The foreign eval import brings in the host language’s evaluation con-
struct. Recall that one requirement of our method is the existence of such a
construct, to convert arbitrary strings of host language code into functions
or other objects.

3 Optimizing for safety and performance

While the implementation described up until this point is more or less
feature complete, its non-functional properties can be improved quite a
bit if we allow ourselves to stray from the tried and true, but slightly
conservative, path of pure Haskell ’98.

Aside from implementation specific tricks – exploiting knowledge about
a particular compiler’s data representation to optimize marshalling, or even
completely unroll and eliminate some of the basic interface’s primitive
operations, for instance – there are several general optimizations we can
apply to significantly enhance the performance and safety of our interface.

3.1 Eliminating argument passing overheads

The performance-minded reader may notice something troubling about
the implementation of import_: the construction of an intermediate list of
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{-# NOINLINE [0] host’ #-}

host’ :: FromAny a ⇒ HostFun → [HostAny] → IO a

host’ f args = apply f (toAny args) >>= fromAny

instance FromAny a ⇒ Import (IO a) where

host = host’

foreign import ccall apply0 :: HostFun → IO HostAny

foreign import ccall apply1 :: HostFun → HostAny → IO HostAny

foreign import ccall apply2 :: HostFun → HostAny → HostAny → IO HostAny

...

{-# RULES

"apply0" [1] ∀f. host’ f [] =

apply0 f >>= fromAny

"apply1" [1] ∀f a. host’ f [a] =

apply1 f a >>= fromAny

"apply2" [1] ∀f a b. host’ f [b,a] =

apply2 f a b >>= fromAny

...

#- }

Figure 10: Specializing the host base case

arguments. Constructing this intermediate list only to convert it into a host
language suitable representation which is promptly deconstructed as soon
as it reaches the imported function takes a lot of work. Even worse, this
work does not provide any benefit for the task to be performed: applying a
foreign function.

By the power of rewrite rules [44], we can eliminate this pointless work
in most cases by specializing the host function’s base case instance for
different numbers of arguments. In addition to the general apply function
we define a series of apply0, apply1, etc. functions, one for each arity we want
to optimize function application for. The actual specialization is then a
matter of rewriting host calls to use the appropriate application function.

Figure 10 gives a new implementation of the base case of the Import class
which includes this optimization, replacing the one given in section 2.

3.2 Preventing code injection

Meanwhile, the safety-conscious reader may instead be bristling at the
thought of executing code contained in something as egregiously untyped
and untrustworthy as a common string. Indeed, by allowing the conversion
of arbitrary strings into functions, we’re setting ourselves up for cross-site
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scripting and other similar code injection attacks!
While this is indeed true in theory, in practice, accidentally passing a

user-supplied string to the host function, which in normal use ought to
occur almost exclusively on the top level of a module, is a quite unlikely
proposition. Even so, it could be argued that if it is possible to use an
interface for evil, its users almost certainly will at some point.

Fortunately, the recent 7.10 release of the GHC compiler gives us the
means to eliminate this potential pitfall. The StaticPointers extension, its first
incarnation described by Epstein et al [23], introduces the static keyword,
which is used to create values of type StaticPtr from closed expressions.
Attempting to turn any expression which is not known at compile time into
a StaticPtr yields a compiler error.

Implementing a safe_host function which can not be used to execute
user-provided code becomes quite easy using this extension and the basic
host function described in section 2, at the cost of slightly more inconvenient
import syntax:

safe_host :: Import f ⇒ StaticPtr String → f

safe_host = host . deRefStaticPtr

safe_hello :: IO ()

safe_hello = safe_host static "() ⇒ alert(’Hello, world!’)"

3.3 Eliminating eval

Relying on eval to produce our functions allows us to implement our
interface in pure Haskell ’98 without modifying the Haskell compiler in
question, making the interface easy to understand, implement and maintain.
However, there are reasons why it may be in the implementor’s best interest
to forgo a small bit of that simplicity.

The actual call to eval does not meaningfully impact performance: it
is generally only called once per import, the resulting function object
cached thanks to lazy evaluation.1 However, its dynamic nature does carry a
significant risk of interfering with the ability of the host language’s compiler
and runtime to analyse and optimize the resulting code. As discussed in
section 5, this effect is very much in evidence when targeting the widely
used V8 JavaScript engine.

In the JavaScript community, it is quite common to run programs
through a minifier – a static optimizer with focus on code size – before
deployment. Not only do such optimizers suffer the same analytical dif-
ficulties as the language runtime itself from the presence of dynamically

1 The main reason for eval getting called more than once being unwise inlining directives
from the user.
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evaluated code, but due to the heavy use of renaming often employed by
minifiers to reduce code size, special care needs to be taken when writing
code that is not visible as such to the minifier: code which is externally
imported or, in our case, locked away inside a string for later evaluation.

Noting that virtually every sane use of our interface evaluates a static
string, a solution presents itself: whenever the eval function is applied to a
statically known string, instead of generating a function call, the compiler
splices the contents of the string verbatim into the output code instead.

This solution has the advantage of eliminating the code analysis obstacle
provided by eval for the case when our imported code is statically known
(which, as we noted before, is a basic sanity property of foreign imports),
while preserving our library’s simplicity of implementation. However, it
also has the disadvantage of requiring modifications to the compiler in
use, however slight, which increases the interface’s overall complexity of
implementation.

4 Putting our interface to use

While the interface described in sections 2 and 3 represents a clear raising
of the abstraction layer over the vanilla foreign function interface, it is still
lacking some desirable high level functionality: marshalling of arbitrary
functions and generic data types.

In this section we demonstrate the flexibility of our interface by imple-
menting this functionality on top of it.

4.1 Dynamic function marshalling

Dynamic imports One appealing characteristic of our interface is that it
makes the marshalling of functions between Haskell and the host language
easy. In the case of passing host functions into Haskell, the import_ function
used to implement host has already done the heavy lifting for us. Only
adding an appropriate FromAny instance remains.

Due to the polymorphic nature of functions, however, we must resort to
using some language extensions to get the type checker to accept our in-
stance: overlapping instances, flexible instances, and undecidable instances.
Essentially, the loosened restrictions on type class instances allow an Import

instance to act as a synonym for FromAny, allowing host language functions
to return functions of any type admissible as an import type by way of the
host function.

instance Import a ⇒ FromAny a where

fromAny f = return (import_ f [])
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Passing functions to foreign code Passing functions the other way, out
of Haskell and into our host language, requires slightly more work. While
we already had all the pieces of the dynamic import puzzle at our disposal
through our earlier implementation of host, exports require one more tool
in our toolbox: a way to turn a Haskell function into a native host language
function.

Much like the apply primitive used in the implementation of host, the
implementation of such an operation is specific to the host language in
question. Moreover, as we are dealing with whatever format our cho-
sen compiler has opted to represent functions by, this operation is also
dependent on the compiler.

In order to implement this operation, we assume the existence of an-
other function hfsun_to_host, to convert a Haskell function f from n HostAny

arguments to a HostAny return value r in the IO monad into a host language
function which, when applied to n host language arguments, calls f with
those same arguments and returns the r returned by f .

foreign import ccall hsfun_to_host :: (HostAny → ... → HostAny) → HostFun

But how can we make this operation type check? As we are bound to the
types the vanilla foreign function interface lets us marshal, we have no way
of applying this function to a variadic Haskell function over HostAnys.

We know that, operationally, hsfun_to_host expects a Haskell function as
its input, but the types do not agree; we must somehow find a way to
pass arbitrary data unchanged to our host language. Fortunately, standard
Haskell provides us with a way to do exactly what we want: StablePointers
[48]. Note that, depending on the Haskell compiler in use, this use of stable
pointers may introduce a space leak. This is discussed further in section
6.2, and an alternative solution is presented.

import Foreign.StablePtr

import System.IO.Unsafe

foreign import ccall hsfun_to_host’ :: StablePtr a → HostFun

hsfun_to_host :: Exportable f ⇒ f → IO HostFun

hsfun_to_host f = hsfun_to_host’ ‘fmap‘ newStablePtr (mkHostFun f)

Just being able to pass Haskell functions verbatim to the host language is not
enough. The functions will expect Haskell values as their arguments and
return other Haskell values; we need to somehow modify these functions to
automatically marshal those arguments and return values. Essentially, we
want to map fromAny over all input arguments to a function, and toAny over
its return values. While superficially similar to the implementation of the
Import class in section 2.3, this task is slightly trickier: where import_ modifies
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an arbitrary number of arguments and performs some action with respect
to a monomorphic value – the HostFun representation of a host language
function – we now need to do the same to a variadic function.

Modifying variadic functions using type families A straightforward ap-
plication of the printf trick used to implement Import is not flexible enough
to tackle this problem. Instead, we bring in yet another language extension,
closed type families [18], to lend us the type level flexibility we need. We
begin by defining the Exportable type class first encountered in the type
signature of hsfun_to_host, and a closed type family describing the type level
behavior of our function marshalling.

type family Host a where

Host (a → b) = HostAny → Host b

Host (IO a) = IO HostAny

class Exportable f where

mkHostFun :: f → Host f

This is relatively straightforward. Inspecting the Host type family, we see
that applying mkHostFun to any eligible function must result in a correspond-
ing function of the same arity – hence the recursive type family instance for
a → b – but with its arguments and return value replaced by HostAny.

Giving the relevant Exportable instances is now mostly a matter of making
the types match up, and concocting a ToAny instance is only a matter of
composing our building blocks together.

instance ToAny a ⇒ Exportable (IO a) where

mkHostFun = fmap toAny

instance (FromAny a, Exportable b) ⇒ Exportable (a → b) where

mkHostFun f = mkHostFun . f . unsafePerformIO . fromAny

instance Exportable f ⇒ ToAny f where

{-# NOINLINE toAny #-}

toAny = unsafePerformIO . hsfun_to_host

The one interesting instance here is that of the inductive case, where
we use fromAny in conjunction with unsafePerformIO to marshal a single func-
tion argument. While using fromAny outside the IO monad is unsafe in the
general case as explained in section 2, this particular instance is completely
safe, provided that mkHostFun is not exported to the user, but only used to
implement the ToAny instance for functions.

When a function is marshalled into a HostAny value and subsequently
applied, fromAny will be applied unsafely to each of the marshalled function’s
arguments. There are two cases when this can happen: either the marshalled



thesis_print December 9, 2015 13:09 Page 66 �
�	

�
�	 �
�	

�
�	

66 Interoperating with JavaScript

function is called from the host language, or it is marshalled back into
Haskell and then applied. In the former case, the time of the call is trivially
well defined assuming that our target language is not lazy by default. In
the latter case, the time of the call is still well defined, as our interface only
admits importing functions in the IO monad.

Slightly more troubling is the use of unsafePerformIO in conjunction with
hsfun_to_host. According to Reid [48], the creation of stable pointers residing
in the IO monad – the reason for hsfun_to_host residing there as well – is to
avoid accidentally duplicating the allocation of the stable pointer, something
we can avoid by telling the compiler never to inline the function, ever.

It is also worth pointing out that the concern over duplicating this allo-
cation is only valid where the implementation also has the aforementioned
space leak problem, in which case the alternative implementation given in
section 6.2 should be preferred anyway.

Marshalling pure functions The above implementation only allows us to
pass functions in the IO monad to foreign code, but we would also like to
support passing pure functions. There are two main obstacles to this:

• The hsfun_to_host’ function expects a function in the IO monad.

• Instantiating Exportable for any type ToAny t ⇒ t would accidentally add
a ToAny instance for any type at all. Even worse, this instance would
be completely bogus for most types, always treating the argument
to its toAny implementation as a function to be converted into a host
language function!

We sidestep the first problem by assuming that hsfun_to_host’ can deter-
mine dynamically whether a function is pure or wrapped in the IO monad,
and take action accordingly. Another, slightly more verbose, possibility
would be to alter the implementation of our marshalling code to use ei-
ther hsfun_to_host’ or a function performing the same conversion on pure
functions, depending on the type of function being marshalled.

Looking closer at the problematic ToAny instance, we find that the
Exportable t ⇒ ToAny t instance provides ToAny for any Exportable type, and
the ToAny t ⇒ Exportable t instance provides Exportable in return, creating a
loop which creates instances for both type classes matching any type.

The ToAny t ⇒ Exportable t instance is necessary for our type level recur-
sion to work out when marshalling pure functions, but we can prevent this
instance from leaking to ToAny where it would be unreasonably broad by
replacing our ToAny function instance with two slightly more specific ones.

Figure 11 gives our final implementation of dynamic function exports.
Looking at this code we also see why the use of closed type families are
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import Foreign.StablePtr

import System.IO.Unsafe

foreign import ccall hsfun_to_host’ :: StablePtr a → HostFun

hsfun_to_host :: Exportable f ⇒ f → IO HostFun

hsfun_to_host f = hsfun_to_host’ ‘fmap‘ newStablePtr (mkHostFun f)

type family Host a where

Host (a → b) = HostAny → Host b

Host (IO a) = IO HostAny

Host a = HostAny

instance (ToAny a, Host a ~ HostAny) ⇒ Exportable a where

mkHostFun = toAny

instance (FromAny a, Exportable b) ⇒ ToAny (a → b) where

{-# NOINLINE toAny #-}

toAny = unsafePerformIO . hsfun_to_host

instance ToAny a ⇒ ToAny (IO a) where

{-# NOINLINE toAny #-}

toAny = unsafePerformIO . hsfun_to_host

Figure 11: Dynamic function exports implemented on top of our interface

necessary: the open type families originally introduced by Chakravarty et
al [10] do not admit the overlapping type equations required to make pure
functions an instance of Exportable.

4.2 Static function exports

Very rarely are users prepared to abandon person-decades of legacy code;
to reach these users, the ability to expose Haskell functionality to the host
language is important. Alas, being implemented as a library, our interface
is not capable of foreign export declarations. We can, however, implement a
substitute on top of it.

Rather than a writing a library which when compiled produces a shared
library for consumption by a linker, we give the user access to a function
export which when executed stores an exported function in a known location,
where foreign language code can then access it. While this may seem like a
silly workaround, this is how JavaScript programs commonly “link against”
third party libraries.

Using the function marshalling implemented in section 4.1, implement-
ing export becomes a mere matter of passing a function to the host language,



thesis_print December 9, 2015 13:09 Page 68 �
�	

�
�	 �
�	

�
�	

68 Interoperating with JavaScript

which then arranges for the function to be available in a known, appropriate
location.

export :: Exportable f ⇒ String → f → IO ()

export = host "(name, f) ⇒ window[’haskell’][name] = f;"

4.3 Generic marshalling

Returning to our motivating example with figure 6, we note a conspicuous
absence: the UTCTime instance of FromAny is not defined, yet it is still used by
the host function in the definition of getCurrentTime. Although the instance
can be defined in a single line of code, it would still be nice if we could
avoid the tedium of writing that one line altogether. Thanks to generic
programming and default type class instances, we can.

Our implementation of generic marshalling uses GHC generics [32] and
associated language extensions – most notably type operators and scoped
type variables – making it specific to GHC-based compilers such as Haste
and GHCJS [39]. GHC generics allow us to traverse values of any type
as though the type was uniformly defined as a tree of sums, products,
constants and metadata, such as record selectors or constructor names.

For the sake of brevity, and as the actual syntax of GHC generics is rela-
tively uninformative due to its generality, we only give the basic method of
our implementation is this paper, and only consider the case of marshalling
Haskell values into their host language counterparts. Marshalling in the
other direction uses the same basic method, and the complete implementa-
tion is available from [21] as part of the Haste development suite.

We begin by defining a the data type to represent a host language value
while it is being constructed. A value can be either a singleton, a list of
values or a dictionary.

data Value

= One HostAny

| List [HostAny]

| Dict [(HostString, HostAny)]

We then informally define the behavior of our generic marshalling function
gToAny :: Rep a → Value as follows, where Rep is a type provided by GHC.Generics

to enable generic traversal of its type argument.

• When we reach a constructor argument x of a type t with a ToAny instance,
we use that instance to marshal x and return it as a single value:
One (toAny x).

• When we reach a record selector metadata node with a selector name n

and a child node c, we recursively marshal c and return it paired with
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its selector name: Tree [(n, toAny x)].

• When we reach a constructor metadata node with a constructor name
name n and a child node c, we recursively marshal c and call the
resulting value c’.

– If c’ is a dictionary, we add an entry to it to mark the value’s con-
structor name and return the resulting dictionary:
Tree (("tag", toAny n) : c’).

– If c’ is an empty list, we simply return the constructor name:
One (toAny n).

– If c’ is a nonempty list or a single item, we return a new dictionary
consisting of the constructor tag and the HostAny encoding of c’:
Tree [("tag", toAny n), ("data", toAny c’)].

• When we reach a product node with child nodes c1 and c2, signifying
the union of two or more constructor arguments, we recursively
marshal c1 and c2 into c1’ and c2’ respectively. We then merge c1’ and
c2’ and return the result:

merge c1’ c2’

where

merge (One a) (One b) = List [a, b]

merge (List a) (One b) = List (a ++ [b])

merge (One a) (List b) = List (a : b)

merge (List a) (List b) = List (a ++ b)

merge (Tree a) (Tree b) = Tree (a ++ b)

Note that the case where a tree is merged with a non-tree is undefined.
Trees arise only from a use of record selectors. Haskell only allows
data constructors where either all arguments have selectors, or none
has, meaning that trees and non-trees will never appear in the same
product node.

• When we reach a sum node, signifying one of several data constructors
of a type, we will either have a left child or a right child. We simply
recurse down through whichever child node we have and return the
result.

Using this implementation, all that remains is to add a default instance
to the ToAny class.
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class ToAny a where

toAny :: a → HostAny

default toAny :: (GToAny (Rep a), Generic a) ⇒ a → HostAny

toAny x =

case gToAny (from x) of

One x → x

List xs → toAny xs

Tree d → mkDict d

5 Performance

While increased performance is not a major motivation for this work, it is
still important to ascertain that using our library does not entail a major
performance hit. To determine the runtime performance of our interface
vis a vis the vanilla FFI - a useful baseline for performance comparisons -
we have benchmarked a reference implementation of our interface against
the vanilla FFI, both implemented for the Haste compiler.

While benchmarking code outside the context of any particular ap-
plication is often tricky and not necessarily indicative of whole system
performance, we hope to give a general idea of how our library fares
performance-wise in several different scenarios. To this end, several mi-
crobenchmarks were devised:

• Outbound, which applies a foreign function to several arguments of
type Double. The function’s return value is discarded, in order to only
measure outbound marshalling overhead for primitive types.

• In-out, which applies a foreign function to several Double arguments
and marshals its return value, also of type Double, back into Haskell
land. This measures inbound as well as outbound marshalling of
primitive types.

• Product types, which benchmarks the implementation of
getCurrentTime given in figure 6 against the equivalent implementa-
tion given in figure 5, both modified to accept an UTCTime value as
input in addition to returning the current time, in order to measure
outbound marshalling of product types as well as inbound.

• Higher order import, which calls a higher order function f using both
the vanilla FFI and our method, with a function over a single Double

value as its argument. The only purpose of f is to call its argument
repeatedly, evaluating the speed with which a higher order Haskell
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function may be called from external code in addition to the speed of
marshalling itself.

These functions were then repeatedly applied in two different contexts:
one tight, strict, tail recursive loop, intended to produce as efficient code
as possible; and one which simply consists of running mapM_ over a list of
appropriate length, to obtain higher level code which is harder to optimize
and analyse for strictness.

The resulting programs, compiled with the Haste compiler which incor-
porates all the optimizations described in section 3, were then repeatedly
executed using the Node.js JavaScript interpreter, and the average run times
of the programs using our interface compared against the average run times
of their FFI counterparts.

While this may not be the most rigorous of performance evaluations,
the results are repeatable, and the methodology is enough for our purposes:
getting a rough picture of how much speed we are giving up for a more
convenient interface.

The results for each benchmark are given in table 3.1 as the ratio of the
run time for our library over the run time for the vanilla FFI.

Outbound Looking at the performance numbers, our library performs
surprisingly well in a highly optimized loop, showing no additional over-
head over the vanilla FFI. In a less optimizable loop, our interface fares
slightly worse. Due to our interface being implemented mainly as a pure
Haskell library, the compiler is noticeably worse at figuring out the strict-
ness properties of the program compiled using our library than with the
program using the vanilla FFI, leading to some unnecessary creation and
evaluation of thunks.

In-out Moving on to the benchmarks where we actually marshal incoming
data, the picture is much the same as for the outbound benchmark, with
a slightly lower performance penalty for the mapM_ case. This is likely
attributable to the extra overhead of storing and evaluating the inbound
values for both versions.

Product types Our interface shows a distinct performance advantage
when it comes to marshalling more complex values, being as much as four-
teen times faster in the case of the highly optimized loop. Our assumption
about peeking and pokeing at pointers in an environment where such low
level constructs need to be emulated rather than efficiently implemented
on the machine level seems to have been correct.
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Tight loop mapM_

Outbound 1.00 1.16

In-out 1.00 1.05

Product types 0.07 0.37

Higher order import 0.85 0.87

Table 3.1: Execution times compared to the vanilla FFI

This performance advantage is still present in the less optimized loop,
although not quite as extreme. Inspecting the generated code, we see that
this is caused by the loop in question having a much larger overhead - an
indicator that the function calling overheads in both cases are relatively
minor compared to other overheads present in the generated code.

Higher order import Our interface seems to compare favorably to the
vanilla FFI for this case. The reason for this is not immediately obvious:
the two interfaces generate nearly identical code, the vanilla FFI code
being slightly more concise. The slight performance difference turns out to
be entirely implementation specific, however: the code generated for the
vanilla FFI benchmark in some places pass numeric literals around where
the code generated for our interface instead passes constant references to the
same values. Eliminating this difference by modifying the generated code
by hand, the performance difference between the two becomes negligible.

Performance verdict: acceptable Judging by these numbers the perfor-
mance of our library is quite acceptable, ranging from significantly faster
than the vanilla FFI to at most about 15% slower. It is encouraging that
our interface’s intended use case - marshalling more complex type - is
showing tangible performance benefits in addition to the added conve-
nience it affords the user. For code which has no choice but to make a
large number of calls to low level host language functions over primitive
types in performance critical loops, using the vanilla FFI instead may be
an attractive option to reduce the performance penalty - however slight -
incurred by our interface, allowing the user to have the FFI cookie and eat
it at the same time.

The benchmarks used here are available online from our repository at
https://github.com/valderman/ffi-paper.

https://github.com/valderman/ffi-paper
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6 Limitations and discussion

While two of the tree main limitations our interface places on its host lan-
guage — the presence of a dynamic code evaluation construct and support
for first class functions — have hopefully been adequately explained, and
their severity slightly alleviated, in sections 2 and 3.3, there are still several
design choices and lingering limitations that may need further justification.

6.1 fromAny type level expressiveness

The fromAny function used to implement marshalling in section 2 is by defini-
tion not total. As its purpose is to convert values of god-knows-what host
language type into properly typed Haskell values, from the simplest atomic
values to the most complex data structures, the possibility for failure is
apparent. Why, then, does its type not admit the possibility of failure, for
instance by wrapping the converted value in a Maybe or Either?

Recall that fromAny will almost always be called when automatically
converting arguments to and return values from callbacks and imported
foreign functions respectively. In this context, even if a conversion were
to fail with a Left "Bad conversion" error, there is no way for this error value
to ever reach the user. The only sensible action for the foreign call to
take when encountering an error value would be to throw an exception,
informing the user “out of band” rather than by somehow threading an
error value to the entire call.

It is then simpler, as well as reducing the amount of error checking
overhead necessary, to trust that the foreign code in question is usually well
behaved and throw the previously mentioned exception immediately on
conversion failure rather than taking a detour via error values, should this
trust prove to be misplaced.

6.2 Limitation to garbage collected host languages

The observant reader may notice that up until this point, we have completely
ignored something which very much concerns traditional foreign function
interfaces: ownership and eventual deallocation of memory.

Our high level interface depends quite heavily on its target language
being garbage collected, as having to manually manage memory introduces
significant boilerplate code and complexity: the very things this interface
aims to avoid. As target platforms with garbage collections having to deal
with low level details such as memory management is the core motivation
for this work, rectifying this “problem” does not fall within the scope of
this paper.
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Even so, memory management does rear its ugly head in section 4.1,
where stable pointers are used to pass data unchanged from Haskell into
our host language, and promptly ignored: note the complete absence of
calls to freeStablePtr. Implementing our interface for the Haste compiler,
this is not an issue: Haste makes full use of JavaScript’s garbage collection
capabilities to turn stable pointers into fully garbage collected aliases of the
objects pointed to. It is, however, quite conceivable for an implementation
to perform some manual housekeeping of stable pointers even in a garbage
collected language, in which case this use of our interface will cause a space
leak as nobody is keeping track of all the stable pointers we create.

As the stable pointers in question are never dereferenced or otherwise
used within Haskell, this hypothetical space leak can be eliminated by
replacing stable pointers with a slight bit of unsafe, implementation-specific
magic.

import Unsafe.Coerce

import Foreign.StablePtr hiding (newStablePtr)

data FakeStablePtr a

fakeStablePtr :: a → FakeStablePtr a

newStablePtr :: a → StablePtr

newStablePtr = unsafeCoerce . fakeStablePtr

The FakeStablePtr type and the function by the same name are used to mimic
the underlying structure of StablePtr. This makes its exact implementation
specific to the Haskell compiler in question, unlike the “proper” solution
based on actual stable pointers. The Haste compiler, being based on GHC,
has a very straightforward representation for stable pointers, merely wrap-
ping the “machine” level pointer in a single layer of indirection, giving us
the following implementation of fake stable pointers:

data FakeStablePtr a = Fake !a

fakeStablePtr = Fake

Thus, we may choose our implementation strategy depending on the ca-
pabilities of our target compiler. For a single implementation targeting
multiple platforms however, proper stable pointers are the safer solution.

6.3 Restricting imports to the IO monad

The interface presented in this paper does not support importing pure
functions; any function originating in the host language must be safely
locked up within the IO monad. This may be seen as quite a drawback,
as a host language function operating solely over local state is definitely



thesis_print December 9, 2015 13:09 Page 75 �
�	

�
�	 �
�	

�
�	

6 L imitations and discussion 75

not beyond the realms of possibility. Looking at our implementation of
function exports for pure functions, it seems that it would be possible to
implement imports in a similar way, and indeed we could.

However, “could” is not necessarily isomorphic to “should”. Foreign
functions do, after all, come from the unregulated, disorderly world outside
the confines of the type checker. Haskell’s type system does not allow us
to mix pure functions with possibly impure ones, and for good reason. It
is not clear that we should lift this restriction just because a function is
defined in another language.

Moreover, as explained in section 2, marshalling inbound data is in
many cases an inherently effectful operation, particularly when involving
complex data structures. Permitting the import of pure functions, knowing
fully well that a race condition exists in the time window between the
import’s application and the resulting thunk’s evaluation, does not strike
us as a shining example of safe API design.

Better, then, to let the user import their foreign code in the IO monad
and explicitly vouch for its purity, using unsafePerformIO to bring it into the
world of pure functions.

6.4 Blocking in non-concurrent environments

A particularly neat feature of the foreign function interface employed by the
GHCJS compiler is the ability for foreign host code to suspend execution
while waiting for an event to occur, even though its JavaScript host envi-
ronment is devoid of any concurrency support [39]. This is accomplished
by giving imported functions an extra parameter: a continuation to be
called upon completion of the foreign operation to resume execution of the
Haskell program, instead of simply returning like a “normal” JavaScript
function would.

This functionality is not supported by our interface. GHCJS accom-
plishes this by outputting continuation passing code which is executed by
a clever trampolining machinery. Supporting this feature would tie the
interface to a particular code generation strategy as well as add considerable
complexity; a price we deem too high to pay for this feature.

Instead, this functionality can be implemented on top of our interface
without much difficulty using a construct dubbed the “poor man’s con-
currency monad” [12]; a monad implementing coarse-grained, preemptive
multitasking with blocking synchronization variables in non-concurrent
environments.
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6.5 Summary

In this chapter we have presented the design and implementation of the
novel, lightweight Haste.Foreign foreign function interface. Haste.Foreign
allows boilerplate-free interoperation with native JavaScript code, while
simultaneously allowing the programmer a large degree of control over the
marshalling process when desired. We have discussed the various limita-
tions imposed by the interface and contrasted it with the foreign function
interfaces of competing compilers, and given performance enhancements
and extensions to alleviate most of said limitations.

We have shown that despite enabling automatic marshalling of complex
types such as higher order functions and algebraic data types, the perfor-
mance of Haste.Foreign is at least on par with that of Haskell’s vanilla
foreign function interface when implemented for the Haste compiler.

Haste.Foreign requires no compiler modifications, but can be imple-
mented entirely as a library and is portable across Haskell dialects as well
as high level target environments fulfilling certain criteria.
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This chapter is based on the paper A Seamless, Client-centric Programming
Model for Type Safe Web Applications [22], presented at Haskell Symposium
’14; a joint work with my supervisor Koen Claessen.

It describes the design and implementation of Haste.App, a programming
model for type safe, distributed web applications. Section 1 introduces
several problems with contemporary industry practices in the area. Section
2 proposes a different approach to developing distributed web applications,
and section 3 gives a reference implementation of this model. In section 4.1
we discuss limitations of and alternatives to our approach, and argue the
efficiacy of the Haste.App programming model.

1 Background

Most web applications – traditional ones as well as modern, rich client
single page applications – are intended to facilitate communication, data
storage or some other task involving a centralized resource. This makes
a significant server component, in addition to the client code running
in the user’s web browser, a major part of the application. This server
component is usually implemented as a completely separate program, and
communicates with the client program over some network protocol.

This state of things is not a conscious design choice - most web applica-
tions are conceptually a single entity, not two programs which just happen
to talk to each other over a network - but a consequence of there being a
large, distributed network between the client and server parts. However,
such implementation details should not be allowed to dictate the way we
structure and reason about our applications - clearly, an abstraction is called
for.

For a more concrete example, let’s say that we want to implement a
simple “chatbox” component for a website, to allow visitors to discuss
the site’s content in real time. Using mainstream development practices
and recent technologies such as WebSockets [31], we may come up with

77
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function handshake(sock) {sock.send(’helo’);}

function chat(sock, msg) {sock.send(’text’ + msg);}

window.onload = function() {

var logbox = document.getElementById(’log’);

var msgbox = document.getElementById(’message’);

var sock = new WebSocket(’ws://example.com’);

sock.onmessage = function(e) {

logbox.value = e.data + LINE + logbox.value;

};

sock.onopen = function(e) {

handshake(sock);

msgbox.addEventListener(’keydown’, function(e) {

if(e.keyCode == 13) {

var msg = msgbox.value;

msgbox.value = ’’;

chat(sock, msg);

}

});

};

};

Figure 12: JavaScript chatbox implementation

something like the program in figure 12 for our client program. In addition,
a corresponding server program would need to be written to handle distri-
bution of messages among clients. We will not give such an implementation
here, as we do not believe it necessary to state the problem at hand.

Since the “chatbox” application is very simple - users should only be
able to send and receive text messages in real time - we opt for a very
simple design. Two UI elements, logbox and msgbox, represent the chat log
and the text area where the user inputs their messages respectively. When
a message arrives, it is prepended to the chat log, making the most recent
message appear at the top of the log window, and when the user hits the
return key in the input text box the message contained therein is sent and
the input text box is cleared.

Messages are transmitted as strings, with the initial four characters
indicating the type of the message and the rest being the optional payload.
There are only two messages: a handshake indicating that a user wants to
join the conversation, and a broadcast message which sends a line of text
to all connected users via the server. The only messages received from the
server are new chat messages, delivered as simple strings.

This code looks solid enough by web standards, but even this simple
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piece of code contains no less than three asynchronous callbacks, two of
which both read and modify the application’s global state. This makes the
program flow non-obvious, and introduces unnecessary risk and complexity
through the haphazard state modifications.

Moreover, this code is not very extensible. If this simple application is
to be enhanced with new features down the road, the network protocol
will clearly need to be redesigned. However, if we were developing this
application for a client, said client would likely not want to pay the added
cost for the design and implementation of features she did not - and perhaps
never will - ask for.

Should the protocol need updating in the future, how much time will
we need to spend on ensuring that the protocol is used properly across our
entire program, and how much extra work will it take to keep the client and
server in sync? How much code will need to be written twice, once for the
client and once for the server, due to the unfortunate fact that the two parts
are implemented as separate programs, possibly in separate languages?

Above all, is it really necessary for such a simple program to involve
client/server architectures and network protocol design at all?

2 A seamless programming model

There are many conceivable improvements to the mainstream web develop-
ment model described in the previous section. We propose an alternative
programming model based on Haskell, in which web applications are writ-
ten as a single program rather than as two independent parts that just so
happen to talk to each other.

Instead we propose a programming model, dubbed “Haste.App”, with
the following properties:

• The programming model is synchronous, giving the programmer
a simple, linear view of the program flow, eliminating the need to
program with callbacks and continuations.

• Side-effecting code is explicitly designated to run on either the client
or the server using the type system while pure code can be shared
by both. Additionally, general IO computations may be lifted into
both client and server code, allowing for safe IO code reuse within
the confines of the client or server designated functions.

• Client-server network communication is handled through statically
typed RPC function calls, extending the reach of Haskell’s type
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checker over the network and giving the programmer advance warn-
ing when she uses network services incorrectly or forgets to update
communication code as the application’s internal protocol changes.

• Our model takes the view that the client side is the main driver
when developing web applications and accordingly assigns the server
the role of a computational and/or storage resource, tasked with
servicing client requests rather than driving the program. While it
is entirely possible to implement a server-to-client communication
channel on top of our model, we believe that choosing one side of the
heterogeneous client-server relation as the master helps keeping the
program flow linear and predictable.

• The implementation is built as a library on top of the GHC and Haste
Haskell compilers, requiring little to no specialized compiler support.
Programs are compiled twice; once with Haste and once with GHC,
to produce the final client and server side code respectively.

2.1 A first example

While explaining the properties of our solution is all well and good, nothing
compares to a good old Hello World example to convey the idea. We begin
by implementing a function which prints a greeting to the server’s console.

import Haste.App

helloServer :: String → Server ()

helloServer name =

liftIO $ putStrLn (name ++ " says hello!")

Computations exclusive to the server side live in the Server monad.
This is basically an IO monad, as can be seen from the regular putStrLn IO

computation being lifted into it, with a few extra operations for session
handling; its main purpose is to prevent the programmer from accidentally
attempting to perform client-exclusive operations, such as popping up a
browser dialog box, on the server.

Next, we need to make the helloServer function available as an RPC
function and call it from the client.

main :: App Done

main = do

greetings ← remote helloServer

runClient $ do

name ← prompt "Hi there, what is your name?"

onServer (greetings <.> name)
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The main function is, as usual, the entry point of our application. In
contrast to traditional applications which live either on the client or on
the server and begin in the IO monad, Haste.App applications live on both
and begin execution in the App monad which provides some crucial tools to
facilitate typed communication between the two.

The remote function takes an arbitrary function, provided that all its argu-
ments as well as its return value are serializable through the Serialize type
class, and produces a typed identifier which may be used to refer to the re-
mote function. In this example, the type of greetings is
Remote (String → Server ()), indicating that the identifier refers to a remote
function with a single String argument and no return value. Remote func-
tions all live in the Server monad. The part of the program contained within
the App monad is executed on both the server and the client, albeit with
slightly different side effects, as described in section 3.

After the remote call, we enter the domain of client-exclusive code with
the application of runClient. This function executes computations in the Client

monad which is essentially an IO monad with cooperative multitasking
added on top, to mitigate the fact that JavaScript has no native concurrency
support. runClient does not return, and is the only function with a return
type of App Done, which ensures that each App computation contains exactly
one client computation.

In order to make an RPC call using an identifier obtained from remote,
we must supply it with an argument. This is done using the <.> operator.
It might be interesting to note that its type,
Serialize a ⇒ Remote (a → b) → a → Remote b, is very similar to the type of
the <*> operator over applicative functors. This is not a coincidence; <.>

performs the same role for the Remote type as <*> performs for applicative
functors. The reason for using a separate operator for this instead of making
Remote an instance of Applicative is that since functions embedded in the Remote

type exist only to be called over a network, such functions must only be
applied to arguments which can be serialized and sent over a network
connection. When a Remote function is applied to an argument using <.>, the
argument is serialized and stored inside the resulting Remote object, awaiting
dispatch. Remote computations can thus be seen as explicit representations
of closures.

After applying the value obtained from the user to the remote function,
we apply the onServer function to the result, which dispatches the RPC call
to the server. onServer will then block until the RPC call returns.

To run this example, an address and a port must be provided so that
the client knows which server to contact. There are several ways of doing
this: using the GHC plugin system, through Template Haskell or by slightly
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altering how program entry points are treated in a compiler or wrapper
script, to name a few. A non-intrusive method when using the GHC/Haste
compiler pair would be to add -main-is setup to both compilers’ command
line and add the setup function to the source code.

setup :: IO ()

setup =

runApp (mkConfig "ws://localhost:1111" 1111) main

This will instruct the server binary to listen on the port 1111 when
started, and the client to attempt contact with that port on the local ma-
chine. The exact mechanism chosen to provide the host and port are
implementation specific, and will in the interest of brevity not be discussed
further.

2.2 Using server side state

While the Hello Server example illustrates how client-server communication
is handled, most web applications need to keep some server side state as
well. How can we create state holding elements for the server which are
not accessible to the client?

To accomplish this, we need to introduce a way to lift arbitrary IO
computations, but ensure that said computations are executed on the server
and nowhere else. This is accomplished using a more restricted version of
liftIO:

liftServerIO :: IO a → App (Server a)

liftServerIO performs its argument computation once on the server, in
the App monad, and then returns the result of said computation inside the
Server monad so that it is only reachable by server side code. Any client
side code is thus free to completely ignore executing computations lifted
using liftServerIO; since the result of a server lifted computation is never
observable on the client, the client has no obligation to even produce such
a value. Figure 13 shows how to make proper use of server side state.

2.3 The chatbox, revisited

Now that we have seen how to both implement network communication
and work with server side state, we are ready to revisit the chatbox program
from section 1, this time using our improved programming model. Since we
are now writing the entire application, both client and server, as opposed
to the client part from our motivating example, our program has three new
responsibilities.

• We need to add connecting users to a list of message recipients;
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main = do

remoteref ← liftServerIO $ newIORef 0

count ← remote $ do

r ← remoteref

liftIO $ atomicModifyIORef r (λv → (v+1, v+1))

runClient $ do

visitors ← onServer count

alert ("Your are visitor #" ++ show visitors)

Figure 13: server side state: doing it properly

• users leaving the site need to be removed from the recipient list; and

• chat messages need to be distributed to all users in the list.

With this in mind, we begin by importing a few modules we are going
to need and define the type for our recipient list.

import Haste.App

import Haste.App.Concurrent

import qualified Control.Concurrent as CC

type Recipient = (SessionID, CC.Chan String)

type RcptList = CC.MVar [Recipient]

We use an MVar from Control.Concurrent to store the list of recipients. A
recipient will be represented by a SessionID, an identifier used by Haste.App
to identify user sessions, and an MVar into which new chat messages sent to
the recipient will be written as they arrive. Next, we define our handshake
RPC function.

srvHello :: Server RcptList → Server ()

srvHello remoteRcpts = do

recipients ← remoteRcpts

sid ← getSessionID

liftIO $ do

rcptChan ← CC.newChan

CC.modifyMVar recipients $ λcs →
return ((sid, rcptChan):cs, ())

An MVar is associated with the connecting client’s session identifier, and
the pair is prepended to the recipient list. Notice how the application’s
server state is passed in as the function’s argument, wrapped in the Server

monad in order to prevent client-side inspection.
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srvSend :: Server RcptList → String → Server ()

srvSend remoteRcpts message = do

rcpts ← remoteRcpts

liftIO $ do

recipients ← CC.readMVar rcpts

mapM_ (flip CC.writeChan message) recipients

The send function is slightly more complex. The incoming message is
written to the Chan corresponding to each active session.

srvAwait :: Server RcptList → Server String

srvAwait remoteRcpts = do

rcpts ← remoteRcpts

sid ← getSessionID

liftIO $ do

recipients ← CC.readMVar rcpts

case lookup sid recipients of

Just mv → CC.readChan mv
_ → fail "Unregistered session!"

The final server operation, notifying users of pending messages, finds
the appropriate Chan to wait on by searching the recipient list for the session
identifier of the calling user, and then blocks until a message arrives in said
MVar. This is a little different from the other two operations, which perform
their work as quickly as possible and then return immediately.

If the caller’s session identifier could not be found in the recipient list,
it has for some reason not completed its handshake with the server. If this
is the case, we simply drop the session by throwing an error; an exception
will be thrown to the client. No server side state needs to be cleaned up as
the very lack of such state was our reason for dropping the session.

Having implemented our three server operations, all that’s left is to
tie them to the client. In this tying, we see our main advantage over the
JavaScript version in section 1 in action: the remote function builds a strongly
typed bridge between the client and the server, ensuring that any future
enhancements to our chatbox program are made safely, in one place, instead
of being spread about throughout two disjoint code bases.
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main :: App Done

main = do

recipients ← liftServerIO $ CC.newMVar []

hello ← remote $ srvHello recipients

awaitMsg ← remote $ srvAwait recipients

sendMsg ← remote $ srvSend recipients

runClient $ do

withElems ["log","message"] $ λ[log,msgbox] → do

onServer hello

Notice that the recipients list is passed to our three server operations
before they are imported; since recipients is a mutable reference created on
the server and inaccessible to client code, it is not possible to pass it over
the network as an RPC argument. Even if it were possible, passing server-
private state back and forth over the network would be quite inappropriate
due to privacy and security concerns.

The withElems function is part of the Haste compiler’s bundled DOM
manipulation library; it locates references to the DOM nodes with the given
identifiers and passes said references to a function. In this case the variable
log will be bound to the node with the identifier “log”, and msgbox will be
bound to the node identified by “message”. These are the same DOM
nodes that were referenced in our original example, and refer to the chat
log window and the text input field respectively. After locating all the
needed UI elements, the client proceeds to register itself with the server’s
recipient list using the hello remote computation.

let recvLoop chatlines = do

setProp log "value" $ unlines chatlines

message ← onServer awaitMsg

recvLoop (message : chatlines)

fork $ recvLoop []

The recvLoop function perpetually asks the server for new messages and
updates the chat log whenever one arrives. Note that unlike the onmessage

callback of the JavaScript version of this example, recvLoop is acting as a
completely self-contained process with linear program flow, keeping track
of its own state and only reaching out to the outside world to write its
state to the chat log whenever necessary. As the awaitMsg function blocks
until a message arrives, recvLoop will make exactly one iteration per received
message.
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runClient :: Client () → App Done

liftServerIO :: IO a → App (Server a)

remote :: Remotable a

⇒ a → App (Remote a)

onServer :: Remote (Server a) → Client a

(<.>) :: Serialize a

⇒ Remote (a → b) → a → Remote b

getSessionID :: Server SessionID

Figure 14: Types of the Haste.App core functions

msgbox ‘onEvent‘ OnKeyPress $ λ13 → do

msg ← getProp msgbox "value"

setProp msgbox "value" ""

onServer (sendMsg <.> msg)

This is the final part of our program; we set up an event handler to clear
the input box and send its contents off to the server whenever the user hits
return (character code 13) while the input box has focus.

The discerning reader may be slightly annoyed at the need to extract the
contents from Remote values at each point of use. Indeed, in a simple example
such as this, the source clutter caused by this becomes a disproportionate
irritant. Fortunately, most web applications tend to have more complex
client-server interactions, reducing this overhead significantly.

A complete listing of the core functions in Haste.App is given in table
4.1, and their types are given in figure 14.

3 Implementation

Our implementation is built in three layers: the compiler layer, the concur-
rency layer and the communication layer. The concurrency and commu-
nication layers are simple Haskell libraries, portable to any other pair of
standard Haskell compilers with minimal effort.

To pass data back and forth over the network, messages are serialized
using JSON, a fairly lightweight format used by many web applications,
and sent using the HTML5 WebSockets API. This choice is completely
arbitrary, guided purely by implementation convenience. It is certainly not
the most performant choice, but can be trivially replaced with something
more suitable as needed.

The implementation described here is a slight simplification of our
implementation, removing some performance enhancements and error



thesis_print December 9, 2015 13:09 Page 87 �
�	

�
�	 �
�	

�
�	

3 Implementation 87

Function Purpose

runClient Lift a single Client computation
into the App monad. Must be at
the very end of an App computa-
tion, which is enforced by the
type system.

liftServerIO Lift an IO computation into the
App monad. The computation
and its result are exclusive to the
server, as enforced by the type
system, and are not observable
on the client.

remote Make a server side function
available to be called remotely
by the client.

onServer Dispatch a remote call to the
server and wait for its comple-
tion. The result of the remote
computation is returned on the
client after it completes.

<.> Apply a remote function to a seri-
alizable argument.

getSessionID Get the unique identifier for the
current session. This is a pure
convenience function, to relieve
programmers of the burden of
session bookkeeping.

Table 4.1: Core functions of Haste.App
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handling clutter in the interest of clarity. The complete implementation is
available for download as part of the Haste development suite.

Two compilers The principal trick to our solution is compiling the same
program twice; once with a compiler that generates the server binary, and
once with one that generates JavaScript. Conditional compilation is used
for a select few functions, to enable slightly different behavior on the client
and on the server as necessary. Using Haskell as the base language of our
solution leads us to choose GHC as our server side compiler by default. We
chose the Haste compiler to provide the client side code, mainly owing to
our great familiarity with it and its handy ability to make use of vanilla
Haskell packages from Hackage.

The App monad The App monad is where remote functions are declared,
server state is initialized and program flow is handed over to the Client

monad. Its definition is as follows.
type CallID = Int

type Method = [JSON] → IO JSON

type AppState = (CallID, [(CallID, Method)])

newtype App a = App (StateT AppState IO a)

deriving (Functor, Applicative, Monad)

As we can see, App is a simple state monad, with underlying IO capabili-
ties to allow server side computations to be forked from within it. Its CallID

state element contains the identifier to be given to the next remote function,
and its other state element contains a mapping from identifiers to remote
functions.

What makes App interesting is that computations in this monad are
executed on both the client and the server; once on server startup, and once
in the startup phase of each client. Its operations behave slightly differently
depending on whether they are executed on the client or on the server.
Execution is deterministic, ensuring that the same sequence of CallIDs are
generated during every run, both on the server and on all clients. This is
necessary to ensure that any particular call identifier always refers to the
same server side function on all clients.

After all common code has been executed, the program flow diverges
between the client and the server; client side, runClient launches the ap-
plication’s Client computation whereas on the server, this computation is
discarded, and the server instead goes into an event loop, waiting for calls
from the client.

The workings of the App monad basically hinges on the Server and Remote

abstract data types. Server is the monad wherein any server side code is



thesis_print December 9, 2015 13:09 Page 89 �
�	

�
�	 �
�	

�
�	

3 Implementation 89

contained, and Remote denotes functions which live on the server but can be
invoked remotely by the client. The implementation of these types and the
functions that operate on them differ between the client and the server.

3.1 Client side implementation

We begin by looking at the client side implementation for those two types.

data Server a = ServerDummy

data Remote a = Remote CallID [JSON]

The Server monad is quite uninteresting to the client; since operations
performed within it can not be observed by the client in any way, such
computations are simply represented by a dummy value. The Remote type
contains the identifier of a remote function and a list of the serialized
arguments to be passed when invoking it. In essence, it is an explicit
representation of a remote closure. Such closures can be applied to values
using the <.> operator.

(<.>) :: Serialize a

⇒ Remote (a → b) → a → Remote b

(Remote identifier args) <.> arg =

Remote identifier (toJSON arg : args)

The remote function is used to bring server side functions into scope on
the client as Remote functions. It is implemented using a simple counter
which keeps track of how many functions have been imported so far and
thus which identifier to assign to the next remote function.

remote :: Remotable a ⇒ a → App (Remote a)

remote _ = App $ do

(next_id, remotes) ← get

put (next_id+1, remotes)

return (Remote next_id [])

As the remote function lives on the server, the client only needs an
identifier to be able to call on it. The remote function is thus ignored, so
that it can be optimized out of existence in the client executable. Looking
at its type, we can see that remote accepts any argument instantiating the
Remotable class. Remotable is defined as follows.
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class Remotable a where

mkRemote :: a → ([JSON] → Server JSON)

instance Serialize a ⇒ Remotable (Server a) where

mkRemote m = λ_ → fmap toJSON m

instance (Serialize a, Remotable b) ⇒
Remotable (a → b) where

mkRemote f =

λ(x:xs) → mkRemote (f $ fromJSON x) xs

In essence, any function, over any number of arguments, which returns a
serializable value in the Server monad can be imported. The mkRemote function
makes use of a well-known type class trick for creating statically typed
variadic functions, and works very much like the printf function of Haskell’s
standard library [1].

The final function operating on these types is liftServerIO, used to initial-
ize state holding elements and perform other setup functionality on the
server.

liftServerIO :: IO a → App (Server a)

liftServerIO _ = App $ return ServerDummy

As we can see, the implementation is as simple as can be. Since Server is
represented by a dummy value on the client, we just return said value.

3.2 Server side implementation

The server side representation of the Server and Remote types are in a sense
the opposites of their client side counterparts.

newtype Server a = Server (ReaderT SessionInfo IO a)

deriving (Functor, Applicative, Monad, MonadIO)

data Remote a = RemoteDummy

Where the client is able to do something useful with the Remote type but
can’t touch Server values, the server has no way to inspect Remote functions,
and thus only has a no-op implementation of the <.> operator. On the other
hand, it does have full access to the values and side effects of the Server

monad, which is an IO monad with some additional session data for the
convenience of server side code.

Server values are produced by the liftServerIO and remote functions.
liftServerIO is quite simple: the function executes its argument immedi-
ately and the result is returned, tucked away within the Server monad.
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liftServerIO :: IO a → App (Server a)

liftServerIO m = App $ do

x ← liftIO m

return (return x)

The server version of remote is a little more complex than its client side
counterpart. In addition to keeping track of the identifier of the next
remote function, the server side remote pairs up remote functions with these
identifiers in an identifier-function mapping.

remote f = App $ do

(next_id, remotes) ← get

put (next_id+1, (next_id, mkRemote f) : remotes)

return RemoteDummy

This concept of client side identifiers being sent to the server and used
as indices into a table mapping identifiers to remotely accessible functions
is an extension of the concept of “static values” introduced by Epstein et al
with Cloud Haskell [23], which is discussed further in section 4.2.

The server side dispatcher After the App computation finishes, the
identifier-function mapping accumulated in its state is handed over to
the server’s event loop, where it is used to dispatch the proper functions
for incoming calls from the client.

onEvent :: [(CallID, Method)] → JSON → IO ()

onEvent mapping incoming = do

let (nonce, identifier, args) = fromJSON incoming

Just f = lookup identifier mapping

result ← f args

webSocketSend $ toJSON (nonce, result)

The function corresponding to the RPC call’s identifier is looked up in
the identifier-function mapping and applied to the received list of argu-
ments. The return value is paired with a nonce provided by the client to
tie it to its corresponding RPC call, since there may be several such calls in
progress at the same time. The pair is then sent back to the client.

Note that during normal operation, it is not possible for the client to
submit an RPC call with a non-existent call identifier, hence the irrefutable
pattern match on Just f. Should this pattern match fail, this is a sure sign of
malicious tampering; the resulting exception is caught and the session is
dropped as it is no longer meaningful to continue.

The Client monad and the onServer function As synchronous network com-
munication is one of our stated goals, it is clear that we will need some
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kind of blocking primitive. Since JavaScript does not support any kind of
blocking, we will have to implement this ourselves.

A solution is given in the poor man’s concurrency monad [12]. Mak-
ing use of a continuation monad with primitive operations for forking a
computation and atomically lifting an IO computation into the monad,
it is possible to implement cooperative multitasking on top of the non-
concurrent JavaScript runtime. This monad allows us to implement MVars as
our blocking primitive, with the same semantics as their regular Haskell
counterpart [43]. This concurrency-enhanced IO monad is used as the basis
of the Client monad.

type Nonce = Int

type ClientState = (Nonce, Map Nonce (MVar JSON))

type Client = StateT ClientState Conc

Aside from the added concurrency capabilities, the Client monad only
has a single particularly interesting operation: onServer.

newResult :: Client (Nonce, MVar JSON)

newResult = do

(nonce, m) ← get

var ← liftIO newEmptyMVar

put (nonce+1, insert nonce var m)

return (nonce, mv)

onServer :: Serialize a

⇒ Remote (Server a) → Client a

onServer (Remote identifier args) = do

(nonce, var) ← newResult

webSocketSend $

toJSON (nonce, identifier, reverse args)

fromJSON <$> takeMVar var

The createResultMVar function creates a new MVar, paired with its corre-
sponding nonce in the client’s map of nonces to result variables.

After a call is dispatched, onServer blocks, waiting for its result variable to
be filled with the result of the call. Filling this variable is the responsibility
of the receive callback, which is executed every time a message arrives from
the server.

onMessage :: JSON → Client ()

onMessage response = do

let (nonce, result) = fromJSON response

(n, m) ← get

put (n, delete nonce m)

putMVar (m ! nonce) result

As we can see, the implementation of our programming model is rather
simple and requires no bothersome compiler modifications or language
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extensions, and is thus easily portable to other Haskell compilers.

4 Limitations and discussion

4.1 Limitations

Client centricity Unlike most related work, our approach takes a firm
stand, regarding the client as the driver in the client-server relationship
with the server taking on the role of a passive computational or storage
resource. The server may thus not call back into the client at arbitrary
points but is instead limited to returning answers to client side queries.
This is clearly less flexible than the back-and-forth model of Sunroof and
Cheerp or the shared variables of Conductance. However, we believe that
this restriction makes program flow easier to follow and comprehend. Like
the immutability of Haskell, this model gives programmers a not-so-subtle
hint as to how they may want to structure their programs. Extending our
existing model with an onClient counterpart to onServer would be a simple
task, but we are not quite convinced that there is value in doing so.

Environment consistency As our programming model uses two different
compilers to generate client and server code, it is crucial to keep the package
environments of the two in sync. A situation where, for instance, a module
is visible to one compiler but not to the other will render many programs
uncompilable until this inconsistency is fixed.

This kind of divergence can be worked around using conditional compi-
lation, but is highly problematic even so; using a unified package database
between the two compilers, while problematic due to the differing natures
of native and JavaScript compilation respectively, would be a significant
improvement in this area.

4.2 Inspiration and alternatives to remote

One crucial aspect of implementing cross-network function calls is the issue
of data representation: the client side of things must be able to obtain some
representation of any function it may want to call on the server.

In our solution, this representation is obtained through the use of the
remote function, which when executed on the server pairs a function with a
unique identifier, and when executed on the client returns said identifier so
that the client may now refer to the function. While this has the advantage
of being simple to implement, one major drawback of this method is that
all functions must be explicitly imported in the App monad prior to being
called over the network.
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This approach was inspired by Cloud Haskell [23], which introduces
the notion of “static values”; values which are known at compile time.
Codifying this concept in the type system, to enable it to be used as a basis
for remote procedure calls, unfortunately requires some major changes
to the compiler. Cloud Haskell has a stopgap measure for unmodified
compilers wherein a remote table, pairing values with unique identifiers,
is kept. This explicit bookkeeping relies on the programmer to assign
appropriate types to both values themselves and their identifiers, breaking
type safety.

The astute reader may notice that this is exactly what the remote function
does as well, the difference being that remote links the identifier to the value
it represents on the type level, preventing the user from calling non-existent
remote functions or breaking the program’s type safety in other ways.

Another approach to this problem is defunctionalization [14], a program
transformation wherein functions are translated into algebraic data types.
This approach would allow the client and server to use the same actual
code; rather than passing an identifier around, the client would instead pass
the actual defunctionalized code to the server for execution. This would
have the added benefit of allowing functions to be arbitrarily composed
before being remotely invoked.

This approach also requires significant changes to the compiler, making
it unsuitable for our use case. Moreover, we are not entirely convinced
about the wisdom of allowing server side execution of what is essentially
arbitrary code sent from the client which, in a web application context, is
completely untrustworthy. While analyzing code for improper behavior
is certainly possible, designing and enforcing a security policy sufficiently
strict to ensure correct behavior while flexible enough to be practically
useful would be an unwelcome burden on the programmer.

4.3 Advantages of our approach

We believe that our approach has a number of distinct advantages over the
related work described in section 2 of chapter 1.

Our approach gives the programmer access to the same strongly typed,
general-purpose functional language on both client and server; any code
which may be of use to both client and server is effortlessly shared, leading
to less duplication of code and increased possibilities for reusing third party
libraries.

Interactive multiplayer games are one type of application where this
code sharing may have a large impact. In order to ensure that players
are not cheating, a game server must keep track of the entire game state
and send updates to clients at regular intervals. However, due to network
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latency, waiting for server input before rendering each and every frame is
completely impractical. Instead, the usual approach is to have each client
continuously compute the state of the game to the best of its knowledge,
rectifying any divergence from the game’s “official” state whenever an
update arrives from the server. In this scenario, it is easy to see how reusing
much of the same game logic between the client and the server would be
very important.

Any and all communication between client and server is both strongly
typed and made explicit by the use of the onServer function, with the pro-
grammer having complete control over the serialization and deserialization
of data using the appropriate type classes. Aside from the obvious advan-
tages of type safety, making the crossing of the network boundary explicit
aids the programmer in making an informed decision as to when and
where server communication is appropriate, as well as helps preventing
accidental transmission of sensitive information intended to stay on either
side of the network.

Our programming model is implemented as a library, assuming only
two Haskell compilers, one targeting JavaScript and one targeting the pro-
grammer’s server platform of choice. While we use Haste as our JavaScript-
targeting compiler, modifying our implementation to use GHCJS or even
the JavaScript backend of UHC would be trivial. This implementation not
only allows for greater flexibility, but also eliminates the need to modify
complex compiler internals.

4.4 Summary

In this chapter we have presented the Haste.App programming model for
strongly typed, distributed web applications. Although similar program-
ming models exist – the more notable ones are described in section 2 of
chapter 1 – to our knowledge Haste.App is the first one to offer the use
of a full more or less mainstream programming language, as opposed to
a more restricted DSL, with strong guarantees of type safety while being
implementable completely without modifying the underlying language.

We have discussed the design of Haste.App, arguing that its restrictions
compared to many competing models are actually helpful in enabling
programmers to write programs with less defects. We have also given a
reference implementation of Haste.App built on standard web technologies.
While the reference implementation uses the Haste and GHC compilers, it
could equally easily be built on top of another pair of Haskell compilers,
such as UHC or GHCJS, owing to its lightweight and general nature.
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