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Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical

ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this

work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck

Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503

(2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical

impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare

SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and

explain a 1/�-scaling of the inter-species radial transport coefficient at low collisionality, arising

due to the field term in the inter-species collision operator, and which is not found with simplified

collision models even when momentum correction is applied. However, this type of scaling disap-

pears if a radial electric field is present. We also use SFINCS to analyze how the impurity content

affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in

plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a devia-

tion in the divertor strike point locations. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4935901]

I. INTRODUCTION

3D plasma confinement concepts have an advantage over

the tokamak, as they offer the potential of steady state plasma

operation with no need for current drive.1,2 For steady state

operation, impurity accumulation has to be avoided, since

impurities cause plasma dilution, radiation losses, and can

lead to pulse termination by radiation collapse. The avoidance

of impurity accumulation under relevant conditions is one of

the most crucial tests for the capability of steady state 3D

systems.

In stellarators, particles can be trapped in helical mag-

netic wells and escape the plasma even in the absence of col-

lisions. Thus, the neoclassical transport is typically

considerably larger than in axisymmetric configurations. In

fact, at low collisionality (such as in a hot plasma core) neo-

classical transport could be expected to dominate over the

turbulent transport because of the 1/�-transport behavior, �
being the collision frequency.2 The flux-surface-averaged ra-

dial neoclassical particle flux of species a can be written as

hCa � rwi �
ð

d3v fa1vda � rw

� �

¼ �na

X
b

Dab
1

d ln nb

dw
þ eb

Tb

dU
dw

� �
þ Dab

2

d ln Tb

dw

� �
;

(1)

where nb is the density, Tb is the temperature, and eb�Zbe is

the charge of species b with e being the proton charge, and

the sum is taken over all plasma species. The brackets h…i
denote a flux-surface average. The Dab

j :s are coefficients of

the transport matrix, vda is the cross-field drift velocity and

fa1¼ fa � fMa is the departure from the Maxwellian part of

the distribution function of species a. w is a flux function

representing a radial coordinate (often chosen to be the toroi-

dal magnetic flux) and U is the electrostatic potential which

relates to the radial electric field by Er¼�dU/dr where r is

the effective radius. The inter-species terms (b 6¼ a) are due

to friction along the magnetic field between the different spe-

cies.2 Moreover, in all stellarator collisionality regimes Daa
2

is positive which implies that the temperature gradient drives

an outward particle flux, tending to generate hollow density

profiles.

A consequence of collisionless trajectories not necessar-

ily being confined is that different plasma species can have

different radial transport rates. This results in a radial electric

field Er to restore ambipolarity, which can be determined

without knowledge of the turbulent transport since the radial

neoclassical current is 1/q*¼ L/qi (qi being the ion gyro ra-

dius and L a typical macroscopic scale length) larger than

the radial turbulent current unless Er is just right.3 We note

that the transport coefficients, Dab
j , in Eq. (1) depend on the

value of Er. The ambipolarity condition of the particle fluxes

determining Er can have multiple roots, depending on the

plasma parameters and the magnetic configuration. In the

standard situation for stellarators, the neoclassical ambipolara)albertm@chalmers.se

1070-664X/2015/22(11)/112508/16/$30.00 VC 2015 AIP Publishing LLC22, 112508-1

PHYSICS OF PLASMAS 22, 112508 (2015)

http://dx.doi.org/10.1063/1.4935901
http://dx.doi.org/10.1063/1.4935901
http://dx.doi.org/10.1063/1.4935901
mailto:albertm@chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4935901&domain=pdf&date_stamp=2015-11-20


radial electric field points radially inwards (i.e., a negative

Er), referred to as the ion root regime (in the electron root re-

gime Er is instead positive). This electric field tends to cause

impurity accumulation, which is particularly strong for

heavy impurities whose charge numbers Z are large. The

electrostatic drive for impurity accumulation is not present

in tokamaks or quasi-symmetric stellarators, where intrinsic

ambipolarity implies that radial transport rates of each spe-

cies must be independent of the radial electric field to high

precision, and accumulation is merely caused by impurity-

ion friction.

In a single-impurity species plasma, we denote the species

by the subscripts e (electrons), i (bulk hydrogen ions), and z
(impurities), respectively. For a trace impurity approximation

(when Znz/ne� 1) in a standard ion root plasma, the ambipo-

lar electric field is essentially determined from the condition

hCiðErÞ � rwi ¼ 0 because hCiðEr ¼ 0Þ � rwi � hCe � rwi.4
Assuming Tz¼Ti¼ T and neglecting the inter-species coeffi-

cients in Eq. (1), it is possible to express the radial neoclassical

impurity flux as

hCz � rwi ¼ �nzD
zz
1

"
d ln nz

dw
þ Dzz

2

Dzz
1

d ln T

dw

� Z
d ln ni

dw
þ Dii

2

Dii
1

d ln T

dw

!#
� �Dzz

1

dnz

dw
þ nzVz;

(2)

where the term containing the factor Z appears from substitut-

ing the ambipolarity condition for the bulk ions. Dzz
1 repre-

sents the diffusive part connected to gradients in nz, while Vz

are the convective terms related to gradients of the bulk spe-

cies. We note that Eq. (2) is also valid for an axisymmetric de-

vice, but the way to derive it differs from the way to do it for

a stellarator because the particle flux in Eq. (1) is independent

of the radial electric field in axisymmetry. For tokamaks, the

coefficient Dii
2=Dii

1 in Eq. (2) can be negative indicating impu-

rity screening. In stellarators however, earlier theory predicts

it to be always positive and support impurity accumulation

when the temperature profile is peaked.4 Typically a transient

increase in impurity concentration is found, due to the inward

convective impurity transport which drives impurity accumu-

lation, until it balances the outward diffusive transport and

hCz � rwi ¼ 0. This results in a peaking of the impurity den-

sity profile with respect to the main ion profile, depending on

the relative strength of the impurity pinch Vz=Dzz
1 . This statio-

narity in the impurity profile is expected ultimately, even if

the impurity core confinement time is large.

Although neoclassical predictions often point towards

impurity accumulation, there are experimental scenarios in

stellarators where impurity accumulation has been avoided,

e.g., in certain low-density scenarios at W7-AS and LHD

with an outward radial electric field, or through the applica-

tion of purification mechanisms such as radiofrequency heat-

ing. In LHD, an extremely hollow profile of carbon impurity

has been observed, referred to as an “impurity hole.”5,6 In

W7-AS also a “high density H-mode” with low impurity

confinement times has been discovered, accessible only

through neutral beam injection.7 It is also possible that turbu-

lent transport could significantly mitigate the neoclassical

impurity accumulation. To enable the stellarator concept as a

fusion reactor candidate with high pressure plasmas, the

search for favorable scenarios capable of avoiding strong im-

purity accumulation is important.

In neoclassical theory, transport processes are usually

assumed to be radially local and described by the linearized

drift-kinetic equation for the first order distribution function

fa1 in q*. To date, stellarator neoclassical calculations have

predominantly been performed using simplified models for

collisions. The most accurate linear operator available is the

linearized Fokker-Planck-Landau operator8,9 (also given in

Appendix A), which is used in a variety of axisymmetric cal-

culations. However, because of the extra dimension in stella-

rators, due to the lack of toroidal symmetry, stellarator

calculations are more challenging and often only pitch-angle

scattering collisions are retained (e.g., see Ref. 10). This

implies that coupling in the energy dimension is eliminated,

and that momentum is generally not conserved. Momentum

correction methods exist11–13 for post-processing pitch-angle

scattering results, but these methods are not equivalent to

using the full linearized Fokker-Planck-Landau operator. The

difference between calculations with momentum-corrected

pitch-angle scattering and full Fokker-Planck-Landau colli-

sions could be expected to be particularly important for ion-

impurity and impurity-ion collisions since the mass ratio is

neither very large nor very small.

In this work, we study neoclassical impurity transport in

stellarators using the continuum code SFINCS (the Stellarator

Fokker-Planck Iterative Neoclassical Conservative Solver),

described in Ref. 14. The code solves the radially local 4D

drift-kinetic equation, retaining coupling in four of the inde-

pendent phase space variables (two spatial and two in veloc-

ity). The code permits an arbitrary number of species, and it

includes the linearized Fokker-Planck-Landau operator for

self- and inter-species collisions, with no expansion made in

mass ratio. The present numerical implementation of this op-

erator in the code is detailed in Appendix A. Our study will

be restricted to a hydrogen plasma with one single impurity

species. We emphasize that we will focus solely on neoclassi-

cal transport in this work, and stellarator turbulent transport is

an area where much is still to be explored.2 Moreover, Ref. 15

shows that the neoclassical impurity transport can be strongly

affected by the variation of the electrostatic potential on a

flux-surface, U1 ¼ U� hUi, which can be large enough to

affect impurity species of high charge. Although SFINCS cal-

culates U1, this effect is not included in the calculations pre-

sented here.

The remainder of the paper is organized as follows. In

Sec. II, we use SFINCS to calculate neoclassical transport

coefficients for the impurity particle flux, in a single-impu-

rity-species hydrogen W7-X plasma. We discuss the impor-

tance of the full linearized Fokker-Planck-Landau operator,

by comparing to results from pitch-angle scattering calcula-

tions where momentum correction is applied afterwards.

Furthermore, we investigate in which collisionality regimes

impurity screening from the pressure gradients can be

expected. How the impurity content affects the neoclassical
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impurity dynamics and the bootstrap current in a non-

axisymmetric device is then explored with SFINCS in Sec.

III. In Sec. IV, we summarize the results and conclude.

II. IMPURITY TRANSPORT COEFFICIENTS

In this section, we will calculate neoclassical transport

coefficients Lzb
jk for the impurity particle flux, which is writ-

ten as a linear combination of the thermodynamic forces

Az1 ¼
1

nz

dnz

dw
þ Ze

Tz

dU
dw
� 3

2Tz

dTz

dw
;

Ai1 ¼
1

ni

dni

dw
þ e

Ti

dU
dw
� 3

2Ti

dTi

dw
;

A2 ¼
1

T

dT

dw
¼Az2 ¼ Ai2ð Þ; (3)

where 2pw from here on is specifically the toroidal magnetic

flux. The motivation for our choice of the thermodynamic

forces in Eq. (3) stems from Ref. 14, where the transport ma-

trix for a single species drift-kinetic system of equations

becomes Onsager symmetric if Er¼ 0 and the forces are

defined in this form. We assume a hydrogen plasma with a

single impurity species present where the impurities and the

main ions are in thermal equilibrium, Tz¼Ti¼T. We consider

a C6þ impurity, as this species is expected to be the dominant

impurity in W7-X. Note that we neglect the impurity-electron

collisions, since their effect on the collisional impurity trans-

port is negligible whenever Z2nz=ni �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
, which is

practically always the case in reality.16

It is possible to express the impurity and ion fluxes in

terms of the transport matrix Lab
jk defined as follows:

i Gþ iIð Þ
c G

Zev1=2
z

Tzn
1=2
z

ð
d3v fzvdz � rw

� �

Zev1=2
z

Tzn
1=2
z

ð
d3v fz

mzv2

2Tz
vdz � rw

� �

ev1=2
i

Tin
1=2
i

ð
d3v fivdi � rw

� �

ev1=2
i

Tin
1=2
i

ð
d3v fi

miv2

2Ti
vdi � rw

� �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ Gc

iB0

Lzz
11 Lzz

12 Lzi
11 Lzi

12

Lzz
21 Lzz

22 Lzi
21 Lzi

22

Liz
11 Liz

12 Lii
11 Lii

12

Liz
21 Liz

22 Lii
21 Lii

22

0
BBBB@

1
CCCCA

Tzn
1=2
z

Zev1=2
z

Az1

Tzn
1=2
z

Zev1=2
z

Az2

Tin
1=2
i

ev1=2
i

Ai1

Tin
1=2
i

ev1=2
i

Ai2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (4)

The normalization is similar to Eq. (40) of Ref. 14, and

implies that the matrix elements are dimensionless.

Moreover, the matrix elements in Eq. (4) depend on Er, and

it is possible to show that Lab
jk ðErÞ ¼ Lba

kj ð�ErÞ when Ti¼Tz.

For a stellarator-symmetric magnetic geometry, the elements

are independent of the sign of Er, Lab
jk ðErÞ ¼ Lab

jk ð�ErÞ.
Hence, written in this form the matrix exhibits Onsager sym-

metry, i.e., Lab
jk ¼ Lba

kj . We note that the Onsager symmetry is

true for both the “full particle trajectories” described by Eq.

(17) and the “DKES particle trajectories” described by Eq.

(18) in Ref. 14. If we were to include additional matrix ele-

ments in Eq. (4) corresponding to bootstrap current and

Ware pinch, the Onsager symmetry would generally not be

fulfilled for the “full particle trajectories” when Er 6¼ 0. In

this work, the “full particle trajectories” is the default in the

SFINCS calculations. However, we will also present results

from SFINCS calculations with “DKES particle trajectories”

for Er 6¼ 0 (when Er¼ 0 the two different models for the par-

ticle trajectories are equal).

In this work we focus on the impurity particle transport,

and write

Zei Gþ iIð Þ
nzcTG

hCz � rwi ¼ GTc

ZeiB0vz

~L
zz

11Az1þ ~L
zi

11Ai1þ ~L
z

12A2

n o
:

(5)

Comparing Eqs. (4) and (5) we can identify ~L
zz

11¼Lzz
11;

~L
zi

11¼
Lzi

11Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vzni=vinz

p
and ~L

z

12¼Lzz
12þLzi

12Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vzni=vinz

p
. In Eqs. (4)

and (5), c is the speed of light in vacuum and va¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
is the thermal speed of species a (note that we employ

Gaussian units). To facilitate comparisons between different

models, we will perform a study at Er¼0 in this section but

we will also use a more realistic finite value. The quantities

B0, G, I, and i in Eqs. (4) and (5) stem from the magnetic ge-

ometry specified in Boozer coordinates h and f in which

B ¼ Kðw; h; fÞrwþ IðwÞrhþ GðwÞrf: (6)

B0 is the (0, 0) Fourier mode amplitude of B(h, f), cI/2 is the

toroidal current inside the studied flux surface, cG/2 is the

poloidal current outside the flux surface, and i is the rotational

transform.3 In a typical stellarator, jIj � jGj and G�B0R,

where R is the major radius of the device. Furthermore, in

Boozer coordinates

hXi ¼
ð2p

0

dh
ð2p

0

df
X

B2

 !	 ð2p

0

dh
ð2p

0

df
1

B2

 !
: (7)

We study a W7-X vacuum configuration with i ¼ �1 at the

plasma edge. For this geometry, the normalization factors of

Eq. (5) are defined such that they are all positive except i
and I (which have the same sign), and a positive flux is

directed outwards whereas the density and temperature gra-

dients in Eq. (3) are negative in the usual situation. The im-

purity transport coefficients, ~L
zz

11;
~L

zi

11, and ~L
z

12, are obtained

with SFINCS, solving coupled linear drift-kinetic equations

for each species with three different right-hand-sides.

Similar to Ref. 14, we calculate the transport coefficients in

terms of a normalized collisionality for the impurities

�0z �
Gþ iIð Þ�zz

vzB0

; (8)
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where

�zz ¼
4
ffiffiffiffiffiffi
2p
p

nzZ
4e4 ln K

3m
1=2
z T

3=2
z

: (9)

The collision operator implemented in SFINCS is discussed

in Appendix A. In W7-X, the normalized collisionality can

be expected to range from �0z � 0:01 in the core of a high-

temperature, low-density, low-Zeff plasma to �0z � 10 at the

edge of a low-temperature, high-density, and high-Zeff

plasma. In our calculations, we will include unrealistically

high values of �0z to be able to compare our results with ana-

lytic theory which is only available at high collisionality (see

Appendix C). It is interesting to note that collisions among

the impurity ions themselves are more important than colli-

sions with the bulk ions even if Zeff is not far above unity.

This is because the ratio of the pitch-angle-scattering fre-

quency between impurities and bulk ions �zi
D and the pitch-

angle-scattering frequency between impurity ions �zz
D scales

as �zi
D=�

zz
D � ni

ffiffiffiffiffi
mi
p

=ðZ2nz
ffiffiffiffiffi
mz
p Þ.16 Thus, as soon as Zeff – 1

significantly exceeds
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=mz

p
, z-z collisions are more impor-

tant than z-i collisions. For a hydrogen plasma with C6þ

impurities,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=mz

p
¼ 0:29.

We also define a normalized electric field similar to

Ref. 14

E	 ¼
cG

ivzB0

dU
dw

: (10)

This is the electric field normalized by the so-called resonant

electric field. In axisymmetry, it corresponds to the poloidal

Mach number.

A. Simulation Results at Er 5 0

In Figs. 1 and 2, the carbon transport coefficients as

functions of �0z for the W7-X standard configuration geome-

try at r/a¼ 0.88 are shown. r is the effective radius related

to the flux label through wN�w/wa¼ (r/a)2, where

a¼ 0.51 m is the outermost effective minor radius and

wa¼w(wN¼ 1). At this radius, the magnetic geometry pa-

rameters are B0¼ 3.1 T, G¼ 17.9 Tm, I¼�6.5
 10�7 Tm,

and i ¼ �0:93. The minimum resolution used in the

SFINCS runs is Nh¼ 17, Nf¼ 49 grid points in the poloidal

and toroidal direction (per identical segment of the stellara-

tor, where W7-X has a five-fold symmetry in the toroidal

direction), Nx¼ 5 grid points in energy (x¼ v/va with va

being the thermal speed of the species a) and Nn¼ 24

Legendre polynomials to represent the distribution function

(here n ¼ vk=v), and NL¼ 4 Legendre polynomials to repre-

sent the Rosenbluth potentials. Note however that the

required resolution depends on the collisionality regime. At

low collisionality, Nf and Nn both typically need to be larger

than 100, because of the presence of an internal boundary

layer between the trapped-passing boundary. At high colli-

sionality instead Nx typically has to be increased.

Results are presented for SFINCS simulations with full

linearized Fokker-Planck-Landau collisions, and for Zeff¼ 1.05

FIG. 1. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of normalized

collision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 1.05. SFINCS computations with the Fokker-Planck-Landau collision operator ( ) are

compared to DKES computations with momentum correction applied afterwards ( ). Note the double-logarithmic scale in (b) and (c).
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at E*¼ 0 (see Fig. 1) and Zeff¼ 2.0 at E*¼ 0 (see Fig. 2).

Note that plots (b)–(d) sometimes use a double-logarithmic

vertical scale, since these transport coefficients can have ei-

ther sign. The results are compared to simulations with the

DKES (Drift Kinetic Equation Solver) code.17,18 In contrast to

SFINCS, DKES has 3 rather than 4 coupled phase-space coor-

dinates, because energy coupling is neglected when solving

the drift-kinetic equation. DKES employs pitch-angle scatter-

ing collisions, but momentum correction can be applied after-

wards.13 Here we use the momentum correction approach

described in Ref. 11. This approach is appropriate for rela-

tively collisionless cases, because the energy scattering part of

the collision operator only contains the first order Legendre

components of the distribution functions. Moreover, in the

parallel particle and heat flows the approach neglects terms

corresponding to the Pfirsch-Schl€uter form of the poloidal

E
B-drift. Consequently, we will only show results at low

collisionality (�0z � 1) using this momentum correction tech-

nique. We note that DKES employs different effective particle

trajectories than SFINCS (compare Eqs. (17) and (18) in Ref.

14), but the difference vanishes when E*¼ 0. In the short-

mean-free-path limit, �0z � 1, the impurity transport coeffi-

cients can be computed analytically in terms of the parallel

current. The details are given in Appendix C and based on the

theory presented in Ref. 19. We note that SFINCS retains

E
B-precession when solving the drift-kinetic equation for

fa1,14 although according to the formal ordering it should

appear first at next order. Since E
B-precession is not

included in the analytical high-collisionality calculation in

Ref. 19, we only compare SFINCS results to this high-

collisionality theory at E*¼ 0. The high-collisionality asymp-

totes for the W7-X case are shown in Figs. 12 and 13 in

Appendix C. These theoretical limits conform well with the

SFINCS computations in the appropriate limit.

For both ~L
zz

11 and ~L
z

12 the momentum correction technique

captures well the intrinsic momentum conservation of the full

linearized Fokker-Planck-Landau operator. Interestingly, the

DKES þ momentum correction curves fail to predict the sign

change and 1=�0z-scaling of ~L
zi

11 observed at low collisionality

in the SFINCS curves with Fokker-Planck-Landau collisions

of both Figs. 1(b) and 2(b), i.e., at E*¼ 0.

With Fokker-Planck-Landau collisions at E*¼ 0, all

impurity transport coefficients show trends of 1=�0z-trans-

port at low collisionality and are proportional to �0z at high

collisionality. Earlier work had assumed that the inter-

species transport coefficients should be negligible com-

pared to the self-species coefficients at low collisionality

since the species interact via collisions.2 This is not in

agreement with what we find in our SFINCS calculations at

E*¼ 0 as shown in Figs. 1 and 2, where the Fokker-Planck-

Landau curves of ~L
zi

11 also exhibit 1=�0z-transport at low col-

lisionality. This phenomenon is explained as follows. Since
~L

zi

11 is found by setting all thermodynamic forces to zero

except the main ion gradient, the relevant impurity kinetic

equation is

vkrkfz1 ¼ Czz½fz1; fMz� þ Czz½fMz; fz1� þ Czi½fz1; fMi�
þ Czi½fMz; fi1�; (11)

FIG. 2. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of

normalized collision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 2.0. SFINCS computations with the Fokker-Planck-Landau collision operator

( ) are compared to DKES computations with momentum correction applied afterwards ( ). Note the double-logarithmic scale in (b)–(d).
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where Cab[fa, fb] is the Fokker-Planck-Landau collision oper-

ator for species a with distribution fa colliding with species b
of distribution fb. At low collisionality, the particle transport

is carried by the trapped particles. If we perform bounce-

averaging we annihilate the streaming term in Eq. (11) and

obtain

0 ¼ Czz½fz1; fMz� þ Czz½fMz; fz1� þ Czi½fz1; fMi� þ Czi½fMz; fi1�;
(12)

where the bounce-average is denoted by overhead bar. In Eq.

(12), every term contains a factor �0z which can be divided

away. The equation is a linear inhomogeneous equation for

fz1, where the inhomogeneous drive term is Czi½fMz; fi1� con-

taining fi1 and which is non-zero because of the dni/dw drive

in the main ion kinetic equation. Because of the 1/�-regime

of a stellarator in the absence of E*, we expect that fi1 scales

like 1=�0z and it could thus be expected from Eq. (12) that

also fz1 scales as 1=�0z giving rise to the behavior in ~L
zi

11 we

observe at low collisionality. Note that the 1/�-part of fi1 is

even in vk, and since vk parity is preserved by the field term

of the linearized collision operator, then the even part of the

Czi field term is required to couple this drive to the impur-

ities. Hence, the 1=�0z-scaling of ~L
zi

11 will be missed in any

numerical or analytic calculation in which the terms that are

even in vk are neglected in the field term of the collision op-

erator. Momentum conservation, which is associated with

the odd part of the field term, is not sufficient. For this rea-

son, the momentum-corrected DKES results in Figs. 1(b)

and 2(b) obtain the wrong scaling with �0z and wrong sign at

low collisionality. It is possible to test this hypothesis using

a modified form of the impurity-ion Fokker-Planck-Landau

collision operator in SFINCS, by selectively turning off the

field term for even Legendre modes. The results of these cal-

culations for Zeff¼ 1.05 at E*¼ 0 are shown in Fig. 3, and

clearly the 1=�0z-behavior of ~L
zi

11 disappears when the even

Legendre polynomials in the field term of Czi have been sup-

pressed. Physically, if the bulk ions have a radial density gra-

dient, then fi1 carries an anisotropic pressure and will be rich

in particles drifting outwards and poor in particles drifting

inwards. The term Czi[fMz, fi1] will try to create a similar ani-

sotropy in fz and thus cause radial impurity transport.

A negative ~L
zz

11 at all collisionalities is not surprising,

since it merely tells us that a negative impurity density gradi-

ent will drive the impurities outwards. This is necessary and

follows from the entropy law. Moreover, as shown in

Appendix C, in the high-collisionality limit ~L
zi

11 ¼ �Z ~L
zz

11.

(We note that this is also approximately valid for the high-

collisionality SFINCS Fokker-Planck-Landau results at

E*¼�0.74 in Fig. 4, although SFINCS retains E
B-pre-

cession which is formally excluded in the usual drift order-

ing.) This implies that the main ion density gradient will

drive an impurity accumulation, which is stronger the higher

the impurity charge. Furthermore, in accordance with the

discussion for tokamaks in Ref. 16, in the Pfirsch-Schl€uter

regime the impurity transport is primarily driven by the bulk

ion gradients. In the low-collisionality banana regime, how-

ever, ~L
zi

11 can be smaller in size than ~L
zz

11 and also be nega-

tive. This indicates that the bulk ion density gradient could

mitigate an impurity accumulation in a hot reactor plasma.

Note that since ~L
zi

11 ¼ �Z ~L
zz

11 in the Pfirsch-Schl€uter limit,

and because of our definition of the thermodynamic forces

and the transport coefficients in Eqs. (3) and (5), the

ðZe=TzÞðdU=dwÞ term in Az1 is canceled by the (e/Ti)(dU/

dw) term in Ai1 in Eq. (5). The reason why the radial electric

field has no effect on the impurity transport in this limit is

that the transport is dominated by impurity-ion friction, and

transport from friction is intrinsically ambipolar.19 However,

it is important to emphasize that this is a result in the usual

drift ordering where the E
B-drift velocity is ordered

vE�q*vi and E
B-precession is formally excluded. Recall

that SFINCS (as well as other stellarator neoclassical calcu-

lations17,18) retains E
B-precession in the drift-kinetic

equation for fa1, and it is thus possible that a finite E* yields

a different Pfirsch-Schl€uter limit than E*¼ 0 in SFINCS cal-

culations. As noted in Ref. 10, poloidal E
B-precession is

traditionally ignored in the Pfirsch-Schl€uter regime but can

become relevant when the product of the radial electric field

and collisionality is sufficiently large.

The ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 coefficient illustrated in Figs.

1 and 2(d) is the temperature gradient coefficient (recall that

we assume Ti¼Tz), i.e., the coefficient in front of dlnT=dw
when substituting Eq. (3) into Eq. (5). This coefficient corre-

sponds to �ðDzz
2 þ Dzi

2 Þ in Eq. (1), adjusted with a normaliza-

tion factor. A negative value indicates temperature screening

which is found in the low-collisionality regime. Figure 2(d)

shows that in the high-collisionality regime SFINCS finds that

the temperature gradient drives the impurities inwards, with a

strength increasing with collision frequency when Zeff¼ 2.0

and E*¼ 0, which is in agreement with the analytical Pfirsch-

Schl€uter asymptotes (see Appendix C). For Zeff¼ 1.05 and

E*¼ 0, the SFINCS Fokker-Planck-Landau calculations show

a temperature screening also in the high-collisionality regime,

as illustrated in Fig. 1(d). Our SFINCS results are again in

FIG. 3. Comparison of the ~L
zi

11 coefficient as function of normalized colli-

sion frequency �0z calculated with SFINCS using full linearized Fokker-

Planck-Landau collisions and when the even Legendre polynomials in the

field term of the impurity-ion collision operator Czi have been suppressed,

for a W7-X geometry at E*¼ 0: Full linearized Fokker-Planck-Landau oper-

ator and Zeff¼ 1.05 ( ), even Legendre polynomials in field term of Czi

suppressed and Zeff¼ 1.05 ( ).
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agreement with the analytical Pfirsch-Schl€uter asymptotes,

and it is intriguing to see that whether we find a temperature

screening in the Pfirsch-Schl€uter limit or not can, in fact,

depend on the impurity content. It should be emphasized that

these extremely high collisionalities are irrelevant in practice

for at least two reasons. First, the observed transport is usually

turbulent in plasmas that are cold enough to be in the Pfirsch-

Schl€uter regime; and second, the neoclassical transport is sen-

sitive to the radial electric field.

Since ~L
zz

11;
~L

zi

11 and ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (i.e., the impu-

rity density gradient, the ion density gradient and the temper-

ature gradient coefficients respectively) are all negative in

the low-collisionality regime at E*¼ 0, one might think that

both the main ion and impurity pressure gradients would be

beneficial for avoiding neoclassical impurity accumulation

in a hot reactor-like plasma if the profiles are peaked.

However it should be remembered that the radial impurity

transport will typically heavily depend on the ambipolar ra-

dial electric field which builds up to balance the particle

fluxes and to yield a vanishing radial net current.

B. Simulation results at finite Er

To examine the role of the radial electric field, we per-

form SFINCS calculations with full linearized Fokker-

Planck-Landau collisions and Zeff¼ 2.0 at E*¼�0.74. This

value of E* corresponds to Er¼�20 kV/m if the temperature

is T¼ 1 keV. The results are illustrated in Fig. 4 and when

comparing the SFINCS curves to the DKES curves it should

be recalled that the simulations employ different effective

particle trajectories, which matters when E* 6¼ 0. To examine

if the difference between the SFINCS results and the DKES

results is mainly a consequence of the different collision

operators or the different effective particle trajectories

which are employed in the two tools, we have also included

results from SFINCS calculations using “DKES particle

trajectories.” As shown in Fig. 4, the effect of the different

models for the particle trajectories is small for this particular

case. However, note that as E* approaches unity a difference

can in general be expected.14 In contrast to the results for

E*¼ 0, at E*¼�0.74 there is no sign change in the SFINCS

Fokker-Planck-Landau curves for ~L
zi

11 at low collisionality,

as seen in Fig. 4(b), but there is still a difference to the

DKES þ momentum correction results. Moreover, the 1=�0z-
transport at low collisionality and �0z-proportionality at high

collisionality seen in Figs. 1 and 2 disappear for the finite E*.

The temperature coefficient shown in Fig. 4(d) indicates a

temperature screening at all plotted collisionalities, but the

effect is weak at low collisionality. In the low-collisionality

regime, we also find a negative impurity density gradient

coefficient, but a small positive ion density gradient coeffi-

cient. The magnitude of ~L
zi

11 is significantly smaller than the

FIG. 4. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of normal-

ized collision frequency �0z for a W7-X geometry at E*¼�0.74 and with Zeff¼ 2.0. SFINCS computations with the Fokker-Planck-Landau collision operator

( ) are compared to DKES computations with momentum correction applied afterwards ( ). Also shown are SFINCS computations using a different

model for the particle trajectories, referred to as “DKES particle trajectories” and described in Ref. 14 ( ). Note the double-logarithmic scale in (c).
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magnitude of ~L
zz

11, which implies that if we substitute a nega-

tive Er into Eqs. (3) and (5) the electric field will cause impu-

rity accumulation as expected.

As a final remark of this section, we note that we can

also use SFINCS to calculate the main ion transport coeffi-

cients in Eq. (4). We find that Liz
11 ¼ Lzi

11 (both for finite and

vanishing E*), and thus the Onsager symmetry described in

the beginning of the section is fulfilled.

III. IMPURITY DENSITY PEAKING AND BOOTSTRAP
CURRENT

In a 3D device, a bootstrap current arises due to similar

reasons as in a tokamak, but the size of it is typically sub-

stantially smaller than the Ohmic current in a tokamak.1,2,20

The bootstrap current is a consequence of the trapped parti-

cle orbits, and is generally larger at low collisionality than at

high collisionality.16,21 Since the bootstrap current adds

pressure-dependence to the magnetic equilibrium, it can be

desirable in stellarators to minimize the bootstrap current so

the magnetic field remains optimized over a range of plasma

pressure. W7-X has been optimized for a small bootstrap

current. A net toroidal current changes the value of i at the

boundary, which can be detrimental for proper island diver-

tor operation.22–24 It is consequently important to be able to

make realistic predictions of the bootstrap current when

designing a stellarator.

In this section, we use SFINCS to investigate how the

presence of impurities affects the bootstrap current in a non-

axisymmetric plasma, and also how the neoclassical impurity

dynamics are affected by the impurity content through the

plasma effective charge. Again we study a hydrogen plasma

with a single carbon impurity species present (this time the

electrons are included in our simulations), and use the W7-X

standard magnetic configuration. In contrast to Sec. II, the

configuration here corresponds to a central electron cyclo-

tron resonance heating profile and an average b of 2.9%,

b� 8pnT/B2 being the ratio of plasma pressure to magnetic

pressure. The temperature profiles have been calculated

according to the procedure in Ref. 25, in which the electron

density profile is assumed on the basis of other experiments.

The density and temperature profiles are shown in Fig. 5.

To study the radial impurity transport, we calculate the

neoclassical zero-flux impurity density gradient (also

referred to as the impurity peaking factor) defined as a/Lnz

for which the flux-surface-averaged impurity flux vanishes,

hCz � rwi ¼ 0. This happens when the convective part of the

transport is balanced by the diffusive part, corresponding to

Vz and Dzz
1 in Eq. (2). Lnz ¼ �½d ln nz=dr��1

is the impurity

density gradient scale length. (Note that LT ¼ �½d ln T=dr��1

is kept fixed when calculating the zero-flux impurity density

gradient.) To calculate the impurity peaking factor, we must

also find the ambipolar radial electric field simultaneously,

i.e., the Er for which the radial net current vanishes,P
b ZbehCb � rwi ¼ 0. As earlier mentioned, in a typical ion

root scenario (negative Er) where the impurity concentration

is small compared to the main species, the ambipolar electric

field arises to bring the main ion particle transport down to

the electron level, and so the ambipolar electric field is

approximately the field for which hCi � rwi ’ 0. For a single

impurity species plasma, with the impurity species in trace

contents, it is always possible to find values of dnz/dw and Er

such that the radial impurity flux and the radial current van-

ish simultaneously. We note however, that if Zeff¼ Z (i.e., a

plasma consisting of only electrons and the impurity species)

ambipolarity requires the impurity flux to balance the out-

ward electron flux, and it is not possible to find a neoclassical

impurity peaking factor. Thus, there must be a critical value

of Zeff between 1 and Z above which the radial impurity flux

and the radial current cannot vanish simultaneously. (This is

the reason why we later in this section are not able to present

the impurity peaking factor at large values of Zeff for one of

the cases, i.e., no solution exists.)

We analyze two radial locations, r/a¼ 0.2 and r/a¼ 0.8.

At r/a¼ 0.2 the parameters are ne ¼ 0:991
 1020 m�3; Te

¼ 5:44 keV; Ti ¼ 3:60 keV; dne=dr ¼ �0:209 
 1020 m�4;
dTe=dr ¼ �13:5 keV=m, and dTi=dr ¼ �0:269 keV=m. At

r/a¼ 0.8 they are ne¼ 0:758
1020 m�3; Te¼ 1:74 keV; Ti ¼
1:82keV; dne=dr¼�6:93
1020m�4; dTe=dr¼�13:1keV=m,

and dTi =dr¼�13:1keV=m. Zeff is varied by varying the im-

purity density (and main ion density accordingly to fulfill

quasi-neutrality at fixed ne), and this implies that the normal-

ized collision frequency, defined in Eq. (8), satisfies �0z �0:25

for r/a¼0.2 and �0z�0:70 for r/a¼0.8, respectively. It is diffi-

cult to anticipate on what time scales the impurity species will

reach a steady-state (and its corresponding zero-flux impurity

density gradient), and also how the main species density gra-

dients will adapt to keep radial quasi-neutrality. We therefore

carry out two different scans in Zeff. In the first scan we find

the impurity peaking factor, and the main ion density gradient

is modified along with the impurity density gradient to

FIG. 5. The plasma profiles for a W7-X

standard magnetic configuration corre-

sponding to central electron cyclotron

resonance heating profile and an aver-

age b of 2.9%: (a) assumed electron

density ( ); (b) predicted electron

( ), and ion temperatures ( ).
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preserve radial quasi-neutrality, while the electron density

gradient is kept fixed. (The corresponding curves are solid

and labeled “zero-flux carbon gradient” in Fig. 6.) In the sec-

ond scan, we instead keep the radial density gradient scale

lengths fixed and equal, Lne¼Lni¼Lnz, which is equivalent to

the condition dZeff/dr¼0. (The corresponding curves are

dashed and labeled “Zeff independent of r” in Fig. 6.)

Figure 6 shows our SFINCS results for the carbon den-

sity gradient, ambipolar radial electric field, bootstrap cur-

rent density, and carbon flow as functions of Zeff for the W7-

X geometry. The scans are performed with full linearized

Fokker-Planck-Landau collisions. Comparing the approach

when we find the carbon peaking factor to the approach

when we keep the density gradient scale lengths fixed, we

see that qualitatively a similar ambipolar electric field and

bootstrap current density are obtained (compare the solid and

dashed curves in Figs. 6(b) and 6(c)). Unsurprisingly, the

deviation between the two approaches increases as Zeff

becomes larger, mainly because the difference in main ion

density gradient also becomes larger. A similar argument,

but regarding the impurity density gradient, is likely the rea-

son why there is a difference in parallel carbon flow between

the two approaches (see Fig. 6(d)). Note that particularly the

core carbon flow (both the direction and the magnitude) at

r/a¼ 0.2 is sensitive to Zeff. Thus, the flow could make a sen-

sitive diagnostic test of neoclassical physics.

Irrespective of which model for the density gradients

we use, some main features are clearly observed. First, at

r/a¼ 0.2 the plasma is in the electron root regime and at

r/a¼ 0.8 in the ion root regime, since the ambipolar radial

electric field has the opposite sign as shown in Fig. 6(b).

Furthermore, in accordance with what was found in Ref. 26

the ambipolar electric field is reduced as the impurity content

is increased. This also implies that the impurity profile,

which is hollow at r/a¼ 0.2 and peaked at r/a¼ 0.8, is flat-

tened as illustrated in Fig. 6(a). The bootstrap current density

is also significantly reduced with increased impurity content,

although no sign change is observed (see Fig. 6(c)). This

reduction is not surprising, since the electron-ion friction

increases with Zeff. The results show that changes in Zeff on

the order of DZeff� 1 can lead to changes in the bootstrap

current density on the order of Djbs � 20 kA/m2. If such

changes occurred across the entire plasma cross-section, the

total current could change by DIbs � 10 kA. This is illus-

trated in Fig. 7, where the integrated total bootstrap current

is shown as a function of Zeff when Zeff is kept constant

throughout the radial domain. A change in the plasma cur-

rent of 10 kA could modify the value of the boundary-i
enough to cause measurable changes in the island divertor

strike point locations,22–24 indicating that the full ion compo-

sition should be considered when performing bootstrap cur-

rent calculations.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have used a continuum drift-kinetic

solver, the SFINCS code, to calculate neoclassical impurity

transport coefficients (defined by Eqs. (3) and (5)) in a non-

axisymmetric magnetic equilibrium. Particularly, we studied

carbon transport close to the plasma edge in a W7-X hydro-

gen plasma for two different levels of the impurity content

corresponding to Zeff¼ 1.05 and Zeff¼ 2.0, respectively, at

vanishing radial electric field. For Zeff¼ 2.0, we also studied

the carbon transport at E*¼�0.74 (corresponding to

Er¼�20 kV/m if the temperature is T¼ 1 keV).

We compare SFINCS computations with full linearized

Fokker-Planck-Landau collisions to computations with the

DKES code (which employs pitch-angle scattering) where

momentum correction is applied afterwards. We find that the

FIG. 6. Carbon (Z¼ 6) density gradient (a), ambipolar radial electric field (b), bootstrap current density (c), and carbon flow (d) as functions of the plasma

effective charge for a W7-X geometry. SFINCS computations with Fokker-Planck-Landau collisions at two different radii are compared, using two different

models for the ion density gradients, one when the carbon peaking factor is found (solid lines labeled “zero-flux carbon gradient”) and another when Zeff is

kept independent of the radial location (dashed lines labeled “Zeff independent of r”): r/a¼ 0.2 ( ), r/a¼ 0.8 ( ).
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impurity density gradient and temperature gradient coeffi-

cients are well reproduced by the numerical model with

pitch-angle scattering and momentum correction, but to cor-

rectly determine the inter-species ion density gradient coeffi-

cient it is sometimes not sufficient to merely account for

momentum conservation.

The impurity transport coefficients show trends of 1=�0z-
transport at low collisionality and are proportional to �0z at

high collisionality if E*¼ 0. From earlier work, 1=�0z-trans-

port is not expected for the ion density gradient coefficient.

We show that by suppressing the even Legendre polynomials

in the field term of the impurity-ion collision operator in

SFINCS the 1=�0z-transport for this coefficient disappears.

Earlier work has often approximated the field-particle part of

the collision operator by a momentum-conserving term,

which has the wrong vk parity to couple the (even) 1=�0z-part

of fi1 to the impurities and this is likely the reason why 1=�0z-
transport for this cross-species transport coefficient has not

been observed. If we introduce a finite E* in our calculations,

we instead find trends of
ffiffiffiffi
�0z

p
-transport at low collisionality.

Not surprisingly, we find that the impurity density gradient

coefficient is negative at all collisionalities which merely

implies that a standard negative gradient drives the impur-

ities outwards. At high collisionality however, the impurity

transport is dominated by the bulk ion density gradient (by a

factor Z) which drives the impurities inwards. At low colli-

sionality, we find that all transport coefficients are negative

when E*¼ 0, indicating an impurity screening. This could be

beneficial from a reactor point of view, since the hot (almost

collisionless) core could avoid impurity accumulation.

However, when we introduce a negative ambipolar radial

electric field (ion root regime) it drives impurity accumula-

tion as expected. Interestingly, we find a temperature screen-

ing in the low-collisionality regime which persists up to a

relatively high collisionality for Zeff¼ 2.0 and is maintained

at all collisionalities for Zeff¼ 1.05. This is also the case for

the calculations with a finite E*. In the high collisionality

limit, an analytic prediction is available for the transport

coefficients at E*¼ 0, and the SFINCS calculations conform

well with these predictions.

Moreover, we have used SFINCS to investigate how

the impurity content affects the neoclassical impurity dy-

namics and the bootstrap current in a W7-X plasma. We

find that an increased impurity content, implying a higher

plasma effective charge, tends to flatten the impurity profile

(determined from the condition of zero impurity particle

flux) both close to the core (r/a¼ 0.2) where it is hollow

and close to the edge (r/a¼ 0.8) where it is peaked. This

trend is attributed to the reduction of the ambipolar radial

electric field with increasing Zeff. The bootstrap current is

also reduced with increasing impurity content, which is

expected since the electron-ion friction increases with Zeff.

Importantly, we find that the change in bootstrap current

can be larger than 10 kA for a change in Zeff of Oð1Þ. A

change of this size could be large enough to cause a devia-

tion in the divertor strike point locations. This emphasizes

the importance of performing bootstrap current calculations

with a realistic ion composition.
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APPENDIX A: COLLISION OPERATOR IN SFINCS

The total collision operator for species a is a sum of lin-

earized collision operators with each species: Ca½fa� �P
b Cl

ab½fa; fb�; where Cl
ab½fa; fb� � Cab½fa1; fMb� þ Cab½fMa; fb1�

and Cab[fa, fb] is the Fokker-Planck-Landau collision opera-

tor. Cab[fa1, fMb] is referred to as the test particle part and

Cab[fMa, fb1] is the field particle part.9,16,27 The linearized

collision operator may be written as Cl
ab ¼ CL

ab þ CE
ab þ CF

ab;

where CL
ab þ CE

ab together represent the test particle part and

CF
ab the field particle part. The Lorentz part is CL

ab

¼ �DabðvÞ L½fa� with �Dab vð Þ � �̂ab
/ xbð Þ�W xbð Þ

x3
a

being the

deflection frequency and L � 1
2
@
@n 1� n2

 �

@
@n the Lorentz op-

erator. In this context, / xð Þ ¼ 2ffiffi
p
p
Ð x

0
exp �y2


 �
dy is the error

function, W xð Þ ¼ / xð Þ�x/0 xð Þ
2x2 is the Chandrasekhar function,

�̂ab ¼ 21=2pnbe2
ae2

b ln K=ðm1=2
a T3=2

a Þ and xa¼ v/va with va

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
being the thermal speed of the species a. The

energy scattering contribution is

FIG. 7. Radial profiles of the bootstrap current density from SFINCS calcu-

lations with the full linearized Fokker-Planck-Landau collision operator at

different Zeff (keeping Zeff constant throughout the radial domain) and the

integrated total bootstrap current as a function of Zeff.
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CE
ab ¼ �kab

v2

2

@2fa1

@v2
� x2

b 1� ma

mb

� �
v
@fa1

@v

" #

þ �Dabv
@fa1

@v
þ 4p

v3
a

nb
�̂ab

ma

mb
fMbfa1; (A1)

where �kab ¼ 2�̂ab
W xbð Þ

x3
a
: We can write the field term as

CF
ab ¼ CH

ab þ CG
ab þ CD

ab; (A2)

where

CH
ab ¼

�̂ab

nb
fMa �2vva 1� ma

mb

� �
@Hb1

@v
� 2vaHb1

" #
; (A3)

CG
ab ¼

�̂ab

nb
fMa

2v2

va

@2Gb1

@v2
; (A4)

and

CD
ab ¼

�̂ab

nb
v3

afMa 4p
ma

mb
fb1: (A5)

The functions Gb1 and Hb1 are the perturbed Rosenbluth

potentials9 defined by r2
vHb1 ¼ �4pfb1 and r2

vGb1 ¼ 2Hb1:
The speed discretization in SFINCS is based on a spec-

tral collocation scheme described in Ref. 27: a function f(x)

is stored at grid points xj which are the zeros of a polynomial,

where the polynomial is taken from the set Mk
nðxÞ (with

n� 0) obeying the orthogonality relationð1
0

dx xk exp ð�x2ÞMk
nðxÞMk

mðxÞ ¼ dn;mAk
n: (A6)

Here, dn,m is the Kronecker delta, Ak
n represents some nor-

malization and k is any number greater than �1, but from ex-

perience the choice k¼ 0 is typically good. Note that x here

denotes the speed normalized to thermal speed, e.g., the dis-

tribution function for species a is fa(xa). We can alternatively

represent f in a modal discretization by the vector of numbers

Fk
n in

f ðxÞ ¼
X

n

Fk
nMk

nðxÞ exp ð�x2Þ; (A7)

where

Fk
m ¼

1

Ak
m

ð1
0

dx xkMk
m xð Þf xð Þ: (A8)

In terms of the Gaussian integration weights wj associated

with the grid xj satisfying
Ð1

0
dx yðxÞ �

P
j wjyðxjÞ, there is

thus a linear transformation Y from the collocation to the

modal discretization, with Ym;n ¼ wnxk
nMk

mðxnÞ=Ak
m.

At each speed grid point, the pitch-angle dependence of

the distribution function is decomposed in Legendre polyno-

mial modes

fa1ðxa; nÞ ¼
X

l

PlðnÞfa1;lðxaÞ: (A9)

In the Legendre modal representation, CL
ab becomes diagonal.

As in Ref. 27, CE
ab can be represented using the pseudospectral

differentiation matrix associated with the polynomials Mk
nðxÞ,

and CD
ab can be represented using the interpolation matrix

associated with the Mk
nðxÞ. In evaluating CH

ab and CG
ab, how-

ever, we depart from the method in Ref. 27. First an expan-

sion analogous to Eq. (A9) is made for the perturbed

potentials in terms of their Legendre modes Hb1,l(xb) and

Gb1,l(xb), and we find

@

@xb
x2

b

@Hb1;l

@xb
� l lþ 1ð ÞHb1;l ¼ �4pv2fb1;l; (A10)

@

@xb
x2

b

@Gb1;l

@xb
� l lþ 1ð ÞGb1;l ¼ 2v2Hb1;l: (A11)

Solving Eqs. (A10) and (A11) with a Green’s function

approach, we obtain

Hb1;l xbð Þ ¼
4p

2lþ 1ð Þ


 1

xlþ1
b

ðxb

0

dz zlþ2fb1;l zð Þ þ xl
b

ð1
xb

dz z�lþ1fb1;l zð Þ
" #

(A12)

and

Gb1;l xbð Þ ¼ �
4p

4l2 � 1ð Þ

�
xl

b

ð1
xb

dz z�lþ3fb1;l zð Þ

� 2l� 1

2lþ 3
xlþ2

b

ð1
xb

dz z�lþ1fb1;l zð Þ

� 2l� 1

2lþ 3

1

xlþ1
b

ðxb

0

dz zlþ4fb1;l zð Þ

þ 1

xl�1
b

ðxb

0

dz zlþ2fb1;l zð Þ
�

(A13)

as integrals of fb1,l, as in Eqs. (40) and (45) in Ref. 9. To find

CH
ab and CG

ab, we need @Hb1;l=@xb and @2Gb1;l=@x2
b which are

computed by analytically differentiating Eqs. (A12) and

(A13). We evaluate Eqs. (A12) and (A13) and their deriva-

tives replacing fb1,l by each of the polynomials Mk
n, using

integration endpoints xb corresponding to each speed grid

point for species a normalized to vb. For each Legendre

mode, the results for Nx polynomials and Nx evaluation

points yield a Nx
Nx matrix which we denote by R. Thus,

the map from distribution for species b (on the speed colloca-

tion grid points for species b) to perturbed Rosenbluth poten-

tials (on the speed collocation grid points for species a) is

given by the matrix product RY. The computational expense

of these integrations is negligible compared to solving the

main linear system of discretized kinetic equations. For most

circumstances, the method of evaluating CH
ab and CG

ab

described here gives identical results (to 2 or more decimal

places) to the method in Ref. 27; however, we find the

method here to yield better convergence at extremely high

collisionality.
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APPENDIX B: IMPURITY TRANSPORT COEFFICIENTS
FOR PITCH-ANGLE SCATTERING MODELS

In Figs. 8–10, we compare the SFINCS Fokker-Planck-

Landau computations of the impurity transport coefficients

in Sec. II to SFINCS computations with pitch-angle scatter-

ing and DKES computations (no momentum correction

applied afterwards). Moreover, in Fig. 11 we compare

SFINCS pitch-angle scattering computations using “DKES

particle trajectories” to DKES computations. It is reassuring

to see that when the two different numeric tools use the same

collision operator and the same effective particle trajectories,

they yield practically the same results. We also see that for

this particular case the resulting difference from using differ-

ent models for the particle trajectories is small.

Figures 8–10(a) and 10(c) show that at low collisional-

ity, momentum conservation is unimportant for ~L
zz

11 and ~L
z

12.

This finding is consistent with the results of Ref. 14, where a

single ion species was analyzed, and is explained as follows.

In the low-collisionality 1=�0z-regime, the radial transport is

connected to pitch-angle scattering of helically trapped par-

ticles, and the dominant physics is captured by the pitch-

angle scattering approximation. If a radial electric field is

present this is also true for the
ffiffiffiffi
�0z

p
-regime. The effect of the

collisions is mainly to scatter particles across the trapped-

passing boundary in velocity space.

In the high-collisionality regime, the difference in ~L
zz

11 is

small between the momentum-conserving linearized Fokker-

Planck-Landau operator and the pitch-angle scattering

operator at low Zeff, whereas at Zeff¼ 2.0 and E*¼ 0, the

pitch-angle-scattering result is a factor of �5 larger than the

Fokker-Planck-Landau result. However, at Zeff¼ 2.0 and

E*¼�0.74 the difference is smaller. In contrast, for ~L
z

12 the

sign of the coefficient depends crucially on which collision

operator is used for both values of Zeff. This is also verified

by the results in Appendix C. For both ~L
zz

11 and ~L
z

12 the

DKES curves conform reasonably well with the SFINCS

pitch-angle scattering curves.

Furthermore, we see that for pitch-angle scattering the

ion density gradient coefficient disappears in all collisional-

ity regimes: ~L
zi

11 ¼ 0 (and also ~L
zi

12 ¼ 0), which is confirmed

by the results presented in Appendix C and can be under-

stood as follows. In the absence of a momentum-conserving

term, the impurities only feel collisions with a stationary

background. In the impurity drift-kinetic equation, there is

no information about the density gradient of the main (bulk)

ions, and consequently the radial impurity flux is independ-

ent thereof. If momentum is conserved in the collisions,

however, the impurities are affected (through the collision

operator) by the bulk ion flux along the magnetic field, which

depends on the ion density gradient.

FIG. 8. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of normal-

ized collision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 1.05. SFINCS computations for two different collision operators are compared:

Fokker-Planck-Landau ( ) and pitch-angle scattering ( ). Also shown are results from DKES (pitch-angle scattering) ( ). Note the double-

logarithmic scale in (b)–(d).
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Finally, Figs. 8 and 9(d) show that at intermediate and

high collisionality, the absence of momentum conservation

in the collision operator can lead to transport predictions in

the wrong direction for the temperature gradient coefficient.

In the SFINCS Fokker-Planck-Landau calculations, a tem-

perature screening is typically found (except at very high

collisionality for the Zeff¼ 2.0 case), but pitch-angle scat-

tering calculations predict an inward impurity drive.

However, for the calculations at finite E* (Fig. 10(d)) both

collision models give practically the same result for the

temperature gradient coefficient, and a screening is found at

all collisionalities.

APPENDIX C: IMPURITY TRANSPORT COEFFICIENTS
AT HIGH COLLISIONALITY

In Ref. 19, analytic calculations for the impurity transport

in the Pfirsch-Schl€uter regime are presented, and from these

we can derive expressions for ~L
zz

11;
~L

zi

11, and ~L
z

12. The drift-

kinetic equation for the first order (in q*) distribution function

fa1 is solved by a subsidiary expansion in the shortness of the

mean free path, Di� kii/L � 1, where kii¼ vi/� is the ion

mean-free-path and L�r�1 is the plasma dimension. The

lowest order solution (f
ð�1Þ
a1 � D�1

i ) is a shifted Maxwellian.

The impurity flux is determined from a pressure anisotropy

term and an impurity-ion friction term, whose relative sizes

are pressure anisotropy term
friction term

� k2
ii

L2Z4. In the short-mean-free-path limit,

the pressure anisotropy term can consequently be neglected in

transport calculations. The friction term is intrinsically ambi-

polar, and the fluxes are independent of the radial electric field

in this limit (when the usual drift ordering vE�q*vi is used

and E
B-precession is formally excluded).

The coefficients are straightforwardly obtained from Eq.

(2) in Ref. 19, after neglecting the pressure anisotropy term.

Note that Ref. 19 employs SI-units, and we need to transform

the corresponding expressions into Gaussian units to match

Eq. (5). The impurity coefficients depend on the geometry-

dependent quantity u satisfying

rku ¼
2

B2
b
rwð Þ � r ln B; (C1)

where rk ¼ b � r is the gradient along the magnetic field. u
is proportional to the parallel current divided by B.

Expressions for the impurity transport coefficients in the

high collisionality regime, and under the assumption

Tz¼ Ti¼ T, are summarized in the following equations:

~L
zz

11¼
3
ffiffiffi
p
p

2Z4

bi1

ai1b0�a0bi1

!
n2

i

n2
z

m
1=2
i

m
1=2
z

1

G2
i2B2

0 H wð Þ�0z;

~L
zi

11¼�Z ~L
zz

11;

~L
z

12¼�
3
ffiffiffi
p
p

2Z4

5

2
Z�1ð Þbi1þb0

ai1b0�a0bi1

0
@

1
An2

i

n2
z

m
1=2
i

m
1=2
z

1

G2
i2B2

0 H wð Þ�0z;

8>>>>>>>>><
>>>>>>>>>:

(C2)

FIG. 9. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of normalized col-

lision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 2.0. SFINCS computations for two different collision operators are compared: Fokker-Planck-Landau

( ) and pitch-angle scattering ( ). Also shown are results from DKES (pitch-angle scattering) ( ). Note the double-logarithmic scale in (b)–(d).
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FIG. 10. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of nor-

malized collision frequency �0z for a W7-X geometry at E*¼�0.74 and with Zeff¼ 2.0. SFINCS computations for two different collision operators are com-

pared: Fokker-Planck-Landau ( ) and pitch-angle scattering ( ). Also shown are results from DKES (pitch-angle scattering) ( ). Note the

double-logarithmic scale in (c) and that the pitch-angle scattering results in (b) vanish.

FIG. 11. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of nor-

malized collision frequency �0z for a W7-X geometry at E*¼�0.74 and with Zeff¼ 2.0. SFINCS computations for pitch-angle scattering with two different

models for the particle trajectories (described in Ref. 14) are compared: “full particle trajectories” ( ) and “DKES particle trajectories” ( ). Also

shown are results from DKES (pitch-angle scattering) ( ). Note that ~L
zi

11 in (b) vanish.
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FIG. 13. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of nor-

malized collision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 2.0. SFINCS computations for Fokker-Planck-Landau collisions ( )

and pitch-angle scattering ( ) are compared to the analytic high-collisionality limits for Fokker-Planck-Landau collisions ( ) and pitch-angle scatter-

ing ( ). Note the double-logarithmic scale in (b)–(d).

FIG. 12. Carbon (Z¼ 6) transport coefficients ~L
zz

11 (a), ~L
zi

11 (b), ~L
z

12 (c) and the temperature gradient coefficient ~L
z

12 � 3ð~Lzz

11 þ ~L
zi

11Þ=2 (d) as functions of nor-

malized collision frequency �0z for a W7-X geometry at E*¼ 0 and with Zeff¼ 1.05. SFINCS computations for Fokker-Planck-Landau collisions ( )

and pitch-angle scattering ( ) are compared to the analytic high-collisionality limits for Fokker-Planck-Landau collisions ( ) and pitch-angle scatter-

ing ( ). Note the double-logarithmic scale in (b)–(d).
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H wð Þ ¼ huB2i2

hB2i � hu
2B2i 
 0: (C3)

a0, ai1 , b0, and bi1 are coefficients of f
ð0Þ
i1 expanded in Sonine

polynomials, with f
ð0Þ
i1 being the zeroth order term in an

expansion in the shortness of the ion mean-free-path of the

first order (in q*) ion distribution fi1. The details are given in

Ref. 19, and here we have calculated the coefficients for Z¼ 6

and mz/mi¼ 11.924. For Zeff¼ 1.05, we obtain a0¼�24.689,

ai1 ¼ 1:076; b0 ¼ �2:689; bi1 ¼ 2:857, and for Zeff¼ 2.0 we

obtain a0¼�1.741, ai1 ¼ 0:574; b0 ¼ �1:435; bi1 ¼ 1:812.

From a calculation similar to Ref. 19 but only including

pitch-angle scattering collisions, we obtain the impurity

transport coefficients

~L
zz

11;PAS ¼ 4SZeff

1

G2
i2B2

0 H wð Þ �0z;

~L
zi

11;PAS ¼ ~L
zi

12;PAS ¼ 0;

~L
z

12;PAS ¼ RZeff
þ 5

2

� �
~L

zz

11;PAS:

8>>>>>><
>>>>>>:

(C4)

Here, RZeff
and SZeff

depend on the impurity content, for

Zeff¼ 1.05 they are R1:05 ¼ �1:04549; S1:05 ¼ 1:82082 and

for Zeff¼ 2.0 they areR2:0 ¼ �1:14447; S2:0 ¼ 0:329224.

The high-collisionality asymptotes for the W7-X case in

Sec. II are plotted in Figs. 12 and 13, and compared to

SFINCS calculations at E*¼ 0 with both full linearized

Fokker-Planck-Landau collisions and pitch-angle scattering

(note that since SFINCS includes E
B-precession whereas

the analytic high-collisionality calculations do not, a com-

parison at finite E* is not meaningful). We find that the

SFINCS results conform well with the analytic predictions.
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