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a b s t r a c t

We present an improved extraction and derivatization protocol for GCeMS analysis of amino/non-amino
acids in Saccharomyces cerevisiae. Yeast cells were extracted with chloroform: aqueous-methanol (1:1, v/
v) and the resulting non-polar and polar extracts combined and dried for derivatization. Polar and non-
polar metabolites were derivatized using tert-butyldimethylsilyl (t-BDMS) dissolved in acetonitrile. Using
microwave treatment of the samples, the derivatization process could be completed within 2 h (from
>20 h of the conventional method), providing fully derivatized metabolites that contain multiple deri-
vatizable organic functional groups. This results in a single derivative from one metabolite, leading to
increased accuracy and precision for identification and quantification of the method. Analysis of com-
bined fractions allowed the method to expand the coverage of detected metabolites from polar me-
tabolites i.e. amino acids, organic acids and non-polar metabolites i.e. fatty alcohols and long-chain fatty
acids which are normally non detectable. The recoveries of the extraction method was found at 88 ± 4%,
RSD, N ¼ 3 using anthranilic acid as an internal standard. The method promises to be a very useful tool in
various aspects of biotechnological applications i.e. development of cell factories, metabolomics profiling,
metabolite identification, 13C-labeled flux analysis or semi-quantitative analysis of metabolites in yeast
samples.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Yeast is already widely used as a cell factory for the production
of biofuels and specialty chemicals, and through metabolic engi-
neering, it is expected to be engineered to produce an even wider
range of products in the future, i.e. perfumes, flavors, commodity
chemicals, and pharmaceuticals. One of the advantages of using
yeast as a cell factory is the large amount of databases and available
information about its metabolism [1,2]. In order to engineer yeast
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metabolism to obtain high production yields, various methodolo-
gies i.e. synthetic biology methods [3] and analytical methods for
screening wide ranges of metabolites have been developed [4e6].
Metabolomics, comprehensive identification and quantification of
a complete set of metabolites in a given organism, has recently
become an important tool in biological research [7]. This technol-
ogy has been suggested for discovery of biomarkers in medical
research, to improve production yields of cell factories or gain
fundamental insights in the cellular biochemistry. Progress in
metabolomics is driven by the development of analytical method-
ologies such as NMR, GC-, HPLC- or CE-MS and bioinformatic tools.
Gas chromatography coupled to a mass spectrometer (GCeMS) has
been a method of choice for measuring of various metabolites in
several biological specimens [8e11]. Determination of polar
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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metabolites by GCeMS generally requires chemical modification
(derivatization) to reduce the polarity of polar functional groups
[12]. The derivatization converts polar functional groups i.e.
eCOOH, eOH, eNH2, ]NH and eSH of those metabolites to non-
polar volatile derivatives [12e14]. Derivatization often improves
chromatographic separation, reproducibility of the measurement
and increases the thermal stability of the analyte. Among the
derivatization methods for these metabolites, tert-butyldime-
thylsilylation (t-BDMS) is one of the most widely used because of
several advantages i.e. less sensitive to the effect of the moisture
and better thermal stability compared to trimethylsilylation (TMS)
[15]. General products of t-BDMS derivatization result in mass
increment of the m/z 144/functional group. The loss of the tert-
butyl group [m/zM-57] during electron ionization fragmentation is
very useful for structure elucidation. The t-BDMS derivatization has
therefore been widely used in 13C-labeled flux analysis as the
original structure from loss of [M-57] contains rich information
about the carbon skeleton of the derivative [16]. One of the main
drawbacks with t-BDMS derivatization is an incomplete derivati-
zation of the metabolites that contain more than one of organic
functional groups, resulting in multiple derivative products from
one metabolite [12,14,16]. The negative consequence of incomplete
derivatization generally precludes precise identification because of
the mixture of fully and partially derivatized metabolites and the
reliability of quantification of the method. This drawback often
prohibits the method to be suitable for semi-quantitative analysis
(fold changes in relative to the peak area from the samemetabolite)
from different phenotypes. In this study, we evaluated and
improved several analytical parameters for the determination of
metabolites in Saccharomyces cerevisiae based on t-BDMS deriva-
tization, followed by GCeMS for the low-resolution analysis of
metabolites in yeast sample. We introduced and validated a
method for increasing the sample throughput using microwave-
assisted derivatization and expanded the coverage of detected
metabolites by modifying the extraction protocol using CHCl3/
MeOH as the extraction solvent.

2. Material and methods

2.1. Chemicals, reagents and standards

All solvents used were analytical grade N-tert-Butyldime-
thylsilyl-N-methyltrifluoroacetamide with 1% tert-Butyldimethyl-
chlorosilane (�95%) as well as the standards for L-alanine, L-glycine,
2-aminobutyric acid, L-valine, L-leucine, L-isoleucine, L-proline, an-
thranilic acid, L-serine, L-succinate (disoduim), L-threonine, L-
methionine, pyroglutamic acid, L-phenylalanine, malic acid, L-
aspartic acid, L-cysteine, L-ornithine, L-glutamic acid, L-asparagine,
L-glutamine, citrate, L-tyrosine, L-histidine, L-tryptophan, L-cys-
tathionine, L-arginine, L-cystathionine, L-lysine, palmitoleic acid,
palmitic acid, oleic acid with >98% purity and phosphoric acid
(49e51% purity) were purchased from SigmaeAldrich, Germany.

2.2. Sample and sample preparation

2.2.1. Yeast strains and culture conditions
The S. cerevisiae strain CEN.PK113-7D was used in this study.

Yeast cells were grown in shake flasks containing liquid YPD me-
dium supplemented with 2% glucose, at 30 �C and constant shaking
(150 rpm). The medium was inoculated with an initial OD600 ~ 0.1.
Cells were harvested during the stationary phase after 48 h.

2.2.2. Quenching and washing
Quenching, washing and extraction of the intracellular metab-

olites was performed as described by Canelas et al [17]. Briefly, 5 mL
of the sample was withdrawn from the shake flask and quickly
added to 21 mL of pure MeOH at �40 �C (in a 50 mL falcon tube
which was placed in an ethanol bath). The extracellular metabolites
were separated from intracellular metabolites by centrifugation at
2900 g at �20 �C for 5 min. The biomass was kept at �80 �C until
further analysis.

2.2.3. Extraction
2.2.3.1. Conventional extraction method. The conventional extrac-
tion method was performed according to the known protocol as
previously described [17]. 50 mL of anthranilic acid (10 mM) was
added to the biomass from the previous step. Then the biomass was
re-suspended in a 2.5 mL pre-cooled 50% (v/v) aqueous MeOH,
followed by adding 2.5 mL of pre-cooled CHCl3. The mixture was
then vigorously shaken for 45 min at �20 �C (2000 rpm) and af-
terwards centrifuged at 2900 g (at �20 �C) for 5 min (rotor pre-
cooled to �20 �C). The upper-phase (H2O/MeOH) was collected
into a new tube. The lower-phase (CHCl3) was re-extracted with
2.5 mL of pre-cooled 50% (v/v) MeOH by vortexing for 30 s. After
centrifugation, the upper-phase was collected and pooled together
with the first extraction and kept at �40 �C until further analysis.

2.2.3.2. Modification of the extraction method by combining polar
and non-polar-fraction. 50 mL of anthranilic acid (10 mM) was
added to the biomass fraction and the biomass was extracted with
2.5 mL of pre-cooled 50% (v/v) aqueous MeOH and 2.5 mL of the
pre-cooled CHCl3. After shaking for 45 min at �20 �C (2000 rpm),
the upper-phase and the lower-phase were collected and pooled
together into a new tube. The mixture was then dried in a vacuum
concentrator and re-suspended with 250 mL of 50% (v/v) aqueous
MeOH and CHCl3, transferred to a silanized GC-vial, then re-dried
under vacuum conditions again and kept at �20 �C for further
analysis.

2.2.4. Derivatization
2.2.4.1. Conventional derivatization protocol heating. 400 mL of
acetonitrile and 100 mL of t-BDMS solution were added to the yeast
extracts and sonicated for 30 min (30 �C). The sample was then
incubated at 80 �C overnight (>20 h) and directly analyzed by
GCeMS. Further dilution of the sample was performed when
necessary by using acetonitrile as the solvent.

2.2.4.2. Microwave-assisted derivatization. Samples were prepared
as above up to the overnight incubation step. The vial was then
placed in a microwave vessel (12 cm � 3 cm I.D., 0.5 cm thickness;
Milestones Start D, Sorisole Bergamo, Italy) containing 10 mL of
Milli-Q water and then sealed with a TFM screw cap (Fig 1.). The
vessel was then placed in the PRO-24 medium pressure high-
throughput rotor (Milestones Start D, Sorisole Bergamo, Italy) and
heated from room temperature to 120 �C within 10 min (800 W)
andmaintained at 120 �C (600W) for 2 h in a laboratorymicrowave
(Milestones Start D, Sorisole Bergamo, Italy). After cooling down
the sample to room temperature, the samples were injected onto
the GCeMS.

2.3. Determination of metabolite derivatives by GCeMS

The metabolite derivatives were separated and analyzed using a
Focus GC ISQ single quadrupole GCeMS (Thermo Fisher Scientific,
USA). The column was a Zebron ZB-1701 GC column
(30 m � 0.25 mm I.D., 0.25-mm film thickness, Phenomenex, Mac-
clesfield, UK). For the analysis, 1 mL of sample was injected in
splitless injection (at 220 �C) using helium as the carrier gas with a
flow rate of 1 mL/min. The column temperature was set at 50 �C
(2 min), and afterwards raised to 150 �C (50 �C/min). Then the



Fig. 1. How a GC vial sits in the microwave extraction container used in this protocol
for microwave-assisted derivatization.
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temperature was ramped to 300 �C (5 �C/min) and finally held for
3 min. The mass transfer line and ion source were set at 300 and
250 �C. The metabolite derivatives were detected with electron
ionization (EI) with 70 eV in scan mode (50e800 m/z), with a sol-
vent delay of 6 min. The identification of unknown metabolite
derivatives from the yeast cells was performed by comparing their
retention time and mass spectrum profiles with the synthetic
standards or by comparison with the mass spectra library from
National Institute of Standards and Technology (NIST). All data
processing was performed by a Quan Brower function in the Xca-
libur software version 2.2 (Thermo Fisher Scientific).
3. Results and discussion

3.1. Selection of an internal standard

We currently use a single quadrupole GCeMS in our laboratory
for routine analysis of various metabolites during the development
of microbial cell factories. For semi-quantitative purposes, it is
essential to separate the internal standard (IS) from other deriva-
tive metabolites during the chromatographic separation. Our first
experiment was therefore to determine a suitable IS. The derivati-
zation protocol used in the beginning of this study was adapted
from previous work performing the derivatization at 80 �C for
30 min [18]. First, we tested the d-2,3,3,3-alanine (D4-Ala), which is
commonly used as an IS in yeast research [19]. It was possible to
derivatize D4-Ala with the t-BDMS method. Using this method, the
D4-Ala derivative eluted at 7.39min (Fig. 2A) with themolecular ion
at m/z, 321 (Fig. 2B). However, it was not possible to use D4-Ala as
the IS, as it always co-eluted with Alanine (Ala). We tested several
possibilities in order to overcome this, such as different column
temperature programs, different column stationary-phases i.e.
non-polar phase ZB-5 MS (5% diphenyl, 95% polysiloxane), mid-
polar phase: ZB1701 (14%-cyanopropylphenyl-86%-dimethylpoly-
siloxane) or high-polar phase: Zb-50 (50% phenyl 50% dime-
thylpolysiloxane). However, none of those strategies were
successful. Presumably, this could be due to the fact that both D4-
Ala and Ala have very similar physical properties; replacing of
hydrogen with a deuterium atom did not significantly change the
physical properties of the compound. In a second strategy, we
tested the D6-salicylic (D6-sal) acid, which is also commonly used as
the IS in metabolomics research. It was possible to form D6-sal
derivative (Fig. 2C and D), and the derivative eluted at 13.89 min.
However, we did not select D6-sal as an IS as it was co-eluted with
methionine (Met) derivative. On the other hand, an anthranilic acid
(Ant) was found to be a suitable candidate to be used as an IS, as it is
not synthesised by yeast and possesses properties similar to many
metabolites present in yeast. The Ant derivative eluted at 11.49 min
(Fig. 2E), while none of the other derivative metabolites eluted in
this region. The mass spectrum of Ant derivative (Fig. 2F) shows
traces of a molecular ion at m/z 251 and a strong fragment at m/z
194 (M-57) which corresponds to the loss of the tert-butyl group
(also confirmed by the NIST library). This result indicates that the
silylation of Ant occurred only in the eCOOH functional group,
whereas the eNH2 group was not silylated (at 80 �C for 30 min).
Further testing of the derivatization conditions (4 h and overnight;
Fig. S1) did not yield an additional peak, leading to the conclusion
that there is no derivatization occurring with the eNH2 group with
t-BDMS. This finding is consistent with the previous report by
Schoene et, al. 1994 [20] that the ability to silylate NH-functional
groups depends on the substitutions neighboring the nitrogen
atom, and the direct silylation of aromatic amines is hardly possible
without being preceded by an acylation reaction. Based on this, we
selected Ant as the internal standard for further method
development.

3.2. Derivatization solvent selection

Although many different solvents have been proposed for t-
BDMS derivatization i.e. Dimethylformamide (DMF) [18,21],
toluene [22], acetonitrile (ACN) [22,23], there is no detailed infor-
mation available that describes the effect of each solvent on the
derivatization reaction. Here we tested five solvents commonly
used in t-BDMS derivatization, ranging from mid polar to non-
polar, i.e. ACN, DMF, acetone (AT), ethyl acetate (EA) and hexane
(Hex). The efficiency of derivatization using different solvents was
evaluated through the mixture of 20 amino/non-amino acids
standards derivatized at 80C� for 30 min [18]. In general, ACN
(Fig. 3A) was found to be the best solvent for derivatization, in
terms of peak shape and intensity, when compared to the other
solvents tested. Using ACN as the solvent, however, resulted in
incomplete derivatization of Threonine [(Thr1), Fig. 3A: structure in
Fig. S2] and Tryptophan [(Trp1), Fig. 3A and B: structure in Fig. S3].
The Thr1 resulted from the silylation of Thr in the eOH and eCOOH
functional groups, whereas theeNH2 group was not derivatized. As
well as in the case of Trp (Fig. 3A and B: structure in Fig. S3), there
was no silylation in the amine group that is attached to the benzene
ring. To complete the derivatization for all organic functional
groups in these molecules required 4 h for Thr (Fig. S4) and over-
night incubation for Trp (Fig. S5). Using DMF as the solvent (Fig. 3B),
slightly improved the derivatization efficiency of Thr and Trp. Peak
tailing or fronting were however, observed in many derivative
metabolites i.e. Ala, glycine (Gly), leucine (Leu), iso-leucine (Iso-
Leu) or proline [Pro; (Fig. 3B)]. Additionally, the Ant was poorly
derivatized when using DMF as the solvent. We therefore preferred



Fig. 2. Chromatograms and mass spectra of potential candidates for internal standards.

Fig. 3. t-BDMS derivatization of 20 metabolite standards with different solvents Ala ¼ Alanine, Gly ¼ Gylcine, Val ¼ Valine, Leu ¼ Leucine, Iso-Leu ¼ Iso-Leucine, Pro ¼ Proline,
Suc ¼ Succinic acid, Ant ¼ Antranlic, Ser ¼ Serine, Thr ¼ Theonine, Met ¼Methionine, Phe ¼ Phenylalanine, Mal ¼Malic acid, Asp ¼ Aspartic acid, Glu ¼ Glutamic acid, Lys ¼ Lysine,
Cit ¼ Citric acid, Try ¼ Tyrosine, His ¼ Histidine, Trp ¼ Trypophan.
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to use ACN as the main solvent for derivatization. To achieve a
single derivative when using ACN as the main solvent, we tested
the possibilities of mixing DMF with ACN in different ratios.
Increasing the percentage of DMF in the ACN (20e100%: see Fig. S6)



Fig. 4. Comparison of the profiling of amino/non-amino derivatized with microwave-
assisted derivatization and traditional heating. The samples were 10 mg of yeast
S. cerevisiae.
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enabled complete derivatization of both Trp and Thr. However, as
for the use of DMF as the sole solvent, the peak shapes of some
derivatives interfered with an increased amount of DMF, we finally
decided to use only ACN as the single solvent for the derivatization.

To obtain the optimum derivatization time for each metabolite,
we derivatized 31 synthetic standards individually for 4 h and
overnight (>20 h). The derivatization temperature was fixed at
80 �C. The 30 metabolites standards were selected according to the
most dominant metabolites present in S. cerevisiae. Derivatization
of most of the metabolites could be completed after 4 h as there
were only single derivatives and no incomplete derivatized me-
tabolites observed in the chromatograms. Glycerol was partly
derivatized after 4h and the derivatization efficiency could be
further improved by increasing the incubation time to overnight
(>20 h). It was not possible to detect arginine after t-BDMS deri-
vation due to its conversion to ornithine (Fig. S7) as previously
reported by other studies [12,13].

3.3. Improved chemical derivatization of t-BDMS by microwave-
assisted derivatization

We recently successfully used microwave technology to
improve the sample preparation time for fatty acid methyl esters
and lipid extraction [4,5]. Within the same basic workflow, we
carried out the derivatization reaction in a GC-vial, which was
immersed in 10 mL of water (Fig. 1). We used Trp as the model
compound for the optimization parameters, as it requires the
longest time to complete its derivatization. We found that the
derivatization of Trp was completed within 10 min at 160 �C (S8-A).
However, performing derivatization at this high temperature often
resulted in deforming the shape of the GC cap, which led to a loss of
analytes. On the other handmicrowave-derivatization at 120 �C did
not show any evidence of damage to the GC cap.

The time needed to complete derivatization of Trp at 120 �C was
found to be at least 60 min (Fig. S8 B). As the amount of metabolites
in the yeast samples may vary from sample to sample and this
could influence the derivatization time, we chose 2 h (120 �C) as the
optimal condition. We further tested the microwave derivatization
method (2 h) with some selected synthetic standards individually
and did not observe incomplete derivatization of the metabolites
when using this new method. Finally we compared the derivati-
zation by themicrowavemethod (120 �C at 2 h) with the traditional
heating (80 �C overnight) method. There was no significant differ-
ence in the profiles of metabolite derivatives obtained from
microwave-assisted derivatizationwhen comparedwith traditional
heating (Fig. 4). However, the utilization of microwave for sample
preparation dramatically reduced the t-BDMS derivatization time
as well as reported in the case of TMC derivatization [24], as the
reaction temperature inside the closed-vessel can be raised above
the solvent boiling point, resulting in faster reaction time compared
to traditional heating [25].

3.4. Recovery of the internal standard and expanding the coverage
of detected metabolites in yeast samples by GCeMS

We investigated the recovery of the method by spiking Ant
(0.5 mmol) into the mixture of extraction solvents (50%
H2OeMeOH: CHCl3 1/1) and performing extraction using a previ-
ously reported protocol [17]. The polar fraction (H2OeMeOH) was
dried under vacuum conditions, followed by t-BDMS microwave-
assisted derivatization for 2 h and subsequently analyzed by
GCeMS. Only 26% of spiked Ant (N ¼ 6) was recovered from the
polar fraction (compared with direct derivatized Ant without
extraction). We assumed that the low recovery could be due to the
fact that Ant was partly trapped in the CHCl3 fraction, as part of Ant
structure contains a non-polar benzene ring. Improving the re-
covery of the method could be achieved by using a more polar IS
than Ant. This, however, would result in the absence of other non-
polar metabolites that may be in the CHCl3 phase. Finally, we
conducted three different experiments for metabolite profiling in
S. cerevisiae that derived from different fractions after extraction
with H2OeMeOH: CHCl3.

First, we extracted S. cerevisiae with the mixture solvent of
H2OeMeOH: CHCl3 with spiking of Ant (0.5 mmol). The polar frac-
tion (H2OeMeOH)was dried under vacuum conditions, followed by
t-BDMS derivatization and analyzed by GCeMS. The non-polar
fraction (from the same sample) was dried, derivatized using t-
BDMS. For the last experiment, we re-modified the extraction
protocol by collecting both polar and non-polar factions and
combining them together. The combined fractions were then
further derivatized and analyzed by GCeMS. Analysis of the polar
fractions (Fig. 5A), shows recoveries of Ant at 22 ± 5% (N¼ 3), which
was consistent with the recovery of Ant (72 ± 5%; N ¼ 3) found in
the non-polar fractions (Fig. 5B). For polar fraction, we identified 28
metabolites, where 25 metabolites were confirmed by using syn-
thetic standards (see full list of identified metabolites in Table 1).
For the non-polar fraction, we identified 7 metabolites, mostly
long-chain fatty acids such as 16:1n-7, 18:1n-9 and 18:0 (also
confirmed by synthetic standards) or fatty alcohols. The fatty acids
detected in the non-polar fraction were originally from free fatty
acids, as t-BDMS derivatization only work by substitution of an
active hydrogen atom of eCOOH with tert-butyldimethylsilyl, and
not with an ester bound in bound fatty acids. Additionally, the
method could serve as a simple, rapid and selective method to
identify free fatty acids from bound fatty acids in the lipid mixture.
The separation and identification of free fatty acids in lipid mixture
normally requires a long process and a very complicated protocol.

In general, metabolites found in the non-polar fraction are
normally not reported when the extraction is performed based on



Fig. 5. Chromatographic separation of metabolites derived from different extraction fractions A: Polar fraction, B¼Non-polar fraction, C ¼ combination of polar and non-polar
fraction.
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CHCl3/MeOH, and only the MeOH fraction is further analyzed
[26,27]. This could simply be explained by the fact that these long-
chain fatty acids or fatty alcohols are hydrophobic molecules and
thus partition into CHCl3 rather than aqueous-MeOH. Analysis of
the combined fractions (Fig. 5C) resulted in good recoveries of Ant
(88 ± 4%; N ¼ 3) and the base line in the chromatogram was
remarkably clean compared to that found in polar fraction. The
analysis of this fraction resulted in 49 peaks (Table 1) using GCeMS
detection. From all the detected metabolites, we confirmed iden-
tities of 28 metabolites using known standards, 7 metabolites were
putatively identified by NIST library matching and 13 peaks were
unidentified. Furthermore, analysis of Trp from the polar fraction
generally resulted in poor reproducibility (even from the same
sample), which was not the case observed in combined fractions.
The peak intensity of Trp from the combined fraction was signifi-
cantly greater (4-fold, N ¼ 3) than that in the polar fraction. As the
structure of Trp contains both of polar organic functional groups
(eNH2 and eCOOH) and non-polar region as an indole functional
group (aromatic), we presume that extraction of Trp using CHCl3/
MeOH would result in the presence of Trp in both polar and non-
polar fractions. The quantity of Trp in each fraction is unlikely to
be easily controlled. This makes it difficult to obtain good repro-
ducibility when detecting Trp derived from only one of the frac-
tions. The same situation was observed in the case of other
metabolites that contain two different polarities of organic func-
tional groups in the same molecule, i.e. Tyr. These results indicate
that combining the polar and non-polar fractions does not only
expand the coverage of detected metabolites, but also significantly
improves the reproducibility and sensitivity of the method.

Performing analysis of polar and non-polar fractions from the
same sample for metabolomics profiling has previously been con-
ducted in the case of Arabidopsis thaliana [28]. However, the two
fractions were derivatized and analyzed separately by GCeMS,
resulting in more than 300 metabolites, both polar and non-polar.
Analysis of polar and non-polar fractions performed in the same
analysis, especially in the yeast sample, has never been reported.
Furthermore, it is known that more than 1000 compounds can be
present in S. cerevisiae [29]. However, the number of metabolites in
the yeast sample can vary greatly depending on several factors i.e.
background strain, cultivation conditions or sampling state. For
example, we did not detect glycerol from this study because the
yeast sample was harvested at a stationary phase (48 h), which is
known not to contain glycerol.

3.5. Sensitivity and stability of GCeMS for quantitative analysis

It is known that the mixture of CHCl3/MeOH is an efficient
combination solvent for lipid extraction and many other non-
volatile molecules. These lipids normally cause problems
regarding the stability of GCeMS when analyzing them without
appropriate derivatization. To address this question, we performed
an experiment by analyzing a series of four Ant derivative (N ¼ 5)
and derivatized samples from combined fractions (N ¼ 25)
sequentially. The result (Fig. 6) shows a slight drop in sensitivity
(observed from the intensity of Ant derivative) of the instrument
when increasing the number of measurement samples. The
reproducibility of the measurement of Ant derivative in each set of
runs was excellent (%RSD � 3; N ¼ 5). Acetonitrile is an efficient
solvent to perform t-BDMS derivatization, and also widely used in
the extraction of various metabolites [30] [31] because of its
excellent ability to dissolve polar metabolites. On the other hand,
lipids tend to dissolve poorly in acetonitrile, as we have observed
during the sample preparation, where there was residue of lipids in
the vial after addition of acetonitrile (during the derivatization
step). Based on this evidence, we presumed that injecting deriv-
atized samples from combined fractions that did not contain most
lipid species allowed instruments to main stability and sensitivity
during a large number of measurements. Results indicate that the
method is highly reproducible and suitable for the use of quanti-
tative or semi-quantitative analysis.



Table 1
Identification of metabolites from in S. cerevisiae from different fractions after liquideliquid extraction.

Order Retention time (min) Metabolite MeOH fraction CHCl3 fraction MeOH þ CHCl3

1 8.15 L-Alanine ✔ ✔

2 8.52 L-Glycine ✔ ✔

3 8.96 aButanoic acid ✔ ✔

4 9.62 L-Valine ✔ ✔

5 9.94 Unknown ✔ ✔

6 10.17 L-Leucine ✔ ✔

7 10.65 L-Isoleucine ✔ ✔

8 11.95 Succinate ✔ ✔

9 12.52 Anthranilic acid ✔ ✔ ✔

10 13.74 Unknown ✔ ✔

11 14.50 Phosphoric acid ✔ ✔

12 14.84 L-Serine ✔ ✔

13 15.06 a2-Pyrrolidone-5-carboxylic acid ✔ ✔

14 15.21 L-Threonine ✔ ✔

15 15.40 L-Methionine ✔ ✔

16 15.88 aSalicylic acid ✔ ✔

17 16.15 L-Pyroglutamic acid ✔ ✔

18 16.45 a3,5-Disilaheptane, 4-(5-ethoxypyridin-2-yl)-2,2,3,3,5,5,6,6 octamethyl- ✔ ✔

19 16.55 Unknown ✔ ✔

20 16.79 Unknown ✔ ✔

21 17.28 L-Phenylanine ✔ ✔

22 17.40 D-Malic acid ✔ ✔

23 18.19 L-Aspartic acid ✔ ✔

24 18.86 L-Cysteine ✔ ✔

25 19.39 a3-hydroxy-3-methylglutaric acid ✔ ✔

26 19.52 2-amino-4-nitrophenol ✔ ✔

27 19.82 Cis-9-Hexadecenoic acid (16:1-n7) ✔ ✔

28 19.86 L-Ornithine ✔ ✔

29 20.30 L-Glutamic acid ✔ ✔

30 20.60 Unknown ✔ ✔

31 20.81 a1-Octadecanol ✔ ✔

32 21.00 aD,L-Homocysteine ✔

33 21.48 L-Lysine ✔ ✔

34 21.87 L-Asparagine ✔ ✔

35 21.92 Unknown ✔ ✔

36 22.67 Unknown ✔ ✔

37 22.87 Cis-9-Octadecenoic acid (18:1n-9) ✔ ✔

38 23.07 Octadecanoic acid (18:0) ✔ ✔

39 23.57 Unknown ✔ ✔

40 23.90 L-Glutamine ✔ ✔

41 24.01 Unknown ✔ ✔

42 24.89 Unknown ✔ ✔

43 25.03 Citrate ✔ ✔

44 25.35 Unknown ✔ ✔

45 25.70 L-Tyrosine ✔ ✔

46 26.54 Unknown ✔ ✔

47 28.13 Unknown ✔ ✔

48 29.88 L-Tryptophan ✔ ✔

49 32.00 L-Cystathionine ✔ ✔

a The metabolites identified by the National Institute of Standards and Technology (NIST) mass spectra search but not verified with synthetic standards.

Fig. 6. Stability and reproducibility of the GCeMS obsurved by injecting Ant derivative
(N ¼ 5) after 25 injections of sample from combined fractions.
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4. Conclusion

In conclusion, we report an improved protocol for derivatization
based on t-BDMS and for extraction based on CHCl3/MeOH, which
is suitable for analysis of metabolites in yeast samples. From this
study, we did not observe partially derivatized analytes, which is
the major problem when experimenting with t-BDMS derivatiza-
tion. Analysis of combined fractions was shown to be an alternative
metabolomics method for sample preparation owing to its
increasing accuracy and precision of the measurement. This
method will potentially become a highly relevant tool for metab-
olite profiling in yeast cells being developed as efficient cell fac-
tories. Because amino acids and other relatedmetabolites represent
key intracellular metabolites that are closely linked to many
organic acids, rapid and easy analysis of these metabolites will have
a significant impact on our ability to metabolically engineer yeast.
We are also confident that the method can be applied to metabolite
analysis from other organisms.
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