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The aim of this study is to quantify drivers’ comfort- and dread-zone boundaries in left-t
urn-across-path/opposite-direction (LTAP/OD) scenarios. These scenarios account for a
large fraction of traffic fatalities world-wide. The comfort zone is a dynamic spatiotemporal
envelope surrounding the vehicle, within which drivers feel comfortable and safe. The
dread zone, a novel concept, describes a zone with a smaller safety margin that drivers will
not voluntarily enter, but can push themselves into when conditions provide additional
motivation (e.g., when hurried). Quantifying comfort- and dread-zone boundaries in the
context of turning left before or after an oncoming vehicle has the potential to inform
and improve both the design and driver acceptance of advanced driver assistance systems
(ADAS) and autonomous vehicles.
Using a within-subject design, a test-track experiment was conducted with drivers turn-

ing an instrumented vehicle left across the path of an oncoming vehicle. The oncoming
vehicle was a self-propelled full-sized computer-controlled balloon vehicle going straight
at a constant speed (50 km/h). The driver assumed full control of the instrumented vehicle
approximately 20 m before the intersection and had to make the decision to turn left
before or after the oncoming balloon vehicle. There were two experimental conditions,
comfortable driving and hurried driving. Measures for each turn included post-
encroachment time (PET), lateral acceleration, and self-reports of comfort and risk.
Drivers consistently accepted shorter time gaps and higher lateral accelerations when hur-
ried. We interpret these findings to suggest that drivers invoke two dynamic, contextually-
defined safety margins. The first is the comfort-zone boundary, a limit which drivers do not
voluntarily cross without extra motives. The second is the dread-zone boundary, a more dis-
tant limit which drivers do not voluntarily cross even with extra motives. Grouping the
responses (high/low) to the driver behavior questionnaire (DBQ) improved the ability to
predict the dread-zone boundary PET given the comfort-zone boundary PET.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

In 2010, traffic crashes were the ninth leading cause of death world-wide and the leading cause of death for men between
15 and 29 (WHO, 2013). Crashes in intersections accounted for 40% of automotive fatalities in the US in 2007 (USDOT, 2009).
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Fig. 1. Vehicle trajectories in the left-turn-across-path/opposite-direction (LTAP/OD) scenario. The blue (gray) vehicle has the right-of-way. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In left-turn-across-path/opposite-direction (LTAP/OD) scenarios (Fig. 1), drivers who want to turn left must decide whether
to turn before the approaching vehicle with the right-of-way (Go), or to wait and pass after it (No-Go). Technology that sup-
ports the decision not to turn into crossing traffic when there is an imminent risk of a crash has the potential to reduce traffic
fatalities significantly.

1.2. The comfort-zone boundary and safety margins in driving

In 1938, Gibson and Crooks presented the theory of field of safe travel. They proposed that drivers dynamically adopt
margins between their own vehicle and other road users and the infrastructure in order to feel safe and comfortable. These
margins are not absolute; they are constantly influenced by a variety of factors from drivers’ character (e.g., risk-taking
propensity) to context (e.g., traffic, road conditions). Näätänen and Summala (1974) built upon the ideas proposed by
Gibson and Crooks (1938) and introduced the concept of the comfort zone. Based on this work we define the comfort zone
as an implicit spatiotemporal envelope that extends in front of the driver–vehicle system, within which the driver feels com-
fortable in everyday normal driving (Fig. 2). The limit of comfortable driving is marked by the comfort-zone boundary, which,
in the absence of extra motives, drivers are unwilling to cross; they feel discomfort when they do cross it. Summala (2007)
suggests that drivers may target specific levels of arousal (feelings) as part of the implicit process of adopting a comfort-zone
boundary. These feelings may include a balance between conflicting goals, e.g., sensation-seeking or pleasure versus safety or
anxiety.
Fig. 2. Zones and boundaries discussed in this paper.
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From time to time, drivers cross the comfort-zone boundary voluntarily, due to the dynamics of the situation. When they
do, they seek to return to the comfort zone as quickly as they safely can (Gibson & Crooks, 1938; Summala, 2007; Vaa, 2007).
Näätänen and Summala (1974) introduced the concept of extra motives to explain why drivers voluntarily accept smaller
safetymargins in some situations; the term subsumes any and all internal or external forces thatmotivate the driver to accept
levels of discomfort that would normally be unacceptable. Examples include being in a hurry, being angry, and being scared.

When drivers are sufficiently motivated to push themselves past the comfort-zone boundary, they enter what we call the
discomfort zone. The higher the motivation, the further drivers can push into the discomfort zone. However, there is an impli-
cit spatiotemporal limit beyond which drivers will never go voluntarily, which we define as the dread-zone boundary. The
comfort-zone boundary is between the comfort zone and the discomfort zone, while the dread-zone boundary is beyond
the discomfort zone, between the discomfort zone and the dread zone.

The dread zone is the spatiotemporal region between the dread-zone boundary and the safety-zone boundary. Drivers
never willingly enter the dread zone. The safety-zone boundary is the point of no return, at which there is nothing the driver
can do to avoid a crash. The safety zone encompasses the comfort, discomfort and dread zones. Beyond the safety-zone
boundary is the mitigation zone. In this zone, the driver or driver support systems may mitigate the consequences of a crash,
but not avoid it. Each of these zones is a dynamic function of the driver and the situation. Finally, the safety margin com-
prises the spatiotemporal distance between the driver’s vehicle and the point where the vehicle is predicted to cross the
safety-zone boundary, given the kinematics and state of the involved vehicles (e.g., speed, relative distance and braking
capacity) as well as the environment (e.g., friction).

1.3. Outcome measures in intersection research

Several studies of LTAP/OD scenarios use post-encroachment time (PET), illustrated in Fig. 3, in their analysis (Cooper,
1984; Nobukawa, 2011). The trajectories of vehicles on crossing paths define a rhomboid zone where their paths overlap.
We call that zone the encroachment zone. PET is the time gap between the time when the first of the vehicles leaves the
encroachment zone and the time when the second vehicle enters the encroachment zone. PET is quantified purely by geom-
etry and timing.

PET is not a direct measure of the comfort-zone boundary because it is a post-hoc metric, not something directly per-
ceived by drivers. However, since PET is a measure of what the driver actually did, the calculation of PET is sensitive to
the presence of extra motives and resulting driver behaviors, such as cutting corners and/or increasing speed to increase
vehicle separation. If the oncoming vehicle with the right-of-way is not braking, PET should provide an objective measure
of the left-turning driver’s safety margin.

1.4. This research in context

While the basic theory on safety margins, comfort zones, and extra motives is well established in the literature (Gibson &
Crooks, 1938; Näätänen & Summala, 1974; Summala, 2007), prior work on driver behavior has rarely been quantified and
interpreted using these constructs. Neither Gibson and Crooks (1938) nor Näätänen and Summala (1974) or Summala
(2007) provide empirical quantifications of their described margins and boundaries. Among the articles that did use these
constructs are studies of drivers’ choices of time headway in vehicle-following situations (Brackstone & McDonald, 1999;
Kesting & Treiber, 2008; Winsum & Brouwer, 1997), and gap acceptance while traversing an intersection (Caird &
Hancock, 2002; Pietras, Shi, & Lee, 2006; Staplin, 1995). While these studies quantified specific aspects of driver behavior
(headway and gap size), only Summala, Lappi, Pekkanen, Lehtonen, and Hietamäki (2012) addressed driver behavior from
the perspective of comfort zones and safety margins. They used skin conductance and other psychophysiological measures
Fig. 3. Illustration of the two moments in time used in the calculation of PET when one vehicle turns left in front of an oncoming vehicle with the right-of-
way. The red rhombus is the encroachment zone. PET = t2–t1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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to quantify drivers’ responses during an experimental task. The analysis showed the skin response to approximately follow a
power function of the safety margin.

Although not explicitly providing comfort-zone boundaries, a paper by van der Horst (1990) describes a study of inter-
section conflicts; no conflict had a PET larger than two seconds. Similarly, van der Horst (1990) and Nobukawa (2011)
describe PETs of two seconds or less to be safety-critical, while PETs larger than two seconds are described as normal driving.
These findings led us to use two seconds as an anchor in our experimental design.

We do not know of any prior studies that quantitatively address the effects of extra motives on safety margins in turning
scenarios. However, the U.S. CAMP studies quantified a boundary that drivers do not voluntarily cross for lead-vehicle sit-
uations (Kiefer, Salinger, & Ference, 2005; Kiefer et al., 2003). These studies varied lead-vehicle decelerations and asked dri-
vers to brake at the last second (as late as they dared). It can be argued that this study created extra motives by asking drivers
to be daring, and thus pushed drivers to define their dread-zone boundary.

Given the limited research relating driver behavior to comfort zones and safety margins, this study seeks to improve our
understanding of the spatiotemporal space beyond the comfort-zone boundary. To accomplish this, we sought to quantita-
tively compare the comfort-zone and dread-zone boundaries in the LTAP/OD scenario. We suggest that the decision to stop
and yield to the vehicle with the right-of-way marks the comfort-zone boundary under normal circumstances. In contrast,
we suggest that when the driver is very hurried (that is, has an extra motive) the decision to stop and yield marks the dread-
zone boundary for that scenario and traffic context.

These considerations lead us to propose two hypotheses: (1) Drivers will accept both a shorter PET and higher maximum
lateral acceleration when hurried, compared to when driving comfortably; and (2) self-reports will reveal greater discomfort
and feelings of risk when hurried.

To test these hypotheses, we varied the instructions to induce two different frames of mind in the participants, comfort-
able driving and hurried driving. A standard passenger vehicle and a balloon vehicle were equipped with throttle and brake
control robots. Both vehicles were pulled up to a steady state speed of 50 km/h on a test track with an intersection. The par-
ticipants got full control of the passenger vehicle approximately 20 m from the intersection, while the balloon vehicle con-
tinued at constant speed through the intersection. The participants were told to decide to turn left before or after the
oncoming vehicle. The speed profile of the left-turning participant’s vehicle was kept constant until the control handover
on all runs.

Independent variables were driving condition (comfortable and hurried) and the SetPET for each run set by experi-
menters. The SetPET is the target value of the time gap (Fig. 3) for each run. It is the PET that would be observed if the driver
were to maintain a reference trajectory. Dependent variables were the observed PET value and the maximum lateral accel-
eration. After each pass through the intersection, drivers completed a short questionnaire on perceived comfort, risk, hesi-
tation, and likelihood that they would make the same decision again.

2. Method and materials

2.1. Participants

The study included 22 subjects (17 male, 5 female). The participants were recruited from a pool of employees at Autoliv
Sverige AB (n = 13) and Volvo Car Corporation (n = 9). The inclusion criteria for all participants were that they should be
between 25 and 65 years old and drive more than 5000 km per year. All drivers participated during their paid working hours,
but were otherwise uncompensated. Participants’ ages ranged from 25 to 61 years (M = 49.7, SD = 8.4 years). On average,
participants had many years of driving experience (M = 31.3 years, SD = 8.1 years).

2.2. The intersection and apparatus

An artificial T-intersection was created at the airfield in Vårgårda, Sweden. The intersection had no traffic lights but had
barriers on both the primary and the secondary roads to minimize drivers’ ability to cut the corner, Fig. 4 (left). On the pri-
mary road, each lane was 3.5 m wide, while the minimum lane width on the secondary road was 3.8 m.
Fig. 4. The test-track intersection (left), and the balloon car used in the study (right).
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The oncoming vehicle, herein called the Principle Other Vehicle (POV), was a computer-controlled self-propelled full-
sized balloon vehicle (Fig. 4, right). The POV drives on a low-profile (height 20 mm, width 30 mm) rubber rail. The POV
weighs approximately 65 kg, is 1.8 m wide and 1.8 m high.

In this study, the POV started at the same distance (150 m) from the center of the intersection in every trial and accel-
erated from zero to steady-state 50 km/h in 80 m. POV instrumentation included a longitudinal-position sensor and a
100 Hz differential GPS positioning system (Racelogic VBOX). The starting time of the balloon vehicle was manipulated as
a function of the start time of the subject vehicle (robot) to produce the desired SetPET.

The participant vehicle, called the Subject Vehicle (SV), was a 2012 Volvo V50 with an automatic gearbox. To control the
separation between the two vehicles, the SV was equipped with a throttle control robot, ensuring repeatability within and
between participants. The SV always started at the same distance from the intersection (approximately 265 m), after which
the throttle control robot accelerated to reach a steady-state speed of 50 km/h in 85 m. The vehicle kept the steady-state
speed for approximately 120 m.

To simulate a vehicle slow-down maneuver when approaching the intersection, the SV was also equipped with a brake
robot which initiated a constant deceleration. The brake robot was activated at a predetermined position (approximately
60 m) from the intersection. Both the throttle control and the brake robots were released at a predetermined position with
respect to the center of the intersection; we call this point the release point. The release point was approximately 20 m
from the center of the intersection. After the release point the driver had full control of the vehicle. The driver could, how-
ever, stop or slow down the vehicle at any time by pushing the brake pedal to override both the throttle and brake control
robots. The driver also had full control of steering throughout the experiment. When the brake control robot gave full con-
trol to the driver there was a short (approximately 1 s) low-amplitude whine from the robot, as well as a (just) noticeable
deceleration jolt of the vehicle. During on-track training the drivers were taught to identify these cues to the control
handover.

2.3. The driving task

Drivers were instructed to make a left turn at the intersection. To make the turn they had to decide whether to turn before
or after the POV. Each drive took approximately one minute from the time the SV started moving until the driver completed
the turn and stopped the vehicle.

2.4. Experimental design

The repeated-measures experiment manipulated two independent variables. The first was driver behavior in the LTAP/OD
scenario in two conditions: (1) comfortable driving and (2) hurried driving. Every driver drove all the runs in a fixed
sequence, with the comfortable condition preceding the hurried condition. The order of the two conditions was not coun-
terbalanced because it was expected that the hurried condition would strongly influence subsequent driving behavior in
the comfortable condition, but that the relatively normal driving in the comfortable condition would have relatively little
influence on subsequent hurried driving.

In the comfortable driving condition, drivers were instructed to make the left turn as they would in their normal everyday
driving, for example, when on the way to/from work or to the grocery store. They were told to try to feel comfortable and
safe when turning in front of the POV or, if they didn’t, to wait and turn after it.

In the hurried driving condition, the participants were instructed to make the left turn as they would when in a hurry,
that is, as if they were very late for an important meeting such as a job interview. Using the language introduced by
Summala (2007), in the hurried driving condition we studied driver behavior when they had extra motives: they were in
a hurry.

The second independent variable was the SetPET – the target value of the gap (Fig. 3) for each run that would be observed
if the driver were to maintain a reference trajectory. The reference trajectory is the average of nine trajectories taken by three
drivers in a series of pilot runs turning in front of the balloon vehicle (three times each) with a ‘comfortable and safe’ mind-
set. If the drivers in the study had followed the reference trajectory, the observed PET would equal the SetPET. Note that the
observed PET is the PET that the individual driver created by turning while being exposed to the SetPET for a specific run (see
Table 1). The experimenter in the control room created the SetPET for each experimental run by manipulating the relative
start times of the throttle control robots in the subject and balloon vehicles.

2.5. Dependent variables

2.5.1. Electronically collected behavioral variables
Two dependent behavioral variables were used in the analysis. First, the observed PET value was calculated for each run.

Second, lateral acceleration of the SV was obtained. The maximum lateral acceleration for each run was calculated.

2.5.2. Self-report variables
After each run, the driver was asked to answer five questions relating to the turn he or she had just made. These questions

elicited the participant’s subjective evaluation of comfort and risk for each turn. The wording of four of the questions



Table 1
All runs in the experiment for a representative participant. Run 13 and run 19 are the final Go decisions in this driver’s set of runs in the comfortable and
hurried conditions. They define this driver’s comfort- and dread-zone boundaries. The two arrows show the runs used to establish the initial SetPET values for
the Comfort iterative and Hurried iterative conditions.
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depended on whether a driver turned in front of the POV (Go decision) or let the POV pass and turned after (No-Go decision):
for example, How comfortable was your turn? (after a Go decision) and If you had turned in front of the balloon vehicle, how
comfortable would you have been? (after a No-Go decision). The questions as they were asked after a Go decision are shown
in Table 2.

All questions were answered using a two-step rating system (Heller, 1982) that consists of five main categories each with
three subcategories (Fig. 5). The same 15-item rating scale was used, with custom categories, for all five questions (see
Table 2).
Table 2
Results of the analysis of the five self-report questions administered after each run for the comfort-zone and dread-zone boundaries (the last Go-decision in the
comfortable and hurried driving conditions respectively). For each question the mean and standard deviation is shown, as well as the results of the comparison
of means. A 15-point scale was used for the rating (N = 22).

Self-report questions for Go decisions Rating scale
[1 . . . 15]

t
(21)

P Driving conditions

Comfortable
driving

Hurried
driving

Question M SD M SD

(1) How comfortable was your turn? Very comfortable . . . very uncomfortable �2.3 .032 5.6 2.3 7.1 2.5
(2) How risky was your turn? Not very risky . . . very risky �2.9 .009 5.1 2.2 7.1 3.0
(3) How difficult was it to make the decision to

turn in front?
Very easy . . . very difficult �2.3 .029 5.0 2.5 6.1 2.2

(4) How much did you hesitate in making the
decision to turn in front?

Very low . . . very high �2.9 .008 4.6 2.3 5.6 2.2

(5) What is the likelihood of your making the
same decision the next time you are in the
same situation?

Very unlikely . . . very likely 1.6 .115 11.1 2.3 10.0 2.6

Fig. 5. The 5 � 3 rating scale for the five basic questions asked after each run for, as an example, the question ‘‘How comfortable was your turn?”.
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2.6. Procedure

Before arriving at the airfield, each participant filled in three background questionnaires: (1) a demographics question-
naire, (2) an Arnett Inventory of Sensation Seeking (AISS) questionnaire, and (3) a Driving Behavior Questionnaire (DBQ).
They were told that the aim of the experiment was to inform our understanding of drivers’ comfort zones when making a
left turn at an intersection where a vehicle with the right-of-way approaches from the opposite direction. They were also
told they would have to decide whether to turn before or after the balloon vehicle.

In the following sections the drivers’ actual runs – passes through the intersection – are described, including on-track
training and the actual experiment. Table 1 shows all runs, in the order they were performed, for a representative partici-
pant. The following text refers to Table 1 to illustrate the on-track procedure.

2.6.1. Training
On-track training consisted of three different training scenarios (Table 1, runs 1–6) to get familiar with: (1) the intersec-

tion and SV (without the throttle-control robot and the balloon vehicle), (2) the throttle-control robot in the SV (without the
balloon vehicle), and (3) the whole test setup, including the approaching balloon vehicle. Every training scenario was
repeated until the drivers said they felt comfortable with the current task and the vehicle. The average number of training
runs across the three training scenarios was 7.2 (SD = 1.6).

2.6.2. The method of adjustment
For both the comfortable and the hurried conditions, the SetPET was manipulated according to a pre-defined iterative

procedure, adapted from the method of adjustment used by Fechner (1860) and Gescheider (1997); see Table 1 and
Fig. 6. In this procedure, experimenters adjust the level of a stimulus in a stepwise and iterative ‘‘up-down” procedure to
determine the level of an implicit threshold. The thresholds we sought were the level of the PET and maximum lateral accel-
eration at which drivers tended to transition from Go decisions to No-Go decisions. Thus, the iterative procedure of the
method of adjustment provided a pair of observed PETs and maximum lateral accelerations, one for the comfortable condi-
tion and one for the hurried condition. In the analysis we treat these transition runs as the comfort and dread-zone bound-
ary, respectively.

To minimize the in-vehicle time for the participants, the comfortable condition was divided into two stages: (1) four pre-
set SetPETs (Table 1, runs 7–10) and (2) the iterative adjustment of SetPET (Table 1, runs 11–14). Since the iterative adjust-
ment provided a starting point for the hurried condition, only the iterative approach was required to determine SetPET in the
hurried condition (Table 1, runs 15–20). Each run took from four to seven minutes to complete, including the administration
of questionnaires.

2.6.3. Comfortable driving – preset SetPETs
For the preset stage, a predefined set of four SetPETs was used: 4 s, 3 s, 2 s, and 1 s. (A pilot study was run before the main

experiment to determine these SetPET levels.) The order of the four SetPETs was balanced across the participants using a
Latin Square. Participants were randomly assigned to the different orders of the SetPETs. The aims of the preset stage were
Comfort itera�ve Hurried itera�ve

Fig. 6. Left: The iterative adjustment procedure in the comfortable condition. The numbers are references to the run numbers in Table 1. Right: The iterative
adjustment procedure in the hurried condition. The numbers are references to the run numbers in Table 1.
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(1) to familiarize the drivers with the experiment setup, (2) to get data to study potential order effects, and (3) to get a coarse
characterization of the safety margins (SetPET) that drivers would adopt.

2.6.4. Comfortable driving – iterative SetPET adjustment
The driver’s behavior in the preset stage was used to inform the initial SetPET used in the iterative adjustment stage. The

aim of the iterative adjustment was to zero in on the SetPET threshold at which the driver tended to make No-Go decisions.
The No-Go SetPET from the preset stage (Fig. 6, left; Table 1, run 8; SetPET = 2.0 s) was used as the starting point. The

SetPET was increased by 0.4 s until a SetPET with a Go decision was found (Fig. 6, left; Table 1, run 12; SetPET = 2.8 s). Then,
this first Go SetPET was decreased in smaller steps (0.2 s), until finally the driver made a No-Go decision (Fig. 6, left; Table 1,
run 14; SetPet = 2.4 s). The last Go and No-Go decisions (Fig. 6, left; Table 1, runs 13 and 14; SetPET = 2.6 s and 2.4 s) are
assumed to bracket the driver’s threshold between Go and No-Go. We call the Go run on the upper bound of the threshold
in the comfortable condition the comfort-zone boundary (Table 1, run 14, PET column; SetPET = 1.8 s). We use two param-
eterizations of the comfort-zone boundary: (1) the observed PET at the comfort-zone boundary (PETCZB) and (2) the observed
maximum lateral acceleration at the comfort-zone boundary (MaxLatAccCZB). In the example shown in Table 1, the comfort-
zone boundary was defined by run 13 (PETCZB = 2.0 s and MaxLatAccCZB = 2.6 m/s2).

2.6.5. Hurried driving – iterative SetPET adjustment
The anchor for the hurried condition was the final No-Go SetPET from the iterative adjustment stage in the comfortable

condition (Fig. 6, left; Table 1, run 14; SetPET = 2.4 s). For the iterative adjustment stage for the hurried condition, this SetPET
was decreased by one second until a SetPET with a No-Go decision was found (Fig. 6, right; Table 1, run 16; SetPet = 0.4 s).
The reason for using a one-second step in these iterations was to shorten the in-vehicle time for the drivers. The SetPET at
this new No-Go decision was then increased in 0.4 s steps until the driver started to turn in front of the POV (a Go decision;
Fig. 6, right; Table 1, run 18; SetPET = 1.2 s). Finally, the SetPET was decreased in 0.2 s steps until a No-Go decision was found
(Fig. 6, right; Table 1, run 20; SetPET = 0.8 s). The last Go and No-Go decisions (Fig. 6, right; Table 1, runs 19 and 20; Set-
PET = 1.0 s and 0.8 s) are assumed to bracket the driver’s threshold between Go and No-Go. We call the observed PET for
the Go run on the upper bound of the threshold in the hurried condition the dread-zone boundary. The two dread-zone
boundary parameterizations are the same as for the comfort boundary, but PET and maximum lateral acceleration are taken
at the dread-zone boundary (Table 1, run 19; observed PET = 1.3; observed maximum lateral acceleration = 3.9 m/s2). We
denote them PETDZB and MaxLatAccDZB.

2.6.6. Number of runs and the end of the experiment
Because we tailored the trials to the driver’s Go/NoGo decisions, some drivers experienced more trials than others. For the

comfortable condition, the average number of runs was 8.2 (SD = 1.7), with 6.5 (SD = 2.7) for the hurried condition. Due to
the use of the iterative method-of-adjustment procedure, the runs differed in terms of quantity and SetPET across partici-
pants. Accordingly, it is not possible to assess sequence effects across participants.

At the end of the experiment, the participants were thanked for their participation and debriefed. The entire experiment
lasted for approximately 3.5 h (range 3.0–4.0 h).

2.7. Data processing

Data from the SV and the POV were synchronized after data collection. Due to intermittent loss of differential GPS con-
nection, parts of some SV and POV trajectories (positions) were reconstructed using speed from the GPS and the parts of the
trajectory that had high quality position data.

3. Results

The data to calculate PET for two of the drivers were corrupted during data collection. As a result, there are 20 sets of PET
values and 22 sets of maximum lateral acceleration. As hypothesized, drivers adopt shorter safety margins (PETs) and accept
higher lateral accelerations when in a hurried state, compared to when driving comfortably. The results from the self-report
questionnaires between runs are consistent with these findings.

3.1. The dread-zone boundary is quantitatively different from the comfort-zone boundary

3.1.1. Comparing conditions across drivers
As shown in panels A and B in Fig. 7, the repeated-measures paired differences for maximum lateral acceleration were not

normally distributed. Accordingly, the pairwise differences for both PET and maximum lateral acceleration were analyzed
using the Wilcoxon signed ranks test. The signed ranks test is more conservative than the more familiar within t-test.

The Wilcoxon test found that the PET at which drivers decided to turn in front of the oncoming POV was significantly
different in the comfortable and hurried driving conditions (Wilcoxon Z = 3.89, p < 0.001, Fig. 7A). All comfortable – hurried
pairwise differences were positive, indicating that, as expected, the PET was consistently greater for the comfortable condi-



Fig. 7. Histograms of the paired differences (comfortable vs hurried) of PET (A) and maximum lateral acceleration (B) for the shortest PET at which the
drivers turned in front of the POV (N = 20). (C and D) Histograms of observed values in the comfortable condition. (E and F) Histograms of observed values in
the hurried condition.
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tion. The median (mean) values for PET were 2.26 (2.22) s in the comfortable condition (Fig. 7C) and 1.50 (1.47) s in the hur-
ried condition (Fig. 7E).

Similarly, the Wilcoxon test found a significant difference in maximum lateral acceleration between the conditions (Wil-
coxon Z = 3.85, p < 0.001, Fig. 7B). Most, but not all, of the pairwise differences were negative, indicating that, as expected, the
maximum lateral acceleration tended to be lower in the comfortable condition. The median (mean) values for maximum lat-
eral acceleration were 3.23 (3.39) m/s2 in the comfortable condition (Fig. 7D) and 4.12 (4.40) m/s2 in the hurried condition
(Figs. 7F).

3.1.2. Simple linear regression
Given the differences in both PET and maximum lateral acceleration between the two boundaries found in the pre-

vious section, linear regression analysis was used to examine the relationship between comfortable and hurried driving.
Fig. 8 plots the PET parameterizations of the drivers’ comfort-zone boundaries on X and those of their dread-zone
boundaries on Y. A best-fit simple linear regression model was constructed to predict the PET at the dread-zone bound-
aries (response variable) given the PET at the comfort-zone boundaries (predictor). The regression (Eq. (1); the black
solid line in Fig. 8) is significant, F(1,18) = 23.7, p < 0.005, r2 = 0.57. As expected, drivers with larger comfort-zone bound-
aries have predictably larger dread-zone boundaries. Further, the model (Eq. (1)) indicates that PET values when the dri-
vers are hurried are approximately 70% of the values when they are comfortable. The intercept is statistically equivalent
to zero.
PETDZB ¼ �0:07þ 0:69 � PETCZB ð1Þ

Similarly, the simple linear regression on the drivers’ maximum lateral accelerations (Eq. (2), Fig. 8, right) found a signif-

icant relationship, F(1,20) = 12.8, p < 0.005, r2 = 0.38. As revealed by Eq. (2), the relationship between the two boundaries
appears to be completely captured by the Wilcoxon test: the offset is constant, approximately 1.1 m/s2, regardless of the
value of the comfort-zone boundary.
MaxLatAccDZB ¼ 1:11þ 0:97 �MaxLatAccCZB ð2Þ



Fig. 8. The left and right panels show the observed PET and maximum lateral acceleration, respectively, at the comfort zone and dread-zone boundaries for
20 drivers.
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3.1.3. Differences in DBQ ranking: multiple linear regression
Multiple linear regression was used to study potential covariates in demographics or driver traits (as captured by the Dri-

ver Behavior Questionnaire (DBQ) and the Arnett Inventory of Sensation Seeking (AISS) Questionnaire). No significant model
improvement was found when introducing driver demographics (gender, age, driving experience) or the AISS. However,
introducing a dummy variable (MedianDBQDummy) representing the median split in DBQ total scores (drivers above the
median were assigned 1; drivers below the median were assigned 0) significantly improved the model fit to the PET data,
F(3,19) = 14.4, p < 0.001, ra2 = 0.69; Fig. 8. Eq. (3) shows the multiple linear regression model.
Fig. 9.
Error b
PETDZB ¼ �0:36þ 0:72 � PETCZB þ 0:52 �MedianDBQDummy ð3Þ

The regression model in Eq. (3) indicates that drivers with below-median DBQ scores accept smaller safety margins

(lower PETDZB) than drivers with above-median DBQ scores. Similar regression analyses were run for each of the three
sub-factors of DBQ. None proved significant. Regression analyses using median split were also run for the lateral acceleration
data. Adding these factors as predictors did not improve the fit of the simple linear regression model relating MaxLatAccDZB
to MaxLatAccCZB (Eq. (2)).

To further understand the differences between the comfort- and dread-zone boundaries with respect to PET between the
two levels of DBQ, we studied the difference between the two DBQ levels for the two conditions. A two-way within-between
ANOVA found the interaction between the two levels of DBQ and the experimental condition to be significant (F(1,28) = 8.93,
p < 0.01; Fig. 9). Experimental condition (i.e., comfortable or hurried driving) was the repeated factor and the DBQ level (DBQ
median-split) was the between factor. As Fig. 9 shows, there is no difference in PETCZB but a large difference in PETDZB is
observed across the DBQ median split.
Interaction plot showing the differential influence of the hurried condition between groups of drivers defined by the median split in total DBQ scores.
ars represent the standard errors of the mean.
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3.1.4. Evaluation of the effect of run order
As the order of the comfortable and hurried conditions was not balanced across participants in the experiment, an eval-

uation of the effect of run order (sequence effect) was performed using a two-way ANOVA. The four SetPET values (1 s, 2 s,
3 s, and 4 s) for the preset stage in the comfortable condition were used, since their order was balanced across drivers. The
two-way ANOVA failed to reject the null hypothesis (F(3,57) = 2.66, p > 0.05). The sequence of SetPET had no influence on
observed PET.

3.2. Drivers’ assessment of comfort- and dread-zone boundaries

The five self-report questions administered after every run were compared between the two conditions using paired t-
tests, treating self-report data as interval scale data (Heller, 1982). Summary statistics of the self-report measures between
the comfort-zone boundary and the dread-zone boundary are shown in Table 2. The paired t-tests compare the differences
(comfortable/hurried) observed at the comfort- and dread-zone boundaries, respectively. Four of the five questions showed a
significant effect. The first two responses reveal that drivers rated the turn at the comfort-zone boundary to be significantly
more comfortable and less risky than the turn at the dread-zone boundary. The third reveals that they found the decision to
turn to be less difficult at the comfort-zone boundary than at the dread-zone boundary. The fourth indicates there was sig-
nificantly less hesitation before turning in front of the oncoming vehicle in the comfortable condition. However, the differ-
ence between the two conditions was not significant for the question on the likelihood of making the same decision again.

3.3. Sensitivity analysis

As a manipulation check, the bivariate Pearson correlation was used to quantify the impact of the variability of the decel-
eration of the SV brake robot (predictor) on PET (response) at the final Go decision for each driver. We expected that vari-
ability in the brake robot deceleration would have a significant effect on the observed dread-zone boundary. However, the
results show that there is no significant correlation between the average lateral acceleration while the brake robot was active
and the PET for the last Go decision. This may be interpreted in two ways. Either the decision to turn before or after the
oncoming vehicle was made before the start of the braking, or the differences in speed and position at the time of the release
(20 m before the intersection center) were not large enough to have a consistent effect on the observed values of PET.

4. Discussion

This paper expands on the established concept of drivers’ adoption of safety margins in traffic, by creating a more fine-
grained, quantifiable series of definitions for the spatiotemporal space beyond the comfort-zone boundary, but before the
point of no return (when a crash is unavoidable). Although this is not the first study to seek to quantify various aspects
of safety margins, most previous work has focused on the comfort zone, in which the driver feels safe, and seeks to remain.
The concept of extra motives (such as driving under time pressure; Näätänen & Summala, 1974) has also been applied to
explain that drivers can push themselves past their comfort-zone boundary. The newly defined discomfort and dread zones
lie beyond the comfort zone. Although drivers with extra motives will cross the comfort-zone boundary into the discomfort
zone, the dread-zone boundary is a threshold which drivers will not cross, even with extra motives. We have demonstrated
the utility of both boundaries by quantifying how they differ within the context of making a left turn in an unsignalized
intersection during a controlled test-track experiment. We argue that the dread-zone boundary in particular has great poten-
tial for informing automotive safety research and the design of advanced driver assistance systems (ADAS; Benmimoun,
Ljung Aust, Faber, & Saint Pierre, 2011; Dozza, 2010) and autonomous vehicles (VCG, 2013).

4.1. Comfort- and dread-zone boundaries

4.1.1. Comfort- and dread-zone boundaries: PET and maximum lateral acceleration
In this paper we have defined the comfort- and dread-zone boundaries in our LTAP/OD experiment as each drivers’ last Go

decision in the iterative method of adjustment for the comfortable and hurried mindset. When in a hurried mindset, drivers
appear to be willing to reduce the gap (PET) by approximately a third, regardless of the value of the comfort-zone boundary.
In contrast, no such relationship was found for the maximum lateral acceleration parameterization. It appears that drivers
are willing to allow acceleration to increase by a constant amount, approximately 1 m/s2, regardless of the acceleration at
their comfort-zone boundary. In future quantifications of comfort- and dread-zone boundaries, it would be advisable to eval-
uate several different parameterizations of these boundaries to gain further understanding of the effects of extra motives on
drivers’ tacit choices in everyday driving.

4.1.2. Comfort- and dread-zone boundaries: self-reports
Self-reports show that the drivers voluntarily adopted different safety margins with different feelings of comfort and risk,

in the same controlled setting, when they had extra motives. They pushed themselves past the comfort boundary toward
more discomfort and a feeling of higher risk – into the discomfort zone. They also reported they had less trouble making
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the decision to turn and hesitated less at the comfort-zone boundary than at the dread-zone boundary. This is in line with
what would be expected.

The only question that did not elicit different responses across conditions asked drivers about the likelihood of making
the same decision again in the same situation. It appears that driver confidence in the appropriateness of their decisions
was not influenced by the manipulation of comfort. This is a somewhat surprising result, since it may be hypothesized that
the driver would be less decisive in turning before an oncoming vehicle with smaller safety margins (i.e., at the dread-zone
boundary). However, it may be that the internalized incentive in the hurried mindset (extra motive) counteracted the
indecisiveness.

4.1.3. Predictive value of grouping drivers by DBQ score
Our analysis further shows that there are individual differences in the values of the comfort and dread-zone boundaries

for both PET and maximum lateral acceleration. These differences are manifest both within and between the driving condi-
tions. First, the median split of the Driver Behavior Questionnaire (DBQ) significantly improved the prediction of PETDZB, with
PETCZB as main predictor. This result demonstrates that drivers with below-median DBQ scores (whom we shall refer to as
more rule-following drivers) accepted shorter PETs in the hurried condition than our relatively less rule-bound drivers. This
result is counter-intuitive: The more rule-following drivers made riskier turns. A possible explanation is that rule-following
participants are more willing to follow the experimenter’s instructions to push themselves in the hurried condition. This
result clearly needs confirmation in an independent study.

No relationships were found between the Arnett Inventory of Sensation Seeking and the pairwise differences in PET or
maximum lateral acceleration between the two conditions. This result also needs confirmation in an independent study.

4.1.4. Order effects and fatigue
In this study the order of the driving conditions was fixed, with the comfortable condition always before the hurried con-

dition. This sequence avoided the possibility that habituation to hurried driving would influence driver behavior at the
comfort-zone boundary. Because the hurried condition followed the comfortable condition, the resulting dread-zone bound-
ary may be closer to the safety-zone boundary (smaller safety margins) due to habituation. However, as there was little or no
indication of an order effect in the four preset runs in the comfortable condition, habituation probably did not affect the out-
come significantly. In a future study it would be interesting to run a replication of the comfortable driving condition after the
hurried condition. We believe it is likely that the study would find evidence for habituation from hurried to comfortable
driving.

The participants’ time in the experiment vehicle was relatively long, three to four hours. Some drivers can be expected to
have experienced some fatigue. Unfortunately, the method of adjustment used in the experiment does not lend itself to
uncovering the effects of fatigue. The iterative adjustments were different for every participant and produced only one value
per condition (the comfort- and dread-zone boundaries). We can only speculate about the role played by fatigue in this
study. We suspect that fatigue may make some drivers more risk-averse (i.e., they choose larger safety margins) as they fall
back on more comfortable and safe driving; on the other hand, others may become more casual about the risk posed by the
balloon car (i.e., they choose smaller safety margins) due to habituation. If in fact some drivers were fatigued, and the fatigue
influenced them in different ways, then our data has a larger between-driver variability then may be expected in real traffic.
However, to try to counter the effects of fatigue, we often repeated the mind-set instruction throughout the hurried
condition.

4.2. The method

4.2.1. Safety margins in a controlled vs. naturalistic setting
We conducted this experiment on a test track using a balloon car as the oncoming vehicle. Unlike the drivers of vehicles in

a naturalistic setting, the autopilot of the balloon car did not modify its behavior in response to the driver’s encroachment. It
approached and passed the intersection at a steady speed of 50 km/h, even when confronted by an encroaching left-turning
driver.

The safety margins (e.g., PETs) realized when two drivers interact during normal everyday LTAP/OD turns are a combina-
tion of the margins that both drivers accept. When drivers with the right-of-way realize that the anticipated encroachment
may take them out of their comfort zones, they are likely to slow down to provide additional time for the left-turning vehicle
to pass. Slowing returns drivers with the right-of-way to their comfort zones, resulting in an increase in the actual safety
margin for both vehicles.

The only ethical way to observe this social interaction is to conduct on-road naturalistic observations. Nobukawa (2011)
conducted a study of real-traffic LTAP/OD interactions. He measured the slowing-down of the vehicle with the right-of-way.
This is a tacit form of social communication that diminishes the likelihood of a crash. For example, as the driver in the
oncoming vehicle picks up cues that the approaching vehicle is about to turn, he or she will likely slow down (or brake hard)
to avoid crashing. When this communication is lacking, the likelihood of crashes increases. Our experiment replicates the
situation where there is no tacit exchange between the two drivers and the likelihood of a crash is relatively high. Since
we kept the speed of the right-of-way POV constant, we avoided the complication, unavoidable in observational studies,
of measuring the comfort-zone boundary of the driver of the POV.
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4.2.2. Using mindset manipulation to study the effect of extra motives
The two conditions comfortable and hurriedwere created by providing instructions to the participants to get them into the

appropriate real-life mindsets. Some may see this as a shortcoming of the experimental design. The ethics of experimenta-
tion preclude providing real-life incentives like driving in real traffic. However, both the quantitative data (comfort- vs.
dread-zone boundaries) and the self-reports on comfort and risk indicate that the hurried mindset succeeded in creating
more aggressive driving.

When designing the study we considered using monetary incentives based on performance (e.g., competition-based), but
decided against it to avoid game-like conditions. Indeed, a study by Newnam and Watson (2011) provides some evidence
that monetary compensation induces less safe driving than voluntary participation does. We wanted to avoid such a bias.
However, further research is needed to understand how internalized incentives of hurried driving are related to real-life
hurrying.

4.3. The application of dread- and comfort-zone boundaries to vehicle safety

The introduction of the dread zone and its boundary, as well as the quantification of both the comfort- and dread-zone
boundaries, is important from a pragmatic point of view: they can contribute to the development of advanced driver assis-
tance systems (ADAS; Hummel, Kühn, Bende, & Lang, 2011; Benmimoun et al., 2011) and automated driving (AD) vehicles.

4.3.1. The design of advanced driver assistance systems (ADAS)
Traditional ADAS designs often reference the objective kinematics of proximity to the safety-zone boundary (Brannstrom,

Sjoberg, & Coelingh, 2008). We argue that the design of ADAS should also include the comfort- and dread-zone boundaries.
Drivers are unlikely to accept an ADAS intervention (warning and/or braking/steering control) while in the comfort zone.
However, the probability of drivers accepting ADAS interventions is likely to increase monotonically in the discomfort zone
as they approach the dread-zone boundary. We further argue that when the dread-zone boundary is crossed, all drivers
should accept all interventions (e.g., braking or steering). When drivers cross into their dread zone they are closer to a crash
then they would ever voluntarily allow themselves to get. Thus, if an intervention were to be activated, the driver should feel
that the intervention is justified. In contrast, interventions before the drivers have crossed the dread-zone boundary may be
perceived as nuisances or errors since drivers may merely be feeling discomfort, and may not yet feel that a crash is immi-
nent. In fact, the feeling of discomfort may be voluntary if the driver had extra motives for crossing the comfort-zone
boundary.

The tacit spatiotemporal limits of the comfort- and dread-zone boundaries are immediate and real to the driver
and shape driving behavior. Thus, comfort- and dread-zone quantification can be used by the designers of ADAS to
create systems that facilitate the selection of appropriate default settings in ADAS algorithms. However, due to large
differences in safety margins between drivers, ADAS which automatically adapts to each individual may more
accepted.

Another implication of the relatively large individual differences in comfort- and dread-zone boundaries is that unless
ADAS are made adaptive (Jianqiang, Lei, Dezhao, & Keqiang, 2013), ADAS designers will likely have to choose conservative
settings (intervening closer to the crash) or provide drivers with the ability to modify activation thresholds. However,
driver-modifiable thresholds may not be practically implementable; since close-to-crash events are rare, drivers may not
know what their preferences are, since they probably lack experience with this type of event. It is likely that the first ADAS
addressing left turns in intersections (Lingeman, 2014) will have to intervene late, sacrificing effectiveness in order to be
more acceptable to drivers. In the future, however, ADAS solutions may be able to improve effectiveness by adapting to indi-
vidual drivers’ traits, without compromising acceptability.

Continued experimental quantification of these boundaries, by means of test tracks, driving simulators, and naturalistic
observations, can inform the design of ADAS alerting algorithms that drivers are likely to welcome, to purchase, and to heed.
It is probable that some adaptation to individual differences will play a role in their acceptability.

4.3.2. Automated driving
Quantification of the comfort-zone and dread-zone boundaries can also be used to inform the development of automated

driving at different levels of automation (SAE, 2014). The drivers of autonomous vehicles, along with all other road-users,
expect autonomous vehicles to behave as if they were being driven by a person (Li, Shih-Jie, & Yi-Xiang, 2003; Markoff,
2010). By quantifying comfort- and dread-zone boundaries for a variety of contexts, developers of algorithms controlling
automated vehicles can tune their vehicles to display acceptably human-like behaviors. For example, an automated vehicle
making a left turn should stay in the comfort zone with respect to both maximum lateral acceleration and PET. Entering the
discomfort zone may be acceptable in certain situations, while entering the dread-zone would never be accepted by drivers
or surrounding traffic, except to avoid an imminent crash.

Due to the fact that the linear regression models of PET and maximum lateral acceleration between the two conditions
had different characteristics (30% reduction versus a constant increase, respectively) designers of automated vehicles will
likely need to consider a variety of comfort-and dread-zone parameterizations, particularly throughout the discomfort
zone.
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4.4. Future work

A natural next step is to evaluate comfort- and dread-zone boundaries for different intersection layouts (e.g., with/with-
out a median barrier), cultures (e.g., US/Sweden/China) and vehicle speeds. Future work should also study the influence on
the driver of cognitive demands unrelated to the driving task. We recommend that research on safety margins, gap accep-
tance, and infrastructure design all include the quantification of the dread-zone boundary. Finally, exploring the predictive
power of driver traits (such as those captured by the DBQ) on driving, with and without extra motives, could further the
understanding of the acceptance of, for example, ADAS interventions and AD designs. Several of these studies lend them-
selves to driving simulators.
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