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HEAD KINEMATICS IN CAR–PEDESTRIAN CRASHES 
THE INFLUENCE OF SLIDING, SPINE BENDING, ELBOW AND SHOULDER IMPACTS 

RUTH PAAS 

Division of Vehicle Safety, Department of Applied Mechanics 

Chalmers University of Technology 

 

Abstract 

In vehicle–pedestrian crashes, head injuries account for an overwhelming percentage of all severe 

and fatal injuries. These injuries are caused by the linear acceleration and rotation of the head. 

To mitigate head injuries, tools such as Human Body Models (HBMs) are used in the 

development and evaluation of pedestrian safety systems. The tools need to be compared with 

experimental data to evaluate their biofidelity. Previous studies regarding full-scale pedestrian 

experiments with post-mortem human subjects (PMHSs) have mainly provided two-dimen-

sional linear trajectories and injuries. Six-dimensional linear and angular whole-body kinematics 

from full-scale pedestrian experiments are scarce. Detailed data on the subject’s anthropometry 

and initial body posture would increase the quality of simulations but are rarely published. 

The main aim of this thesis is to quantify six-dimensional head translational and rotational 

kinematics in car–pedestrian crashes prior to head impact against the vehicle. This aim is pursued 

by means of PMHS testing and Finite Element (FE) simulations with the Total Human Model 

for Safety (THUMS) version 4.0. The PMHS data are generated to provide HBM evaluation 

data and to investigate how pedestrian anthropometry and minor differences in initial stance 

influence head and upper body kinematics in car–pedestrian crashes. Additional aims are to 

evaluate THUMS in pure shoulder impacts and on a full-scale level, and to provide full-scale 

experimental data and pragmatic HBM scaling methods to industry and academia. 

Six-dimensional kinematics of the head, spine, pelvis and shoulders were quantified in five 

new full-scale pedestrian PMHS experiments with a small sedan. Varying anthropometry and 

minor variations in initial posture influenced pelvic sliding over the bonnet and ipsilateral upper 

arm responses, which in turn influenced head kinematics. THUMS was generally biofidelic 

although the arm abduction and the neck stiffness should be improved. In full-scale simulations, 

the best pragmatic scaling method was to use two scaling factors to adjust height and weight, 

and to translate THUMS to adjust pelvis height. 

Overall, the findings in this thesis increase the knowledge on how pedestrian upper-body 6DOF 

kinematics influence head kinematics. They highlight the importance of elbow and shoulder 

impacts and will thereby contribute to increase the quality of testing and simulating. Adding 

new inspiration for novel pedestrian safety systems, this work will contribute to decreasing 

pedestrian fatalities and mitigating pedestrian injuries. 

KEYWORDS:  pedestrian, kinematics, head, shoulder, spine, PMHS, Human Body Model, 

THUMS 
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1 Introduction to Pedestrian Crashes 

Pedestrians account for 22% of all road traffic fatalities world-wide with more than 270 000 

fatalities each year (WHO 2013b). Between 1970 and 1993, the number of pedestrian fatalities 

generally decreased in high-income countries (OECD 1998). Although, today, pedestrian crashes 

are more frequent in low-income than in high-income countries (WHO 2013b), between 2009 

and 2012 the number of pedestrian fatalities increased slightly in middle- and high-income 

countries (IRTAD 2014). A study by the National Highway Traffic Safety Administration 

(NHTSA) concluded that the fatality risk in pedestrian crashes has increased (Chang 2008). 

Considering the rising number of pedestrian fatalities and the increased fatality risk in these 

crashes, considerable effort is required to further reduce pedestrian fatalities and injuries. 

To reduce road traffic fatalities and mitigate injuries resulting from road traffic crashes, the 

World Health Organization (WHO) has defined five pillars guiding road safety activities: road safety 

management, safer roads and mobility, safer vehicles, safer road users and post-crash response (WHO 

2013a). Similarly, the Haddon Matrix (Haddon 1980) separates host, agent and environment 

factors in three time phases: pre-crash, in-crash and post-crash. In addition, not only each factor 

but also interactions between the various factors contribute to the injury outcome in a crash (WHO 

2006). The pedestrian injury risk in the in-crash phase greatly depends on the host–agent 

(pedestrian–vehicle) and the host–environment interaction (pedestrian–ground). To analyse the 

complex vehicle–pedestrian interaction and further diminish pedestrian fatality and injury risk 

during the crash, a thorough understanding of real-life crashes, current countermeasures as well as 

pedestrian kinematics and injury mechanisms is required. 

This chapter provides an overview over state-of-the-art research in pedestrian safety, focusing 

on the in-crash phase during pedestrian collisions with passenger cars. Pedestrian accident statistics 

show the most common crash scenarios and reveal that the most seriously injured body region is 

the head. Countermeasures currently on the market mitigate pedestrian injuries to a certain extent 

although these safety systems do not necessarily prevent all injury types. To explain this gap in 

safety technology and to explain the injury mechanisms and injury criteria, pedestrian kinematics 

during car–pedestrian impacts are analysed with a focus on the upper body and head. Data sources 

for investigating kinematics and injuries as well as for Human Body Model evaluation are presented, 

and tools to further study the biomechanics in car–pedestrian crashes are introduced. 

1.1 Epidemiology 

In the past, by analysing accident tatabases, numerous studies have been conducted to statistically 

investigate real-life pedestrian crashes. In-depth crash reconstructions are vital for the 

understanding of pedestrian biomechanics and injury patterns. When attempting to improve 

pedestrian safety through experiments or simulations, accident statistics aid in focussing on the 

relevant crash conditions in terms of e.g. vehicle speed and braking behaviour, pedestrian posture 

and pedestrian avoidance maneouvers. The inclusion criteria for the populations in the statistics 

presented in this section are listed in Table 1.1. 

The majority of pedestrians involved in crashes (71–79%) were standing upright and moving 

across the road (Maki et al. 2003a). Most pedestrians (65%) were walking when impacted while 
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20% were running (Hardy 2009). Walking speeds generally varied between 0.9 and 1.7 m/s (Simms 

and Wood 2009). The percentage of pedestrians struck laterally varied between 65% (Hardy 2009) 

and 89% (Simms and Wood 2009). Most pedestrians (60%) did not display any avoidance 

manoeuvre such as jumping or turning away (Jarrett and Saul 1998). 

Table 1.1: Populations of pedestrians included in various studies. Simms and Wood (2009) does not appear 
in this list since they provide a review of other studies. (*) The number of pedestrians included in their 

statistics is unknown. (**) Abbreviated Injury Scale (AAAM 2005). (***) Severe Traumatic Brain Injury. 

Reference 
Complete study Used for this section 

n Injury level Age n Injury level Age 

Arregui-Dalmases et al. 

(2010) 
10341 hospitalised all (complete data set) 

Badea-Romero and 

Lenard (2013) 
273 AIS (**) 0+ all 70 

head injury 

or impact 
all 

Fildes et al. (2004) > 2100 AIS1+ all (complete data set) 

Fredriksson et al. (2010) 1030 AIS1+ all 50 AIS3+ adult 

Hardy (2009) 330974+ AIS0+ all NA (*) AIS0+ all 

Harruff et al. (1998) 217 fatal all (complete data set) 

Jarrett and Saul (1998) < 300 AIS0+ all (complete data set) 

Lau et al. (1998) 369 fatal all (complete data set) 

Leijdesdorff et al. (2014) 154 sTBI (***) all (complete data set) 

Maki et al. (2003a) 4416 AIS1+ 13+ (complete data set) 

Mizuno (2005) 1605 AIS0+ all NA (*) AIS2+ all 

Otte (1999) 762 AIS1+ all (complete data set) 

Rosén and Sander (2009) 490 AIS1+ 15+ (complete data set) 

Yao et al. (2008) 120 AIS1+ all 77 
AIS2+ 

head 
all 

The vehicles involved in pedestrian crashes were mainly (66–82%) passenger cars (Hardy 2009). 

Most pedestrians (60–77%) were struck by the vehicle front (Hardy 2009). Half of all pedestrian 

crashes occurred at vehicle speeds below 25 km/h (Simms and Wood 2009), 70% at 40 km/h or 

less (Otte 1999) and 90% below 50 km/h (Simms and Wood 2009). Injury severity generally 

increased with increasing vehicle speed (Rosén and Sander 2009). More specifically, above 40 km/h 

to 50 km/h, the injury severity increased rapidly with speed (Fildes et al. 2004, Rosén and Sander 

2009, Simms and Wood 2009). Braking reduces impact speed from first contact to head impact 

and introduces braking pitch, thus changing the head impact location height on the car. Hardy 

(2009) found that one third of all drivers did not brake whilst 30% braked hard. Jarrett and Saul 

(1998) reported braking in 43% whereas they found no driver avoidance (no braking or steering) 

in 40% of their cases. In almost half of the cases in which the pedestrian was hit laterally the 

vehicle was in a straight line of motion (Jarrett and Saul 1998). 

Head injuries are the main cause of death in pedestrian crashes (Lau et al. 1998, Hardy 2009). 

Non-fatal head injuries can cause long-term medical impairment (Olver et al. 1996). Figure 1.1 

compares injury statistics from two pedestrian crash studies (Lau et al. 1998, Mizuno 2005). 
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Figure 1.1: Injury frequency distribution per body region for different injury severities. The black and striped 
bar groups each add up to 100%. For the light grey bars, multiple nominations were possible for each injury 
that would have been fatal even if it had been the only injury sustained by a subject. 

The black bars in Figure 1.1 show that, apart from minor injuries such as skin abrasions, defined 

on the Abbreviated Injury Scale (AIS) as 1 (AAAM 2005), the head and legs are the body parts 

most frequently injured in pedestrian crashes. The striped bars show which body part was affected 

in the main cause of death. It is important to note that multiple injuries are listed as an additional 

item in this group. Among the single body parts, head injuries are most likely to be the main cause 

of fatalities. In contrast, the legs account for a relatively large portion of all injuries (black bars), 

but represent only a low percentage of causes of death (striped bars). The light grey bars show how 

many of the deceased pedestrians had suffered a principally fatal injury in each body region, i.e., an 

injury that would likely have led to death even if it would have been the only injury sustained. 

Thus, the striped bars represent only one injury per subject as the main cause of death, whereas 

the light grey bars include every injury that would have led to death independent of any other 

injuries. While Figure 1.1 clearly shows that altough head injuries are the major cause of pedestrian 

fatalities, chest and abdominal injuries must be also addressed as they are frequent among the 

fatally injured. In the chest, abdomen, neck and extremities, the principally fatal injuries (light 

grey) exceed the percent of injuries identified as responsible for a fatality (striped) by far. As an 

example, chest injuries were determined to be the primary cause of death in 2% of the cases while 

50% of the fatally injured pedestrians sustained chest injuries that would have been principally 

fatal. This divergence can only be explained if most of the principally fatal chest injuries (light 

grey) are included in multiple injuries (striped). Principally fatal injuries in the chest, abdomen, neck 

and extremities thus appear to be most common when multiple injuries were determined to be the 

cause of death. Thus, head injuries still remain the main focus in pedestrian crashes although chest 

and abdominal injuries should also be considered in the future. 

Among life-threatening head injuries in pedestrians, brain (intracranial) injuries are most 

common, followed by skull fractures (Harruff et al. 1998, Arregui-Dalmases et al. 2010, 
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Leijdesdorff et al. 2014). In 154 pedestrians with severe traumatic brain injury (sTBI, AIS 3+), 337 

injuries were intracranial (89% cerebrum, 64% hemorrhage, 52% contusion, multiple injuries per 

pedestrian possible) and 149 were skull fractures (Leijdesdorff et al. 2014). In 217 fatally injured 

pedestrians, 228 intracranial injuries were observed of which 120 were cerebral contusions / 

lacerations, 42 were brainstem / midbrain contusions / lacerations and 66 were subdural 

haematomae, and 150 skull fractures (Harruff et al. 1998). While skull fractures occur due to linear 

acceleration of the head during direct impact, brain injuries occur due to linear or angular motion, 

or a combination thereof (Holbourn 1943, Hirsch and Ommaya 1970, Gennarelli et al. 1971, 

Gennarelli et al. 1972, Ono et al. 1980, Ommaya 1995). Whether head rotation in pedestrians 

without contact is excessive enough to cause brain injuries still remains to be established. 

Several studies investigated the distribution of head-impact locations on the car (Figure 1.2). 

For adults, the windscreen area has been identified to be the most common site of head impact 

when a head–vehicle impact occurs (Mizuno 2005, Yao et al. 2008, Fredriksson et al. 2010, Badea-

Romero and Lenard 2013). For children, the head most commonly impacts the bonnet (Yao et al. 

2006). Excluding the bumper, bonnet leading edge (BLE) and bonnet, almost two thirds of AIS 3+ 

head injuries were caused by structural parts in the outer region of the windscreen (Fredriksson et 

al. 2010), indicating that it is not the windscreen itself, but the stiff parts in the windscreen 

region—such as the A-pillars and the dashboard—that are most hazardous to the head. 

 

Figure 1.2: Distribution of head-impact locations on a standardised car front in various studies. 

Based on the accident statistics reviewed in this section, a standard scenario can be established 

for car–pedestrian crashes: A pedestrian in an upright position is hit laterally by the mid-part of a 

passenger vehicle front while walking and without attempting avoidance, with car speeds generally 

being below 50 km/h. The review in this section also shows that head injuries are the most 

common life-threatening injuries in car-pedestrian crashes, and that brain injuries are more 

frequent than skull fractures. Stiff structures around the windscreen appear to be the most 
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beneficial areas for installing countermeasures which mitigate the consequences of a head–vehicle 

impact. 

1.2 Countermeasures 

To date, state-of-the-art pedestrian passive safety countermeasures available on the market include 

reduced stiffness of the bumper, BLE, bonnet, A-pillars and the upper windscreen frame(Schuster 

2006, Longhitano 2009, Lindman et al. 2010). Increasing the space for deformation between 

bonnet and the components below such as the battery has increased pedestrian safety. Further 

increases of space for deformation and reduction of stiffness have been accomplished by introducing 

active bonnets that are raised automatically in case of a pedestrian impact, as well as air bags on the 

outside of the car, especially in the bonnet rear end and A-pillar regions (Paye 2002, Maki et al. 

2003b, Jakobsson et al. 2013). All of these countermeasures aim at reducing vehicle stiffness and 

thereby mitigating direct impact injuries. In addition, vehicle front geometry has the potential to 

contribute to pedestrian safety by changing pedestrian kinematics in a way that reduces injury risk 

from a biomechanical perspective: Reducing the space between the lower vehicle front and the 

ground by lowering the front end or by adding structures such as a secondary bumper or an external 

airbag prevents the feet from being dragged underneath the car and reduces lateral knee loading 

(Pipkorn et al. 2007, Thollon et al. 2007). Lowering the BLE and smoothing its curvature reduces 

pelvic injuries by allowing the pelvis to slide over it (Kallieris and Schmidt 1988). Similar 

approaches for mitigating head injury risk, by e.g. reducing head rotation prior to head–vehicle 

impact, have not yet, to the best knowledge of the author, been developed. 

Advances in active safety have enabled vehicles to detect pedestrians and brake autonomously, 

providing the potential to help avoiding pedestrian accidents or mitigate the consequences 

(Lindman et al. 2010). However, due to mechanical limitations in braking capabilities, limitations 

in pedestrian detection by sensors and limitations in prediction of pedestrian behaviour, active 

safety is not expected to be able to prevent all pedestrian accidents in the near future. Reducing 

pedestrian fatalities and injuries through passive safety is still necessary, and will continue to be an 

important contributor to pedestrian safety even in the future. Although statistics indicate that 

earlier pedestrian protection measures have already provided significant benefits—annual 

pedestrian fatalities in Europe have been reduced from about 13 000 to about 6 000 between 1980 

and 2000 (Breen 2002)—pedestrian crashes remain a major health issue (WHO 2013a). Further 

reduction of fatalities and mitigation of injuries must be realized, especially since this decrease in 

the number of fatalities has recently levelled off (IRTAD 2014). 

1.3 Kinematics 

Typical pedestrian in-crash kinematics have been reported in many studies based on post-mortem 

human subjects (PMHS) and pedestrian dummy experiments, e.g., in Simms and Wood (2009). 

Since the kinematics are important for further reduction of injuries, a short summary of pedestrian 

PMHS kinematics is provided in this section. Typical kinematics are also shown in Figure 1.3. 

In the standard scenario, the first contact between vehicle and pedestrian takes place between 

the bumper and the legs, the main source of leg injuries in crashes with passenger cars (Longhitano 

et al. 2005). In this phase, an initial rotation around the longitudinal axis of the pedestrian is 
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initiated. The direction and amount of this rotation depends mainly on whether the ipsilateral leg 

is forward or rearward as this determines the lever arm and the orientation of the pelvis prior to 

impact (Forman et al. 2015a). 

Some milliseconds after vehicle–leg contact, 

the BLE impacts either the pelvic region (sedan 

type car), the upper leg (sports car or tall 

pedestrian) or the thorax (sport utility vehicle 

type car or child pedestrian), making the BLE 

another main source of leg injuries (Longhitano 

et al. 2005). Up to this impact, due to inertia the 

upper torso and head are usually still upright. As 

the vehicle continues its path and partly drags 

the pelvis with it, the torso begins to rotate 

towards the vehicle. The arms do not naturally 

follow this motion since inertia and gravity keep 

the upper arms vertical (Ishikawa et al. 1993). 

This sequence of events in some cases makes the 

car impact the pedestrian’s elbow, upper arm 

and/or shoulder, e.g., if the upper body rotation 

around the longitudinal axis is small. 

 

Figure 1.3: Typical pedestrian kinematics (adapted 

from Paas et al. 2012) 

As with the upper arm, the head does not immediately follow the motion of the torso. While 

the torso falls down towards the car, inertia causes the head to lag behind this motion until the 

neck finally drags the head towards the car, followed by head impact against the vehicle. After the 

phase from first vehicle–pedestrian contact to head–vehicle contact (primary impact) follows either 

a flight phase, a phase of the pedestrian being carried on the bonnet, or a sliding or rolling off 

phase (Simms and Wood 2009). Which of these occurs depends largely on vehicle shape, speed 

and braking (Hamacher et al. 2012). Subsequently, the pedestrian hits the ground (secondary 

impact) and continues to slide on or roll over the ground until reaching the resting position, with 

the risk of further impacting structures on or near the road (tertiary impact). The percentage of 

injuries sustained during vehicle and ground impact reported in literature varies (Figure 1.4), 

although in all studies most injuries were attributed to vehicle impact. 
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Figure 1.4: Percentage of vehicle-impact (left) vs. ground-impact (right) injuries. Solid filled bars and dotted 
dark-background bars (left legend side) indicate injuries to all body parts, striped and dotted light-
background bars (right legend side) indicate head injuries. References: [1] Roudsari et al. (2005), [2] Öman 

et al. (2015), [3] Zhang et al. (2008), [4] Badea-Romero and Lenard (2013), [5] Mallory et al. (2012). 
Notes: * Passenger Vehicles (PV), ** Light Truck Vehicles (LTV), *** only one head injury per pedestrian 
was considered. Databases: Pedestrian Crash Data Study (PCDS, US police-reported cases), Injury Database 

(IDB, Swedish cases, here: non-fatal cases only), On-the-Spot (OTS, UK police-reported cases), German 
In-Depth Accident Study (GIDAS, German police-reported cases). 

Although two-dimensional kinematics during vehicle impact have been recorded in many 

studies, the variability between different tests is large (Thollon et al. 2007, Subit et al. 2008). 

Contributing to this variability are different test setups, subject anthropometries and different 

vehicle geometries (Subit et al. 2008). Nevertheless, only few studies have published detailed 

subject anthropometries, and three-dimensional rotations still remain to be quantified. As detailed 

in Section 1.1, brain injuries are the dominant type of head injuries. Brain injuries can be caused 

by linear acceleration or by head rotation, as detailed in Section 1.4. 

1.4 Head Injury Mechanisms and Injury Criteria 

When the head hits the vehicle, skull fractures and brain injuries can occur due to linear 

acceleration and rotation (Section 1.1). Since the head linear acceleration is highest during impact, 

current pedestrian passive safety systems for the head aim mainly at reducing vehicle stiffness 

(Section 1.2). However, brain injury might also occur in the phase between pelvis and head impact 

due to the head lag and catching up motion (Section 1.3) although the amount of this rotation 

has not yet been quantified. This type of motion causes head rotation and thus relative motion 

between the skull and brain which is known to cause traumatic brain injury (TBI, Holbourn 1943). 

Head injury criteria can be divided into global and local criteria. These are described in detail 

in Chapter 4 and Appendix D. In short, the most often used global Head Injury Criterion (HIC) 

takes only head linear acceleration during a certain time interval into account (Versace 1971). More 
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recent global criteria focus on head angular velocity, e.g., the Brain Injury Criterion (BrIC, 

Takhounts et al. 2013), or on head angular acceleration, e.g., the Head Impact Power (HIP, 

Newman et al. 2000) or the Brain Injury Threshold Surface (BITS, Antona-Makoshi et al. 2015). 

These studies indicate that head rotation is receiving increasing attention in traffic injury research. 

1.5 Biomechanical Tests 

Biomechanical tests on component and full-scale level are important to improve the understanding 

of pedestrian kinematics and injuries as well as for the evaluation of test tools. In the past, full-

scale PMHS tests have often been carried out to improve the understanding of injury mechanisms. 

To date, ethical concerns would restrict biomechanical tests that are not suitable for development 

and evaluation of test tools such as crash test dummies, impactors and human body models 

(Section 1.7). These test tools are required for detailed crash reconstructions and safety system 

evaluation. In the future, once fully validated, the test tools might replace biomechanical tests. 

1.5.1 Full-scale Experiments 

Extensive full-scale pedestrian experimental testing began in the 1970s when attention was brought 

to the increasing number of fatalities and injuries involving pedestrians in accidents with motor 

vehicles. Kramer et al. (1973) investigated lower leg fracture mechanisms in pedestrian impacts. 

Pritz et al. (1975) was one of the first studies to focus on the whole body in which the influence 

of vehicle design on pedestrian injury was examined. At the time, they believed that car–pedestrian 

contacts were mainly responsible for severe leg and pelvic injuries while it was predominantly the 

pedestrian–ground impact that caused severe head and arm injuries (Pritz et al. 1975). This differs 

from today’s understanding, which might partly be due to vehicle front shapes being different at 

that time, and to the study being predominantly focussed on leg and pelvic injuries. Investigating 

a lowered vehicle front end profile, the study highlighted that the overall effectiveness of this 

countermeasure would depend on its effect on upper body and head injuries: both lowering and 

softening the vehicle front end tended to increase head velocity. In addition, they discovered that 

the peak head velocity was higher than the velocity of the bonnet in all experimental tests and that 

this peak occurred before head impact during a “whipping, rotation motion about the upper body 

that suggests a potential for neck injuries” (Pritz et al. 1975). Krieger et al. (1976) studied 

pedestrian kinematics in detail, focussing on leg and head acceleration but describing body rotation 

as well. They concluded that pedestrian crashes lead to “a wide variety of complex (pedestrian) 

motions”. Based on the HIC, the risk of injury was higher in head–bonnet impact than in head–

ground impact, and that “dummy and cadaver response to almost identical impacts were quite 

different” (Krieger et al. 1976). An early mathematical pedestrian model was introduced by Ashton 

et al. (1983), a study in which reconstructions of several real-life accidents were attempted using 

dummy testing, PMHS testing, and a mathematical model. One of their findings was that, contrary 

to the findings of Pritz et al. (1975), lowering the vehicle front end reduced head impact velocity,. 

They also noted the difficulties in reproducing specific events due to the complexity of the 

pedestrian kinematics, as well as considerable differences between dummy and PMHS responses. 

Other notable early full-scale pedestrian PMHS tests have been conducted by Césari et al. (1980), 

Farisse et al. (1981), Cavallero et al. (1983), Brun-Cassan et al. (1984), Kallieris and Schmidt 

(1988), and Ishikawa et al. (1993), to name just a few. 
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In order to investigate advances in vehicle designs aimed at protecting pedestrians, Schroeder et 

al. (1999) studied the kinematics and injuries of six PMHSs that had been impacted by two 

different vehicles. They concluded that while a lower vehicle front end was found to reduce leg 

injuries, head impact against the vehicle remained an issue to be addressed. During the loading of 

the pedestrian onto the bonnet, the spine was elongated. They hypothesised that this elongation 

would have contributed to the spine injuries discovered in the subjects in subsequent autopsies. 

Kerrigan et al. (2005a), (2005b) and (2007) investigated the kinematics of PMHSs and the 

Polar-II dummy in impacts against two different mid-size sedan cars and an SUV in an attempt to 

establish kinematic corridors by scaling time, as well as the trajectories for each body segment. One 

of their findings was that the PMHSs generally showed longer Wrap Around Distances (WADs) 

than the dummy, and which they attributed partly to the PMHSs’ tendency to slide more over the 

bonnet than the dummy, and partly to the lack of muscle tension in the PMHSs. The main reasons 

for a greater lateral bending stiffness in the dummy compared with the PMHSs appear to have 

been dummy durability and previous dummy component design (Akiyama et al. 2001) although it 

can also be argued that due to muscle tension, living humans probably have a greater lateral bending 

stiffness than PMHSs. While the PMHSs’ heads lagged behind the upper torso during the upper 

body rotation over the bonnet towards the vehicle, the head lag was not as pronounced in the 

dummy, which Kerrigan et al. (2005b) attributed to a greater neck bending stiffness in the dummy 

compared with the PMHSs. 

Subit et al. (2008) studied the kinematics and injuries of four PMHSs, where two short and 

two tall subjects were impacted by a small city car and a mid-sized sedan. The study focused on 

the pelvis and upper body kinematics, which were found to depend on subject size and vehicle 

front geometry. For the tall subjects, the amount of sliding over the bonnet was larger than for 

the short subjects. In contrast, the shorter subjects displayed a considerable change in pelvis 

kinematics around the time of pelvis contact. Subsequently, around the time of head impact, the 

shorter subjects displayed a higher amount of overall lateral bending than did the taller subjects, 

and a higher HIC score was measured for the shorter subjects for each of the vehicles. Post-test 

autopsies revealed that the subjects impacted by the small city car sustained more rib fractures than 

the subjects impacted by the mid-sized sedan. All four subjects sustained spinal fractures, either to 

the vertebral body (three subjects) or the vertebral processes only (one subject). 

The head velocity peak was consistently found to occur before head impact in all examined 

recent studies which have investigated head velocity curves (Schroeder et al. 1999, Kerrigan et al. 

2005a, Kerrigan et al. 2005b). The head lagging behind the upper torso during rotation over the 

bonnet was seen in all these studies and with all investigated vehicle front geometries; though 

increased neck stiffness appeared to considerably reduce this effect. In order to reduce variability, 

the hands were attached to each other in most of the studies. Substantial elbow impacts were seen 

in two of the three tests in Schroeder et al. (1999) while the upper arm was restrained in the third 

test. Shoulder impacts occurred in all three tests. Both elbow and shoulder impact occurred in the 

one PMHS test where video snapshots were displayed in Kerrigan et al. (2005a) and in Kerrigan et 

al. (2005b), respectively, although the hands were tied together in their experiments. In the four 

experiments carried out in Subit et al. (2008), communication with the authors revealed that all 

four test subjects impacted the vehicle with the shoulder while only one subject displayed a 
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considerable elbow impact, i.e., elbow impact in which a notable amount of energy can be expected 

to be transferred into the upper body. 

Normalising kinematics and trajectories of pedestrian PMHS experiments has been attempted 

in several studies. Traditional normalisation methods based on momentum transfer in single 

impacts (Mertz 1984, Viano 1989) require calculation of the effective mass in the impact and thus 

cannot be applied to full-scale pedestrian experiments in which multiple impacts occur. Normali-

sation methods based on the total body mass (Eppinger et al. 1999) do not take into account the 

subject’s height. Since subject height is known to affect pedestrian trajectories, such mass-based 

normalisation methods are of limited value for pedestrian kinematics. In a normalisation method 

developed specifically for pedestrian kinematics (Kerrigan et al. 2005b, Kerrigan et al. 2007), scaling 

factors were calculated from the height of body parts in the initial positions of the subjects. These 

scaling factors were then used to scale the horizontal and vertical linear displacements of each body 

part. Nevertheless, the authors themselves noted that their method was not sufficient when applied 

to experiments with a different vehicle front (Kerrigan et al. 2007). Similarly, Untario et al. (2008) 

attempted to scale trajectories of different-size pedestrian dummies to average male dummy 

trajectories and found non-linear dummy kinematics which traditional dimensional normalisation 

methods could not take into account. In later studies, body part trajectories were instead 

normalised using the vertical distance between the ipsilateral knee to the body part (Forman et al. 

2015a, Yanaoka et al. in press). However, the number of subjects was limited to three in Forman 

et al. (2015a) and only one vehicle was used. Thus, their method has not yet been finally validated. 

Two studies have attempted to develop normalised trajectory corridors (SAE J2868 2010, 

Forman et al. 2015a). In both studies, three full-scale PMHS experiments formed the basis for 

corridor development, and all six subjects had their hands bound together. In SAE J2868 (2010), 

the tests from Kerrigan et al. (2005a) were used and in these the PMHSs were struck by a Honda 

Civic year model 2004. In contrast, in Forman et al. (2015a), a generic buck was used to strike the 

PMHSs. Both studies first normalised the trajectories of each body part. In SAE J2868 (2010), the 

normalisation method of Kerrigan et al. (2005b)—which normalised according to body part 

heights—was adopted. In Forman et al. (2015a), the vertical distance from the knee was used 

instead. In both studies, after the normalisation of the individual trajectories of each body part of 

all three PMHSs, the average of each body part’s normalised trajectory was calculated before 

constructing the corridors. The corridors were then calculated from the average trajectories of each 

body part using a percentage of the accumulated path length of each trajectory at each point in 

time. For the head and spine, the upper bounds of the corridors were set to +5% and the lower 

bounds to -10% of the trajectory path lengths. For the pelvis, the upper bound percentage was 

+10%, and the lower bound percentage was -5%. The total corridor width of 15% of the trajectory 

path length was chosen with the aim that not all dummies would fit into the corridors, but fitting 

a dummy into the corridor was deemed possible with existing technology. However, none of the 

two studies specified how well a dummy or HBM should match the corridors in order to be 

considered biofidelic. Although not published in their study, Forman et al. (2015a) recorded out-

of-plane motions as well. In addition, they reported detailed subject anthropometry and initial 

stance. Thus, the individual trajectories are highly valuable for HBM evaluations. 
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1.5.2 Shoulder Impact Experiments 

As detailed in Section 1.3, pedestrians in the standard scenario may impact a striking vehicle with 

their shoulder. However, the influence of shoulder impacts on head kinematics in pedestrian 

crashes is largely unknown. Shoulder impacts have in the past mostly been studied in relation to 

side impacts, with car occupant responses in impacts with the side interior of the vehicle such as 

the door or the B pillar being in focus. All shoulder impact experiments existing to date, to the 

best knowledge of the author, have been conducted with seated subjects. These experiments can 

be divided into two categories. In the first category relatively small surface impactors were used, 

most often directed against the glenohumeral (GH) joint (e.g., Bolte et al. 2000, Thollon 2001, 

Marth 2002, Bolte et al. 2003, Compigne et al. 2004, Ono et al. 2005, Subit et al. 2010). In the 

second category, larger impactors that additionally directly engage other body parts, such as the 

thorax or the pelvis were used (e.g., Cavanaugh et al. 1990, Irwin et al. 1993, Koh et al. 2001). To 

study the influence of shoulder impacts on head kinematics in pedestrian crashes, both these 

categories are of interest. However, when evaluating the shoulder of an HBM well-defined con-

ditions and impacts locally restricted to the shoulder would be preferred for biofidelity assessment. 

In a number of pure shoulder impact studies, the arm was not supported or the authors did not 

mention any arm support. In these impacts, the shoulder might have been in a more inferior 

position than would be expected in a living human, thus resulting in a more inferior impact and 

load path. In order to establish an injury risk distribution, Bolte et al. (2000) investigated shoulder 

response and injuries of eleven PMHSs hit by a 23 kg padded impactor at velocities between 3.5 

and 7 m/s. Almost half (41%) of the impacts caused a distal clavicle fracture, and 63% of the 

impacts resulted in a loose sternoclavicular joint. Compigne et al. (2004) subjected seven PMHSs 

to lateral and oblique (15°) impacts at 1.5 m/s and purely lateral impacts at 3, 4, and 6 m/s with 

a rigid 23.4 kg impactor. Similarly to Bolte et al. (2003), they found greater mobility in the shoulder 

when the impact was lateral or anterior-oblique than when it was posterior-oblique. The authors 

of both studies attributed this to the scapula sliding over the rib cage. 

Bolte et al. (2003) conducted 14 shoulder impacts against PMHSs with a 23 kg padded impactor 

at velocities of 4.4 (12 tests) and 7 m/s (2 tests) in lateral, 15° anterior-oblique and 30° anterior-

oblique impact directions while supporting the upper arms. Oblique loading resulted in greater 

shoulder deflections than lateral loading which was attributed to the scapula sliding posteriorly 

over the thorax. Regarding bone injuries, only one distal clavicle fracture occurred and one subject 

sustained four rib fractures. The reduced number of injuries compared with Bolte et al. (2000) was 

attributed to reduced impact severities below the injury threshold. 

Ono et al. (2005) subjected eight volunteers to lateral and 15° oblique impacts with an 8.5 kg 

rigid impactor and pre-defined load curve, calibrated with a Hybrid III dummy to maximum 

contact forces of 400, 500, and 600 N. The volunteers were asked to relax their muscles in one set 

of tests and to tense them in a second set. Corridors were established for impact load, head, T1 

and pelvis accelerations, neck force and moment, shoulder deflection, as well as head, T1, and head 

relative to T1 rotation angles. The maximum head acceleration did not change considerably when 

comparing relaxed and tensed volunteers, but after 150 ms the maximum lateral head displacement 

of the average tensed volunteer was approximately double that of the average relaxed volunteer. 

Shoulder deflection was reduced by 20% for the tensed compared with the relaxed volunteers. The 



 

12 

maximum neck moment around the anterior-posterior axis (where the main head rotation 

occurred) was reduced by 24% for the tensed compared with the relaxed volunteers. Differences 

in head/neck/torso responses were also found in different impact directions and this was attributed 

“to the difference in shoulder anatomical shape or structure” (Ono et al. 2005). The shoulder 

medial motion was limited in the posterior impact compared with the lateral and antero-lateral 

impact, well in agreement with the findings of the studies named earlier in this section. 

1.6 Accident Data for Dummy and HBM Evaluation 

As described in Section 1.1, in-depth accident data is valuable for the understanding of real-life 

pedestrian crashes in terms of the biomechanics, injury patterns and boundary conditions such as 

e.g. vehicle type, speed, steering and braking, pedestrian age, stature and walking speed. These are 

typical variables recorded in accident databases such as the German In-Depth Accident Study 

(GIDAS) database (Otte et al. 2003), the PCDS (Jarrett and Saul 1998), and the Advanced 

Protection Systems (APROSYS) database (Carter et al. 2008). 

Detailed in-depth pedestrian accident reconstruction is complex and may lead to varying results 

based on the information available to the investigators and the techniques used for reconstruction 

(Depriester et al. 2005, Brach 2015). Depriester et al. (2005) compared the results of several 

accident reconstruction methods. To assess the quality of these methods, they used two real-life 

accidents that had previously been reconstructed in depth. Most methods either calculated vehicle 

impact speed from the throw distance, or determined both vehicle impact speed and throw distance 

in an iterative process. The quality of vehicle impact speed prediction varied, and the ranges of the 

predicted speeds were rather large. In addition, two of the methods could not be applied to one of 

the cases as this crash did not meet the methods’ requirements. The impact locations of body parts 

on the vehicle could, to a large extent, be matched by their simulation models. Using these 

simulation methods, an understanding of pedestrian kinematics could be gained. Matching body 

parts to impact locations may not always be feasible although it was possible in the above two cases. 

However, whether accident data can be used to validate the detailed kinematics of pedestrian 

test tools is questionable. Traditional in-depth accident reconstruction utilises test tools to study 

the pedestrian’s behaviour immediately prior to the crash. To study exact pedestrian in-crash 

kinematics test tools such as HBMs are required. Using the opposite approach of validating the 

kinematics of these test tools with accident reconstructions may have limited value. However, a 

multi-level approach utilizing accident reconstruction, biomechanical tests both on component 

and on full-scale level, crash test dummies, HBMs, physics, anatomy and physiology is likely to 

provide the best possible solution to increase knowledge about pedestrian kinematics. 

1.7 Human Body Models and other Test Tools 

In the present thesis, test tools are defined as physical or numerical representations the whole 

human body or of human body parts used to assess the injury risks of vehicles as well as the 

potential benefits of safety systems for vehicle–pedestrian crashes. Some of these test tools are 

pedestrian crash test dummies, leg, upper leg and head impactors, and numerical HBMs. 

Pedestrian crash test dummies and impactors used to improve pedestrian safety are presented 

in Appendix B. To date, two main pedestrian dummies have been developed: the Polar-II along 
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with the the updated Polar-III (Akiyama et al. 1999, Akiyama et al. 2001) as well as the Hybrid-

III pedestrian dummy (Humanetics Innovative Solutions 2013). Sub-system impactors for 

pedestrian safety used in Euro NCAP today consist of adult and child head impactors, upper leg 

and lower leg impactors (Euro NCAP 2014a). Physical crash test dummies and sub-system 

impactors are designed to be tested with actual vehicles. In this sense, dummies and impactors may 

represent a more realistic assessment of the actual vehicle than numerical simulations, which 

require a numerical vehicle model. However, both dummies and impactors are themselves highly 

simplified models of actual humans, which may lead to injury assessments that differ from those 

obtained in PMHS tests (Kerrigan et al. 2005b, Kerrigan et al. 2008). Additionally, safety systems 

should protect a large range of the population, which can more easily be represented by HBMs, 

while anthropometric changes to a dummy are more difficult to introduce. Therefore, HBMs are 

invaluable tools for pedestrian safety system development and evaluation. 

Since HBMs are relatively easy to adjust and modify they can be used to study many different 

impact conditions without causing physical damage to real vehicles, crash test dummies or PMHSs. 

Due to the complexity of pedestrian crashes adjustability is especially important. Thus HBMs are 

suitable tools for variation studies and preparation of physical tests during the early stages of 

product development by car manufacturers. Recent HBMs provide increasing levels of detail 

including detailed inner organs and/or advanced brain models (Kleiven 2007, TMC 2011, Sahoo et 

al. 2014). When properly validated, such HBMs can be used to develop detailed injury criteria. 

Until recently, two main approaches to human body modelling have been available for use in 

the in-crash phase: the multibody (MB) and the FE method. As both have different advantages 

and shortcomings (Wismans et al. 2005), combined MB/FE modelling has been developed as a 

third option. MB models are usually composed of rigid body ellipsoids and planes with a point 

mass in their centres of gravity and with inertial properties assigned to them. These bodies are 

connected by joints with a lumped parameter joint stiffness, simulating the interaction between 

bones, muscles and ligaments. Contact and penetration characteristics are approximated by 

idealised functions. This approach allows for low computation time. The level of detail in MB 

models is lower than in FE models, and their tissue-level injury prediction capabilities are limited. 

In contrast, FE models consist of deformable elements and can be used to predict injury based 

on tissue level criteria by calculating variables such as stress, strain, and strain rate. The FE method 

allows for modelling of complex geometries and using advanced material laws, and provides a high 

level of detail. With FE models, the load path through the human body during an impact can be 

quantified at tissue level. Therefore, FE models for pedestrian impacts must be validated both in 

terms of kinematics and at the tissue level. 

The three categories of pedestrian FE models that currently exist are impactor models, dummy 

models and human models. The human models can be further divided into models of body parts 

(component models) and full-body HBMs. To date, several pedestrian FE full-body HBMs have 

been developed and refined. The Total Human Model for Safety (THUMS) pedestrian model is a 

commercially available full-body FE model developed jointly by Toyota Motor Corporation and 

Toyota Central R & D Labs Inc. (Watanabe et al. 2011). The THUMS model was developed for 

the FE software LS-Dyna (LSTC Inc. 2014a) and the current version 4 consists of approximately 

2 000 000 elements (TMC 2011). Other existing full-body pedestrian FE models are the simplified 
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pedestrian GHBMC models (Elemance 2015), the pedestrian HUMOS2-model developed during 

the EC-funded HUMOS1 and HUMOS2 projects (Vezin and Verriest 2005), the H-model 

developed by the ESI group (Haug et al. 2004), the JAMA pedestrian model (Sugimoto and 

Yamazaki 2005), the in-house pedestrian models developed by several car manufacturers, and the 

NHTSA pedestrian model (Mizuno 2003). However, these models were not available on the market 

when the work for this thesis was initiated. 

1.7.1 The Total Human Model for Safety (THUMS) 

The main releases of THUMS that have so far been made available are version 1, launched in the 

year 2000, version 3, launched in 2006, and the latest, version 4, launched in 2010. A number of 

studies have attempted to evaluate the biofidelity of THUMS version 1 (e.g., Maeno and Hasegawa 

2001, Iwamoto et al. 2002, Chawla et al. 2005, Pipkorn and Mroz 2009). In comparison with earlier 

versions of THUMS version 4 has a refined mesh, includes internal organs and more solid-element 

muscles that provide damping in an impact. 

The THUMS pedestrian version 4 has been developed using new computed tomography (CT) 

scans although the head model of version 3 was re-used with a refined mesh (TMC 2011). A 

certain amount of full-scale and component level evaluation was conducted by Shigeta et al. (2009), 

Watanabe et al. (2011) and Watanabe et al. (2012). In the full-scale evaluations, THUMS body 

dimensions and total mass were adjusted to match those of the subjects. Full-scale kinematics were 

evaluated against three PMHS tests comprising a sedan, an SUV and a minivan (Watanabe et al. 

2012). Two-dimensional linear displacements of the head centre of gravity, T1, L5/S1, the knees, 

and the heels were shown to generally match the PMHS results. However, the head WADs of 

THUMS were up to 10 cm lower than those in any PMHS test. At the component level, Shigeta 

et al. (2009), Watanabe et al. (2011) and Watanabe et al. (2012) evaluated impact responses of the 

head and neck in frontal and lateral impacts, head rotation with respect to brain kinematics and 

injuries, direct impact against the head, chest responses in several frontal and lateral impact 

conditions, frontal abdominal impact responses, lateral impact and four-point bending responses 

of the knee, as well as static three-point bending and dynamic compression responses of the 

humerus. To the best of the author’s knowledge, other validation studies of the THUMS 4.0 

pedestrian were not available in the literature, although many studies have used various THUMS 

versions as a validated tool to, e.g., study real-life crashes. 

1.7.2 Positioning, Scaling and Morphing 

To accurately replicate real-life crashes or full-scale experiments for model evaluation and safety 

system development, HBMs must replicate the initial posture and anthropometry of the pedestrian 

or test subject. This can be achieved through positioning, scaling and/or morphing of the HBM. 

In the context of this thesis, positioning an HBM according to a crash or test means to bring 

the HBM into a position and orientation relative the vehicle and to adjust the body posture, i.e. 

the angle of body parts relative to each other and to the ground, so that they match those of the 

pedestrian in the related crash or test. To position FE HBMs, two main techniques are available, 

geometric positioning and positioning through simulations. In geometric positioning, the whole 

body or body parts are shifted or rotated in a pre-processor prior to a simulation. For whole-body 
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positioning relative to the vehicle this technique is fast and efficient. However, when adjusting the 

body posture with geometric positioning the axes of rotation have to be determined manually and 

usually remain constant throughout the process, which may not lead to physiologically accurate 

postures. In addition, soft tissues become deformed which may distort the elements in the HBM 

and lead to numerical instabilities (Desai et al. 2012). To mitigate these issues, HBMs can also be 

positioned through simulations in which body parts are gradually pushed or pulled into the desired 

body posture. Although more time consuming than geometric positioning, positioning through 

simulation generally allows for physiologically more accurate positioning, and reduces the risk of 

severe element distortion since the loads are applied gradually. However, element distortion cannot 

be completely eliminated and manual mesh adjustment may be required (Jani et al. 2009a). To 

mitigate these issues and to reduce the amount of time spent on positioning, several studies have 

since attempted to develop positioning tools (Jani et al. 2009b, Desai et al. 2012). However, to date 

these tools still require manual input of the joint rotation axes, and they yield meshes of limited 

quality at large posture changes (Desai et al. 2012). In addition, attempts are being made to simplify 

the positioning of FE HBMs with the aid of newly developed personalisation tools (PIPER 2015). 

Scaling is one of the methods used to adjust anthropometric measurements of an HBM to those 

of a pedestrian or a test subject. To scale an HBM, one or more scaling factors in different 

directions can be applied to the model as a whole or to body parts. If the body as a whole is scaled, 

some of the pedestrian’s or test subject’s body proportions might not be captured. If body parts are 

scaled independently, some mesh refinements may be required to restore node connectivity. Still, 

scaling is a relatively fast process and requires less anthropometric measurements than morphing, 

as described below. 

Morphing is currently the most accurate method of matching the anthropometry of an HBM 

to that of a pedestrian or a test subject. To the best knowledge of the author, no study has yet 

investigated if morphed HBMs predict pedestrian kinematics better than scaled HBMs. However, 

the technique of morphing has been applied in both model development and application. In model 

development, the original HUMOS2 mesh obtained from a single individual was morphed to 

represent a mid-sized male, a large male and a small female (Serre et al. 2006). To study the effects 

of obesity in frontal crashes, Shi et al. (2015) developed a morphing technique to represent an 

obese occupant and applied this technique to the seated THUMS 4 occupant model. One of the 

issues with morphing came to light in their study. Although they attempted to match the morphed 

model anthropometries with those of experimental subjects from a previous study, CT images of 

the experimental subjects were not available. To obtain target geometries for obese subjects, Shi 

et al. (2015) consequently used a combination of statistical analysis of 400 landmarks on the ribcage 

and generic outer body shapes (Reed and Parkinson 2008) for the torso. The new inner organ 

geometries were estimated from the new ribcage and outer body shapes. Additional fat tissue was 

modelled as subcutaneous fat; no fat tissue was added within the abdomen. The upper and lower 

extremity geometries were estimated using the Generator of Body Data (GEBOD) programme 

(Cheng et al. 1996). The complexity of defining target geometries in Shi et al. (2015) highlights 

the complexity of the morphing process and its need of large quantities of anthropometric data. 
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1.8 Summary: Status of Pedestrian Safety 

The ultimate goal of developing pedestrian safety systems is to reduce vehicle–pedestrian crashes 

and, when a crash cannot be avoided, to mitigate pedestrian injuries. Since it is likely that vehicle–

pedestrian crashes cannot all be avoided with any of the current systems, pedestrian injuries should 

be mitigated for the whole variety of pedestrian anthropometries and for all crash scenarios.  

Pedestrian in-crash safety is still immature compared with occupant in-crash safety, despite 

more than 40 years of research. Among the reasons for this lack of knowledge are the facts that 

pedestrian kinematics are complex, experimental data are limited, and crash data cannot generally 

provide detailed information on pedestrian kinematics. 

Detailed experimental full-scale pedestrian PMHS data publicly available to date are mainly 

limited to two-dimensional trajectories in crashes with less than ten modern passenger car fronts. 

The vehicle speed at which these experiments are conducted is usually 40 km/h, and the first 

contact is in the front centre region of the car. As detailed in Section 1.1, most pedestrians are 

impacted by the vehicle front. In addition, most car–pedestrian crashes occur at or below 40 km/h 

whereas the risk of severe injuries increased rapidly at and above this speed which makes this 

particular testing speed a compromise between crash frequency and injury risk. Prior to starting 

the work for this thesis, the author could not find any publicly available experimental 3D 

translational pedestrian kinematics or any rotational kinematics apart from resultant rotational 

head acceleration. However, a recent study indicated that rotationally induced TBI injury 

thresholds are directionally dependent (Takhounts et al. 2013). Experimental kinematics following 

the head–vehicle impact have, to the best knowledge of the author, not been published either. 

Thus, the kinematics during flight phase and secondary (ground) impact are largely unknown. 

Detailed experimental pedestrian kinematics from impacts with other areas of a vehicle such as the 

front corners or the vehicle rear side and kinematics in crashes with other vehicle geometries (e.g., 

busses, trucks) have not been published, to the best knowledge of the author. Another severe 

limitation of the experimental pedestrian data available today is that the initial pedestrian posture 

and anthropometry have not been reported in detail. 

Due to these shortcomings of experimental data, an obvious issue is that none of the tools 

mentioned in Section 1.6 can be validated thoroughly in terms of kinematics that have not been 

recorded in an experimental setup.  
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2 Aims 

This thesis contributes to the ultimate goal of improving pedestrian safety. The main aim is to 

quantify six-dimensional head translational and rotational kinematics in passenger-car–pedestrian 

crashes prior to head impact against the vehicle by means of PMHS testing and FE simulations. 

The PMHS data are generated to provide HBM evaluation data and to investigate how pedestrian 

anthropometry and minor differences in initial stance influence upper body kinematics in 

passenger-car–pedestrian crashes. Head kinematics are examined with focus on the influence of 

pelvic sliding over the bonnet, spine bending, and elbow and shoulder impacts against the vehicle 

for pedestrians with varying anthropometries. Additional aims are to evaluate an HBM on a full-

scale level and to provide full-scale experimental data and pragmatic HBM scaling methods to 

industry and academia. 
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3 Summary Of Papers 

This chapter summarises the papers in the thematic sections: full-scale PMHS experiments, elbow 

and shoulder impact epidemiology in real-life crashes, shoulder impacts, and full-scale pedestrian 

HBM-evaluations. To contribute to the long-term aim of reducing pedestrian head injuries, an 

Addendum (Chapter 4) explores whether full-scale pedestrian simulations could add information 

on head injury risk due to head rotation which is not currently covered by consumer ratings. 

3.1 Full-scale PMHS experiments 

In Papers I and II, five new full-scale pedestrian PMHS experiments were conducted and three 

previous experiments were re-analysed in order to investigate how pelvic sliding, spine bending, 

and elbow and shoulder impacts influence head kinematics in vehicle–pedestrian full-scale 

experiments as well as to provide new 6 degrees-of-freedom (DOF) data for HBM evaluation. 

All subjects were impacted laterally in a walking posture by a small sedan. The vehicle velocity 

was 30 km/h in one test and 40 km/h in the seven other tests. In all experiments, high-speed 

cameras filmed the subjects from their posterior side, recording the kinematics of the head, spine, 

pelvis and scapulae and providing new 6DOF data (see Paper II, Appendix C3 for all 6DOF data). 

Figure 3.1 displays typical PMHS 

kinematics. In summary, the head 

kinematics were altered by pelvic sliding over 

the bonnet, spine bending, upper arm and 

shoulder response. Compared with one 

experiment in which sliding was virtually 

non-existent, the sliding increased the 

maximum horizontal head velocity com-

ponent towards the vehicle. Both spine 

lateral bending and especially neck lateral 

bending increased the head velocity prior to 

head impact to levels above the initial vehicle 

velocity. Compared with subjects that did 

not experience considerable arm support, 

substantial upper arm support reduced head 

linear velocity relative to the vehicle prior to 

as well as during head impact, and also 

initiated head rotation towards the vehicle, 

reducing head peak angular velocity.  

 

Figure 3.1: Typical PMHS kinematics 

Although head injuries from linear and angular acceleration were most likely to occur during 

head impact against the vehicle, a risk of mild TBI during head rotation prior to impact was 

identified. All subjects exceeded angular velocity and acceleration thresholds for cerebral 

concussion prior to head impact while the head rotated towards the vehicle. The subject 

experiencing the highest rotational acceleration did not display considerable arm support after 
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elbow impact. The lack of arm support contributed to the head rotating towards the vehicle 

comparatively late which caused high head angular accelerations in the coronal plane. 

3.2 Elbow and Shoulder Impact Epidemiology 

An epidemiological study was included in Paper I to determine the frequencies of elbow and 

shoulder impacts in real-life crashes in the context of impact conditions and crash severity. 

The German In-Depth Accident Study (GIDAS) database was queried for typical pedestrian 

crashes between the years 1999 and 2011. Since the cases were not weighted, a slight bias towards 

severe cases was present. Crash severity, pedestrian size and orientation at the time of impact as 

well as head WADs were examined in view of the frequencies of elbow and shoulder impacts. 

The total number of pedestrians included was 1 212 of which 164 were injured with MAIS3+. 

Figure 3.2 shows the occurrence of elbow, shoulder and head impacts in cases where any body part 

was injured with MAIS3+, and it can be seen that most pedestrians do not experience elbow or 

shoulder impacts. Elbow and shoulder impacts appeared to occur more frequently in higher severity 

impacts, although the car speed differences were not statistically significant. As elbow and shoulder 

impacts might not leave any indentations at low car speeds, underreporting of these impacts was 

likely. The pedestrian’s orientation and size did not considerably change the frequencies of elbow 

and shoulder impacts, and the frequencies were not correlated with head WAD. 

   

Figure 3.2: Frequencies of elbow, shoulder and head impacts in n=162 MAIS3+ cases. 

3.3 Shoulder impacts 

The influence of shoulder impacts on pedestrian head kinematics were further investigated in Paper 

III. Previous shoulder impact experiments with relaxed and tensed volunteers as well as with 

PMHSs were reanalysed and simulated with THUMS version 4. Since the impact conditions in 

full-scale pedestrian experiments deviated from those in pure shoulder impact experiments 

(Figure 3.3), a parameter variation study was simulated to examine the influence of the impact 

angle, impactor orientation and shoulder posture on the head kinematics. 

The head and spine kinematics of THUMS generally compared better with the tensed rather 

than with the relaxed volunteers. The THUMS spine was slightly less curved and moved less overall 

than the average tensed volunteer spine, a combination which resulted in a close match of the head 

kinematics of THUMS and the tensed volunteers (Figure 3.4). Head twist and spine stiffness were 

greater in THUMS than in the volunteers. 
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In the shoulder impacts similar to pedestrian–vehicle shoulder impacts, lateral linear head 

displacements were sensitive to shoulder posture, impact direction and impactor orientation. 

Changing the impact direction and/or impactor orientation from lateral to supero-lateral tended 

to decrease the lateral linear head displacements. Elevated shoulder postures increased the lateral 

linear head displacements compared with neutral shoulder postures. The THUMS shoulder 

responded as would be expected from functional biomechanics. 

 

Figure 3.3: Typical shoulder impact conditions in vehicle–pedestrian impacts, here: subject PM01 in 
Paper II. Left: stationary image of the resultant velocity (vres) of a vehicle (vveh) and a falling pedestrian 
(vsubj). Right: turning the image to mimic a shoulder impactor experiment with pedestrian-like impact 
configurations: The shoulder is in an elevated position. The impactor orientation changes depending on 
whether the shoulder impacts the bonnet or the windscreen. The impact direction is in the direction of 
the resultant velocity (vres), i.e, from supero-lateral. 

 

 

Figure 3.4: Head and spine kinematics in THUMS (light grey) as well as relaxed (black) and tensed (dark 

grey) volunteers 

The timing of the onset of head movement after shoulder impacts is crucial for pedestrian head 

injury risk. Future pedestrian safety systems might increase the time span between shoulder and 

head impacts, e.g., through introduction of larger and thicker pedestrian airbags or through further 

raising the pedestrian pop-up bonnet. Such countermeasures are expected to be beneficial not only 
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through earlier reduction of head–vehicle velocity difference, but also by decreasing vehicle stiffness 

and thus providing increased safety for smaller than average pedestrians and mitigating thoracic 

injuries. The head peak angular velocity is generally not expected to increase when such systems 

are introduced. As Paper II has shown, supporting the upper torso leads to an early start of head 

rotation towards the vehicle, which contributes to reducing rotation-induced brain injuries. 

3.4 Full-scale simulations 

Varying anthropometries influence pedestrian kinematics in HBM biofidelity evaluations and 

pedestrian safety system evaluations. Therefore, in Paper IV, six pragmatic HBM scaling techniques 

were assessed regarding their ability to replicate the head impact conditions in the full-scale PMHS 

experiments in Paper II. To enable this assessment, an FE model of the vehicle used in the 

experiments was created and validated using impactor test data. THUMS version 4 was positioned 

according to each experiment and then translated and scaled in six different ways (Figure 3.5). In 

total, the five experiments combined with the six techniques resulted in 30 simulations. 

 

 
 

   

Figure 3.5: The six scaling techniques from top left to bottom right: baseline (b), translation 1 

(t1), translation 2 (t2), scaling 3 (s3), scaling 4 (s4) and scaling 5 (s5) 
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The head impact location was matched best when applying scaling method s5 although all 

translation and scaling methods (excluding the baseline method) yielded high scores of over 95% 

for the head WAD. A larger spread in ratings was observed for head impact velocities where the 

method s5 scored considerably higher than the other methods. Using the best-rated method s5, 

THUMS generally showed biofidelic responses and was numerically stable in most simulations. 

Reproducing the upper arm response was crucial for accurate reproduction of the head impact 

conditions. However, some responses observed in the PMHS experiments were not replicated by 

THUMS. In the experiments the head rotated away from the vehicle, starting approximately 50 ms 

after first contact. Such head rotation was not replicated by THUMS, indicating that the THUMS 

neck was stiffer in lateral bending than the necks of the PMHSs. Upper arm abduction influenced 

the support of the upper body, and thus head kinematics, after elbow impact. In two of the five 

experiments, upper arm abduction at the time of elbow impact exceeded 70°, but the maximum 

upper arm abduction measured in THUMS was 49°. Thus, suggested biofidelity improvements for 

THUMS include slightly softening the neck and facilitating larger upper arm abduction. 
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4 Addendum: Head injury criteria in full-scale 

THUMS and head impactor simulations 

4.1 Introduction 

To assess the risk of pedestrian head injury for different vehicles, to date, consumer ratings such 

as Euro NCAP test vehicles with head impactors. These impactors represent a human head and 

are instrumented with three-axial accelerometers which measure linear acceleration during impact 

against the vehicle (Euro NCAP 2014a). From the resultant linear acceleration, the HIC15 is 

calculated. In Euro NCAP, multiple areas on the bonnet, lower windscreen and A-pillars are tested 

at an impactor speed of 40 km/h and an angle to ground level of 65° (Euro NCAP 2014a). 

The current head impactor is limited in its ability to measure head rotation. Before impact, the 

impactor follows a ballistic curve (Euro NCAP 2014a) whereas full-scale tests show head rotation 

during this time span (Schroeder et al. 1999, Kerrigan et al. 2005a, Kerrigan et al. 2005b). Current 

test methods thus do not take into account head rotation although head rotation has been shown 

to cause TBI (Holbourn 1943, Gennarelli et al. 1972, Melvin and Weber 1985). 

Previous studies have compared HIC15 measured in full-scale pedestrian PMHS experiments 

with that measured in head impactor experiments on a sedan (Kerrigan et al. 2008) or in dummies 

with a sedan and an SUV (Kerrigan et al. 2009, Kerrigan et al. 2012). Compared with the impactor 

experiments, higher HIC values and lower head impact speeds were measured in the PMHSs. 

Compared with the dummies, in the sedan impact, the PMHSs and the dummy displayed generally 

similar HIC values, and the PMHSs displayed considerably higher averaged angular accelerations 

than the dummy. Head Injury Criteria (IC) other than the HIC that take angular kinematics into 

account have, to the best of the author’s knowledge, not yet been compared in impactor and full-

scale pedestrian test setups. 

The main aim of this Addendum is to investigate, in a pilot study, whether full-scale simulations 

with THUMS could provide more information on head Injury Risk (IR) than head impactor 

simulations. Five global head ICs are used to study the IR. A secondary aim is to investigate if 

measuring head impactor rotation, without changing the impact test setup, could provide a benefit 

for head IR assessment. 

4.2 Methods 

4.2.1 Simulations 

A total of 24 FE simulations were carried out. In one series of 12 simulations, THUMS pedestrian 

version 4.0 was impacted by a vehicle. In the other series, a head impactor was shot against a vehicle 

according to Euro NCAP test procedure. LS-Dyna R7.1.1 MPP (LSTC Inc. 2014a) was used for 

all simulations and LS-Prepost version 4.2 (LSTC Inc. 2014b) was used as a pre-processor. All 

simulations were run at least until the point of deepest head intrusion into the vehicle model. In 

all simulations, three-axial linear velocity and acceleration as well as three-axial angular velocity 

and acceleration of the head were measured. 
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The vehicle model consisted of the front of an early Volvo S80 model (Figure 4.1). It included 

all outside parts up to the upper transverse between the A-pillars as well as all parts under the 

bonnet and the suspension. A deformable windscreen was modelled based on the smeared 

modelling technique in Timmel et al. (2007) where two coincident shell layers with a bilinear 

elasto-plastic material model and the same thickness (3.93 mm) were used to obtain bending 

stiffness of a 3-layered laminated glass composite. In the windscreen model, the layer mimicking 

the glass had a Young’s modulus of 125 GPa, adjusted for the modelling technique as described in 

Timmel et al. (2007), a yield stress of 50 MPa, and was allowed to erode at a plastic strain of 0.001. 

The layer mimicking the PVB hat an adjusted Young’s modulus of 15 GPa and a yield stress of 

0.03 MPa, and no failure criterion was defined. A validation of the whole vehicle model for 

pedestrian crashes was carried out in-house, but not published. To account for the missing mid 

and rear section, additional mass was added in the vehicle centre of gravity. 

THUMS was first positioned as in simulation PM01 in Paper IV where the right, ipsilateral leg 

was forward and the left, contralateral leg was rearward of the THUMS centre of gravity 

(Figure 4.1). Both arms were moved slightly forward to reduce the influence of elbow impacts. 

THUMS was then mirrored to add an additional stance in which the ipsilateral leg was rearward. 

The original AM50 model was used to simulate an American male of average height and mass. 

The positioned AM50 model was also scaled to a 95th percentile male (AM95) and a 5th percentile 

female (AF05) by using one scaling factor in the z-direction for the height and one factor in the 

x-y-plane to adjust the mass. Two vehicle speeds were used for the vehicle-THUMS simulations, 

30 km/h and 40 km/h. THUMS was impacted by the centre of the vehicle. Braking was not 

simulated. Gravity was set to 9.81 m/s2. The friction coefficients between THUMS and the vehicle 

as well as between THUMS and the ground were set to and 0.5 and 0.7. Combining two stances, 

three model sizes and two vehicle velocities, 12 vehicle–THUMS simulations were carried out. 

  

Figure 4.1: Simulation setup for AM50 in the vehicle–THUMS simulations 

The head impactor model consisted of a viscoelastic hollow sphere with an outer diameter of 

165 mm and a thickness of 23 mm with a rigid end plate (Figure 4.2). Inside the hollow sphere 

was a smaller rigid hollow sphere for stabilisation purposes. The total mass of the head impactor 

was 4.8 kg. For all impactor–vehicle simulations, the impact direction was 65° relative to the 

ground surface, according to the Euro NCAP test procedures for the adult head impactor (Euro 

NCAP 2014a). The head impactor speed was 40 and 30 km/h. The impactor was aligned such that 

it impacted the vehicle in the same locations as the THUMS head in the vehicle–THUMS 

simulations. Gravity and friction were also the same as in the vehicle–THUMS simulations. This 

resulted in 12 impactor–vehicle simulations. 
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Figure 4.2: Simulation setup in the impactor–vehicle simulations 

 

The masses and inertial properties of all head models used compared with human heads are 

presented in Table 4.1. 

Table 4.1: Masses and inertial properties of all head models used compared with human heads. The 
coordinate system for the inertial properties is according to SAE (1994), and the impactor was rotated 
accordingly such that the different models were comparable. 

 THUMS 

AM50 

scaled THUMS 

AM95 

scaled THUMS 

AF05 

head 

impactor 

human head, average 

(Plaga et al. 2005) 

Mass (kg) 4.1 5.6 2.7 4.8 3.3 

Ixx (kg/cm2) 137.596 226.638 66.706 120.385 109.43 

Iyy (kg/cm2) 192.588 328.817 91.551 124.972 148.44 

Izz (kg/cm2) 192.779 304.073 78.960 120.385 135.88 

4.2.2 Data analysis 

The following five global head ICs were analysed: 

1) the HIC15 and HIC36 (Versace 1971, Eppinger et al. 1999), calculated from resultant linear 

acceleration, 

2) the brain rotational injury criterion (BrIC) (Takhounts et al. 2013), calculated from three-

dimensional angular velocities, 

3) the generalized acceleration model for brain injury threshold (GAMBIT)(Newman 1986), 

calculated from resultant linear and resultant angular accelerations,  

4) the head impact power (HIP) (Newman et al. 2000), calculated from three-dimensional 

linear and angular accelerations, and 

5) the rotational injury criterion (RIC) (Kimpara and Iwamoto 2012), calculated from resultant 

angular accelerations. 

From each IC, the AIS 2+ head IR was calculated for each of the 24 simulations. For the BrIC, 

two injury risks were calculated from two risk curves based on previous evaluations of maximum 

principal strain (MPS) and cumulative strain damage measure (CSDM). Detailed information on 

the head ICs and the calculation of head IRs is provided in Appendix D. All data was post-

processed with Matlab R2012b (Mathworks 2012). The IRs of the two stances used were averaged. 
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4.3 Results 

All simulations terminated without numerical instabilities. Head impact velocities and raw values 

of all calculated ICs can be found in Appendix E. 

Visual analysis of the simulations revealed that AF05 head always impacted the bonnet, the 

AM50 the lower end of the windscreen or upper part of the bonnet, and the AM95 in the lower 

third of the windscreen. The head impact was generally further upwards on the vehicle for the 

40 km/h compared with their equivalent 30 km/h cases. For the AM50 and the AM95, this 

resulted in the head impacting stiffer structures in the 30 km/h than in the 40 km/h cases—the 

AM50 impacted the upper bonnet edge instead of the lower windscreen and the AM95 impacted 

lower on the windscreen with a subsequent head–dashboard impact. 

For a given impact speed, the ICs generally decreased with increasing subject height (Figure 

4.3). For a given subject height, the ICs generally decreased with decreasing impact speed. For 

HIC, the results from the impactor simulations were reasonably similar to the THUMS simulation 

results. For the purely rotational IC, BrIC and RIC, there was no correlation between THUMS 

and impactor simulation results. GAMBIT and HIP generally followed the HIC trends. BrIC also 

showed less sensitivity to impact speed than any other criterion. Comparing HIC15 and BrIC, 

although the trends were generally similar, a reduction of HIC15 did not relate to an equally large 

reduction of BrIC. Also, the HIC15 showed a larger spread around the average than the BrIC. The 

largest spread around the average was observed for the RIC. 

 

Figure 4.3: ICs in percent of the THUMS AM50 simulation at 40 km/h (TH: THUMS, Imp: impactor 

simulations). I.e., for each IC, all values are normalised such that the darker green THUMS bar corresponds 
to 100%. The error bars show the range stemming from the two stances. 
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For THUMS, on average, the HIC15 predicted the lowest AIS 2+ IR whereas the predicted IR 

was highest for the HIP (Figure 4.4). Notably, almost all vehicle–THUMS simulations with the 

AF05 resulted in IRs at or close to 100% whereas the AM50 and especially the AM95 predicted 

considerably lower IRs. Despite the tendency that the head impacted stiffer structures at 30 than 

at 40 km/h, the predicted IRs were lower at a vehicle speed of 30 km/h (light colours) compared 

with its equivalent 40 km/h case (dark colours) for all simulations and all ICs unless the IRs at 30 

and 40 km/h were both 100%. All ICs reached a maximum during head–vehicle impact with two 

exceptions: In the AM50 simulations at 30 km/h, the maximum GAMBIT was reached during 

elbow–vehicle impact, 45 ms prior to first head–vehicle contact. In the AM95 simulations at 

30 km/h, the maximum HIC15 was also reached during elbow–vehicle impact, 50 ms prior to first 

head–vehicle contact.  

 

 

Figure 4.4: AIS 2+ head IRs in the THUMS (TH) and impactor (Imp) simulations. 

For the impactor simulations, the average HIC15, GAMBIT and HIP were greater than 75% 

(Figure 4.4). The two ICs that were calculated from head rotation only, BrIC and RIC, predicted 

comparatively low average IRs. The predicted IRs for HIC were similar or higher in the 30 km/h 

cases compared with their equivalent 40 km/h cases, especially for the AM50 and AM95 

simulations. This trend was likely due to the aforementioned differences in stiffness for different 

impact locations.  

Comparing the IRs predicted by the vehicle–THUMS with those of the impactor–vehicle 

simulations (Figure 4.4), the average HIC15 IR predictions were lower for THUMS than for the 

impactor simulations. This result is unlikely due to differences in head impact velocity: The head 

impact velocities measured in THUMS were generally within 1 m/s of the initial vehicle speed and 

thus close to the head impactor speed. For the AF05 THUMS simulations, the differences were 

slightly greater; the head impact velocities were up to 1.7 m/s lower than vehicle speed at 40 km/h 
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and up to 1.5 m/s higher at 30 km/h. The two ICs based on rotation only, BrIC and RIC, predicted 

considerably lower IRs for the impactor compared with the THUMS simulations. The GAMBIT 

and HIP both predicted comparatively high IRs close to or at 100%. 

4.4 Discussion 

This pilot study has shown that full-scale THUMS simulations can provide additional head injury 

risk information to safety system developers. To increase pedestrian safety, full-scale pedestrian 

simulations should therefore complement impactor tests used in consumer ratings. However, in 

this study, the impacts were limited to the vehicle centreline. An updated test protocol should 

include a larger set of simulations which cover a much wider area of impact points on the vehicle. 

Apart from HIC15, the ICs and thresholds for IRs used in this Addendum were not specifically 

developed for vehicle–pedestrian crashes and should therefore be interpreted with care. In vehicle–

pedestrian crashes, the duration of head rotation may be longer than during the load cases for 

which the ICs were originally developed. For instance, BrIC was developed and validated with head 

impacts during American football, frontal and side car crashes (Takhounts et al. 2013). The MPS- 

and CSDM-based IRs used for BrIC were derived from uniaxial rotations of FE models where the 

rotational velocity pulse was varied; the only duration explicitly mentioned was 25 ms (Takhounts 

et al. 2013). BrIC has not yet been validated for combined rotation in various directions such as 

those occurring in vehicle–pedestrian crashes. In addition, a previous study showed that BrIC, HIP 

and RIC did not correlate well with the tissue-level critera CSDM and MPS in pedestrian 

simulations (Yanaoka et al. 2015). Another study showed no correlation (R2 < 0.1) between BrIC 

and CSDM in pedestrian impacts prior to head impact; BrIC overestimated the head injury risk 

during this time period (Gabler et al. 2014). However, when including the head impact, the 

correlation improved considerably (R2 = 0.6). In the present study, BrIC was highest during head 

impact in almost all simulations. Since CSDM correlates with brain injury risk (Kleiven 2007), the 

BrIC values in this studies would give a good indication of the actual brain injury risk due to 

rotation if the FE models and injury risk curves were perfect. 

AIS 2+ was chosen as an injury limit mainly because previous studies provided more AIS 2 data 

for injury risk curve development on living humans than other injury levels. AIS 2 head injuries 

include closed, simple skull vault fractures, concussions with loss of consciousness for less than 

one hour, cranial nerve injuries and “tiny” brain haematoma (AAAM 2005). In Paper I, the majority 

of pedestrian crashes was maximum AIS 0–2 (all body regions) although the estimated average 

vehicle speed was only 29 km/h. A limit of AIS 2+ was therefore deemed appropriate for this study. 

Some of the calculated IRs were high which may be a result of the combination of the FE 

models, the ICs and the injury risk curves used. In real-life pedestrian crashes with forward-moving 

Volvo passenger cars, 87 head and face AIS2+ injuries were registered in 207 pedestrian collisions 

(Lindman et al. 2011). Some of the pedestrians likely suffered from multiple head injuries; the risk 

of obtaining an AIS2+ head or face injury in a pedestrian collision with a Volvo was therefore lower 

than 42% for the data set although 85% of the vehicle speeds were below 40 km/h. 

The IC values and the IRs generally decreased with increasing subject height for all ICs. Since 

the highest risks occurred during head impact, the head impact location was likely a major cause 

for this trend. Taller subjects experienced a head impact further up and often on the windscreen 
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while smaller subjects impacted the bonnet. For THUMS, the varying head masses also likely 

contributed to this trend. Whether the risk increases further for subjects shorter than the AF05 

could not be studied within the scope of this Addendum, but should be further investigated in 

view of child pedestrians. 

For the purely rotational criteria BrIC and RIC, the IRs predicted by the impactor and THUMS 

did not compare well. Previous studies already pointed out differences in angular kinematics 

between full-scale and impactor experiments (e.g., Kerrigan et al. 2008). Thus, measuring rotation 

in the head impactor without changing the test setup is unlikely to provide additional value for 

predicting real-life injury risk. However, measuring rotation would be recommended in dummy 

tests or full-body simulations although angular head kinematics in dummies and PMHSs also 

showed some differences (Kerrigan et al. 2012). As a possible alternative, simulations could be used 

to determine the boundary conditions for the head impact. The head impactor could be fitted with 

a neck and an upper body mass, and then be used to impact the vehicle with the boundary 

conditions determined in the full-body simulations. With this updated test setup, measuring head 

rotation might give a better prediction of real-life head IRs comprising head rotation. However, 

this possibility requires further investigation. 
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5 General Discussion 

The main aim of this thesis has been pursued in four parts. Papers I and II examined the linear 

and angular displacements of the head, shoulder and spine in five new and two earlier full-scale 

pedestrian tests. From the five new tests, six-degrees-of-freedom kinematics were obtained for the 

head, several vertebrae, pelvis and scapulae. The epidemiology of shoulder impacts in real-life 

crashes was investigated in Paper I. In Paper III, the effect of shoulder impact on head kinematics 

was studied using volunteer and PMHS shoulder impact experiments to evaluate THUMS version 

4. Subsequently, THUMS was used to study head response to shoulder impacts with boundary 

conditions being inspired by pedestrian impacts where the shoulder posture, the angle of the 

surface impacting the shoulder, and the impact velocity angle were varied. In Paper IV, pragmatic 

scaling of THUMS was studied as an alternative to morphing to ascertain which technique yielded 

the more accurate head impact conditions when compared with individual PMHS responses. 

5.1 Methods and Analyses in the PMHS experiments 

PMHSs can be assumed to be the most accurate available surrogate for humans in pedestrian full-

scale tests (Kerrigan et al. 2008). Such tests can be considered ethical if they can be used to develop 

and validate test tools with the ultimate goal to save lives. However, subject preparation is a race 

against decay processes, which may alter subject response and reduce its biofidelity. In order to 

reduce this effect, embalming is sometimes used, although it is unknown how much this alters the 

subject’s response. In the new experiment in Paper I and the experiments in Paper II, a combination 

of Winckler’s embalming method (Winckler 1974), and storage at 4–6°C until the day of the test 

were used. The subjects all had increased joint stiffness, probably due to the effect of embalming, 

but the low temperature storage may also have contributed to increased stiffness. The joints were 

thus moved prior to the experiment in order to remove as much of the additional stiffness as 

possible. However, as the force necessary to achieve the full range of motion could have caused 

bone fractures, full removal of the excess stiffness was not possible. However, fresh or fresh-frozen 

PMHSs lack the body stiffness of a living human. Although the exact effect of the embalmment 

is unknown, it can be argued that a certain amount of stiffness increase might be legitimate. 

Subject positioning in pedestrian full-scale experiments with PMHSs is of concern due to lack 

of muscle activity, as highlighted by a number of previous studies (e.g., Kerrigan et al. 2005b, Subit 

et al. 2008) that found that it was virtually impossible to move the legs into a certain desired 

walking position. A final solution to PMHS positioning for pedestrian experiments has, to the 

best knowledge of the author, not yet been found. The lack of muscle activity also complicates the 

replication of realistic ground contact forces. The initial suggestion of adding thin wooden sticks 

to aid maintaining posture (Pritz et al. 1975) has not been in wide use, as this practice is believed 

to stiffen leg response unnaturally. Dropping the subject some time before the impact did not 

produce realistic ground force either (Kam et al. 2005). In the past different support systems have 

been used to hold the subject upright until the moment of impact. In Papers I and II, the installed 

dropping mechanism used a belt around the neck that was connected to an electromagnet by metal 

strings (Chalandon et al. 2007). Ishikawa et al. (1993) instead screwed the metal strings to the 

cranium. Subit et al. (2008) employed an under-shoulder belt around the thorax. However, each 

support system generated forces in places where they would not exist in a real pedestrian crash, 
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e.g., causing a slight extension of the neck or a raising of the shoulders. Thus both the support 

system and the lack of muscle activity limited control over the initial posture of subjects. 

In the new experiments in Papers I and II, a new method of video analysis was used enabling 

the acquisition of 3D translations and 3D rotations of each body part with a single camera. For 

this film analysis, special photo targets, consisting of a large number of tracking points on a rigid 

surface had to be used. The coordinates of each tracking point relative to the point of interest, e.g., 

a head CG or a vertebral body CG, must be known in order for this point of interest to be tracked. 

If the number of points on each photo target is sufficient, the set of equations used in the film 

analysis is over-determined permitting error minimisation and improved accuracy. With the 

method used, the head WAD and lateral offset of the head impact point as measured post-test on 

the vehicle and when measured with the video analysis were within 1 cm of each other. Thus, it 

appeared that the accuracy of this new method of video analysis has the potential for considerable 

improvement in comparison with other video analysis approaches where only one camera is used. 

5.2 Experimental Data in HBM Evaluations 

Before an HBM can be used, its biofidelity must be evaluated for a load case similar to the intended 

load case. In the evaluation of the THUMS shoulder in Paper III, the model was evaluated against 

two lateral shoulder impact experiments with additional oblique anterior and posterior impacts in 

one of the studies in which spine and head kinematics were evaluated at the same time. 

Subsequently, based on the evaluation results, the model was used in a similar manner, but with 

different shoulder postures, angles of the impacting surface, and angles of the impact velocity.  

Evaluation of HBMs in pedestrian full-scale simulations is challenging due to the scarcity of 

pedestrian experiments reported to date as well as the vast number of interdependent variables 

influencing pedestrian kinematics. Hardly any 6 DOF data on pedestrian kinematics are available, 

and even 3D translational data are scarce since most full-scale pedestrian studies concern 2D linear 

kinematics. In addition to Papers I and II, to the best of the author’s knowledge, only Forman et 

al. (2015b) published 6 DOF data where three PMHSs were impacted by a generic sedan buck. For 

better prediction of TBI, more three-dimensional rotation data are required for the evaluation of 

head rotation in HBMs. Translational data out of the sagittal plane is needed to improve the 

prediction of the head impact lateral offset on the vehicle. For evaluation of HBMs and for a better 

understanding of the human in-crash response, it is obvious that there is an urgent need for 

detailed experimental data produced in controlled full-scale pedestrian accidents with detailed 

information on subject anthropometry, initial posture, vehicle model and test boundary conditions. 

Papers I and II aim to provide such data for use in HBM evaluation of pedestrian crashes. 

Normalising experimental data and constructing kinematic corridors in pedestrian crashes is not 

straight forward. The pelvis–BLE height ratio and the upper arm response affect upper body 

kinematics considerably, as shown in Papers I, II and IV. These factors cannot be used in traditional 

normalisation methods. Normalisation methods for pedestrian trajectories during the primary 

impact have been proposed in several studies (Kerrigan et al. 2005b, Kerrigan et al. 2007, Yanaoka 

et al. in press). However, the method proposed by Kerrigan et al. (2005b) exhibited considerable 

limitations when applied to slightly different load cases (Kerrigan et al. 2007), and the method 

proposed by Yanaoka et al. (in press) remains to be evaluated for a range of test conditions. Both 



 

32 

normalisation methods have since been applied to develop trajectory corridors from normalised, 

averaged trajectories (SAE J2868 2010, Forman et al. 2015a). However, their corridor boundary 

calculation methods appear to be somewhat arbitrary and based on pragmatic rather than scientific 

reasoning. Nusholtz et al. (2010) showed that the average of multiple curves no longer necessarily 

captures the underlying physics and thus over-simplifies subject responses. If this is true, 

constructing corridors from averaged trajectories simplifies subject responses to an even greater 

degree and limit the potential to study the biomechanics in a pedestrian crash. To enable in-depth 

studies of the biomechanics, investigating the individual experimental data instead of normalised 

corridors is a more worthwhile approach. This approach allows for the HBM to be compared to 

and evaluated against individual responses that the author considers to be a valuable contribution 

to HBM evaluation. 

If an HBM’s biofidelity is optimised towards a specific load case of certain severity then, in other 

load cases and severities when linear, non-biological material models are used, the HBM might 

respond in a non-biofidelic manner. Biological materials are typically non-linear, anisotropic and 

rate-dependent. Thus, with linear material models, there would be a risk that optimising an HBM’s 

response for low-severity impacts would make the HBM too soft in high-severity impacts, and vice 

versa. The material models in THUMS 4.0 are mostly non-linear. Most use a Poisson’s ratio, 

Young’s modulus, yield stress and tangent modulus to define material behaviour and stress-strain 

relations. Some use load curves or rate-dependent load curve tables to define material properties. 

However, the materials used in THUMS 4.0 are all isotropic. In the present work, THUMS was 

evaluated against impacts from various directions and at various severities. Its biofidelity was 

generally good in all simulations although the neck tended to be slightly too stiff in lateral bending, 

and arm abduction was not replicated for large abduction angles. 

Compared with a full-scale pedestrian test, the load cases in the shoulder impact experiments 

used in Paper III were well defined. However, existing shoulder impact studies might not 

adequately mimic the shoulder impact in a pedestrian crash. The angles of the impacting surface 

and of the impact velocity in pedestrian shoulder impacts generally differ from those used in earlier 

shoulder impact studies. Additionally, a pedestrian shoulder may be in a raised posture after elbow–

vehicle impact and thus not in a neutral position, such as those used in previous shoulder impact 

experiments. Although the simulations in Paper III attempted to mimic low severity pedestrian 

shoulder impacts and yielded reasonable results, these findings should be verified through 

additional experimental testing since such biomechanical data is currently not available. 

Data sets not originally designed for HBM validation might lack important simulation input 

information. For the experimental data used for Paper III, it was possible to extract all the necessary 

information from video footage and photographs. In future experiments it would be of great value 

that all the measurements required for simulation were available. In particular, well-documented 

subject initial position and well-defined setups would increase the value of such studies. 

Generally, additional detailed experimental data is required for HBM validation. Additional data 

would aid in further studying the biomechanics in pedestrian crashes and in impactor tests, and 

enable establishing response corridors of adequate statistical significance. While this is true for 

many load cases in traffic safety, new data is particularly important for pedestrian safety since there 

are so many factors influencing the kinematics. 
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5.3 PMHS vs. Volunteers Data in HBM Evaluations 

With HBMs in general and with pedestrian HBMs in particular, the question can be raised whether 

the HBM should replicate a PMHS, a relaxed or a tensed living person, and how a transformation 

between different muscle activations could be implemented in the model. Ultimately, for real-life 

crash safety, the HBM should obviously replicate a living person. However, controlled crash testing 

with living pedestrians on an injurious level is not an option, and detailed in-crash kinematics of 

pedestrians in real-life crashes are impossible to obtain from accident reconstructions without the 

help of HBMs (Section 1.6) unless high-speed cameras had recorded such real-life crashes. Thus, 

full-scale pedestrian crash kinematics of human subjects can currently only be obtained from 

PMHS. Two possible approaches can be taken to implement different muscle activations into 

HBMs. One approach is to estimate the general effect of passive and active musculature, and add 

it to the model as increased stiffness. This approach seems to have been taken in the development 

of THUMS (Section 1.7.1). Body-segment testing at low severity with volunteers aids in 

estimating the increased stiffness of volunteers compared with PMHSs. A second approach is to 

make the HBM match the PMHS responses and then add active muscles to the model. Active 

muscles have already been implemented in a previous version of the occupant THUMS (Östh et 

al. 2012). The second approach is more complex, but it would enable studying the responses of 

pedestrians whether they were aware or unaware of the imminent crash. 

After pelvis impact against the vehicle, the pedestrian PMHSs all displayed neck bending away 

from the vehicle before the head began catching up with the upper torso. This response was 

observed in all PMHSs in Forman et al. (2015a), too. In THUMS version 4, no similar neck 

bending away from the vehicle was observed, indicating that the THUMS neck might be too stiff 

in lateral bending. However, THUMS should ultimately represent a living human with at least 

static muscle activation for posture maintenance. Thus, the question can be raised whether the 

increased neck bending stiffness in THUMS compared with PMHSs is actually biofidelic. Stenlund 

et al. (2015) exposed volunteers to a perturbation that was similar to a pedestrian pelvis impact, 

but much lower severity. They observed neck bending similar to the initial neck bending in the 

full-scale PMHS experiments, but at lower magnitude (Appendix F). This divergence might be 

partly due to the lack of muscle activation in the PMHSs although the severity in the volunteer 

tests was much lower than in a vehicle–pedestrian pelvis impact at 40 km/h. As the amount of 

head rotation increased with increasing severity in the volunteer experiments, a living pedestrian 

might display considerable head rotation away from the vehicle in the initial stages of the crash. 

This emphasizes that the THUMS neck is likely too stiff in lateral bending. 

5.4 Prevalence of Elbow and Shoulder Impacts 

Although the epidemiology presented in Paper I showed that elbow and shoulder impacts were 

documented in only a minority of the cases, these impacts did not always leave visible damage on 

the vehicle in the full-scale PMHS experiments in Papers I and II. The frequency of documented 

elbow and shoulder impacts might therefore not—due to underreporting—mirror the actual 

frequency, which might be higher. Elbow and shoulder impacts being linked to severe injuries 

(Paper I) therefore does not necessarily induce these impacts to cause severe injuries. 
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To further investigate the prevalence of elbow and shoulder impacts in actual car–pedestrian 

crashes, injury distributions of such crashes are studied. These distributions should be interpreted 

carefully since they do not normally specify whether a specific injury has occurred during the car–

pedestrian impact or during the pedestrian–ground impact. In addition, even if considerable load 

is transferred, not all elbow and shoulder impacts lead to an injury, as seen in Paper II. However, 

injury distributions can still give an indication of elbow and shoulder impact prevalence that 

complements the crash data presented in Paper I. Injuries that might indicate an elbow or shoulder 

impact are fractures of the humerus, clavicle and scapula, shoulder dislocations and severe bruising. 

In an early study (Kong et al. 1996), 273 hospitalised pedestrians, who had been struck by 

vehicles moving faster than 16 km/h and who had not died at the scene, were examined for injuries. 

Shoulder fractures were found in 15 (5%) of these pedestrians, and humerus fractures in 14 (5%). 

In a more recent study, upper extremity fractures in pedestrian–motor-vehicle crashes were 

specifically named as an underappreciated concern (Landy et al. 2010). The study included 336 

adult hospitalised pedestrians of which 25% had sustained upper extremity injuries. A humerus 

fracture had been sustained by 38 pedestrians (11%). In a similar study, Siram et al. (2011) found 

upper extremity fractures in 12% of the 79 307 hospitalised adult pedestrians included in their 

study. In another study, a total of 13 655 adult pedestrians that had been hospitalised after a traffic 

accident were screened for upper extremity fractures (Rubin et al. 2015). In total, 2 615 (19%) of 

the pedestrians had sustained upper extremity fractures. Of these fractures, 32% were humerus, 

17% were clavicle, 13% were scapula, and 38% were other upper extremity fractures related to the 

lower arms and hands. Multiple upper extremity fractures had occurred in 18% of the pedestrians 

suffering from an upper extremity fracture. Thus, between 10–12% of all pedestrians included in 

their study had experienced a fracture of the humerus, clavicle or scapula. 

Previous studies show that a considerable percentage of the hospitalised pedestrians suffered 

from injuries that could be related to elbow and shoulder impacts with the vehicle. All of these 

studies excluded pedestrians who had died at the scene, although the accident reconstruction 

epidemiology (Section 3.2) indicated that both elbow and shoulder impacts were more likely in 

severe crashes. Overall, this analysis supports the hypothesis that elbow and shoulder impacts 

against the car may be more frequent than previously reported. Thus, more full-scale PMHS 

experiments should be made available in which the arms are allowed to move freely to reproduce 

elbow and shoulder impacts as in real-life pedestrian crashes. Elbow and shoulder impacts should 

also be reproduced by HBMs that are used to study pedestrian responses during car impacts. 

5.5 Simulation Results 

For the present work, an FE model was chosen instead of a MB model. Unlike MB models, FE 

models enable injury assessment by using tissue criteria. Tissue criteria provide more local and thus 

more accurate injury prediction. They will be especially useful when investigating long-term 

medical impairment due to brain injury in pedestrians in the future. However, as mentioned in 

Section 1.7, FE models used in pedestrian crashes have to be evaluated in terms of kinematics 

before tissue criteria can be applied. Therefore, this thesis focuses on the evaluation of model 

kinematics rather than on tissue criteria evaluation. The THUMS model was chosen as it was the 

only full-body FE pedestrian model commercially available at the time, and as it is widely used in 

industrial and academic environments (Yasuki 2006). Its version 4 was selected mainly because the 
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shoulder included more anatomical features such as a solid representation of the subscapularis 

muscle and the capsular ligament, both of which were not included in earlier THUMS versions. 

Without these features, the arm and shoulder responses could not have been studied in such detail. 

For instance, in shoulder impacts, the load path from the impact to the spine would likely have 

been different if the subscapularis would not have been represented as solid elements in the model. 

In general, a decision has to be made at which point a human model is biofidelic. Wismans et 

al. (2005) have established a definition of human body validation as “the process of assessing the 

reliability of a simulation model in comparison to one or more reference tests with human 

subjects”, where the experiments used for the validation should not be the same tests that were 

used for the original model input. According to Shigeta et al. (2009), none of the experiments used 

for the current work appear to have been used for model input. In addition, well-defined criteria 

of when the HBM can be regarded as “biofidelic” in a certain load case should be established before 

the assessment. This was not within the scope of the present work, but should be included in 

future HBM validation. Establishing such criteria for biofidelity could be done, e.g. by setting a 

limit of a certain percentage of the simulation results matching the experimental corridors, or by 

setting minimum values in mathematical methods that compare the shapes of two curves. Applying 

different approaches, several rating methods attempt to calculate such measures (Rhule et al. 2002, 

Sprague and Geers 2004, Hovenga et al. 2005, Gehre et al. 2009) with varying results (Vavalle et 

al. 2013), underlining the difficulty in establishing one single rating method for the biofidelity 

assessment of HBMs. Furthermore, the question remains how well the corridors display the 

average responses and the associated spread of the living human population. While these are 

inherent limitations when discussing any attempts to validate HBMs, the validation process itself 

helps improve the understanding of human body responses by continuing to bring up new 

questions that can be addressed with new experimental setups. 

5.5.1 Shoulder Impact Simulations 

For the shoulder impact component validation in Paper III, the experimental data was not 

normalised and the THUMS model was not scaled. The THUMS model was designed to simulate 

a male of around 177 cm stature, around 77 kg weight and adult age (around 30–40 years). In Ono 

et al. (2005), the average subject standing height, weight, and age were 1717 cm, 6412 kg, and 

241 year. The standing height of the subjects in Bolte et al. (2003) was not given, but the average 

weight and age were 7112 kg and 748 years. Normalisation can be used to reduce response 

variations between subjects in an attempt to obtain the response of an average subject (Mertz 1984). 

Attempts were made to normalise the experimental data from Ono et al. (2005) but an appropriate 

normalisation factor could not be found. For shoulder deflections, the subject’s shoulder width 

appeared at first to be a good normalisation factor candidate. In another attempt, scaling based on 

total subject mass was applied (Eppinger et al. 1984). However, response variation among the 

subjects was not considerably reduced, which led to both normalisation attempts being discarded. 

Another candidate could be the effective mass of the impacted subjects. A higher effective mass 

would lead to a higher contact force and thus generally greater shoulder deflections would be 

expected. However, since any general trend could not be observed when comparing maximum 

contact force and maximum shoulder deflection, this approach was as well discarded. Thus, other 

factors appeared to have influenced the shoulder deflections to a greater extent than the candidates 
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named above. Such other factors may be the individual size of the scapula, its distance from the 

spine or the coupling of the scapula to the thorax since the scapular motion over the thorax appears 

to govern the shoulder response, as discussed in Paper III. Normalising the spine and head 

kinematics was not attempted since the individual spread was rather small in the non-normalised 

data. Another approach would have been to scale the HBM to each subject’s body proportions, 

although this would have contradicted the aim of evaluating the original HBM. 

Information on the positioning of the subjects in experimental shoulder impact studies was 

scarce, especially in Bolte et al. (2003). For the simulations in Paper III, the model was positioned, 

as accurately as possible, according to photo and video footage. However, since there were no exact 

posture measurements in the experimental studies, it is unknown by how much the posture of the 

model actually deviated from those of the volunteers and the PMHSs. A study of the influence of 

posture was outside of the scope of this thesis, but it has been studied elsewhere. Poulard et al. 

(2014) studied the influence of spine posture on HBM responses in side impacts and compared the 

responses with previous PMHS tests. They noted some influence of spine posture on the onset 

and peak timing of spine kinematics. In addition, adjusting the spine posture individually to that 

of each PMHS improved injury prediction of the HBM. However, the effect of spine posture on 

response amplitudes was limited. In the experimental data used for the present work, the model 

was most likely positioned accurately enough for the response deviations to be of minor relevance 

considering the spread in the experimental data. 

Since elbow impacts usually occur before shoulder impacts, the author believes that the elbow 

impact could reduce head impact velocity more than the shoulder impact. As discussed in Paper III, 

the time span between first impactor–shoulder contact and the onset of head movement was about 

30–40 ms in the volunteer experiments and approximately 20 ms in the higher severity PMHS 

experiments. The time span in a vehicle–pedestrian crash from first shoulder–vehicle contact to 

first head–vehicle was 7–30 ms in Paper I and II as well as previous experiments (Kerrigan et al. 

2007, Schroeder et al. 2008). With this timing, the author’s hypothesis that shoulder impacts 

might mitigate skull fracture risk is probably incorrect. However, if this time span could be 

increased by future safety systems providing a similar mechanism, the head impact velocity could 

be reduced which would reduce head injury risk. After first head–vehicle contact resultant head 

linear accelerations remained high for a duration of 20 ms in Kerrigan et al. (2009). In Paper II, 

the time span from shoulder impact to deepest head intrusion was 24–30 ms, and the timespan 

from head first contact to the deepest intrusion into the windscreen was 7–23 ms. If the head 

impact is on the lower part of the windscreen then due to shoulder impact, a head–dashboard 

impact might be avoided or mitigated. Contrariwise, the head rebound might be increased by 

shoulder impact, increasing the overall head delta v (the velocity difference just before head first 

contact and just after head separation from the windscreen) and thus potentially increasing head 

injury risk. As pointed out by Watanabe et al. (2011), the velocity of head and chest varied greatly 

after shoulder impact in an SUV–pedestrian impact, which induces neck curvature and which 

might potentially increase neck injury risk. 

In the shoulder impact simulations similar to pedestrian shoulder impacts, shoulder posture at 

the time of impact was shown to influence head kinematics. When the shoulder was elevated or 

anteriorly elevated, the maximum head displacement in the direction of impact increased by 50% 

compared with a neutral shoulder position. In vehicle–pedestrian crashes, the ipsilateral shoulder 
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is likely to be elevated after elbow impact against the vehicle. Thus, the effect of shoulder impacts 

on head injury risk discussed in the previous paragraph would be enhanced after elbow impacts. In 

contrast, changing the impactor orientation or the impact velocity direction from lateral to supero-

lateral reduced the maximum head displacement. Thus, the vehicle speed and geometry are likely 

to change the effect of shoulder impacts on head injury risk. This effect requires further research. 

Overall, it appears that shoulder impacts might increase the risk of injury to the head and neck 

in pedestrian accidents; however, a more accurate risk assessment depends on the load case, as 

discussed in Paper III. In contrast, elbow impacts might reduce head injury risk since the time 

span between elbow impact and first contact of the head and the vehicle may be long enough for 

the velocity difference between the head and the vehicle to be reduced. In Papers I and II, the time 

spans between elbow and head first contacts varied between 37 and 58 ms, thus considerably longer 

than the time span between shoulder and head contact. For one subject in Paper II, the elbow even 

prevented a typical head impact against the vehicle by strongly supporting the upper body. 

5.5.2 Full-body Simulations 

Pedestrian kinematics are complex and sensitive to initial posture and anthropometry. In Paper IV, 

the initial posture of each PMHS was reproduced with THUMS from pre-impact photographs 

and measurements. As detailed in Section 1.7.2, the most accurate method available today to match 

the anthropometry of an HBM to that of a test subject is morphing. Nevertheless, morphing is 

time-consuming and requires highly detailed data of the subject’s anthropometry. For this reason, 

in Paper IV, pragmatic scaling methods which were fast to implement with a pre-processor and 

required only knowledge of the total stature and mass of the subjects were investigated. Due to 

the large variability between subject responses and since no accepted normalisation method for the 

experimental kinematics existed at the time of the study, assessment of the scaling method was 

interconnected with the biofidelity evaluation of THUMS. The THUMS model appeared to 

provide generally human-like responses. Thus, for this particular vehicle type, the answer to which 

scaling method provided the most accurate head impact conditions should be valid independent of 

THUMS biofidelity evaluations.  

Between pragmatic scaling and morphing, several intermediate methods can be used to adapt 

HBMs to subject anthropometries. For instance, Watanabe et al. (2012) scaled THUMS body parts 

to all available anthropometric measurements provided in the experimental study they used to 

evaluate THUMS biofidelity. This method is certainly more accurate than pragmatic scaling in 

adapting THUMS to the subjects since it takes body proportions into account. Nevertheless, its 

implementation is also more complex. After scaling individual body parts, some further pre-

processing may be required to ensure proper node connectivity and element quality. Hu et al. 

(2012) investigated methods to develop parametric whole-body human FE models to assess the 

effects of size, age, sex and obesity on injury risk of occupants in frontal crashes. Although they 

favoured morphing HBMs to individual PMHSs for HBM biofidelity validation, they recognised 

that PMHS experiments with full-body CT scans are scarce. As an intermediate solution, and for 

a statistical HBM anthropometry assessing injury risks for a wider range of the population, they 

proposed a method similar to morphing using statistical landmark data from bone geometry, outer 

body scans and posture data. Using this method, the shape of organs and other soft tissue inside 

the body is estimated. Thus, although more accurate in matching anthropometrical data than 
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pragmatic scaling or scaling of body parts, their proposed method is still less accurate than 

complete, full-body morphing. Although the importance of matching any HBM’s anthropometry 

to individual subjects has been widely acknowledged, particularly in pedestrian–car crash 

simulations, little is known about how accurately anthropometry be matched in order to obtain 

accurate kinematics and injury predictions. Future research into more complex scaling and 

morphing techniques is expected to provide further insight into this matter. 

THUMS was generally numerically stable. Some premature terminations due to numerical 

issues were encountered during and after positioning of the model. These terminations were caused 

mainly by negative volumes in the ankle ligaments, where the positioning resulted in highly skewed 

elements. The elements were probably skewed because these particular parts did not get enough 

simulation time to relax during the positioning. Thus, increasing the simulation time from 150 ms 

to 300 ms for soft tissue stabilisation would probably have prevented these numerical issues. 

Poulard et al. (2015) developed a framework for adjusting the THUMS spine posture and found 

that matching the posture was achieved after 150 ms of simulation time whereas the soft tissue 

stabilised after 300 ms. In the present work, where their method had not yet been adopted, the 

numerical issues no longer occurred after the skewed elements in the ankle ligaments were 

straightened manually. The final simulations usually terminated normally. In four simulations, 

negative volumes occurred in the soft tissue around the contralateral shoulder, causing premature 

error terminations. This issue was resolved by adding an internal contact to the affected soft tissue. 

In the Addendum to this thesis (Chapter 4), it was shown that full-scale THUMS simulations 

can provide additional head injury risk information to pedestrian safety system developers which is 

not covered by head impactor testing or simulations. The BrIC and the RIC36 recorded with 

THUMS were not replicated by the impactor simulations. In addition, a reduction of HIC15-values 

was not associated with an equally large reduction of BrIC.  

5.6 Implications for HBM Development and Physical Testing 

The pelvis, spine, upper arm and shoulder responses appeared to influence head kinematics 

considerably in full-scale pedestrian crashes (Section 3.1). This influence has implications for the 

development of HBMs, future PMHS testing and regulatory testing. 

In Paper III, it was found that THUMS 4.0 is a suitable tool for studying head linear and angular 

kinematics following shoulder impact in pedestrian accidents. However, head twist was con-

siderably higher in the model compared with the volunteers. Neck stiffness with respect to neck 

axial rotation should therefore be adjusted in THUMS version 4. The model compared better with 

tensed than with relaxed volunteers, indicating that a certain amount of muscle tension had been 

added to the stiffness of the model during development. These observations should be taken into 

account if, in the future, THUMS will be fitted with active musculature. 

The scapular motion over the thorax governed shoulder response and load transfer from the 

surface impacting the shoulder to the upper body in the model (Paper III). The motion of the 

scapula over the thorax was influenced by impact direction and shoulder posture. Scapula size and 

geometry are expected to play a role in different individuals as well. In posterior impacts, the scapula 

was mainly pushed against the ribs with reduced ability to slide over the rib cage. Lateral and 

anterior impacts, in contrast, allowed the scapula to slide medially over the thorax, increasing 
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shoulder deflections. Supero-lateral impacts did not produce significant variations in shoulder 

deflection as long as the scapular movement engaged the thorax and spine. However, when both 

the angle of the impacting surface and the impact velocity angle were changed to 30° and 45°, 

respectively, the scapula moved and rotated mainly downwards, reducing the scapula–thorax and 

scapula–spine coupling. With elevated shoulders, the medial edge of the scapula was rather close 

to the spine, which led to enhanced coupling between the scapula and the spine. Thus, measuring 

scapula geometry and orientation in neutral and elevated postures in future shoulder impact tests 

is recommended. Additional shoulder impact experiments with elevated as well as elevated and 

anteriorly displaced shoulders are suggested to experimentally corroborate the simulation findings 

in Paper III, since shoulder posture had considerable influence on head linear displacements. 

Peak head velocity relative to the vehicle often occurs before head impact (Section 1.6). To date, 

to the best knowledge of the author, a thorough explanation has not been found for this 

phenomenon. One implication from the findings in Papers I, II and III is that elbow and shoulder 

impacts contribute to the head reducing its velocity relative to the vehicle while at the same time 

limiting the downward motion of the upper body. 

For future full-scale pedestrian experiments, the implications of this work are, that although 

binding the hands together reduces variability, the resulting kinematics might not represent those 

in actual car–pedestrian crashes. Binding the hands together restrains upper arm movement and is 

thereby likely to prevent elbow impacts in which the upper arm provides considerable support to 

the upper torso, thus affecting head kinematics and head impact velocity. 

For HBM development, this work implies that the biofidelic kinematics of the spine, especially 

the neck, the arm and the shoulder are important to accurately assess head kinematics and, 

ultimately, head injuries. 

Current test protocols in Euro NCAP use only one impact speed (11.1 m/s) and one impact 

angle (65° to ground for the adult head impactor) and do not measure head rotation. The author 

believes that head injury risk cannot be fully assessed with this method. Upper body kinematics 

varied considerably with different vehicles used, although vehicle speeds were consistently about 

11 m/s (e.g., Kerrigan et al. 2005a, Kerrigan et al. 2005b, Subit et al. 2008, Watanabe et al. 2012). 

As a result, head impact velocities and head impact angles with respect to ground varied con-

siderably between different vehicles. Resultant head velocities relative the vehicle immediately 

before head impact were lowest in impacts with a SUV type vehicle (Kerrigan et al. 2005b), around 

7–9 m/s. In impacts with a medium sized sedan (Subit et al. 2008), a small city car, (Subit et al. 

2008) or a small sedan (Kerrigan et al. 2005a), head impact velocities of around 11–14 m/s had 

been measured in previous studies. In Paper II, head impact velocities ranged between 8.7 

and14.5 m/s. However, the exact value was dependent on the method used to calculate head impact 

velocity, i.e., on filtering as well as on whether and for which time span head velocity was averaged. 

A longer time span for averaging generally led to higher head impact velocities since the head 

velocity relative to the vehicle generally peaked 10–25 ms before first head–vehicle contact and 

then decreased. Head impact angles with respect to ground appeared to be similar in impacts with 

the SUV type vehicle and the medium size sedan, nearly 90°. In contrast, the head trajectory was 

much flatter in an impact with the small sedan or the small city car, where the head impact angle 

with respect to ground was much lower and estimated at around 30–45°. Head impactor testing 
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should therefore at least take into account a larger range of head impact velocities and angles, 

ideally based on full-scale experiments or full-scale simulations with a similar vehicle front. A risk 

of at least mild TBI even prior to head–vehicle impact is present, as shown in Paper II. In future 

regulatory testing, head rotation should therefore be measured. Since head rotation before head 

impact might contribute to TBI and since the current head impactor testing would not capture 

this rotation, full-scale testing or simulation is recommended. 

5.7 Implications for Safety Systems 

The findings from this work can also be applied to develop new, or to enhance existing pedestrian 

safety systems. The reasoning in this section is valid for adult pedestrians. For children and shorter 

persons, lower pelvis to BLE height ratios may lead to different kinematics, and thus to different 

conclusions. 

From the head impact velocities mentioned in Section 5.6, the conclusion that an SUV vehicle 

type provides the lowest risk for fatal injuries in pedestrians should not be drawn. The pelvis 

kinematics presented in Kerrigan et al. (2005b) indicate that the pelvis might be at a high risk of 

injury, followed by a presumably high load on the thorax during contact with the BLE. As 

mentioned in Section 1.1, thoracic injuries alone would have been the principal cause of fatalities 

in nearly 50% of the fatal cases in Lau et al. (1998), although they may not appear in other statistics 

because they often coincide with fatal head injuries. Thus, the slightly reduced head impact velocity 

observed in experiments with SUVs might, all things considered, not be as beneficial if it is 

accompanied by a considerably higher thoracic injury risk. Several studies have attempted to 

optimise vehicle front geometries for pedestrian protection. Kausalyah et al. (2014) used an adult 

and a child MB model and minimised HIC while excluding front shapes that caused run-overs. 

The optimum front for the child model was similar to an SUV shape. However, considering that 

they did not use any other injury criterion apart from HIC, this result is hardly surprising. Zhao 

et al. (2010) also optimised the vehicle front for HIC only, but used four sizes of pedestrian MB 

models and found the vehicle shape with the optimal HIC trade-off for all pedestrian sizes. Their 

optimised shape had a low, horizontal bonnet reminiscent of a sedan-type vehicle. Carter et al. 

(2005) conducted a similar study in which they used HIC and a maximum thorax centre of gravity 

acceleration of 60 g for 3 ms or longer. However, the thoracic injury criterion was given a lower 

weight compared with the HIC. As a result, the optimised shape had a BLE which was at shoulder 

height for a 6 year-old child and at lower ribcage height for a 5th percentile female model, both of 

which exceeded the thoracic injury criterion. While previous studies appear to be inconclusive in 

terms of which is the optimum vehicle front shape for pedestrian protection, they clearly show 

that the resulting optimum shape depends on the optimisation input and the injury criteria used. 

The author of this thesis believes that a sedan type of vehicle or a sports car would be most 

beneficial in terms of overall pedestrian injury risk. The front shapes of these vehicles appear to 

result in the longest time span from first contact to head impact so that by deploying safety systems 

enough time might be available for the head velocity difference relative the vehicle to be reduced. 

Furthermore, the present study has shown that impacts of the upper extremities, i.e., elbow 

and shoulder impacts, considerably influence head kinematics. Elbow impacts appear to be a factor 

in reducing the velocity difference between the head and the vehicle prior to head impact. In 

contrast, with a given relative head–vehicle velocity, shoulder impacts appear to occur too close in 
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time to head–vehicle first contact for them to reduce the head–vehicle velocity. Instead, shoulder 

impacts might even increase injury risk as the head rotational velocity appears to increase. The 

observations from elbow and shoulder impacts have implications for the design of pedestrian safety 

systems. The author believes that increasing the time span between elbow/shoulder–vehicle contact 

and head contact would be beneficial since the increased time span would allow for a reduction of 

the velocity difference between head and vehicle prior to head impact. Such an earlier impact could 

be achieved by raising the pop-up bonnet even further or by pedestrian airbags that are thicker and 

cover a larger bonnet area than those currently available. Such systems would even be beneficial for 

smaller pedestrians who might not experience an elbow impact that would considerably support 

the upper torso. In such cases, the systems would mimic an elbow impact and initiate load transfer 

to the head at an earlier stage. 

5.8 Contributions 

This work contributes to pedestrian safety in several ways. The kinematics and biomechanics of 

car–pedestrian crashes have been studied in depth with particular focus on the effect of pelvis, 

spine, upper arm and shoulder responses on head kinematics. 

Novel 6DOF kinematics of the head, spine, shoulders and pelvis of five subjects were published 

together with detailed information on subject anthropometry, initial posture and test boundary 

conditions. To the best knowledge of the author, to date, this is the only data set with more than 

three subjects, 6DOF kinematics and detailed subject information. This data set can be used by 

other researchers and industry for HBM evaluation. 

One HBM, the THUMS version 4, was evaluated against this data set. Other researchers and 

industry can use this information to improve THUMS. In the process of this work, an FE vehicle 

model was developed and validated. This vehicle model can be used as is or further developed to 

study a bigger range of load cases. 

The THUMS model in pure shoulder impacts was evaluated against volunteer and PMHS data, 

and compared with functional biomechanics. The importance of biofidelic scapula motion over the 

thorax and of biofidelic spine motion for human-like head kinematics was highlighted. This 

knowledge can be used to evaluate other models, not only for pedestrian safety but also for occupant 

safety in side impacts. THUMS was then used to investigate how shoulder impacts similar to those 

in full-scale pedestrian crashes influenced head kinematics. 

The influence of varying pedestrian anthropometry and minor variations in initial posture, pelvic 

sliding over the bonnet, spine bending and the arm–shoulder complex interaction with the vehicle 

on head kinematics was assessed. Various implications for future studies arose from this work. In 

full-scale testing, anthropometry and initial posture should be documented in detail. Arm 

movement should not be constrained, e.g., by binding the hands together. Ipsilateral upper arm 

kinematics should also be recorded. 

Full-scale pedestrian experiments and THUMS were used to evaluate pragmatic scaling 

techniques with respect to their ability to predict head impact conditions. This assessment enables 

other researchers and industry to quickly adapt their HBMs to experimental subjects without the 

need for morphing, although the limitations of this assessment must be taken into account. 
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6 Conclusions 

The main aim of this thesis has been to enhance the understanding of six-dimensional head 

translational and rotational kinematics in car–pedestrian crashes prior to head impact against a 

vehicle. Particular focus was put on the influence of pelvic sliding over the bonnet, spine bending 

and arm–shoulder-complex interaction on head kinematics. Furthermore, varying pedestrian 

anthropometries and minor variations in pedestrian initial posture were studied. 

Six-dimensional kinematics of the head, spine, pelvis and shoulders were quantified in five new 

full-scale pedestrian PMHS experiments. Since detailed subject anthropometry, initial posture and 

test boundary conditions are reported, this data set is highly useful for HBM evaluation. Varying 

anthropometry and minor variations in initial posture influenced pelvic sliding over the bonnet 

and ipsilateral upper arm responses which, in turn, changed the head kinematics. Pelvic sliding 

over the bonnet appeared to be governed by the pelvis–BLE height ratio and tended to increase 

the WAD and peak head velocity. The ipsilateral upper arm response determined the amount of 

support the upper arm provided to the upper torso after elbow–vehicle impact. With an increase 

in upper arm support head impact velocity was generally reduced. 

In real-life pedestrian crashes, elbow and shoulder impacts were documented in only a minority 

of the cases. However, analysis of pedestrian upper extremity injuries indicated that elbow and 

shoulder impacts might be more common than previously reported. These findings support the 

hypothesis that elbow and shoulder impacts are important to take into account in pedestrian safety. 

THUMS version 4 was, in general, biofidelic compared with volunteer and PMHS experiments 

in pure shoulder impacts. The model generally compared better with tensed than with relaxed 

volunteers. Elevating the THUMS shoulder increased head linear displacement compared with the 

neutral shoulder posture. Changing the impact direction or the impactor orientation from lateral 

to supero-lateral generally reduced head linear displacements. In full-scale pedestrian simulations, 

THUMS showed generally biofidelic responses although the upper arm abduction can be improved 

to better replicate large abductions. THUMS biofidelity was assessed in combination with 

pragmatic scaling methods in terms of their ability to predict head impact conditions. The results 

showed that upper arm response considerably influenced head kinematics and head impact 

conditions. Both in pure shoulder impacts and in full-scale pedestrian simulations, the THUMS 

neck appeared to be slightly too stiff in lateral bending. Nevertheless, THUMS was a good tool to 

study biomechanics and kinematics in car–pedestrian crashes. 

Overall, the findings in this thesis increase the knowledge on how pedestrian upper-body 6DOF 

kinematics influence head kinematics. They highlight the importance of elbow and shoulder 

impacts and will thereby contribute to increase the quality of testing and simulating. This work 

hopes to serve as inspiration for novel pedestrian safety systems that will decrease pedestrian 

fatalities and mitigate pedestrian injuries. 
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7 Future Work 

As detailed in Section 1.8, many areas of pedestrian crash safety still remain unaddressed. Further 

detailed experimental full-scale pedestrian PMHS 6DOF kinematics including detailed 

information on pedestrian anthropometry, initial stance and test boundary conditions should be 

made publicly available for HBM and dummy evaluation. Pelvis, upper arm and spine kinematics 

should be closely monitored in these tests. In order to cover a wider range of real-life crashes and 

to ultimately develop appropriate normalisation techniques and kinematic corridors the tests 

should include variations in pedestrian size and vehicle model. 

Pedestrian kinematics after head–vehicle contact in full-scale PMHS experiments have still not 

been published, to the best knowledge of the author. Although recording such kinematics is 

technically challenging since, in the flight phase, the PMHSs tend to rotate around multiple axes 

much more than during impact against the vehicle, post-vehicle-impact kinematics are much 

needed for the evaluation of all kinds of pedestrian HBMs. Validating HBMs for the flight phase 

and secondary impact would help to assess injury risk during secondary impact and enable 

development of pedestrian safety systems for secondary impact. 

Other experimental pedestrian kinematics that are not yet publicly available include those in 

impacts against other areas of a vehicle such as the front corners or the vehicle rear side. Various 

other vehicle geometries have not been experimentally tested with full-scale pedestrian PMHSs, 

such as busses and trucks, or future vehicle geometries. 

If THUMS is used to further improve pedestrian safety, the next steps are to improve THUMS 

to better capture arm abduction and spine motion, particularly neck lateral bending. THUMS can 

then be used to investigate how current regulatory testing could be improved to facilitate a more 

detailed assessment of head injury risk. When combined with a detailed brain model, THUMS can 

be used to evaluate global head injury criteria. 

Another area where knowledge is lacking is child pedestrian safety. Ethical concerns and 

availability severely limit the possibilities to conduct full-scale PMHS experiments with children. 

However, simulations with future pedestrian child HBMs could considerably improve pedestrian 

safety for children. 

Equally, other population groups might not be adequately represented by current testing and 

simulation methods. Among these are the obese, the elderly, pregnant and other groups with body 

proportions that considerably deviate from the average male. 

In the future, a larger vehicle speed range should also be addressed, including both higher and 

lower speeds than currently tested. At lower vehicle speeds, pedestrian muscle activity is expected 

to play an increasingly important role. Thus, implementation of active muscles in pedestrian HBMs 

is an additional goal for the future. 
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Appendix 

Appendix A: Anatomy and Physiology 

Here, human shoulder and spine anatomy and physiology are described. Understanding the 

motions of the joints involved is important for the interpretation of how upper body and arm 

responses influence the head kinematics in car–pedestrian crashes. Further insight into the 

motions of the shoulder and spine can be gained from functional biomechanics, but functional 

biomechanics will not be further discussed in this chapter. 

Appendix A1: Shoulder Anatomy and Physiology 

The human shoulder consists of three bones, the humerus or upper arm bone, the scapula or 

shoulder blade, and the clavicle or collarbone, as well as muscles, tendons and ligaments (Marieb 

and Hoehn 2010), see Figure A1. Five articulations contribute to the motion of the shoulder, 

three of which are anatomical joints and two of which are false, or physiological, joints. 

The major anatomical joint in the shoulder is the 

glenohumeral joint which is a multiaxial synovial 

ball and socket joint connecting the humerus to the 

glenoid fossa of the scapula. This joint is commonly 

referred to as the shoulder joint. Due to limited 

interaction between bony surfaces, it is the most 

flexible joint in the body and allows for a major part 

of the upper arm range of motion (Marieb and 

Hoehn 2010). The acromioclavicular joint is the 

articulation between the acromion, i.e. a part of the 

scapula, and the clavicle. It is a gliding synovial joint, 

functioning as a pivot which allows for greater arm 

rotation. The third anatomical joint of the shoulder 

is the sternoclavicular joint which forms the 

articulation between clavicle and sternum. This 

synovial double-plane joint makes movement of the 

clavicle possible in three planes, enlarging the range 

of motion of the shoulder even more. 

In addition to these three anatomical joints, two 

physiological joints are part of the pectoral girdle 

and thus contribute to shoulder motion. The suprahumeral joint is an articulation of the head of 

the humerus and the coracoacromial ligament, supporting the glenohumeral joint in providing a 

greater range of motion. The scapulothoracic joint is the articulation between the anterior face of 

the scapula and the posterior rib cage where muscles and tendons allow the scapula to slide over 

the rib cage and thus allow one rotational and two translational degrees of freedom of scapular 

motion. 

 

Figure A1: The bones of the shoulder, 
anterior view: humerus (left), clavicle 
(top/right) and scapula (mid/bottom). 
Including the glenohumeral capsule, the 

coracoacromial ligament (left ligament), the 
acromioclavicular ligament (top ligament), 
and the coracoclavicular ligament (right 

ligament in two parts, left: trapezoid, right: 
conoid). Image combined and redrawn from 

several sources (Bernstein 2003, Gray 2008, 
Marieb and Hoehn 2010) 



 

 

These five articulations combine to form the human joint with the largest range of motion 

and also the most complex joint in the human body (Marieb and Hoehn 2010). Measuring the 

range of motion of single articulations of the shoulder has been attempted several times in the 

past (e.g., Pearl et al. 1992, Kebaetse et al. 1999), but has proven to be difficult since various 

articulations contribute to each movement. The overall response of the shoulder to direct impact 

has been studied in various previous publications (Section 1.5.2). However, the author has not 

found any evidence that the mechanism of energy transfer through the shoulder into the upper 

torso and spine has been studied in detail. 

Appendix A2: Spine Anatomy and Physiology 

The human spine normally consists of 24 vertebrae which form the articulations of the spinal 

column, and of two bones in the lower part, the sacrum and the coccyx (Marieb and Hoehn 2010). 

The upper seven vertebrae (C1-C7) form the cervical spine. C1 (also called atlas) and C2 (also 

called axis) contribute to the head’s range of motion to a large extent. The atlanto-occipital joint 

allows a nodding kind of motion whereas the atlanto-axial joint allows rotating the head to the 

left and the right (Marieb and Hoehn 2010). The other cervical vertebrae (C3-C7) allow for 

flexion, extension, lateral flexion and rotation of the neck. Below the cervical vertebrae there are 

twelve thoracic vertebrae (T1-T12) which all connect to the ribs. This section of the spine enables 

rotation in the thoracic region plus a limited amount of lateral flexion, limited by the ribs, and 

limited flexion and extension. Further down there are five lumbar vertebrae (L1-L5) which carry 

the most weight of all vertebrae and are therefore larger and with a more robust structure. The 

lumbar spine allows for flexion and extension as well as a limited amount of lateral flexion, but 

rotation is prevented (Marieb and Hoehn 2010). The sacrum itself does not contribute to the 

spinal range of motion although limited motion might be possible in the articulation between the 

sacrum and L5. The sacrum is laterally connected to the pelvic girdle. While all humans have the 

same number of cervical vertebrae, the number of vertebrae in other regions varies in about 5% 

of the population (Marieb and Hoehn 2010). In an average adult, the vertebral column has a 

length of about 70 cm. From a lateral perspective, the spine describes an S shape with posteriorly 

concave parts in the cervical and lumbar sections and posteriorly convex parts in the thoracic and 

sacral sections. From an anterior perspective, the spine in healthy humans is generally straight. 

Typical vertebrae (Figure A2) consist of an oval 

body at the anterior side, a vertebral arch to which 

the transverse processes, the articular facets, and 

the spinous process are attached at the posterior 

side, and the vertebral foramen, a hole in the 

vertebrae where the spinal cord is situated and 

which is mostly triangular for the cervical and 

lumbar vertebrae but rather circular for the 

thoracic vertebrae (Figure A2). All articulate 

vertebrae, apart from between the atlas and the 

axis, have intervertebral discs between them. They 

consist of an inner nucleus pulposus providing the 

disk with elasticity and compressibility and thus 

 

Figure A2: A typical thoracic vertebra from a 
superior perspective; the anterior side of the 
vertebra is at the top of the picture (adapted 
from Gray 2008). 
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contributing to the spine range of motion, and the collagenous annulus fibrosus on the outside, 

providing stability to the disk. 

Appendix B: Crash Test Dummies and Impactors 

Pedestrian crash test dummies have been in continuous development for several decades. Honda 

developed the Polar-II and the updated version, Polar-III (Akiyama et al. 1999, Akiyama et al. 

2001), based on the frontal crash test dummy Thor (White et al. 1996). In addition, a pedestrian 

version of the Hybrid II and the updated version Hybrid III (Humanetics Innovative Solutions 

2013) have been developed. Together with HBMs (Section 1.7) and PMHSs (Section 1.5.1), crash 

test dummies are to date the only available tools for evaluating passive safety systems in full-body 

testing prior to entering the market. However, designing a robust dummy strong enough to 

tolerate severe impacts without breaking may be a goal conflicting with the goal of developing a 

biofidelic dummy. Pedestrian trajectories in PMHS experiments generally display a considerable 

amount of spread (Ashton et al. 1983) which presents a problem in the evaluation process of 

passive safety systems. Therefore, pedestrian crash test dummies are designed to facilitate 

repeatable trajectories although pedestrian dummies that are too simplified will most likely not 

predict biofidelic trajectories or realistic head impact conditions (Akiyama et al. 2001). This issue 

of over-simplification became apparent in non-biofidelic kinematic results of early simplified 

pedestrian dummies (Simms and Wood 2009). Later versions of the pedestrian crash test 

dummies, such as the Polar II, were more comparable with the PMHS experiments (Kerrigan et 

al. 2005b) while the head trajectory remained to be addressed in more detail (see also 

Section 1.5.1). Nevertheless, physical full-scale pedestrian testing with standardized subjects and 

a real vehicle is considered a valuable complement to numerical simulations. 

Subsystem impactors have been developed to simplify testing and increase test result 

repeatability. Current pedestrian Euro-NCAP safety assessments include using adult and child 

headform, upper legform and legform impactors to assess car front ends (Euro NCAP 2014a). 

While repeatable results are an obvious goal especially in regulatory testing, a number of 

shortcomings have been identified regarding subsystem impactors. Pedestrian Euro-NCAP tests 

are based on relatively simple boundary conditions. The adult head impactor, for example, impacts 

several points on the vehicle at only one impact speed (11.1 m/s) and one angle (65° to ground 

level). These boundary conditions do not cover a wide range of potential head impact conditions, 

whereas head impact velocities and angles vary in PMHS experiments (Kerrigan et al. 2008) and 

full-body simulations (Elliott et al. 2012b). The sensors used in the head impactors measure 3-

dimensional force/acceleration in the head impactor centre of gravity (Euro NCAP 2014a). To 

date, head rotation, neck load, or spine curvature are not assessed although they all pose a 

pedestrian injury risk (Section 1.4). Thus, while regulative testing provides necessary motivation 

towards improved pedestrian safety, the usage of impactors might not address all of the safety 

issues present in real-life accidents. 

Appendix C: Three-Dimensional Rotations 

The three-dimensional angular displacements in Papers I, II and IV are presented as successive 

Euler angles, or strictly speaking, as Tait-Bryan-angles with the order conventions z-y’-x’’ 

(Paper I) and x-y’-z’’ (Papers II and IV). E.g., the order convention x-y’-z’’ means that rotations 



 

 

are first carried out about the global x-axis, then about the new y-axis, then about the newest z-

axis.  

In the experiments in Papers I and II, the Euler angles were calculated automatically by the 

video analysis software. In the simulations in Paper IV, the Euler angles were calculated as follows: 

Prior to the simulation, four extra nodes were defined for each body part which rotated with that 

body part. These nodes formed a rigid body and were tracked throughout the simulation. From 

the position of each node over time, the overall translation of the rigid body was first removed. 

Then, for each time step, a rotation matrix R was calculated (Eq. C1). 

[

𝑛1,𝑥(𝑡) 𝑛2,𝑥(𝑡) 𝑛3,𝑥(𝑡)

𝑛1,𝑦(𝑡) 𝑛2,𝑦(𝑡) 𝑛3,𝑦(𝑡)

𝑛1,𝑧(𝑡) 𝑛2,𝑧(𝑡) 𝑛3,𝑧(𝑡)

    

𝑛4,𝑥(𝑡)

𝑛4,𝑦(𝑡)

𝑛4,𝑧(𝑡)

]  

=  𝑅(𝑡) ∙ [

𝑛1,𝑥(0) 𝑛2,𝑥(0) 𝑛3,𝑥(0)

𝑛1,𝑦(0) 𝑛2,𝑦(0) 𝑛3,𝑦(0)

𝑛1,𝑧(0) 𝑛2,𝑧(0) 𝑛3,𝑧(0)

    

𝑛4,𝑥(0)

𝑛4,𝑦(0)

𝑛4,𝑧(0)

] 

(C1) 

 

where ni,j are the three-dimensional coordinates of the four nodes after subtracting the overall 

translation of the rigid body. For the order convention x-y’-z’’, the rotation matrix R takes the 

form of Eq. C2 (Goldstein 2000). 

 𝑅(𝑡) =  [

𝑐2𝑐3 −𝑐2𝑠3 𝑠2

𝑐1𝑠3 + 𝑠1𝑠2𝑐3 𝑐1𝑐3 − 𝑠1𝑠2𝑠3 −𝑠1𝑐2

𝑠1𝑠3 − 𝑐1𝑠2𝑐3 𝑠1𝑐3 + 𝑐1𝑠2𝑠3 𝑐1𝑐2

] (C2) 

 

where s represents sine, c represents cosine, and the indices 1, 2, 3 represent the Euler angles 

α, β, γ about the axes x, y, z, respectively. Thus, s1 represents sin(α), c2 represents cos(β) and so 

on. From the elements of the rotation matrix, the Euler angles can easily be calculated. Gimbal 

lock occurs when the solution to C1 is not unique, i.e., when sin(β) = 0. This was checked 

throughout all calculations and did not occur. 

To obtain angular velocities ωx, ωy, ωz, the rotation matrix must be differentiated according to 

Eq. C3 (Baker 2006). 

ω(𝑡) =  [

0 −ω𝑧 ω𝑦

ω𝑧 0 −ω𝑥

−ω𝑦 ω𝑥 0
] =  

𝑑𝑅

𝑑𝑡
𝑅𝑇 (C3) 

 

Appendix D: Head Injury Criteria and their Injury Risk Curves 

Several injury criteria are available for the head. Generally, injury criteria can be divided into global 

and local criteria. Both use a measurable variable to calculate a value which can be used to 

determine the risk of injury. For global head injury criteria, the measurable variables used to date 

are time histories of linear and angular accelerations as well as time histories of linear and angular 

velocities. This section provides an overview over the global head injury criteria available to date. 



 

58 

Appendix D1: HIC 

The criterion most commonly used for the head in pedestrian safety to date is the Head Injury 

Criterion (HIC) which is a global criterion (Versace 1971). The HIC is the only head injury 

criterion used in the Euro-NCAP consumer rating to date (Euro NCAP 2014a). It is calculated 

from linear acceleration a, measured in multiples of gravity, and duration t2 – t1 (Eq. D1). 

Currently, HIC15 with a time interval of 15 ms and HIC36 with an interval of 36 ms are used with 

skull fracture probabilities of 31% at HIC15 = 700 and 48% at HIC36 = 1000 (Eppinger et al. 

1999). Rotation and directional effects are not considered in the HIC. 

 

𝐻𝐼𝐶 =  {(
1

𝑡2 − 𝑡1
∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1

)

2.5

(𝑡2 − 𝑡1)}

𝑚𝑎𝑥

 (D1) 

 

The AIS2+ head injury risk based on HIC is then given by Eq. D2 (NHTSA 2000). 

𝑝(𝑀𝐴𝐼𝑆2) =  
1

1 + 𝑒2.49+
200
𝐻𝐼𝐶

−0.00483∙𝐻𝐼𝐶
 (D2) 

 

Appendix D2: RIC 

The Rotational Injury Criterion RIC (Eq. D3) was developed based on a brain finite element (FE) 

model where local injury criteria were correlated with the proposed RIC (Kimpara and Iwamoto 

2012). RIC was evaluated over a time period of 36 ms and the proposed threshold was 10 300 000 

for RIC36. While RIC appeared to predict mild TBI, it does not take into account possible 

directional effects. RIC does not take into account linear accelerations. For a complete analysis of 

head injuries, the criterion should therefore be combined with a criterion that takes linear 

acceleration into account, such as the HIC. 

 

𝑅𝐼𝐶36 =  {(
1

𝑡2 − 𝑡1
∫ 𝛼(𝑡)𝑑𝑡

𝑡2

𝑡1

)

2.5

(𝑡2 − 𝑡1)}

𝑚𝑎𝑥

 (D3) 

where α is resultant angular acceleration in rad/s2, and t2 – t1 = 36 ms. 

The AIS2+ head injury risk based on GAMBIT is then given by Eq. D4 (Kimpara and Iwamoto 

2012). 

𝑝(𝑀𝐴𝐼𝑆2) =  
1

1 + 𝑒
7.036−0.000000679(

𝑠6.5

𝑟𝑎𝑑2.5)∙𝑅𝐼𝐶
 (D4) 

 



 

 

Appendix D3: GAMBIT 

The generalized acceleration model for brain injury threshold (GAMBIT) was first proposed by 

Newman (1985) and later revised by Newman (1986) with GAMBIT = 1 corresponding to a 50% 

risk of AIS 3+ head injuries (Eq. D5). The development was based on experimental monkey head 

kinematics and trauma as well as on PMHS head impacts. GAMBIT was later revised to Eq. (6). 

Directional effects and time dependency were proposed but not taken into account since the data 

available at the time was not detailed enough for developing thresholds for directional and time 

dependencies. 

𝐺𝐴𝑀𝐵𝐼𝑇𝑟𝑒𝑣 =  
𝑎𝑚𝑎𝑥

250𝑔
+

𝛼𝑚𝑎𝑥

10000
𝑟𝑎𝑑
𝑠2

 
(D5) 

where a is resultant linear acceleration and α is resultant angular acceleration. 

The AIS2+ head injury risk based on GAMBIT is then given by Eq. D6 (Newman et al. 2000). 

𝑝(𝑀𝐴𝐼𝑆2) =  
1

1 + 𝑒6.777−17.26∙𝐺𝐴𝑀𝐵𝐼𝑇
 (D6) 

 

Appendix D4: HIP 

The head impact power (HIP) was developed from reconstructions of helmeted head impacts with 

Hybrid-III dummies (Newman et al. 2000). Directional linear and directional angular effects as 

well as durations are taken into account (Eq. D7), where a HIP of 12.5 kW corresponds to a risk 

for concussion of 50%. 

𝐻𝐼𝑃 =  ∑ 𝑚𝑎𝑖  ∫ 𝑎𝑖𝑑𝑡 

3

𝑖=1

+ ∑ 𝐼𝑖𝑖𝛼𝑖 ∫ 𝛼𝑖𝑑𝑡

3

𝑖=1

 (D7) 

where ai is the linear acceleration in direction i, αi is resultant angular acceleration in direction 

i, Iii is the ii-th component of the inertial tensor of a Hybrid-III headform, m is the mass of a 

Hybrid-III headform, and t2 – t1 = 36 ms. The values for the Hybrid-III headform are given as 

m = 4.5 kg, Ixx = 0.016 Nms2, Iyy = 0.024 Nms2, and Izz = 0.022 Nms2.  

The AIS2+ head injury risk based on HIP is then given by Eq. D8 (Newman et al. 2000). 

𝑝(𝑀𝐴𝐼𝑆2) =  
1

1 + 𝑒4.682−0.0003655
1
𝑊

∙𝐻𝐼𝑃
 (D8) 

 

Appendix D5: BrIC 

The brain rotational injury criterion (BrIC, Eq. D9) was developed mainly for rotational loading 

(Takhounts et al. 2011, Takhounts et al. 2013). The authors therefore recommended combining 

BrIC with HIC. Further, they stated that the criterion was derived from diffuse axonal injury 

(DAI) and may not be directly applicable to other types of head or brain injuries. Time dependency 

was not included. In the development of the BrIC, data from FE simulations, animal testing and 
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football concussion injuries were combined. The critical values for three-dimensional angular 

velocities were chosen such that a BrIC value of 1.0 corresponded to a risk of 50% for AIS4+ 

brain injury. Based on critical values derived from CSDM and maximum principal strain (MPS), 

the suggested angular velocity thresholds ωi,crit were ωx,crit = 66.25 rad/s, ωy,crit = 56.45 rad/s and 

ωz,crit = 42.87 rad/s. 

𝐵𝑟𝐼𝐶 =  √(
𝜔𝑥

𝜔𝑥,𝑐𝑟𝑖𝑡
)

2

+ (
𝜔𝑦

𝜔𝑦,𝑐𝑟𝑖𝑡
)

2

+ (
𝜔𝑧

𝜔𝑧,𝑐𝑟𝑖𝑡
)

2

 (D9) 

 

The AIS2+ head injury risk based on BrIC is then given by Eq. D10 for the MPS-based 

development and Eq. D11 for the CSDM-based development (Takhounts et al. 2013). 

𝑝𝐵𝑟𝐼𝐶,𝑀𝑃𝑆(𝑀𝐴𝐼𝑆2) =  1 −
1

𝑒(
𝐵𝑅𝐼𝐶
0.602

)
2.84 (D10) 

 

𝑝𝐵𝑟𝐼𝐶,𝐶𝑆𝐷𝑀(𝑀𝐴𝐼𝑆2) =  1 −
1

𝑒(
𝐵𝑅𝐼𝐶−0.523

0.324
)

1.8 (D11) 

 

Appendix D6: BITS and RVCI 

Recently, the Brain Injury Threshold Surface (BITS, Eq. D12) has been proposed as another 

criterion combining linear acceleration, angular velocity and time (Antona-Makoshi et al. 2015). 

The BITS was developed based on monkey head trauma experiments which were simulated with 

a monkey head–neck FE model. Scaling the critical thresholds from monkeys to humans was still 

on-going at the time this thesis was submitted. 

𝐵𝐼𝑇𝑆 =  (
𝑎

𝑎𝑐𝑟𝑖𝑡
)

2

+ (
𝛼

𝛼𝑐𝑟𝑖𝑡
)

2

− (
∆𝑡𝑐𝑟𝑖𝑡

∆𝑡
)

2

 (D12) 

 

Also recently, the Rotational Velocity Change Index (RVCI, Eq. D13) was developed with the 

aim to establish good correlation with the tissue-level criteria MPS and CSDM for both occupant 

and pedestrian impacts (Yanaoka et al. 2015). The maximum time difference t1 - t2 needed for 

the calculation of the RVCI was derived from maximising the correlation between RVCI and the 

tissue-level criteria for each of their simulations separately. Thus, to date, RVCI cannot be 

calculated from global measurements only. 

 

𝑅𝑉𝐶𝐼 = √𝑅𝑥 ( ∫ 𝑎𝑥𝑑𝑡

𝑡2

𝑡1

)

2

+ 𝑅𝑦 ( ∫ 𝑎𝑦𝑑𝑡

𝑡2

𝑡1

)

2

+𝑅𝑧 ( ∫ 𝑎𝑧𝑑𝑡

𝑡2

𝑡1

)

2

 (D13) 



 

 

 

 

Appendix E: Additional Results from the Addendum 

In this section head impact velocities in the vehicle–THUMS simulations (Table E1) as well as 

head injury criteria from the vehicle–THUMS (Table E2) and impactor–vehicle (Table E3) 

simulations are presented. 

 

Table E1: Head impact velocities in the vehicle–THUMS simulations. RLF: right (ipsilateral) leg forward, 
LLF: left (contralateral) leg forward. 

THUMS head 

impact vel. (m/s) 

AM50, 

40 km/h 

AM95, 

40 km/h 

AF05, 

40 km/h 

AM50, 

30 km/h 

AM95, 

30 km/h 

AF05, 

30 km/h 

RLF  11.5 11.8 9.8 8.0 8.4 9.4 

LLF 11.0 11.9 8.4 8.6 N/A 9.8 

 

Table E2: Head injury criteria in the vehicle–THUMS simulations. AM50/AM95/AF05: THUMS sizes, 
RLF: right (ipsilateral) leg forward, LLF: left (contralateral) leg forward, 40/30: car speed (km/h). 

Vehicle–

THUMS 

HIC15 

(g2.5*s) 

HIC36 

(g2.5*s) 

BrIC (di-

mensionless) 

GAMBIT 

(dimen-

sionless) 

HIP  

(kW) 

RIC36  

106*(rad/s2)2.5*s 

AM50RLF40 926 1343 0.994 1.538 106 30.4 

AM50LLF40 886 1332 1.101 1.417 83 44.7 

AM95RLF40 480 618 0.800 0.771 33 10.1 

AM95LLF40 507 750 0.860 0.690 31 16.4 

AF05RLF40 2198 1558 1.555 2.787 145 166.8 

AF05LLF40 2761 1744 1.631 3.322 180 198.6 

AM50RLF30 514 634 0.828 0.446 22 6.9 

AM50LLF30 426 567 0.864 0.407 28 8.4 

AM95RLF30 179 364 0.471 0.471 18 2.8 

AM95LLF30 239 355 0.728 0.396 15 3.1 

AF05RLF30 763 799 0.718 0.718 43 47.0 

AF05LLF30 878 873 0.892 0.892 54 42.4 
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Table E3: Head injury criteria in the impactor–vehicle simulations. Impact locations according to head 
impact in the THUMS simulations, impactor velocities according to car velocities in THUMS simulations. 

Impactor–

Vehicle 

HIC15 

(g2.5*s) 

HIC36 

(g2.5*s) 

BrIC (di-

mensionless) 

GAMBIT 

(dimen-

sionless) 

HIP  

(kW) 

RIC36  

106*(rad/s2)2.5*s 

AM50RLF40 965 462 0.269 1.007 38 2.7 

AM50LLF40 764 379 0.242 1.025 32 2.2 

AM95RLF40 800 890 0.380 0.592 32 3.5 

AM95LLF40 791 688 0.365 0.567 36 2.1 

AF05RLF40 2750 1589 0.541 1.089 60 6.1 

AF05LLF40 2662 1543 0.573 1.339 70 7.4 

AM50RLF30 1222 1417 0.506 0.781 54 2.6 

AM50LLF30 933 827 0.383 0.729 35 2.6 

AM95RLF30 383 192 0.232 0.439 13 1.0 

AM95LLF30 360 237 0.243 0.415 11 1.4 

AF05RLF30 1302 1054 0.416 0.789 43 3.6 

AF05LLF30 1124 884 0.416 0.826 40 2.7 

 

Appendix F: Initial Neck Lateral Bending away from the Vehicle 

All PMHSs in Papers I and II as well as in Forman et al. (2015a) displayed neck lateral bending 

away from the vehicle shortly after pelvis impact. Since PMHSs lack active muscles, their neck 

lateral bending stiffness might be lower than for living pedestrians. In THUMS, this initial neck 

lateral bending was not observed. Therefore, in this section, a recent volunteer study using low-

severity perturbations at pelvis level was compared with the PMHS and the THUMS responses. 

Stenlund et al. (2015) exposed 20 healthy, young, male volunteers to lateral accelerations from 

the right side at two severity levels while restrained to a flat chair without a backrest. When 

assessing upper torso and head kinematics, their test setup can be considered comparable to full-

scale pedestrian testing in the time period between pelvis–vehicle and arm–vehicle impact since 

the upper torso and head kinematics are largely governed by inertia. However, their experiment 

was at low severity compared with a PMHS pedestrian test at a 40 km/h car speed. Stenlund et 

al. (2015) found that the neck initially flexed to the left, i.e., away from the perturbation. In the 

initial stages of the high severity acceleration (peak 13.2 m/s2, duration 0.8 s), the head rotated to 

the left up to a mean maximum of 1°±1°, although this movement was not observed in all of their 

volunteers. Head rotation to the left was greater in high severity acceleration than in low severity 

acceleration (peak 5.1 m/s2, duration 1.2 s). Lower spine bending was to the left from the 

beginning of the acceleration whereas the upper spine and head lagged behind and caught up only 

gradually. Qualitatively, between pelvis–vehicle and arm–vehicle contact, the spine and head 

kinematics of the average volunteer in their study compare well with the PMHS full-scale 

pedestrian spine and head kinematics. Quantitatively, the pedestrian PMHSs displayed greater 

maximum head rotation (8–20°) away from the vehicle in the initial stages than what the 

volunteers experienced in rotations away from the perturbation in the high severity setup. This 



 

 

divergence might be partly due to the lack of muscle activation in the PMHSs. However, for the 

volunteers, the chair moved only 24 cm. Thus, the severity was much lower than in a vehicle–

pedestrian pelvis impact at 40 km/h. As the amount of head rotation increased with increasing 

severity in the volunteer experiments, a living pedestrian might display considerable head rotation 

away from the vehicle in the initial stages of the crash. 
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