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Abstract

Recent developments in genomic and proteomic sequencing technologies have
revolutionized research in life sciences, providing new opportunities for the
study of biological systems. However, modern sequence data sets are large,
diverse, and heavily fragmented, which presents new challenges for their
analysis and interpretation. In this thesis we present six research papers,
that describe novel methods for studying bacteria and bacterial communities
through the analysis of large data sets produced by modern DNA and protein
sequencing technologies.

In Paper I, we describe a method for discovering fragments of fluoroquinolone
antibiotic resistance genes in short fragments of DNA. The resistance phe-
notypes of the predicted resistance genes were then validated by expression
in an Escherichia coli host (Paper II). The method was further improved to
handle larger and more fragmented data sets in Paper III. In Paper IV, we
present Tentacle, an easy-to-use tool for high performance gene quantification
in metagenomes that can be run on distributed computing resources to enable
fast and efficient gene quantification in terabase metagenomes. In Paper V,
we introduce proteotyping, an approach for microbial identification in clinical
samples based on shotgun proteomics. Finally, in Paper VI we describe and
evaluate a method for proteotyping analysis suited for application to clinical
diagnostics of bacterial infections.

The rapidly increasing volumes of data produced by new sequencing tech-
nologies provide new opportunities for understanding microbial biology. To
unlock the full potential of large sequence data sets requires novel methods
and approaches such as those presented in this thesis.

Keywords: bioinformatics, metagenomics, proteomics, sequencing, distributed
computing.
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1 Introduction

Bioinformatics is a field of research at the intersection of biology, computer
science, and mathematics. Biological research strives to understand the func-
tions and processes in microorganisms, ourselves, and diseases to understand
how these functions and processes work and interact. In bioinformatics re-
search we develop tools and methods for untangling and making sense of
biological data. Often, raw biological data are large and complex, making it
difficult to directly understand the biological processes being studied. The
computer science component of bioinformatics contributes with knowledge
and methodology for the development of suitable and efficient algorithms,
software, and techniques to analyze the sometimes massively large digital
representations of biological data sets. Mathematics and statistics are essential
components used for making inferences and predictions based on biological
data, producing models describing the underlying biological processes and
their variability so that hypotheses can be formulated. These hypotheses can, in
turn, be investigated with experiments, thereby increasing our understanding
of these biological systems. In addition, bioinformatics is also used as a term
in reference to the computational tools and algorithms developed to extract
useful information from biological data.

This thesis is based on six papers, which cover several topics mostly centered
on the analysis of fragmented genomic and proteomic data. Applications in-
clude the identification of novel antibiotic resistance genes in the environment,
utilizing high performance computing clusters to quantify gene content in
microbial communities, and extracting information regarding the microbial
contents of a sample based on the expressed proteins present in the sample.
Because of the amalgamation of disciplines, methods, and analysis approaches,
much conceptual ground must be covered to be able to fully appreciate the
challenges inherent to bioinformatics research. Thus, before presenting the
papers, the thesis begins with an overall introduction that is divided into five
chapters. First, the background chapter introduces the necessary biological

1



2 1. Introduction

concepts, sequencing technologies, and challenges arising from the application
of these technologies to the problem of answering biological questions. The
second chapter presents the main aims that instigated the work described in the
six papers, and connects the aims to the findings in each paper. Chapter three
presents a complement to the methods sections of the individual papers. Chap-
ter three expands on some of the background to the methodological approaches
taken, and provides a brief overview of how the analyzed data is stored in
the computer. The fourth chapter summarizes the six papers, highlighting key
concepts, results, and contributions to the field brought forth by the research
underlying the papers. Chapter five presents conclusions of the research in the
papers and discuss future perspectives.



2 Background

2.1 Metagenomics

Bacteria are single cell microbial organisms that come in different shapes and
sizes, and are primarily named by their shape, e.g., bacillus (rod-shaped),
coccus (spiral), and vibrio (comma-shaped). These unicellular organisms repro-
duce asexually and generally exhibit high reproduction rates. Some species of
bacteria are capable of doubling in number every 20 minutes. Reproduction oc-
curs by splitting each cell into two, meaning that a single bacterium can rapidly
transform into a large number of bacteria. Bacteria often thrive and cooperate
in complex communities. It has been demonstrated that many bacteria can
act unselfishly in some situations, working together for the greater good of
the whole community, rather than acting as single disconnected cells trying
to outcompete all of their neighbors (Jefferson, 2004; Kreft, 2004). Bacteria are
practically omnipresent and have found ecological niches that sustain them
in almost every habitat imaginable, and have been observed dwelling in the
deepest parts of the ocean, in hot springs, frozen in arctic ice, in soil, inside
other organisms, and in the air high up in the atmosphere. In their seminal
paper, Whitman et al. (1998) produced the first real estimate of the total number
of bacteria on Earth. According to their estimate, the total number of bacteria
on Earth could be around 5× 1030 cells (Whitman et al., 1998). That figure is
five nonillion cells on the short scale used in most English speaking regions,
equivalent to five quintillion on the long scale normally used in Sweden.

Most people probably have mainly negative associations with bacteria, con-
necting them with various diseases and sickness. However, the majority of
the bacterial organisms that we share our planet with are not pathogenic to
us. The total number of bacterial species has been estimated to more than
10 million (Schloss and Handelsman, 2004), and only around five hundred
of these (0.005%) are pathogenic to humans (Taylor et al., 2001). In fact, hu-

3



4 2. Background

mans are largely dependent on, and colonized, by a wide range of bacteria. A
recent paper estimated the total number of human cells in a human body to
approximately 4 × 1013 cells (Bianconi et al., 2013), and the average human
body contains about ten times more bacterial cells than human cells. The com-
position of the human microbiome and its interplay with our own systems
are believed to have a profound effect on our health (Hooper and Gordon,
2001). The realization that bacteria play a big role in human health has spurred
a wealth of large efforts to elucidate the interactions between our bacterial
communities and ourselves (Qin et al., 2010; Huttenhower et al., 2012).

Figure 2.1: An overview of the shotgun metagenomics approach to studying microbial
communities. Depicted to the left is a microbial community with organisms (e.g. bacteria
and viruses) represented by small colored ellipses and circles. DNA from organisms
in the community is randomly sampled and enzymatically fragmented before being
sequenced using a high throughput sequencing machine. The resulting sequence data
corresponds to random fragments of DNA from all the genomes of all the organisms in
the community.

The study of bacterial communities is not straightforward. Historically, learn-
ing about a bacterial species relied on the ability to produce a pure culture of
this species, so that its properties could be studied in isolation. However, this
approach is quite problematic when studying complex communities where
most species of bacteria are difficult to culture using traditional methods. For
example, studies estimate that up to 99% of all environmental bacteria are
difficult to grow in the lab using culture-based methods (Hugenholtz et al.,
1998; Stewart, 2012). Instead of growing bacteria in the lab to study them, meta-
genomics can be used. Metagenomics is a technique for examining microbial
communities by studying their genetic content directly. Analogous to how the
term genome describes the complete genetic makeup of a single organism, a
metagenome is the collective genetic material of an entire community of organ-
isms (which might include eukaryotes, archaea, and viruses). The term was
originally introduced by Handelsman et al. (1998) to describe the application of
genomic techniques to complex mixtures of microorganisms. Figure 2.1 shows
an overview of how metagenomics is used to study microbial communities.
DNA is first extracted from a microbial community of interest. The DNA is
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fragmented using enzymes that cut the DNA strands into shorter pieces. The
DNA fragments are then put into a high throughput sequencing machine that
determines the ordered sequence of nucleotides in the sampled fragments.

The concept behind metagenomics is well suited for investigating microbial
communities. One of the first uses of metagenomics was to study the presence
of viruses in seawater (Breitbart et al., 2002). The history of large high pro-
file metagenomics projects continues in seawater in 2003 with Craig Venter’s
ambitious Global Ocean Sampling project. In this project, a sailing boat was
equipped with a DNA sequencing lab and set off to sail across the globe to
sample and sequence the DNA in seawater (Yooseph et al., 2007; Williamson
et al., 2008). Early on, metagenomics was also used to investigate the microbial
composition of an acid mine drainage system from which attempts to culture
microbes had previously failed (Tyson et al., 2004; Hugenholtz, 2002). Early pio-
neering metagenomics projects thus gave researchers the first views of complex
microbial ecosystems that had previously eluded them.

In the last ten years, many metagenomic sequencing projects have studied the
human microbiome. The list of projects includes studies of the oral microbiota
(Lazarevic et al., 2009), the diversity of the human intestinal flora (Eckburg et al.,
2005), the human distal gut (Gill et al., 2006), and the prevalence of plasmids in
the gut microbiome (Jones et al., 2010). Larger, recent metagenomic endeavors
such as the Human Microbiome Project (Huttenhower et al., 2012) and the
Metagenomics of the Human Intestinal Tract (Meta-HIT) (Qin et al., 2010)
project have widely increased our understanding of the human microbiome
and its connection to disease. Another large metagenomic study is The Earth
Microbiome project whose aim was to construct a massive catalog of the genetic
diversity of the entire planet (Gilbert et al., 2014).

2.2 Antibiotic resistance

Antibiotics are chemical or biological substances that either prevent the growth
of, or kill, bacteria. After the introduction of modern antibiotics in the mid-
dle of the 20th century, the world has witnessed dramatic improvements to
overall human health. Modern healthcare has grown highly reliant on effective
antibiotics to treat and prevent bacterial infections (Rosenblatt-Farrell, 2009).
However, due to overuse of antibiotics, bacteria are becoming resistant to many
of our commonly used antibiotics (Neu, 1992; Andersson and Hughes, 2010,
2012; Arias et al., 2015). Because of the steady increase in the occurrence of
antibiotic resistance, the World Health Organization (WHO) has recently classi-
fied the issue of drug resistance an important global problem and a threat to
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human health (World Health Organization, 2015). Both the American Center
for Disease Control (CDC) and the WHO advocate joint global responsibility
and antibiotic stewardship programs to curb the spread of antibiotic resis-
tance. Reducing antibiotic usage to maintain the efficacy of currently available
treatments is particularly important considering that only two fundamentally
new classes of antibiotics have been discovered since the 70’s (Laxminarayan
et al., 2013). There have been several examples of discoveries and development
of antibiotic compounds where resistance emerged soon after the drug came
into use (e.g. vancomycin and quinolone) (Levy and Marshall, 2004; Robicsek
et al., 2006; Levine, 2006) The early days of rapid antibiotic discovery appear to
have passed and the focus going forward must be to maintain the efficacies of
antibiotics to try to avoid a future without efficacious antibiotics (Davies and
Davies, 2010).

1.

2.

4.

3.

Figure 2.2: A bacterial cell displaying four examples of antibiotic resistance mechanisms:
1) degradation of the antibiotic using an enzyme (red), 2) modification of the antibiotic
using an enzyme (purple), 3) modification of the target enzyme (blue), and 4) removal
of the antibiotic using efflux pumps (green). Genes encoding proteins for the different
mechanisms can be acquired via horizontal gene transfer, here symbolized by a circular
plasmid with three antibiotic resistance genes encoding proteins performing these
functions.

An organism is considered clinically resistant to an antibiotic if a drug that was
once effective at treating an infection caused by that organism no longer is. Mi-
crobial organisms have a long history of withstanding antibiotics and typically
have many methods at their disposal to help survive foreign threats (D’Costa
et al., 2011; Davies and Davies, 2010; Sykes, 2010; Allen et al., 2010). Figure
2.2 illustrates four examples of common mechanisms for bacterial antibiotic
resistance: 1) degradation of the active substance, e.g. β-lactamases that break
down β-lactam antibiotics, 2) modification of the antibiotic, e.g. aminoglyco-
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side resistance genes that acetylate aminoglycocide molecules, 3) alteration of
the target site, e.g. fluoroquinolone resistance by mutations in target proteins
such as gyrase, 4) transporting the antibiotic out of the cell, e.g. via efflux
pumps. Mechanisms such as these can be intrinsically encoded in the genome
of an organism, but bacteria can also exchange genetic material with other
bacteria (also with different species) in a process called horizontal gene transfer
(Aminov and Mackie, 2007; Bennett, 2008). This process enables bacteria to pass
genetic material between one another, including genes providing antibiotic
resistance. Transfer of antibiotic resistance genes often occurs by transporting
circular DNA constructs called plasmids between cells (Salyers et al., 2004). A
single plasmid often contain multiple genes and may also contain mechanisms
to efficiently spread these genes between cells (e.g., transposons, integrons,
and conjugation systems) (Rajpara et al., 2009; Jacobsen et al., 2007; Hall and
Collis, 1995).

Microorganisms have had thousands upon thousands of years to evolve effec-
tive ways to outwit their competition, and many species did so by developing
the ability to produce compounds that negatively influenced the growth of
their opponents (D’Costa et al., 2011). Consequently, microorganisms have,
out of necessity, developed a large and diverse set of resistance mechanisms to
outcompete their neighbors competing for the same niches. It has been hypoth-
esized that microorganisms in both the environment and human microbiomes
harbor a wide range of resistance mechanisms waiting to be discovered (Wright,
2010; Penders et al., 2013). Indeed, many commonly seen bacterial antibiotic
resistance genes originate from the environment (Allen et al., 2010; Cantón,
2009). There is thus likely a flow of antibiotic resistance genes from harmless
environmental or commensal bacteria into pathogenic species than can cause
hard-to-treat infections. Because the underlying mechanisms of antibiotic re-
sistance consist of distinct genetic components, it is possible to investigate
their presence in a microbial community using DNA sequencing techniques.
Metagenomics has been successfully applied to study the occurrence of novel
antibiotic resistance genes in bacterial communities in the environment and
in the human microbiome (Sommer et al., 2009; D’Costa et al., 2006; Boulund
et al., 2012). Metagenomics has also been applied to examine the patterns of
antibiotic resistance genes in polluted and pristine environments (Bengtsson-
Palme et al., 2014; Kristiansson et al., 2011; D’Costa et al., 2011). Differences in
the distributions of resistance genes in the human gut have also been identified
connected with geographical origin (Forslund et al., 2013), and international
travel (Bengtsson-Palme et al., 2015). A review by Schmieder and Edwards
(2012) presents recent findings and some remaining challenges regarding the
application of metagenomics to antibiotic resistance discovery.
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2.3 Sequencing technologies

2.3.1 DNA sequencing

Deoxyribonucleic acid (DNA) is a biological molecule present in all living
organisms that stores genetic instructions. DNA is replicated during the cell
division process so that new cells inherit genetic traits from their parents.
The molecule itself consists of basic building blocks called nucleotide bases
that are connected together by a sugar backbone consisting of deoxyribose
to form almost arbitrarily long strands. There are four types of nucleotides,
normally abbreviated as single letters: adenine (A), cytosine (C), guanine (G),
and thymine (T). The nucleotide bases can form pairwise bonds to one another;
A with T, and C with G. This result is called base pairing and is crucial for the
stability of DNA. The molecule is able to form helical (spiral) structures when
two complementary strands of DNA base pair to one another (Watson and
Crick, 1953), a property making them very stable.

An important concept in molecular biology is The Central Dogma (Crick, 1970)
that states how information flows in biological systems. Information is stored
in genes in DNA sequences that can be converted into proteins that perform
biological functions. A gene can generally be considered a region of adjacent
nucleotides that code for a protein. Within a protein coding gene, blocks of
three consecutive nucleotides code for amino acids. There are 20 different
standard amino acids that are normally coded for in DNA. Genes are translated
into long chains of amino acids that generally fold into complex 3D structures
to become proteins. Proteins are large biological molecules that perform many
essential functions in cells. Because protein sequences are coded for in DNA
sequences, the potential for a cell to produce a protein can be identified in
that cell’s DNA. This relation is essential for all the papers included in the
thesis. For example, one of the basic assumptions underlying Papers I and III
is that bacterial DNA sequences can be translated into amino acid sequences to
identify protein sequences that can provide its host organism with resistance
to antibiotic compounds.

To determine the DNA sequence of an organism, the DNA molecule(s) in that
organism need to be extracted and the order of the nucleotide bases resolved.
In 1975, a method now called Sanger sequencing was published (Sanger, 1977;
Sanger and Coulson, 1975). Modern variants of this method are in some
cases still in use because of its merits in sequencing relatively long continuous
stretches of DNA (700-900 bases) at very high quality. The throughput of
Sanger sequencing is limited, however, making it used mostly for smaller
sequencing projects or when verifying specific genomic sequences. About
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a decade ago the next-generation sequencing (NGS) era began when novel
methods for high throughput DNA sequencing started becoming commercially
available. These new technologies revolutionized sequencing and quickly
replaced Sanger sequencing. One of the hallmarks of NGS technologies is that
a large number of fragments are sequenced simultaneously, leading to the term
"massively parallel sequencing". When sequencing with NGS technologies
a method called shotgun sequencing is often used. In this method, DNA is
extracted from samples of interest and enzymatically broken into many short
pieces (i.e. like firing a shotgun at the DNA molecule). The fragmented DNA
is put into a sequencing machine that determines the sequence of nucleotides
in each fragment.

The sequence data returned from high throughput sequencing machines con-
sists of reads, each representing a short section of DNA. Historically, NGS
technologies produced reads as short as 25-50 nucleotides, but today’s tech-
nologies normally generate significantly longer read lengths. The different
NGS technologies can be grouped into categories. The technologies that are
currently available in the market and most often encountered are based on
techniques called sequencing by synthesis (e.g. Illumina, 454 pyrosequencing,
and Ion Torrent), sequencing by ligation (e.g. ABI SOLiD), and single molecule
sequencing (e.g. Pacific Biosciences SMRT and Nanopore). The read lengths
of the different methods vary substantially, with SOLiD and Illumina on the
lower end of the spectrum, producing reads between 75-300 bases in length.
On the upper end, 454 pyrosequencing and Pacific Biosciences produce the
longest reads at between 1000-20,000 nucleotides long, albeit often with general
trade-offs in accuracy. A very good overview of the different NGS technologies
is presented by Van Dijk et al. (2014).

Because of its low per-base cost, high throughput, and relatively low error rate,
Illumina sequencing is routinely used in many sequencing projects and has
become the most commonly employed technology in large-scale metagenomic
sequencing studies. Sequencing using Illumina’s technology works as follows
(Mardis, 2008). First, DNA is extracted from a sample, then purified and
fragmented into templates. The templates are attached to a solid surface on a
flow cell where they are amplified to produce many copies of each template
in small clusters on the surface. Each cluster thus consists of many copies of
short identical DNA strands sitting close together. The template DNA strand
must be amplified as the sequencing signal would be too faint to detect unless
the clusters are made dense enough. The flow cell of an Illumina HiSeq 2500
machine can have up to 1 million clusters per square millimeter, which is one of
the reasons for their immense throughput. The actual sequence of nucleotides
in the strands represented by each cluster is determined by flowing a solution
of free nucleotides across the flow cell. The nucleotides emit a small flash of
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light when they bind to the next available position in the strands in the clusters.
A high resolution camera detects the emitted light pulses, coded with different
colors for each of the four nucleotides, and produces a sequence of images.
From these images, the sequences of nucleotides in the strands in each cluster
can be determined. This process is called base calling.

The DNA sequence data produced by NGS machines consists of short reads,
which often requires special techniques for analysis. Unfortunately, sequencing
machines are imperfect and occasionally return erroneous base calls (Treangen
and Salzberg, 2012). The different technologies are prone to different types of
errors. For example, insertion and deletion errors occasionally occur in 454
pyrosequencing and IonTorrent, i.e., a nucleotide that was not actually present
in the real DNA strand is introduced into the sequence, or the converse when
nucleotides are removed when they should actually be present. These errors
are particularly common in regions with repeating nucleotides (e.g. multiple
sequential A’s). Illumina’s technology, however, is more prone to randomly
make incorrect base calls, leading to single nucleotide errors (substitutions)
in the reads. The error rate of modern sequencers is typically in the range of
0.01−1% (Huse et al., 2007; Dohm et al., 2008; Hansen et al., 2010; Robasky et al.,
2013). Regardless of the type, errors introduce complexities in downstream
analyses (Meacham et al., 2011). For example, errors make it more difficult
to correctly find the position from where a read originates in a reference, or
can severely complicate read assembly, making it important to consider and
address the occurrence of errors in sequence data. Much research effort has
been put into trying to model errors in reads and correct them, as highlighted
by the vast numbers of available error correction algorithms, e.g. FASTX
(Gordon and Hannon, 2010), HTQC (Yang et al., 2013), and many others (Ilie
and Molnar, 2013; Meacham et al., 2011; Ilie et al., 2011; Liu et al., 2011; Yang
et al., 2010; Kao et al., 2011).

2.3.2 Protein sequencing

Analogous to how DNA sequencing is used to determine the sequence of
nucleotides in a DNA molecule, protein sequencing is used to determine the
sequence of amino acids in a protein molecule. In the middle of the 20th century
Edman (1950) presented a technique to determine the sequence of amino acids
in proteins now called Edman degradation. Briefly, Edman degradation works
by chemically marking and removing a single amino acid at a time from the
N-terminal end of the protein chain. The process is repeated until the complete
sequence is determined. After being automated in the late 1960s, the method
became widely used. Currently, however, the method has been superseded by
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either mass spectrometry-based methods, or by simply predicting the amino
acid sequence directly from the nucleotide sequence (Coon, 2009).

Mass spectrometry analysis of a molecule begins an ionization step followed
by measurement of the mass-to-charge ratio (m/z) using a mass analyzer. The
analysis of biomolecules such as proteins became possible with the develop-
ment of soft ionization techniques such as electrospray ionization (ESI) (Fenn
et al., 1989) and Matrix-Assisted Laser Desorption/Ionization (MALDI) (Hil-
lenkamp et al., 1991). In the ionization step, proteins or peptides (i.e. fragments
of proteins) are converted into gaseous ions that enter the mass analyzer. Here,
the charged ions are separated by their different m/z ratios in an electric or
magnetic field. Examples of common mass analyzers in use today include
various forms of ion traps, quadrupole (Q), Fourier-transform ion cyclotron
resonance (FTICR), and time-of-flight (TOF) (Yates et al., 2009). The types vary
in their underlying physical principles and performances. Seveeral variants
are often combined to best utilize their different abilities, e.g. Q-TOF, using
a quadrupole to separate the ions by mass, and then measuring their abun-
dances in a TOF ion detector (Han et al., 2008). When sequencing proteins,
two mass analyzers are normally used in sequence. In the first mass analyzer,
the molecular ion of the intact protein or peptide is detected. The ion is then
fragmented in a collision cell and further analyzed in the second mass analyzer.
This process is called tandem MS. The output from MS analysis are spectra
with peaks of the different m/z intensities. These spectra are compared with a
precomputed database of known protein masses to determine what proteins
were present in the original sample.

The term proteomics refers to the large-scale study of proteins, similar to
how genomics relates to the study of genomes. Genomics can determine
the presence of certain patterns in the DNA but is limited to predicting the
potential for biological functions (genes are not always expressed). Proteomics
has an advantage in that it allows for investigating the expressed protein
performing actual functions in an organism. There are two main approaches to
MS-based protein sequence characterization: bottom-up, and top-down (Meyer
et al., 2011). In bottom-up proteomics, proteins are digested enzymatically
(commonly using trypsin) into complex mixtures of peptides (McDonald and
Yates 3rd, 2003; Banks et al., 2014). The bottom-up approach provides high
sample throughput and is capable of identifying prokaryotic proteins with high
accuracy (Yates et al., 2009). By contrast, top-down proteomics studies intact
proteins instead of peptides (Chi et al., 2007; Macek et al., 2006; Swaney et al.,
2010; Tran et al., 2011). Starting with intact proteins has the benefit of enabling
the study of splice variants and post-translational modifications of proteins
with high accuracy. However, the top-down approach has lower throughput
and presents other additional complexities to produce the resulting spectra.
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Two excellent reviews by Guerrera and Kleiner (2005) and Bantscheff et al.
(2012) provide further details on how quantitative mass spectrometry is used
in proteomics.

A common application of MS-based proteomics is the identification of microor-
ganisms. The general concept of identification (and sometimes characterization
of specific properties) is referred to as typing. Typing is used in varying con-
texts, including e.g. phenotyping (differentiation between organisms based on
different phenotypes) and genotyping (classification by differences in genomes)
(Welker and Moore, 2011). The classification of bacterial samples using finger-
prints based on proteomic mass patterns MS has proven an efficient way of
typing bacterial samples for many different species. In particular, MALDI-TOF
MS has recently become part of the routine diagnostic workflow in many lab-
oratories (Braga et al., 2012). MALDI-TOF MS is typically used for bacterial
typing in clinical samples, i.e. to detect the presence of a select number of
pathogenic bacterial species. There is also a potential for further developments
of MS-based methods for clinical diagnostics. One example of a fairly recent
development is the application of liquid chromatography tandem MS (LC
MS/MS), utilizing a chromatographic column to provide better separation
of the peptides prior to mass analysis, further improving the overall ability
to accurately sequence individual peptides (Fournier et al., 2007; Issaq et al.,
2005; McDonald and Yates 3rd, 2003). LC MS/MS has been shown capable of
sub-species level identification for some bacterial species (Dworzanski et al.,
2004, 2006; Jabbour et al., 2010a,b; Karlsson et al., 2012, 2015).

2.4 Challenges created by new technologies

Over the last 10-15 years we have continuously improved our ability to gen-
erate larger amounts of molecular data to address our biological questions
and hypotheses. The developments in genomic and proteomic sequencing
technologies combined with more powerful computing resources have shifted
our focus from generating small specific data sets to answer specific questions,
to generating massive amounts of data from which a wide range of differ-
ent questions can be answered. For example, platforms such as Illumina’s
HiSeq 2500 can produce up one terabase of sequence data (1012 nucleotide
bases), distributed across many billion reads, in a single run. Consequently, the
amount of data in public repositories is accumulating at a rapid pace, already
reaching petabase volumes (1015 bases) (Baker, 2010). The increase in sequence
data submitted to the Sequence Read Archive (SRA) was recently reported
to exceed the growth rate of hard drive storage capacity, and the European
Nucleotide Archive (ENA) shows that the growth rate for submitted sequences



2.4. Challenges created by new technologies 13

is exponential, doubling every 10 months (Figure 2.3 (Leinonen et al., 2011;
Kodama et al., 2012; Cochrane et al., 2013).
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Figure 2.3: The Sequence Read Archive (SRA) is a repository for raw sequencing data
that has exhibited exponential growth over the last years since the introduction of
high throughput sequencing technology. Note the logarithmic axis for the number of
nucleotides. Data from the National Center for Biotechnology Information (NCBI) SRA
website (http://www.ncbi.nlm.nih.gov/Traces/sra/).

The rapidly increasing volumes of data that are accessible with new tech-
nologies have revolutionized the life sciences and how scientists can address
questions and hypotheses in biology and medicine. Previously inaccessible
biological information, such as the genetic basis of a bacterial community or
all of the expressed proteins in a pathogen, can now be generated at low cost.
However, the emergence of new high-throughput technologies has introduced
new data analysis challenges, sometimes leaving established approaches in
their wake. Most traditional methods for analyzing these types of data were
not designed for the big, diverse, noisy, and heavily fragmented data generated
by modern sequencing technologies. Applying traditional methods to data
generated with these new technologies is therefore often infeasible. Thus, novel
methods and approaches must be developed to unlock the full potential of this
new generation of genomic and proteomic data.

http://www.ncbi.nlm.nih.gov/Traces/sra/
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3 Aims

The papers presented in this thesis were based on the following aims:

1. Develop and evaluate methodologies for the discovery of novel antibiotic
resistance genes in fragmented metagenomic data.

2. Develop and implement a method for the quantification of genes in
microbial communities using large volumes of fragmented metagenomic
data.

3. Develop and evaluate the application of shotgun proteomics to bacterial
identification in samples from complex bacterial mixtures.

The three aims relate to the included papers in the following way. The first
aim addresses the ability to discover novel unknown antibiotic resistance gene
sequences in short read data, the feasibility of which was relatively uncertain at
that time. Papers I, II, and III describe how such an approach was designed and
implemented, shown feasible, and had its predictions verified experimentally.
The second aim addresses the difficulty in comparing very large metagenomic
samples. Paper IV describes an implementation of a method that utilizes
high performance computing cluster resources to efficiently perform gene
quantification of very large metagenomic data sets. The third aim addresses
the technical challenge of identifying the constituent members of complex
bacterial mixtures in shotgun proteomics data. Paper V describes the general
analysis workflow and presents the technological background of the method.
In Paper VI we describe a method based on the concepts of Paper V, capable
of sensitive identification of several clinically relevant pathogenic bacteria in
mixed samples without a priori knowledge of the sample’s bacterial makeup.

15
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4 Methodological considerations

Most of the work in this thesis concerns the analysis of complex data sets
consisting of fragmented biological sequences. This chapter will describe
challenges related to the analysis of big data, presenting some approaches for
how these challenges can be addressed. Further, this chapter is intended to
complement the information on methodological concepts, data sets, and data
formats that are presented in the papers. Refer to the methods section of each
respective paper for complete details of the specific methods used in each of
the studies.

4.1 Challenges with large data

New technologies for biological sequence generation can produce very large
data sets, and the life sciences are facing numerous challenges in handling the
great amounts of data being generated (Marx, 2013). The challenges associated
with analyzing large data can be related to Moore’s law. Originally formulated
by Intel’s co-founder Gordon E. Moore in 1965, Moore’s law claims that the
number of transistors in dense integrated circuits will double every two years
(Schaller, 1997). Moore’s statement has essentially held true since the beginning
of the 1970s through to today, and has been predicted to hold for another
decade. The continuous increase in computing power provides resources for
analysis of larger and larger data sets. Mark Kryder made a similar observation
regarding storage technologies in 2005. Kryder observed that the storage
density of magnetic disks at that time was increasing at a pace much faster
than the doubling time of processors put forth by Moore (Walter, 2005). The
life sciences are currently experiencing very fast-paced development in regard
to data generation capability, exhibiting a growth rate outpacing both Moore
and Kryder’s laws (Cochrane et al., 2013).

17
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At a certain point, data sets become too large to analyze using normal methods
and computers. The transition from regular data to "big data" varies extensively
between fields, but some general properties can be identified. One definition is
that data becomes big data when the size of the data sets pass the point where it
is no longer feasible to apply regular computers and methods to store, manage,
and analyze the data within reasonable time frames. The specific size at which
this occurs shifts continuously as technology advances, but for sequence data
in the life sciences this typically occurs as data sets approach terabase size.
Big data is often described by characteristics called the three V’s. The first
definition of the three V’s was laid forth in a research report in 2001 by META
Group (Laney, 2001). In the report, the three V’s of big data were defined as:
Volume (the data must be large), Variety (integration of many different types
of data), Velocity (analysis of data generated in real-time). For bioinformatics
applications, volume is caused by the massive data generation capabilities of
the latest sequencing technologies. Variety is caused by the combination and
merging of multiple sources of data from e.g. genomics and proteomics and
its associated metadata. Sequence data generation in e.g. DNA sequencing is
currently at the tipping point where the velocity with which sequence data
is generated is becoming a big factor, and the velocity component is likely to
grow further in the coming years. Several real-time sequencing technologies are
currently on their way to the market, which can be expected to produce a near
continuous flow of sequence data to be analyzed, e.g. in routine sequencing of
genomes and proteomes in clinical settings.

The alignment of biological sequences is central to many bioinformatics ap-
plications. Indeed, most of the methods presented in this thesis are based on
sequence alignment. For example, the methods in Papers I and III use sequence
alignment to find antibiotic resistance gene sequences in short DNA fragments.
In Paper IV, the method is based on the alignment of from metagenomic data
to reference sequences in order to determine the frequency of occurrence of the
reference sequences in the metagenome. Paper VI uses sequencing alignment
algorithms to identify bacterial species in shotgun proteomics data. The size of
modern sequencing data sets is making timely alignment of sequences more
challenging. In this context, traditional alignment algorithms, such as Smith-
Waterman (Smith and Waterman, 1981) and Needleman-Wunsch (Needleman
and Wunsch, 1970), are too inefficient because of their poor scaling (O(NM), in
which N and M are the lengths of the two sequences being aligned). Research
and development into sequence alignment has resulted in the traditional algo-
rithms being superseded by more efficient algorithms for biological sequence
alignment. The most notable being the now ubiquitous heuristic BLAST algo-
rithm (Altschul et al., 1997) that revolutionized the entire field of bioinformatics,
enabling fast and accurate sequence alignment. While still in widespread use,
the performance of the BLAST algorithm is insufficient when it comes to align-
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ing data at the scales of modern sequence data sets. Instead, novel algorithms
such as Bowtie2 (Langmead and Salzberg, 2012), USEARCH (Edgar, 2010),
BLAT (Kent, 2002), Vmatch (Kurtz, 2007), and BWA (Li and Durbin, 2009), have
become instrumental for analysis of high throughput sequencing data. The
key features of all of these algorithms are that they combine well-designed
data structures, heuristics, and optimizations to provide efficient sequence
alignment.

However, how to efficiently analyze data in the real world boils down to how
the data is read and stored in the computer. The algorithms (and data structures
that store the data) play a great part in how quickly and efficiently results can
be generated from the raw data, with regards to computing power and memory
consumption. Much research has focused on attaining high processing speed,
and the most important part is often to strive for locality of reference, i.e.
having the data as close to the processor as possible at all times, to minimize
unnecessary transfer latencies. For big data analysis in life sciences, the limiting
component tends to be input/output (I/O) performance, i.e. data access speeds;
getting the data from storage to CPU (Trelles et al., 2011). Thus, the challenge
often lies in feeding the data to the analysis algorithm as fast as possible. For
example, the time required to read 1 terabyte of data from a solid-state drive
(SSD) is almost 40 minutes (at 500 MiB/s), and from a regular hard drive it will
take over 3 hours (at 100 MiB/s).

Compression algorithms are widely used to make data smaller, e.g. to min-
imize the storage consumption of large files. Compression can also be used
as a way to increase the amount of information transferred from network and
disk per time unit. Using compression can thus help reduce the limitations of
I/O throughput by sacrificing some CPU power to minimize the total number
of bytes required to transfer from the storage media. Several general purpose
compression algorithms often perform well on DNA and protein sequence
data because these data are often stored in ASCII-based formats that contain
redundant information (e.g. similar sample headers or duplicate sequences).
Implementations of general purpose compression algorithms such as gzip and
bzip2 are typically available by default in most operating systems. Because of
their ubiquity, we implemented support for sequence data compressed with
gzip in the method described in Paper IV to increase the net data throughput
when transferring data over the network. There are also specialized com-
pression algorithms developed specifically for use with sequencing data in
FASTA and FASTQ formats, e.g. MFCompress (Pinho and Pratas, 2013) and
DSRC2 (Roguski and Deorowicz, 2014). These methods typically achieve
higher compression ratios than general purpose compression algorithms, and
some parallel implementations (e.g. the aforementioned DSRC2) provide com-
pression and decompression speeds of more than 500 MiB/s. Thus, using
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specialized and highly performant compression algorithms can help alleviate
the challenges related to big data I/O when working with sequence data, which
will improve the ability to generate insight and results from large biological
data.

4.2 Distributed computing

One approach to analyzing big data is to parallelize the analysis, e.g. by
splitting the data into smaller pieces and analyzing each of them concurrently.
Parallelization, i.e. the concept of performing analysis of several subtasks in
parallel, can substantially reduce the total time for analysis. Most computers
today have processors capable of limited parallelism, but this is generally not
enough to handle the large amounts of data commonly encountered in modern
sequence data sets. Distributed computing resources such as high performance
computing (HPC) clusters and cloud computing is often required to achieve the
necessary data throughput to analyze big data. Using distributed computing
systems to run analyses in parallel enables the study of larger data sets than
what was previously possible, opening up new possibilities e.g. for inferring
correlations in large data sets.

In order to effectively utilize distributed computing resources, algorithms must,
in most situations, be modified from their single processor implementations. To
reap the full benefits of parallelization, this often requires extensive knowledge
of the algorithm and the hardware the application is expected to run on. There
are two general approaches to parallelization: data parallelism and task paral-
lelism (Subhlok et al., 1993). Data parallelism divides a data set into smaller
pieces, operating on smaller parts of the data to reduce the overall computa-
tional time required. To get the largest benefit from data parallelism there must
not be any dependencies between different parts of the data. If the problem
cannot be cleanly separated into parts without requiring communication be-
tween the separate parts, the problem typically parallelizes less efficiently. Task
parallelism divides problems on a higher level, decomposing problems into
separate tasks that can often be operated completely independently of each
other, allowing for efficient parallelization. The time to perform an analysis
will only decrease if concurrency can be achieved.

If paralleization of a program is going be beneficial can be analyzed using
Amdahl’s law. Amdahl’s law states that the maximum speedup that can be
achieved for a program of which P is the proportion that can be parallelized,
using N processors, is S(N) = 1

(1−P )+ P
N

(Rodgers, 1985). In situations where
only a part of a sequential application can be parallelized, the parameter P
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is substantially less than 1. Even if the part can be parallelized to run almost
instantly using several CPUs, the entire application would still have its total
runtime limited by the non-parallelizable part. For perfectly parallel problems,
i.e. problems that can be split into parts where there is complete independence
between the different parts, the parameter P is almost equal to 1. The total
runtime of such problems can, in theory, be reduced by a factor of N using N
processors. Examples of perfectly parallel problems in bioinformatics include
e.g. the alignment of DNA sequence reads to reference sequences, which in
theory can be parallelized almost perfectly by splitting up the read data into
smaller parts (i.e. data parallelism).

Several patterns reoccur when problems are parallelized. These patterns can
be referred to as algorithmic skeletons (Cole, 1991; Mattson et al., 2004). Ab-
stracting parallelism into skeletons allows for reusable implementations and
simplifies management of distributed computations. Here, three skeletons
that are widely applicable to bioinformatics computing problems are briefly
described and illustrated (Figure 4.1). A commonly encountered skeleton is
the pipe skeleton (Figure 4.1a), ubiquitous in unix-like environments. The pipe
skeleton fits well into the unix ecosystem, perhaps as a direct result of the
unix philosophy that each program should do one thing and do it well, and
programs should be composable via a unified text-stream interface (McIlroy
et al., 1978). In the pipe skeleton, several components are chained together to
form long pipelines of separate components that act in several stages. This al-
lows parallelization by running each of the components on separate processing
units. Drawbacks include that all pipeline components depend on one another
serially, making the pattern less suited for workflows involving speed-limiting
stages, such as heavily I/O-bound operations. The map skeleton is another
common skeleton (Figure 4.1b), which essentially consists of split, execute, merge
operations condensed into a single method. The data is split into multiple parts,
each of which execute the same task on different parts of the data in parallel.
As each part finishes, the results from each part of the data are combined into a
single result. The well-known MapReduce algorithm (Dean and Ghemawat,
2008) was designed based on this skeleton. The MapReduce algorithm has been
used in several bioinformatics applications (e.g. sequence alignment Schatz
(2009), Nguyen et al. (2011), and distributed data transformation Schumacher
et al. (2014)). Finally, the farm skeleton, sometimes also referred to as the
master-worker skeleton, has worker processes that execute tasks in parallel.
The tasks are distributed and managed by the emitter/master process (Figure
4.1c). The farm skeleton allows for the execution of dissimilar subtasks in
ad-hoc systems, and is therefore sometimes also referred to as the task farm
skeleton. It bears superficial similarity to the map skeleton, but the workers
are generally under more direct control by the emitter/master process and
the tasks can be different, unlike the map skeleton. For more detail about
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the concepts behind parallelization using algorithmic skeletons the reader is
invited to read the review by González-Vélez and Leyton (2010).

Stage 1 Stage 2 Stage n…Input Output

(a) The pipe skeleton. This skeleton performs different subtasks in
separate stages in a contiguous stream, in which the output of each
subtask is connected to the input of the next. A pipeline can e.g. be
used to efficiently filter data using several successive criteria.

Splitter RecombineInput Output

Data part n

Data part 2

Data part 1

…

(b) The map skeleton. This skeleton implements a function that splits
the data into n parts that are executed in n separate processes. The
results from each part are combined in a final stage to produce the
complete result. This can e.g. be used to efficiently process convert an
array of floating point numbers to integers in parallel.

Emitter CollectorInput Output

n

2

Workers

1

…

(c) The farm skeleton. This skeleton has a program often called the
master process that splits the input into n jobs that are sent (emit-
ted) to n separate worker processes. The workers can be located on
completely different computers, connected via a network. The master
process receives the results from each worker process and combines
the results to form the complete result. This skeleton can e.g. be used
to efficiently perform read mapping on computer clusters.

Figure 4.1: Three examples of algorithmic skeletons, i.e. skeleton for parallelization.
Data is input from the left and the processed output exits to the right.

The problems described in this thesis are mostly of the data parallel type and
thus amenable to parallelization. For example, in Papers I and III the method is
parallelizable by splitting the metagenomes into pieces of suitable size and the
analysis could be run in parallel on distributed computing systems e.g. using
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the map skeleton. The method implemented in Paper IV uses several skeletons
simultaneously to parallelize on different levels. On the first level, the raw data
is split into pieces that are sent to worker processes in a distributed computing
system similar to the farm skeleton. On the second level, each worker process
performs analysis of its set of data using the pipeline skeleton. The method
for bacterial proteotyping presented Papers V and VI combines the pipeline
and farm skeletons to analyze several samples in parallel in its workflow. In
general, most sequence alignment-based methods are well-suited for paral-
lelization. This essentially means that it should be possible to decompose
most alignment-based methods into task or data parallel implementations that
parallelize perfectly, fully utilizing all available computing resources in a paral-
lel computing system (disregarding any distribution overhead). Readers are
invited to read more about computational solutions management and analysis
of large-scale data in the review by Schadt et al. (2010).

4.2.1 Computer hardware for bioinformatics

Regular workstation or laptop computers are unsuited for handling large data.
Bioinformatics researchers generally utilizes high powered computing servers
with high performance processors (often at least two quad- or octa-core pro-
cessors per machine), large amounts of fast RAM (generally several hundred
gigabytes), and large hard drive arrays for storing raw data, temporary inter-
mediate data, and results. The analysis of large data sets sometimes requires
more computing resources than single computers can typically provide. In
such cases, high performance computing (HPC) clusters can be used. For
researchers in Sweden, the Swedish National Infrastructure for Computing
(SNIC) (http://www.snic.vr.se/) provides HPC resources located at several
universities across Sweden. These resources are hosted and managed by lo-
cal centers at each site. In this thesis, the vast majority of the analyses were
done on the HPC systems at Chalmers, managed by the Chalmers Centre for
Computational Science and Engineering (C3SE) (http://c3se.chalmers.se).

The main operating systems used within bioinformatics are based on GNU/Linux.
There are many different distributions of Linux developed and maintained espe-
cially for scientific use, such as Scientific Linux (https://www.scientificlinux.org/)
sponsored by Fermi National Accelerator Laboratory and CERN, and BioLinux
(http://environmentalomics.org/bio-linuxx/) (Field et al., 2006) sponsored by
the Natural Environment Research Council (NERC). These specialized science-
oriented Linux distributions are generally based on established Linux distribu-
tions, such as Ubuntu Linux (BioLinux) or Red Hat Enterprise Linux/CentOS
(Scientific Linux). Nearly all methods presented in this thesis (Papers I, III, IV,

http://www.snic.vr.se/
http://c3se.chalmers.se
https://www.scientificlinux.org/
http://environmentalomics.org/bio-linuxx/
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and VI) were designed to run primarily on the CentOS-based Linux systems
on the local HPC infrastructure provided by C3SE at Chalmers.

An alternative to using local HPC installations is to use cloud computing re-
sources. Cloud computing is becoming more common as a recent developments
in the last five to ten years have provided viable, cost effective, and flexible anal-
ysis platforms. Vendors such as Amazon, Google, and Microsoft, offer cloud
computing resources for which an increasing number of bioinformatics meth-
ods are developed (Stein, 2010). The flexibility they afford also makes them
useful as backends for web-based bioinformatics tools. For example, the well-
known metagenomics analysis platform MG-RAST (Meyer et al., 2008) uses
cloud computing resources to analyze uploaded data. The method presented in
Paper IV was constructed with the long-term goal to include the ability to uti-
lize cloud computing resources to analyze large metagenomes. Cloud service
provides in general offer a different type of billing model compared to regular
HPC installations, making them well suited for the varying and intermittent
workloads commonly seen in bioinformatics research. Publishing large data
sets so that they are available for analysis via cloud computing resources has
been discussed as a way to increase the accessibility of such data sets, making
it easy for researchers to analyze the data without having to download the raw
data (Schatz et al., 2010).

4.3 Data used in this thesis

Data from several different public data sets and reference databases are used
in this thesis. This section describes a selection of the data sets and reference
databases employed. Each section also contains a brief explanation of the most
often encountered formats used to store the different types of data.

4.3.1 Metagenomics data

Several data sets of metagenomic data from the human microbiome were used
in this thesis. The American National Institute of Health’s Human Microbiome
Project (The NIH HMP Working Group, 2009) is the largest and most varied
and deepest sequence human associated metagenomic data set available today.
The metagenomic data set that was published in 2012 comprises 3.5 terabases
of raw reads sampled at up to 18 body sites (e.g. oral, skin, gut, etc.) from
242 individuals, produced using the Illumina platform with 101 base pair
long reads (Methé et al., 2012; Huttenhower et al., 2014). Another large data
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set of gut microbiome shotgun metagenomes was produced as part of the
Metagenomics of the Human Intestinal Tract (Meta-HIT) project (Qin et al.,
2010), which was generated from faecal samples of 124 European individuals.
The published data consists of raw reads produced with the Illumina platform
using 45-75 base pair long reads. When the data set was published in 2010 it
was the largest single public metagenomic data set of its kind with its 576.7
gigabases of sequence data. A third shotgun metagenomic data set with gut
microbe metagenomes was published by Qin et al. (2012), produced for a type
2 diabetes study on 345 Chinese individuals. The data set consists of 378.6
gigabases of raw read data and was also produced on the Illumina platform
(150 base pair reads). The metagenomic data from human microbiomes were
used to search for novel resistance genes in Paper I and III, and to evaluate and
optimize the method for distributed gene quantification in Paper IV.

Environmental metagenomes from several projects were also used in this thesis.
The CAMERA database (Seshadri et al., 2007), containing data from the Global
Ocean Sampling (GOS) expedition (Venter et al., 2004; Yooseph et al., 2007),
along with several other smaller environmental metagenomic data sets, was
also screened for qnr genes in Paper I. Several additional smaller metagenomic
data sets were also used in Papers I and III, most prominently metagenomic
data from polluted environments in Patancheru, India (Bengtsson-Palme et al.,
2014).

The FASTQ format has become the de facto standard format for storing se-
quence data produced by next generation DNA sequencing machines (Cock
et al., 2010). FASTQ stores the sequenced reads along with information on
the quality of each nucleotide base in an ASCII-based format, making it easy
manually inspect and modify using any text editor. Briefly, each record in a
FASTQ file consists of at least four lines (Figure 4.2).

The quality values in FASTQ files correspond to an integer mapping of the prob-
ability, p, that the corresponding base was called incorrectly. The quality values,
commonly denoted Phred scores (Ewing et al., 2005), were first introduced with
Sanger sequencing and is encoded as Q = −10 log10p. For example, a 99.99%
probability results in a Phred score of 40. The range of possible scores is not
limited and can in theory extend upwards as technology improves. The range
of quality scores e.g. from Illumina’s sequencing machines is however normally
expected to lie within the range 0-41, and is represented as the printable ASCII
characters !"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJ.
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@FBSEQ-READ30:1:v3:1337:5150#151204 length=30
AGTCGAATCGCATGCTCAGTCAGCATGCAG
+FBSEQ-READ30:1:v3:1337:5150#151204 length=30
,5;?BHIIIIIIIIIIIIIHIHI@51/-+)

Figure 4.2: Example of a single record for a 30 nucleotide long DNA read in FASTQ
format. The first line contains the record identifier and always starts with an @ character.
The second line contains the raw sequence letters in ASCII format (i.e. ATGC and N
for unknown). The third line begins with a + character and is optionally followed
by the same record identifier. The fourth line contains the base calling quality values
encoded in printable ASCII; this line is always the same length as the sequence line.
In this example, the identifier line is repeated for the quality scores, but this is rarely
encountered in real sequencing data because it is redundant and space consuming.
The format specification allows the sequence and score lines to be of any length, and
optionally allows them to also be wrapped at any length as well, a feature that is also
rarely encountered in FASTQ files today.

4.3.2 Proteomics data

Proteomic data sets in this thesis were all produced as part of an EU-project, The
Tailored Treatment (http://www.tailored-treatment.eu/), which aims to de-
velop personalized diagnostics of bacterial and viral infections. The proteomics
data produced were generated specifically for the project by tandem MS/MS
using a Thermo Fischer Scientific Q ExactiveTM Hybrid Quadrupole-Orbitrap
mass spectrometer. Samples were prepared using a proprietary flow cell tech-
nology, LPI

TM
Flowcell (Nanoxis Consulting), used to immobilize bacterial cells

for more controlled protein digestion and extraction. Shotgun proteomics data
generated from pure bacterial cultures and mixtures of pure cultures were
used in Paper V and VI. The mass spectra, initially stored in Thermo Fischer
Scientific’s proprietary raw data format, were run through X!!Tandem (Bjorn-
son et al., 2008) to generate peptide sequences. Samples generally consisted
of 1500-3000 usable spectra, producing peptides in the 6-45 amino acid length
range. Please refer to Papers V and VI for more details on the specifics of the
proteomics data used.

Vendors of MS equipment typically have their own proprietary raw data for-
mats in which data is normally stored in opaque binary files. These binary
files can often be converted to open text-based standard formats such as e.g.
mzXML using vendor supplied libraries. The mzData format was the first
attempt at an open standard for MS data, but vendors wanted to wait for the
standard to be finalized before implementing support. In the meantime, a new

http://www.tailored-treatment.eu/
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format called mzXML was developed to fill the need for an open standard that
the scientific community could use Pedrioli et al. (2004). However, the scientific
community identified some shortcomings in the mzXML format and have,
under the organization of the Human Proteome Organization’s Proteomics
Standards Initative (HUPO-PSI), developed the mzML standard as its succes-
sor. The mzML format was first presented by HUPO-PSI in 2008 (Deutsch,
2008), aiming to combine the best elements of the earlier two formats, and the
scientific community is converging towards exclusively using this format. The
XML-based standards are well defined, making parsing them with any stan-
dard XML-parser straightforward, and most open source proteomics software
are capable of reading and writing these formats.

4.3.3 Reference databases

The National Center for Biotechnology Information (NCBI) supplies a wide
range of publicly available databases. The GenBank database (Benson et al.,
1999) is a public database of nucleotide and peptide sequences, submitted from
researchers from all over the world. GenBank was used in all of the papers in
this thesis. It effectively acts as a central repository for all publicly available
nucleotide and protein sequences. However, since practically any sequence
is accepted, the quality of the stored sequences and their annotation can vary
(Harris, 2003; Nilsson et al., 2008). The most recent release (210.0, released
2015-Oct-15) contains 202, 237, 081, 559 bases, from 188, 372, 017 reported se-
quences (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt). In addition to the general
sequence repository, the NCBI also supplies an open access database of anno-
tated, high quality, reference genome sequences for several organisms (e.g.,
viruses, bacteria, and eukaryotes), called the Reference Sequence database
(RefSeq) (Pruitt et al., 2007). The sequences for each organisms are stored
as single records for the complete biological molecules, and RefSeq currently
contains more than 9, 000 bacterial genomes. Another important database main-
tained by NCBI that is used throughout this thesis is the taxonomy database,
NCBI Taxonomy (Federhen, 2012). Although NCBI Taxonomy is considered a
non-authoritative source for taxonomic information, the taxonomy database
represents essentially the entire tree of life with convenient links to other NCBI
resources such as RefSeq sequences and annotations. Papers I and III screened
GenBank and RefSeq for the presence of qnr antibiotic resistance genes. Paper
VI used the NCBI Taxonomy and RefSeq genomes to identify bacterial presence
in samples.

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
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5 Summary of results

This chapter provides summaries of the results of the six papers included
in the thesis. The overall aims, findings, and conclusions from each paper
are presented to further make it easier to understand each paper’s respective
contribution to the research field.

5.1 Papers I, II, III

The first three papers are closely connected. In Paper I we developed and ap-
plied a method to metagenomic data sets to discover novel antibiotic resistance
genes. The novel genes discovered in the first paper were then verified experi-
mentally in Paper II, by expressing the discovered genes in a bacterial host to
confirm their antibiotic resistance properties. Paper III further improved the
method developed in Paper I and applied it to much larger data sets consisting
mainly of short read metagenomes.

In Paper I, A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes
in fragmented nucleotide sequences, we developed and implemented a method
enabling the identification of a certain type of antibiotic resistance genes called
qnr in metagenomes consisting of short DNA fragments. The qnr genes were
discovered approximately 15 years ago, and provide a mechanism of resistance
with the potential to rapidly spread between bacteria using horizontal gene
transfer (Martínez-Martínez et al., 1998). Together, the qnr genes form a family
of plasmid mediated resistance genes that provide a wide range of different
types of bacteria with low to moderate levels of resistance to commonly used
antibiotics in the fluoroquinolone family (e.g. ciprofloxacin). Similar to most
antibiotic resistance genes, qnr genes are assumed to originate from environ-
mental bacteria (Poirel and Rodriguez-Martinez, 2005). Over the last decade
several families of qnr genes have been discovered and characterized, but their
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true prevalence and diversity remain unclear. In particular, environmental
and host-associated bacterial communities have been hypothesized to main-
tain a large and unknown collection of qnr genes that could be mobilized into
pathogens.
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Figure 5.1: A) Empirical bit scores of fragmented qnr (blue) and non-qnr (red) peptide
sequences at varying fragment lengths. Notice the clear distinction between qnr and
non-qnr sequences, separated by the qnr classifier function (dashed line). B) Bit scores
distributions for 33 amino acids long qnr and non-qnr fragments, showing the separation
in bit score distribution that makes it possible to discern qnr from non-qnr at 33 amino
acid long fragments (equivalent to 100 base pairs long nucleotide fragments).

The qnr proteins belong to a group called pentapeptide repeat proteins. Proteins
in this group display a specific repeating pattern in their amino acid sequence,
consisting of repeating subunits of five amino acid residues. Because of this
specific pattern, sequences from qnr proteins can be accurately detected using
hidden Markov models (HMMs). The strength of HMMs is that they are able
to capture the repeating pattern in the amino acid sequence while still allowing
high variability in regions of the sequence where there is little conservation
across different variants of qnr. Furthermore, HMMs are also computationally
efficient (Eddy, 2011) and the vast amounts of data generated by shotgun
metagenomics can therefore be used to explore the diversity of qnr genes in
more detail. The main finding of Paper I was that the qnr family of antibiotic
resistance genes is possible to identify using HMMs. We developed an HMM
based on all known qnr gene variants that, in combination with a custom
classifier that merges fragment length information with expected bit scores
against the HMM, achieves high performance even for fragment lengths down
to 100 base pairs (Figure 5.1A). The model was able to accurately identify
the amino acid sequence of qnr fragments and distinguish them from other
similar pentapeptide repeat sequences that were not derived from qnr genes
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(Figure 5.1B). In our study we also discovered several fragments that indicate a
presence of previously unknown qnr gene variants in the environment. The
method described in this paper significantly improves the sensitivity and
specificity of identification and annotation of qnr genes in nucleotide sequence
data. The predicted novel putative qnr genes in the metagenomic data support
the hypothesis of a large and uncharacterized diversity within this family of
resistance genes in environmental bacterial communities. Our implementation
of the method was made in Python 2.7 for use in Linux environments and is
freely available at http://bioinformatics.math.chalmers.se/qnr/. Paper I was
published in BMC Genomics, 13:695 (Boulund et al., 2012).
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Figure 5.2: Minimum inhibitory concentration (MIC) of known and novel qnr gene
variants when expressed and overexpressed in E. coli using IPTG and arabinose.

The second paper, Functional verification of computationally predicted qnr genes, is
a follow-up study of the results from Paper I. The paper describes a bacterial
expression platform for evaluating the resistance phenotype of antibiotic re-
sistance genes, in which Escherichia coli was chosen as the host organism. The
expression platform was evaluated using synthesized genes of several types
of well-known qnr genes and novel qnr candidate genes discovered in Paper
I. By using inducible recombinant expressions systems the functionality of
four identified qnr candidates were evaluated. Expression and overexpression
of several known qnr genes as well the novel candidates provided fluoro-
quinolone resistance that increased with elevated inducer concentrations. One
of the main results of Paper II is that two of the putative qnr genes discov-
ered in Paper I provide antibiotic resistance when expressed in an E. coli host
(Figure 5.2). Papers I and II also serve as an important example underscoring
how computational methods can be used in exploratory studies to generate
novel hypotheses and intermediary results that can be verified in the lab. The
combination of a computational model and recombinant expression systems
provides opportunities to explore and identify novel antibiotic resistance genes

http://bioinformatics.math.chalmers.se/qnr/
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in both genomic and metagenomic datasets. Paper II was published in Annals
of Clinical Microbiology and Antimicrobials, 12:34 (Flach et al., 2013).
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Figure 5.3: Gene tree showing plasmid-mediated and chromosomal qnr gene families
detected and discovered in Paper III. The tree is rooted to MfpA, a pentapeptide protein
similar to qnr. Novel sequences discovered in Paper III are depicted in bold. To the right
of the tree is a simplified representation of a multiple alignment of all sequences.

Paper III revisited and optimized the method developed in Paper I for larger
and more fragmented data sets. We applied the improved method to an almost
ten times larger data set, comprising more than 5 terabases of sequence data.
In total, 256,520 potential qnr gene fragments were identified, from which 669
putative qnr genes were reconstructed. These gene sequences included all
previously described plasmid-mediated qnr gene families. Twenty-one of the
699 identified qnr genes were reconstructed from metagenomes, of which four
were novel and previously undescribed. Three of these novel putative genes
were only distantly related to known qnr gene families, whereas the fourth
shared 73% sequence identity to qnrVC6 (Figure 5.3). The qnr gene predictions
presented in this study provide the basis for follow-up experiments, similar to
those in Paper II, to validate the fluoroquinolone resistance phenotypes of the
identified gene sequences.

5.2 Paper IV

Paper IV, titled Tentacle: distributed quantification of genes in metagenomes, ad-
dressed the challenge of working with very large scale metagenomic data
sets. Using shotgun metagenomics, microbial communities can be sequenced
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with high resolution, generating data sets containing billions of DNA frag-
ments. With the continuous development of sequencing technologies, the size
of metagenomic data sets are expected to increase. The trend of increasing data
set sizes shows no signs of slowing down.

Master WorkerRequest job

Job allocation

WorkersJobs

Figure 5.4: Schematic view of Tentacle’s master-worker interaction and responsibilities.
The master process is manages the list of jobs and maintains a list of currently available
and engaged worker processes. Each worker process registers with the master process
and start receiving jobs when it comes online. As worker processes complete their
allocated jobs they request new jobs until the list of jobs is depleted.

An application where the analysis of very large amounts of metagenomic data
is useful is for the assessment of differences between bacterial communities
(Jones et al., 2010; Tringe et al., 2005). This could for example be comparisons
of the gut microbiome between sick and healthy individuals. To perform
such comparisons it is necessary to quantify the presence of genes or other
genomic features of interest (Delmont et al., 2013). To perform gene quan-
tification requires that each read in the metagenomic sample is compared to
a reference (e.g. databases of known genes or bacterial genomes). After all
reads have been compared the number of matches to the references are counted
and can be used as a basis for statistical comparative analysis (Kristiansson
et al., 2009). Sequence comparison (i.e. sequence alignment) is a task of high
computational complexity, both requiring well designed algorithms and pow-
erful computer hardware to perform efficiently at the scale required for large
modern metagenomic data sets. Novel methods that can efficiently process the
growing volumes of sequence data are necessary for the accurate analysis and
interpretation of existing and upcoming metagenomes. The aim of this project
was to enable researchers to perform gene quantification in metagenomic data
sets in sizes of up to several terabases (1012 nucleotide bases).
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Figure 5.5: Processing that take place in Tentacle workers. Workers receive job in-
structions from the master process, and then autonomously retrieves the required files
from the distributed file system (DFS) without involvement of the master process. The
workers decompress and preprocesses annotations, reads, and reference sequences in
contiguous in-memory streams, avoiding unnecessary disk operations. When reads
have been mapped to the reference sequences, the coverage across annotated regions in
the references is computed and written directly back to the DFS, without involvement
of the master process. The worker then requests a new job from the master process.

In Paper IV we developed Tentacle, a framework that allows researchers to
use distributed computational resources (e.g. high-performance computing
clusters) for gene quantification in large metagenomes. We designed Tentacle
to employ a dynamic master-worker approach in which worker nodes can be
started independently and join the computations whenever (Figure 5.4). Each
worker node streams all data via the network and processes everything within
an in-memory stream (i.e. like a unix pipeline, see section 4.2). How worker
nodes process data is depicted in Figure 5.5. The master-worker approach that
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Tentacle is designed upon is akin to the farm skeleton previously described
in section 4.2. The fact that data in metagenomes is inherently independent is
central to the model of distributing computations in Tentacle. Because each
read is independent of other reads, the metagenomic data can be split and
processed in parallel without requiring any inter-worker process communi-
cation. Tentacle was tested on a high performance computing (HPC) cluster
to evaluate how the method scales with increasing data sizes and number of
worker nodes. The results indicate that our dynamic master-worker approach
scales almost linearly with increasing computing resources (Figure 5.6), making
it well suited for analyzing very large metagenomic data sets. We also designed
Tentacle to be as modular and extensible as possible, to make the framework
as flexible as possible. Because of the extensibility, Tentacle already supports
six commonly used sequence aligners, giving researchers the possibility to use
Tentacle to analyze their metagenomes without needing to learn the intricacies
of a different mapping algorithm than what they are used to. We wanted to
make it easy to adapt Tentacle to different applications in metagenomics and
easy to integrate into existing workflows.

Figure 5.6: Tentacle scales almost perfectly linearly with increasing number of nodes.
In this example, Tentacle was run on a subset of data from a metagenomic data set, split
into equally sized parts. The number of parts analyzed by Tentacle was equal to the
number of utilized HPC nodes, i.e. making Tentacle analyze twice the amount of data
for each doubling of utilized nodes. For each doubling of the number of computing
nodes, the total throughput of Tentacle effectively doubles, but the wall-clock time
remains constant.
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The fundamental result of Paper IV is a new method for distributed gene
quantification in very large metagenomic data sets. The method, called Tentacle,
is based on a bioinformatics pipeline consisting of components that work
together to perform gene quantification in metagenomic data, which is in
turn distributed across several nodes in high-performance computer clusters
in a data parallel manner. This exploits the independence between reads to
allow parallel read mapping and gene quantification that scales very well with
increasing computing resources (Figure 5.6). We designed Tentacle to run on
Linux systems using Python 2.7, and it is published as open source under the
GNU General Public License (v3). Source code and documentation is freely
available at http://bioinformatics.math.chalmers.se/tentacle/. Paper IV was
published in GigaScience, 4:40 (Boulund et al., 2015).

5.3 Papers V, VI

Methods for rapid and reliable microbial identification are essential in modern
health care. The ability to detect and correctly identify pathogenic species is, for
example, necessary for accurate diagnosis of infectious diseases and effective
treatment. MS-based shotgun proteomics is a technology that can rapidly
characterize large parts of the expressed genes of microorganisms present in a
sample.

Paper V is a self-standing book chapter that gives a thorough background
on MS and MS-based bacterial identification, and introduces the concept of
proteotyping and the bioinformatics workflow required for the proteotyping
analysis (Figure 5.7).

http://bioinformatics.math.chalmers.se/tentacle/
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Figure 5.7: An overview of the proteotyping workflow presented in Paper V. The
workflow begins in the upper left corner with a sample begin generated by bottom-up
tandem MS. Using an extensive protein database, the mass spectra are converted to
peptides. Each peptide is then mapped to a set of curated reference genomes/proteomes,
allowing multiple hits. The hits to the reference genomes are filtered to remove noise
and spurious hits. The remaining hits are positioned in a taxonomic tree and the lowest
common ancestor algorithm is applied to determine which peptides are suited for
inferring what bacterial species were present in the original sample.

In Paper VI we developed a new computational method for proteotyping based
on the principles outlined in Paper V. The method uses data from shotgun
MS for detecting bacteria and determining their taxonomic affiliations. The
MS data is highly fragmented, consisting of many small protein fragments
(i.e. peptides). Each peptide is compared against a large database consisting
of full genome sequences. A single peptide can match to several genome
sequences, e.g. if the peptide comes from a protein common to many different
bacteria. After determining what peptide matches to which genomes, the
method applies the lowest common ancestor (LCA) algorithm. To be certain
that a specific bacterium was present in the sample the method needs to find
peptides that can uniquely identify that bacterium, i.e. a peptide that matches
only a specific genome. The LCA algorithm makes it possible to automatically
identify peptides that can be used to determine what organisms are likely to be
present in a sample.
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Figure 5.8: Proteotyping performance on pure in silico samples of single bacterial
species. The true positive rate (TPR) shows what percentage of peptides could be
assigned to the correct species in each of the pure culture samples. The effect of random
mutations is shown by the decrease in TPR as mutation rate increases up to 10%.
E. coli and S. pneumoniae exhibit the most prominent decrease in TPR, whereas the
identification of the two other species is more robust to single point mutations.

We evaluated the method using four commonly encountered clinically-relevant
bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus
and Streptococcus pneumoniae. The data used in the evaluation was from both
simulated data generated by in silico peptide digestion, and data from pure
culture samples, generated by tandem mass spectrometry (LC-MS/MS). The
results indicated that the method was able to correctly classify peptides at
a true positive rate between 91.2% to 98.8% for the different species (Figure
5.8). Furthermore, the method also performed well for the identification of
the individual species in mixed samples. By correcting the estimated species
abundances with the information on species-specific variation in the proportion
of identified peptides, accurate detection of the relative abundances of the
respective species was possible (Figure 5.9)
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Figure 5.9: Proteotyping performance on sample of mixed bacterial cultures in 1:1:1:1
ratio. The left figure shows the raw estimated abundances directly using the identified
number of peptides belonging to each species. The right figure shows the abundance
estimations of same sample after applying a correction that adjusts the observed counts
by a factor determined by results from samples of pure cultures. The horizontal line
represents the true relative abundance of each bacterial species.

The main results of papers V and VI are that they show that bottom-up MS
proteomics can be used to not only accurately detect single species of bacteria
in pure cultures, but also perform identification in complex mixtures more
akin to real clinical samples. The methods presented in the papers are proof-of-
concepts that demonstrate the potential of these techniques as a rapid tool for
diagnostics of infectious diseases.
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6 Conclusions and future per-
spectives

Biology and life sciences are currently experiencing unprecedented develop-
ments in data generation capability. There is a need for novel methods to help
solve the challenges posed by these new and vast data sets. This thesis shows
examples of novel approaches and techniques that can be used to handle big
data in this area of research. The papers presented in this thesis describe several
methods aimed at facing the challenges that arise when analyzing such large
data sets.

In Paper I and III, we developed new methods to screen large data sets of frag-
mented DNA sequence data for the presence of novel, previously uncharacter-
ized qnr antibiotic resistance genes. In Paper II, the proposed novel sequences
were validated to provide decreased susceptibility to fluoroquinolone antibi-
otics when expressed in E. coli. These results show that it is possible to make
accurate predictions of novel antibiotic resistance genes directly from short
read data without prior assembly. The results also support the hypothesis that
is an unknown diversity of qnr genes in environmental bacterial communities.
The methodologies presented in these papers are suitable for studying even
larger metagenomes. By capitalizing on the inherent data parallelism that is
possible in the of analysis of raw reads, the method should be amenable to
parallelization in a scalable manner, which means that the method is applica-
ble to future larger metagenomic data sets. Finally, the methods described in
Paper I and III are general and can be applied to other classes of resistance
genes. Thus, these methods can therefore be important tools for characterizing
the large and still unknown diversity of resistance genes believed to exist in
bacterial communities.

In Paper IV we developed Tentacle, a framework for parallel, distributed quan-
tification of genetic elements, capable of handling the continuously growing

41
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metagenomic data sets. The master-worker approach we implemented was
shown to scale very well with increasing resources, making applicable for the
quantification and analysis of metagenomes at the terabase size range and
above. Tentacle thereby removed many of the big data challenges associated
with the analysis of modern metagenomic data sets. Tentacle demonstrates
that parallelization and distribution can improve performance on generally
I/O bound analysis tasks such as read alignment. Because of its modular
implementation, the underlying distribution framework core in Tentacle is,
in theory, possible to apply to other tasks than metagenomic gene quantifica-
tion, e.g., genome resequencing or RNA sequencing. Furthermore, we plan to
improve the accessibility of Tentacle by increasing user friendliness, adding
support more distribution schedulers, adding support for the utilization of
cloud computing resources, and implementing new features using the Tentacle
framework, such as improved gene quantification via high resolution binning.

In Paper V we developed the concept of proteotyping, i.e. using shotgun pro-
teomics for identification and characterization of microbial samples. Based on
this concept, we produced an implementation in Paper VI that was shown to be
able to accurately identify bacterial species in both single cultures and mixtures
of common pathogenic bacteria. The method shows promise for future applica-
tions in clinical diagnostics of infectious diseases. In particular, proteotyping
has the potential to be completely culture independent and thereby reduce
the time to diagnosis substantially. Proteotyping also shows promise in being
able to accurately identify multispecies infections and for combining microbial
identification with additional characterization. Work has already started in this
direction with the aim to develop an integrated diagnostics platform capable of
identifying and characterizing microbial organisms by e.g. determining their
virulence and antibiotic resistance properties.

In conclusion, biology and medicine are experiencing a big data revolution that
brings new opportunities for discovery and learning. The rapidly increasing
volumes of diverse and heavily fragmented data present new challenges with
regards to data analysis. New approaches and methods for data analysis, such
as those presented in this thesis, are required to allow researchers to dive into
previously inaccessible depths of information, to reach deeper understandings
of the inner workings of biological systems.
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