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Abstract

Web applications are increasingly processing critical data. Maintaining information security in them
is therefore a very important task. This is however a hard problem, as web applications typically
split their functionality between different components in a three-tier architecture. One promising
approach for this problem is to apply methods of Information Flow Control (IFC) across all tiers of
web applications. These methods go beyond the possibilities of traditional security mechanisms such
as access control and allow to tightly control where for example confidential information may or may
not end up. Embedded into current research at Chalmers, this thesis aims to put the theory into
practice: it first takes a closer look at what IFC actually means for web applications, which yields
a discussion of how IFC policies can be used to better protect trust relationships and the business
logic of the application. As a second step does the thesis use a given formal model for a security
type system and turn it into a working prototype that extends the F# programming language in an
unobtrusive way. Viability of this prototype is finally demonstrated by developing and discussing six
different case studies that touch different aspects of web application development. The results show
for the prototype that practical IFC requires a large initial effort but allows later a good integration
into existing languages and development processes.
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Chapter 1

Introduction

1.1 Motivation

Information security becomes increasingly a basic need for today’s information society. A broadly ac-
cepted approach to information security is to divide it into the three attributes confidentiality, integrity
and availability. The security of information that is processed in computer systems has a big impact on
personal and corporate life. Individuals use them to manage their finances, social contacts and per-
sonal data. Organizations rely on them for mission critical business processes, trust them their trade
secrets and make them accessible to employees, partners, customers or even the general public. Both
groups are required to trust the security of the data processing. Alone the violation of integrity can
for example have serious consequences, as we are reminded again by recent data breaches [18, 22].
Maintaining security is however not trivial, as it touches many topics in design, implementation and
operation of a system. Real-life systems typically rely for their security on generally accepted building
blocks such as cryptography, access control and the adherence to design principles, as for example
summarized early on by Saltzer and Schroeder [29].

This thesis emphasizes the implementation, more specifically the security issues that arise on the
application level. The discussion is focused on web applications, since sensitive information is increas-
ingly processed within web applications. They are nowadays a very popular way to build portable and
user-friendly applications. Web-based applications are however also known for a number of special
security issues, of which the most prominent are pointed out by the widely recognized OWASP Top
10 project [23]. Some of the more subtle issues arise from the fact that under the hood of a modern
web application, functionality is provided by different layers called tiers. It is not trivial to guarantee
that the intended behavior of the application is always preserved within a multi-tier application, and
it is even less trivial to guarantee integrity and confidentiality of the processed data in such a setting.
One reason for this is the mix of technologies and paradigms that results from the high specialization
of each tier.

1.2 Goals and Results

The work in this thesis explores how Information Flow Control (IFC) can be used to protect confiden-
tiality and integrity in three-tier web applications, which split functionality across browser, application
server and database. The work is based on theoretical foundations from as yet unpublished research
work by the Programming Language-Based Security research group at Chalmers [2], to which it con-
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tributes the implementation and documentation of a proof-of-concept system called JSLINQ1. IFC
research has produced already similar applications, of which SeLINKS [9] is a particularly strong
example. This thesis aims however to be unique in providing a better consideration of practical as-
pects of web application development: the implementation builds on a mature and commercially
supported web application framework in an unobtrusive way and it provides a discussion of how
IFC can contribute to correctly model the business logic of an application. Finally, the thesis aims to
provide an introduction into the underlying concepts and technologies to make it self-contained. The
results obtained during the work and presented in this report are: a discussion of what IFC policies
mean in practice for web applications, a working prototype implementation for an IFC system for
web applications as well as corresponding example programs that demonstrate how it can be used.
The feasibility of the approach is demonstrated by the discussion of six case studies, which represent
different kinds of IFC policies.

1.3 Structure

The remainder of this thesis report is organized as follows:

Chapter 2: Background gives an introduction into basic terms and concepts that are important for
the understanding of the thesis.

Chapter 3: Information Flow across Tiers provides a discussion of the role that IFC plays in three-
tier web applications. It aims to make the concepts more tangible and give them a meaning, as
well as linking it to real-life problems that application providers are facing.

Chapter 4: Formal Model presents the theoretical foundations on which the JSLINQ prototype is
built. The emphasize lies on the security type system, which serves as the theoretical foundation
of the implementation.

Chapter 5: Implementation explains the architecture of the prototype JSLINQ and provides details
of its implementation.

Chapter 6: Case Studies introduces case studies, the policies they demonstrate and how they are
specified in JSLINQ, together with examples that violate the policy.

Chapter 7: Discussion discusses design choices, provides a discussion of how the results of this work
could be used in practice and also addresses limitations of the approach. It concludes with a
discussion of related work.

Chapter 8: Conclusion gives an outlook to future developments of the approaches presented in JS-
LINQ.

1See Appendix A for a more detailed account of the contributions.
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Chapter 2

Background

2.1 Multi-Tier Architectures

Terms and notions for multi-tier architectures are not always precisely defined. This thesis uses
the definition given by Schuldt [31], as it covers all important aspects required for the following
explanations. According to Schuldt does a multi-tier architecture spread out functionality across
several components that work with each other in “a client/server style interaction”. To keep things
simple and to stay within the focus of this work, the discussion of multi-tier architectures is limited to
web applications. It is however worth to note that this architecture is not limited to web applications
and has been used before them.

A typical web application is based on a three-tier architecture, consisting of three tiers as described
in Table 2.1 and illustrated in Figure 2.1. We start off with the discussion of the business tier, as it
ultimately governs what the other tiers are doing. The business tier contains the business logic of
the application and is usually the place where most of the effort for preserving integrity and confi-
dentiality of data is focused. A wide choice of technologies exists for this tier, including those that
seamlessly integrate the adjacent client and data management tiers. This thesis refers to the business
tier also as application server, since this is in most cases the technical foundation of it. The client
tier is in modern applications formed by the web browser that displays content and executes code
on the end of the user using technologies such as HTML and JavaScript. This is the only tier where
developers are bound to a given set of standardized technologies. The data management tier is used
for the structured and persistent storage of data, for which usually a relational database management
system (RDBMS) such as MySQL or Microsoft SQL Server is used. Since the three-tier architecture
is a well-established standard in web application development, do the following discussions focus on
this scenario.

Table 2.1: Typical tiers and tasks according to [31] and corresponding web technologies.
Tier Task Technology

Client Presentation Browser (HTML, JavaScript, CSS)
Business Application Logic Application framework (e.g. PHP, ASP.NET, J2EE)

Data Management Database Server RDBMS (e.g. MySQL, MSSQL, Oracle)
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Figure 2.1: A Three-Tier Web Application.
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2.2 Uniform Programming Models

Tiers within a multi-tier architecture are specialized according to their role, which is why they use
different technologies. Looking at the example of the three-tier architecture for web applications
explained in Section 2.1, we can see that development requires the use of at least three different
languages. They can follow different paradigms (giving for example rise to a problem known as the
object-relational impedance mismatch [38, 5]) or encode data differently. Furthermore, since tiers
interface with each other in a client/server style interaction, we effectively have a distributed system
with all its complexity. All these issues result in additional sources for programming mistakes that can
have a negative effect on the security of the application, as for example evident by the prevalence of
injection attacks. Uniform programming models are a way to shield the developer from these problems,
by allowing to perform all development in one programming language and transparently bridging the
gap between tiers. This can for example be achieved by automatically generating the code for the
different tiers from a code base written in a single source language. Assuming that this transformation
is implemented correctly, uniform programming can already on its own result in improved application
security, as the application is closer to the intended business logic and avoids certain kinds of injection
vulnerabilities. Most existing implementations are only bridging two tiers, such as LINQ [19] , Rails
or GWT [16]. Solutions that span across all tiers are still more of an academic nature [8], with
WebSharper [39] being a notable exception that enjoys industrial-grade support.

2.3 Information Flow Control

Information Flow Control (IFC) has a simple purpose: it restricts the flow of information within
an application according to a policy in order to protect confidentiality and integrity of data. The
following explanations give a brief overview of important points in IFC research and introduces key
concepts. A good starting point for more detailed explanations is the survey performed by Sabelfeld
and Myers [28] as well as an introduction into the topic by Smith [33].

2.3.1 Origin of IFC

The roots of IFC research go back to the mid-1970s with publications by the Dennings [11], which
propose to use static program analysis in order to control how information propagates through a
system. This is done by enforcing an information flow policy which contains the available security
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Figure 2.2: IFC Policy for Confidentiality.

Flow RelationSecurity Classes Binding

From To

L L
L H
H H

H: secret
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var li: class L
var hi: class H

classes that can be assigned to a piece of information (often only two classes named “high” and “low”
are used in examples, while more classes are possible), a list of allowed transitions between these
classes (called flow relation) and a binding which tells for each storage object (e.g. memory locations,
variables) to which security class it belongs. A flow occurs in this setting when the program reads from
one storage object and derives from it a value that is written to another storage object. Such a flow
is only permitted when the transition between the involved security classes is explicitly contained in
the flow relation.

2.3.2 Examples of Flows

Let us look at a few simple examples for information flows within a simple confidentiality policy.
We start with two security classes that represent data confidentiality: security class “L” represents
public data while security class “H” represents secrets/confidential data. The goal is to avoid flows
from security class H to L, which conversely means that flows from L to H and between the same
security classes are allowed and thus part of the flow relation. Figure 2.2 summarizes this policy in
a more graphical way. It also shows a simple binding which is used by the examples: the name of
each variable corresponds to its security class, so variable h23is for example of class H and variable
l42of class L. The following expressions are examples of explicit information flows within this policy,
where content of one variable is copied to a second one using a simple assignment operator “:=”.
The first two cases are valid flows, since they are contained in the flow relation. The third example is
however a violation of the confidentiality policy, since the expression attempts to copy a secret value
to a public variable.

1. h0 := l0 4

2. h1 := h0 4

3. l0 := h0 8

A second important class are implicit information flows, which involve conditional expressions such as
if-statements. Implicit flows are one instance of covert channels through which information can flow.
Sabelfeld and Myers distinguish in their survey up to six different types of such covert channels [28].
The following example shows an implicit flow that violates the confidentiality policy. The value of
the public variables is not directly derived from a secret variable, but the publicly accessible content
in l0 still depends on the secret information:

i f h0 then l0 := l1 else l0 := l2 8
Depending on the used programming language, there exists also a third kind of channel through

which information can leak. Normally is it very common to assume a purely functional language
when talking about IFC, as this greatly simplifies reasoning about the programs: the following F#
function of the type unit → unit does for example in the purely functional case never cause any
information flows. It does neither receive nor return information and cannot modify any variables

5



that are outside of the function, since it uses the unit data type that stands for “no value”, which is
written as ().

let doNothing () =
()

The web does however not fit easily into such a pure view, as different APIs allow various kinds of state
changes that affect the environment. Examples for this are the local storage capabilities of HTML,
DOM manipulation, Cookies and even the simple fact that externally observable HTTP requests can
be triggered. Things like this are called side-effects and they are the reason why a function of the
inconspicuous type unit → unit might still be able leak information. Side-effects are not restricted
to the web and do for example also typically occur in functions that interface with the operating
system. The following example shows a function with the same type signature as before, but this
time does it exhibit side-effects by showing a message to the user:

let doSomething () =
JS.Alert ("Hello World!")
()

We will see that the formal model and the implementation therefore take special care in the handling
of side-effects.

2.3.3 Declassification

Tracking of information flows alone is not enough, since even programs that properly process confi-
dential data need at some point to disclose parts of a secret. A simple example is a login program: it
receives the confidential password as input and discloses by its behavior that the typed in password is
either correct (successful login) or wrong (failed login) [25]. This shows that IFC systems require a
method to make confidential information public again, in a process that is called declassification. For
the purpose of this thesis do we avoid the complexities of this topic by resorting to a simple declassifi-
cation method called escape hatches. These are nothing more than functions that receive confidential
input and return public output, which are however only allowed to perform this under special cir-
cumstances (e.g. because they are part of the trusted policy, while they would cause a policy violation
when being used outside the policy). What exactly constitutes declassification is left to the person
that implements the escape hatch, simple examples are encryption or hashing of data. Making sure
that escape hatches cannot be abused is not trivial, Sabelfeld and Sands have for example identified
four dimensions of declassification that need to be considered [27].

2.3.4 Security Type Systems

The Denning model serves as the foundation of IFC research up to today. A proof of its correctness was
not part of the original publications, which is why in the 90s Volpano and Smith [37] expressed it as a
type system within type theory and additionally combined it with the notion of non-interference [14],
which formally expresses the requirement that secrets may not be disclosed. This laid the foundation
for the use of security type systems in IFC research, which is an area of ongoing research. In the
new millennium several researchers worked on the creation of the first type systems that capture
information flow for modern programming languages: in 2001 Myers proposed and implemented Jif
[21] that resembles Java, while Pottier and Simonet took care of functional languages by presenting
Flow Caml in 2003 [32]. The formal model on which this thesis is based can be traced back to their
work and uses a similar proof technique.
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Chapter 3

Information Flow across Tiers

The application of IFC to the protection of confidentiality and integrity in three-tier web applications
raises some interesting questions. We first look at what IFC actually means for web applications
before we take a look at more specific applications. The discussion follows a top-down approach, it
first gives the big picture and presents the involved parties, proceeds to view information flows on
the level of the tiers and finally takes a look at what is happening inside a tier.

3.1 Overview

Figure 3.1 gives an example for the complexity of information flow within a three-tier web application.
It assumes a simple web application which provides a location-based service, for example showing a
list of points of interest (POIs) based on the user’s current location. The exact location of the user is
considered confidential and must not leak to third-parties, including the provider of the external map
service that is used. It is however acceptable for us that the application server uses the exact user
location in order to retrieve a list of nearby points of interest, which are in turn displayed on the map.
It is assumed that each displayed map marker results in the disclosure of the marker’s position to the
map provider. The intended flow of information is indicated by the green arrows. In order to protect
the user’s location do we need to make sure that the JavaScript code in the browser does not leak it
directly to the third party via HTTP requests (arrow 1 in the figure) or add it as a marker to the map
via JavaScript (arrow 2), but we also must make sure that it cannot leak indirectly via the other tiers.
Arrow 3 in the figure shows a case where the exact position is disclosed to the application server as
intended, but then the programming of the application server appends the received exact position to
the list of POIs that are displayed on the map, eventually disclosing it to the map provider. The same
applies to the case shown by arrow 4, where the application server inserts the exact user position
into a new POI in the database, which will be part of the resulting POI list and thus also be displayed
on the map and get disclosed. Since the transmission of the user’s location to the application server
cannot be removed without breaking the desired functionality, we have to actually monitor the flow
of the information through the code across the tiers and make sure that no confidential information
flows back to the third party.

We can typically identify two parties that are owning and controlling the tiers: the client tier
is owned by the end-user, while the application server and database server are both owned by the
application service provider (ASP). This thesis sometimes refers to application and database server
jointly as server-side. Furthermore is the term third-party used for any other party located in the
Internet, which could either be another ASP providing a component embedded into the application
(e.g. Google providing Google Maps) but also an external attacker.
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Figure 3.1: Examples of information flows in three-tier application.
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End-users and ASPs may both have different motivations and thus requirements for the use of
IFC. A user might want to protect himself from privacy violations originating from external attackers
(e.g. using Cross-Site Scripting) or ASPs (e.g. abusing access to APIs in the browser). The user can
however only verify the information flow of JavaScript code executed in the browser, as the code on
the server-side is not accessible. There exists a large body of work that provides solutions for this use
case, where the policy is predetermined by the user.

The ASP is in a more powerful position than the user, as it has full control over the server-side.
Additionally, it is normal that the JavaScript code running within the client browser is also provided
by the ASP. It is thus only the ASP who has enough control over all tiers in order for cross-tier IFC to
make fully sense. A possible use case of IFC in this setting is to verify that the application complies
with business-specific policies such as isolation or mandatory declassification. We will see a more
detailed discussion about how an ASP can benefit from the use of cross-tier IFC in Section 7.2.

3.2 Assumptions

Discussing IFC in a concrete application can grow very complex and confusing, as it involves many
degrees of freedom. In an attempt to focus on the aspects that are relevant for this work, does the
discussion make the following assumptions:

• The public Internet and third-parties are never trusted.

• Security on the transport layer is maintained by the use of transport encryption, so attacks on
this layer are not considered.

• Information flow is only tracked within the application and for example not on the level of the
operating system or other components than the three tiers.

• Tiers are serially connected, thus information flows can only occur that way. For example does a
flow from the database to the client need to pass through the application server. This also rules
out scenarios where the application server requests web services from a third-party directly via
the Internet.

• Security classes are limited to the two classes high and low, abbreviated as H and L. The flow
relation allows information to flow from L to H and to stay within the same level. All other
flows, especially from H to L, are not permitted. This corresponds to the policy introduced in
Section 2.3.2.
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• As a result from the above, do discussed example scenarios have only one class of confidential or
high-integrity information. Real-world applications have usually different kinds of information
that require different policies. The examples do not reflect this, but it can in principle be
accommodated with the use of more than two security classes.

• When discussing integrity, we only consider integrity violations resulting from intentional ac-
tions by one of the involved parties. Changes resulting from bugs in hard- or software are not
considered.

These assumptions remove complexity from the discussions and make it still possible to implement
actual applications. It is worth to keep in mind that most of these assumptions can be removed or
weakened as they are not fundamental limitations of IFC systems in general.

3.3 Flows between Tiers

It can make sense for an ASP to first make policy decisions on the level of application tiers, where in-
dividual storage objects are not considered. This allows us to focus on the trust-relationship between
user and ASP and questions such as “which party do we trust with confidentiality and integrity of our
data?” Answers to these questions provide already an outline for the required isolation within an IFC
policy.

3.3.1 Client↔ Application Server

The biggest impact on information security comes from the link between the client and the application
server (AS), as two different parties are involved. In the case of information flowing from the AS to
the client, it is the point where information leaves the exclusive control of the ASP, which means a
potential loss of confidentiality and integrity for that information. The ASP might thus want to specify
for each class of sensitive information if it is allowed to reach the client at all, which represents an
isolation policy.

Such an isolation policy can also be applied in the reverse direction: when information flows from
the client towards the server-side, the ASP becomes responsible for the protection of that information,
which is not always desirable. Processing certain kinds of information on the server-side can for
example result in stricter compliance requirements for the operations of the ASP - being able to
control that certain classes of sensitive information stay isolated on the client can be helpful in such
cases.

3.3.2 Application Server↔ Database

The link between application server and database is usually not as sensitive, as the information stays
in many cases under the control of the same party. Reasonable scenarios for this link include for
example that the ASP wants to control whether information processed by the application server may
or may not be persistently stored in the database (for example credit card security codes, for which
persistent storage is not allowed) or to ensure that the integrity of information within the database
is not affected by the application server (which can however be more efficiently implemented with
traditional access control measures for databases instead of IFC).

3.3.3 Isolation Variants

Figure 3.2 illustrates all possible combinations for IFC policies on the level of tiers, where an upper
bound of the permitted security classes is assigned to each tier. The arrows illustrate the flows of
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Figure 3.2: Secure information flows between tiers.

information as permitted by the flow relation introduced in Section 3.2. Note that a missing arrow
does not mean that there is no information flow at all: since the shown security class is an upper
bound, a tier can also contain information of the lower security class L. Information of security class
L is always allowed to flow between tiers, as evident in case 1 of the figure, and even to third parties.

The selection of the upper bounds corresponds to the trust that the ASP grants each tier, which
in turn depends on the use case that the application serves. Not every possible case of Figure 3.2
results necessarily in a useful policy. The following discussions neglect the two trivial cases 1 and
8. This leaves us with six remaining cases, for which we examine their meaning in the context of
confidentiality and integrity.

First, we can interpret the cases of Figure 3.2 as a policy that specifies the confidentiality of the
information processed by each tier, where H stands for confidential and L for public (see also the
examples from Section 2.3.2, which use the same policy). One possible goal for a policy is isolation,
where a tier handling confidential data is not supposed to leak this to the neighboring tiers. Case 5
resembles a policy of client isolation, which is suitable to prevent sensitive information stored on the
client to leak to the server-side tiers. A possible example for this is a password meter, which should
under no circumstances leak the password to any other party. The opposite of this is case 4, where
confidential information resides on the server-side and should not be disclosed to the client. The
model allows also more granular isolation on the server-side, as shown by cases 2 and 3. They might
be helpful in special cases where different application servers share the same database connection,
but are otherwise too restrictive and better solved with traditional access control.

Second, the cases can be interpreted in terms of integrity, since integrity is dual to confidentiality
[3]. In this context, security class L expresses high integrity and security class H low integrity. One
imaginable use case is to prevent client data from influencing certain server-side calculations (cases
5 and 6), which helps to enforce the invisible security barrier that can be drawn between client and
server [17]. Case 7 represents another use case, where information stored in the database is protected
from changes that originate from the other tiers. Case 4 allows to isolate data in the client from
changes introduced by the server-side.
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Table 3.1: Information flow through functions.
Activity Flow direction for Parameters Flow direction for Return Value

Calling another function Outgoing Incoming
Being called Incoming Outgoing

3.4 Flows between Functions

The previous section discussed coarse-grained policies on the tier-level, which mostly reflected the
trust of the involved parties for certain classes of information. We now take a look at what is going
on inside a tier, which is mostly about the trust that is put into individual functions.

3.4.1 Storage Objects

Section 2.3 talks about storage objects being used in IFC, which are bound to security classes by a
policy. To make this less abstract, we take the example of the storage objects inside the tiers supported
by the prototype implementation JSLINQ, which was implemented as part of this thesis:

• Database: Security classes are bound to length of a table as well as the content of table columns,
so they can be seen as storage objects. For our purpose do we neglect the table length and
always assume it to be of security class L.

• Client and Application Server: Programs for JSLINQ are written in the functional programming
language F#. Such programs consist mostly of function definitions that in turn make use of
other functions. It is thus natural to treat both, the arguments that are passed to a function and
the return value, as storage objects.

We will see later that this is reflected in the policy language used by JSLINQ and that policies on
function definitions constitute the majority of policy definitions. This is due to the fact that function
definitions are involved in all information transfer that happens between tiers. Data is exchanged
either by one component calling the functions of another one or reversely by being called. This de-
termines the direction of the information flows, as shown in Table 3.1. In the case of web applications,
it is usually the client tier that initiates function calls towards the application server or third-party
services.

3.4.2 Expressing Isolation Policies

Tier-level policies as introduced in Section 3.3 are a method to model isolation policies. They can
however not be directly turned into an IFC policy, since they do not specify individual storage objects.
It is thus necessary to translate a tier-level policy down to the more detailed level of storage objects,
which eventually means to specify policies for individual functions. The same applies to the isolation
of a tier from other components, such as the underlying operating system, which is not part of the
IFC system. For each function call it is thus necessary to decide if it violates the isolation policy. If
a policy for example distrusts all third-parties, this means that the parameters of all functions that
result in data transmission to third parties must be identified and annotated accordingly. Similarly, if
a client needs to be isolated from the application server, the parameters of all RPC functions must be
annotated. There are also other functions which allow information to leave the IFC system, such as
for example the interface towards the operating system (e.g. file operations to the local disk), which
have to be captured as well. Considering all of the above, it is clear that ensuring these properties for
all functions is a laborious task, especially when looking at the all interface functions that a modern
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operating system and web application framework provide. One way to handle this for the purpose of
demonstration is to strongly limit the amount of functions that are made available to the application.
The JSLINQ prototype thus only allows the use of a limited subset of functions provided by F# and
WebSharper.
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Chapter 4

Formal Model

This chapter gives an overview of the theoretical foundation that are backing the implementation of
JSLINQ (which will be explained in the next chapter). It is based on the formal model and expla-
nations given in [2] and focuses only on those parts that are relevant for implementation. Since the
source paper is not publicly available at the time of this writing, are the necessary definitions included
in full detail. The formal model can be roughly divided into four parts as illustrated in Figure 4.1,
where each arrow can be read as “contributes to”. As visible in the figure, do syntax and semantics
as well as the security type system directly influence the implementation. The others do not directly
influence the implementation but help to gain confidence in the soundness of the underlying model.

4.1 Syntax and Semantics

Initially, the target programming language is formalized using methods from programming language
theory. This requires to exactly formulate the expressions of the language and their behavior, referred
to as syntax and semantics of the language. A common method to avoid unnecessary complexity in
this stage is to support only the essential expressions from the language, resulting in a core language.
Development in the core language is not very convenient, since namespaces and syntactic sugar are
not available, but it greatly simplifies the formal reasoning that follows in the subsequent steps. In
the case of JSLINQ, the formal model corresponds to a simplified version of the F# language with

Figure 4.1: Components of the formal model.
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Figure 4.2: F# subset of the formal model. Borrowed from [2].

` ::= L | H (security types)

b ::= bool` | int` | float` | string` (base types)

t ::= b | unit | t
`
→ t | t ref` | t ∗ t | { f : t} | (t list)` | Expr〈t〉 (general types)

T ::= ({ f : b}) list` (database tables)

e ::= () | c | x | l | op(e) | lift e | fun(x)→ e (terms)
| rec f (x)→ e | (e, e) | fst e | snd e | { f = e} | e. f
| yield e | [] | e @ e | for x in e do e | exists e
| if e then e else e | if e then e | run e | <@ e @> | (% e )
| database(x) | ref e | !e | e := e

the addition of security levels to the syntax of types, as shown in Figure 4.2. The notation is using
the following abbreviations [2]:

c constant values, as for example definitions like let foo = 42.

op built-in operators, as for example mathematical operators.

f name of a field, as used in F# records.

x a variable.

x a sequence of entities x .

l a memory location.

This language features custom additions to standard F# which are necessary to provide a simplified
model of how database interactions are expressed: database and run are used to open the database
and run queries, exists is used to check if a database query returns an empty result set and lift is
used to turn an expression into a query. We omit a detailed discussion of those, as their primary pur-
pose is to allow formal reasoning and the implementation aims to use the native facilities for database
interaction as much as possible. Similarly are quotes (<@ e @>), anti-quotes (%e), the if-condition with-
out an else branch and the keyword yield are only intended for the purpose of expressing database
queries. Quotes are not further discussed, since the prototype uses the more intuitive query expres-
sions as supported by LINQ [24]. A complete description of the language also requires inclusion of
the operational semantics. Their discussion is however skipped in this report, since the prototype
directly relies on the original semantics of the F# language. This greatly simplifies implementation
but comes with the price of a bigger gap between formal model and implementation.

4.2 Security Condition

The second step is to formulate a security condition, a formal definition of what security exactly means
in this model. JSLINQ’s security condition is based on a widely used property called non-interference
that was defined in 1982 by Goguen and Meseguer [14]. It essentially requires that data of one class
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Figure 4.3: Example of typing rule and implementation.
Formal Model:
Typing Rule

Implementation:
Pattern Match

of information (e.g. confidential or untrusted) can never have an influence (as small as it might be)
on data of another class of information (e.g. public or trusted). A model satisfying non-interference
never discloses secrets to an attacker and never lets the attacker modify trusted information. Real-
life applications do however usually need to disclose at least small parts of the secret, as shown in
Section 2.3.3. This is the reason why the formal model additionally relies on another property called
delimited release [25].

4.3 Security Type System

As a third step a security type system is specified. It makes use of type theory as used in programming
language theory. It consists of a set of logical rules that specify for each expression the resulting
security type. The security type system exists parallel to the “normal” type system for data types,
with which it shares the theoretical foundations. The model splits the language into a host language,
which resembles normal top-level F# expressions and a quoted language, which is used inside F#
quotations and represents database queries. The rules are shown in Figures 4.4 and 4.5 respectively,
while Figure 4.6 shows rules for the comparison of security levels and security types. The following
symbols and abbreviations are used:

pc security level of the program counter. Used to track implicit information flows and side-
effects.

Γ typing context mapping variables to types.

M typing context mapping memory locations to types.

`
⊔

`′ join of two levels. Returns the highest security level that occurs on one of the sides.

H shorthand notation for pc, Γ , M (typing context of the host language).

∆ typing context of the quoted language.

The distinction between host and quoted language is mainly of importance for the formal rea-
soning and has thus not a big influence on the implementation. This can be seen by the fact that
the typing rules for both are almost the same, with the quoted language most notably missing the
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security variables for side-effects. Translating the security type system into code resembles the main
contribution of this thesis, besides solving the involved engineering challenges. Rules are turned into
a pattern match that is considered while the abstract syntax tree is traversed. Figure 4.3 gives one
example for this.
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Figure 4.4: Typing rules for the host language. Borrowed from [2].

CONST

Σ(c) = t

pc, Γ , M ` c : t`

UNIT

pc, Γ , M ` () : unit

VAR
x : t ∈ Γ

pc, Γ , M ` x : t

LOC

l : t ∈ M

pc, Γ , M ` l : t

NIL

pc, Γ , M ` [] : (t list)`

FUN

pc, Γ , x : t, M ` e : t ′

pc′, Γ , M ` fun(x)→ e : (t
pc
→ t ′)

REC

pc, Γ , x : t, f : t
pc
→ t ′, M ` e : t ′

pc′, Γ , M ` rec f (x)→ e : t
pc
→ t ′

LIFT
pc, Γ , M ` e : t

pc, Γ , M ` lift e : Expr〈t〉

EXISTS

pc, Γ , M ` e : (t list)`

pc, Γ , M ` exists e : bool`

OP

Σ(op) = t → t pc, Γ , M ` e : t`

pc, Γ , M ` op(e) : t
⊔

`i

YIELD
pc, Γ , M ` e : t

pc, Γ , M ` yield e : (t list)`

APPLY

pc, Γ , M ` e1 : t
pc′
→ t ′ pc, Γ , M ` e2 : t pc v pc′

pc, Γ , M ` e1 e2 : t ′

PAIR
pc, Γ , M ` e1 : t1 pc, Γ , M ` e2 : t2

pc, Γ , M ` (e1, e2) : t1 ∗ t2

FST

pc, Γ , M ` e : t1 ∗ t2

pc, Γ , M ` fst e : t1

SND

pc, Γ , M ` e : t1 ∗ t2

pc, Γ , M ` snd e : t2

RECORD

pc, Γ , M ` e : t

pc, Γ , M ` { f = e} : { f : t}

PROJECT

pc, Γ , M ` e : { f : t}
pc, Γ , M ` e. fi : t i

UNION

pc, Γ , M ` e : (t list)` pc, Γ , M ` e′ : (t list)`
′

pc, Γ , M ` e′ @ e : (t list)`t`
′

FOR

pc, Γ , M ` e : (t list)` pc, Γ , x : t, M ` e′ : (t ′ list)`
′

pc, Γ , M ` for x in e do e′ : (t ′ list)`t`
′

IF1
pc, Γ , M ` e : bool` pc, Γ , M ` e′ : (t list)`

′

pc, Γ , M ` if e then e′ : (t list)`t`
′

IF

pc, Γ , M ` e : bool` pc t `, Γ , M ` ei : t `v t i ∈ {1, 2}
pc, Γ , M ` if e then e1 else e2 : t

DEREF

pc, Γ , M ` e : t ref` `v t

pc, Γ , M `!e : t

QUOTE

pc, Γ , M , · ` e : t

pc, Γ , M ` <@ e @> : Expr〈t〉

SUB

t v t ′ pc, Γ , M ` e : t

pc, Γ , M ` e : t ′

RUN

pc, Γ , M ` e : Expr〈t〉
pc, Γ , M ` run e : t

REF
pc, Γ , M ` e : t pc v t

pc, Γ , M ` ref e : t refpc

ASSN

pc, Γ , M ` e1 : t ref` pc, Γ , M ` e2 : t pc t `v t

pc, Γ , M ` e1 := e2 : unit
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Figure 4.5: Typing rules for the quoted language. Borrowed from [2].

CONSTQ
Σ(c) = t

H,∆ ` c : t`

FUNQ
H,∆, x : t ` e : t ′

H,∆ ` fun(x)→ e : t → t ′

VARQ
x : t ∈∆

H,∆ ` x : t

APPLYQ
H,∆ ` e1 : t → t ′ H,∆ ` e2 : t

H,∆ ` e1 e2 : t ′

OPQ

Σ(op) = t → t H,∆ ` M : t`

H,∆ ` op(M) : t
⊔

`i

ANTIQUOTE

H ` e : Expr〈t〉
H,∆ ` (% e ) : t

PAIRQ
H,∆ ` e1 : t1 H,∆ ` e2 : t2

H,∆ ` (e1, e2) : t1 ∗ t2

FSTQ
H,∆ ` e : t1 ∗ t2

H,∆ ` fst e : t1

SNDQ
H,∆ ` e : t1 ∗ t2

H,∆ ` snd e : t2

RECORDQ

H,∆ ` M : t

H,∆ ` { f = M} : { f : t}

PROJECTQ

H,∆ ` L : { f : t}
H,∆ ` L. fi : t i

YIELDQ
H,∆ ` M : t

H,∆ ` yield M : (t list)`

NILQ

H,∆ ` [] : (t list)`

EXISTSQ
H,∆ ` M : (t list)`

H,∆ ` exists M : bool`

IFQ

H,∆ ` L : bool` H,∆ ` M : (t list)`
′

H,∆ ` if L then M : (t list)`t`
′

UNIONQ

H,∆ ` M : (t list)` H,∆ ` N : (t list)`
′

H,∆ ` N @ M : (t list)`t`
′

FORQ

H,∆ ` M : (t list)` H,∆, x : t ` N : (t ′ list)`
′

H,∆ ` for x in M do N : (t ′ list)`t`
′

SUBQ
t v t ′ H,∆ ` M : t

H,∆ ` M : t ′

DATABASEQ

Σ(d b) = { f : t}

H,∆ ` database(d b) : { f : t}

Figure 4.6: Security annotation constraints. Borrowed from [2].

`v `′

`v t`
′

`v unit

`v pc `v t

`v t ′
pc
→ t

`v t1 `v t2

`v t ∗ t

`v t i

`v { f : t}

`v t

`v Expr〈t〉
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4.4 Soundness Proof

The final soundness proof combines all aforementioned components: for a program written in the core
language that complies with the security type system, it guarantees that the security condition (i.e.
non-interference) is preserved. This guarantee is very powerful and applies to all possible execution
paths of the program. Details about the proof technique are provided in [2] and beyond the scope of
this report.
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Chapter 5

Implementation

5.1 Architecture

Figure 5.1 shows the architecture of JSLINQ. The input is an F# project consisting of the security
policy and the application code. The right branch of the figure shows how a project is first com-
piled to a three-tier application using the unmodified build process for web applications based on
WebSharper. The code of the project is used to create a 3-tier application consisting of JavaScript
created using WebSharper, .NET assemblies for server-side application logic and SQL queries for the
database, created using LINQ. Upon successful compilation, JSLINQ’s security type checker can be
used on the F# project in order to determine if the application complies with the specified informa-
tion flow policy. How the resulting 3-tier application and the verification result are used depends on
the use case of JSLINQ: one possibility is to discard non-compliant application builds and to deploy
compliant applications into production. The remainder of the section discusses JSLINQ components
in more detail.

5.1.1 WebSharper

A key element in supporting client-side code in JSLINQ is the WebSharper library. WebSharper is a
fully-featured and commercially supported framework for web application development in F#, pro-

Figure 5.1: JSLINQ architecture.
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viding powerful functional abstractions such as sitelets for document definition, formlets for data en-
try forms and flowlets for workflows [15]. Moreover, it offers abstractions for essential web concepts
such as the DOM or JavaScript code. Importantly, these abstractions enjoy type safety properties, al-
lowing to leverage the F# type system to build robust applications. One of WebSharper’s key features
is the translation of F# functions into JavaScript code for execution in the browser. Server-side func-
tions can be designated as remote procedure call (RPC) functions, so that they can be transparently
called in client-side code, as shown in the following example:

// Server-side function called by the client via AJAX.
[<Remote>]
let getText () = "JSLINQ"

// Client-side function translated to JavaScript.
[<JavaScript>]
let Main () = Text (getText ())

WebSharper supports extension of the client with third-party libraries, for example a map service.
Third-party libraries usually consist of JavaScript code that is embedded into the page. Calls from
the client-side F# code to the embedded third-party library are handled by wrappers that provide an
F# interface to the JavaScript code. This approach requires full trust on the JavaScript code provided
by the third party. However, JSLINQ can be used to type-check third-party libraries written in F#.
This allows rewriting crucial third-party JavaScript libraries in F# to make them amenable to security
analysis using JSLINQ.

5.1.2 F# Project

JSLINQ is designed to perform the verification step after successful compilation of the project. This
means in terms of Figure 5.1 that a successful build using the right branch is mandatory before run-
ning the left verification branch. JSLINQ processes MSBuild projects, which allows it to integrate
with Microsoft Visual Studio. Code within a project is either part of the policy or part of the program
that implements the application. The policy controls information flow via security type signatures
which are added to the definitions of functions and databases. The program implements the appli-
cation and is subject to the security type check according to the policy. Since the policy is expressed
within normal F# syntax, the use of JSLINQ does not interfere with the normal build process of the
application and the use of standard tools.

5.2 Policy Definition

The policy is specified by adding custom attributes with security type signatures to declarations. Sig-
natures are represented as strings that follow the security type language which is part of the formal
model (see Section 4), with the addition of variables for security levels in order to support poly-
morphism between those levels. If no security level is specified within a signature, the corresponding
level variable is unconstrained. The following code fragment demonstrates how signatures are added
to F# declarations:

[<SecT("_^H")>]
let boolH = true

[<SecT("unit ->^L _^L")>]
let f () = 1
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The brackets are required by F#’s syntax for attributes, while SecT is the name of the custom .NET
attribute that requires a string which contains the actual security type signature. The attributes shown

in the code snippet above correspond to the signatures boolH : boolHand f : unit
L
→ int L in the

syntax from the formal model. The syntax of security types is similar to F#’s own syntax for data
types, with the following important differences:

• Base types are not distinguished and always written as an underscore (_). Thus a function
float -> int is written as _ -> _. A special case are WebSharper’s Pagelet and Element
types, which are also expressed as underscore. They are required to support functions that
build user interfaces. This simplification is done because the data type is already determined
by F#’s type inference, so that it does not need to be repeated in the security type signature.

• Security levels can be one of two levels (H, L) or variables (’a, ’foo etc.). They are written as
raised expressions in the signature: _^H ->^L _^L.

• The use of security levels is optional. Unspecified levels result in an unconstrained fresh level
variable. Thus _ -> _ is equivalent to _^’a -> _^’b.

We divide a web application policy into three types: a library policy, an RPC policy and a database
policy. Each type of policy deals with different application tiers and the meaning of a security type
signature depends on the part in which it is located.

The policy for library functions is defined in a separate module, which is marked with a policy at-
tribute. All library functions used by the program (with a few exceptions such as core F# operators)
need to be wrapped in the policy, otherwise their use is not allowed. Since HTML and JavaScript
abstractions of WebSharper are also library functions, the policy for client-side functionality is speci-
fied in this part. Each wrapper function has a mandatory security type signature that governs which
security levels are used when the wrapper is called. The following snippet demonstrates a wrapper
that uses WebSharper functions to generate a masked input field for passwords, labelled as high:

[<Policy>]
module Policy =

[<JavaScript>]
[<SecT("unit -> _^H")>]
let InputPW () = Input [Attr.Type "password"]

The policy for remote procedure calls (RPC) from the client to the server consists of attributes to the
declarations of RPC functions within the program. In our implementation, the RPC policy and the
program are defined in the same file for the sake of simplicity. However, JSLINQ allows a complete
separation of policy and program into separate files, as it is done for the other parts of the policy.
Type signatures on RPC functions restrict the information flow from the client to the server (via
function arguments) and from the server to the client (via return values). The following fragment
demonstrates flows in both directions between client and application server:

[<Remote>]
[<SecT("unit -> _^L")>]
let untrustedClient () = true

[<Remote>]
[<SecT("_^L ->^L unit")>]
let untrustedServer (x:bool) = ()
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The database policy is defined by adding security type signatures to an attribute-based mapping
for LINQ [1]. Security type signatures are added to table and column definitions as shown in the
following example:

[<Table>]
[<SecT("_^L")>] // Public table length
type Account =

[<Column>]
[<SecT("_^L")>] // Public username
abstract member Username : string

[<Column>]
[<SecT("_^H")>] // Confidential password
abstract member Password : string

5.3 Security Type Checker

The design of JSLINQ as an additional verification step after compilation allows us to assume that
the analyzed code has correct syntax, data types and satisfied dependencies, which allows the im-
plementation to only focus on the actual security type check. Noteworthy, we leave the existing F#
type system untouched and maintain a completely separate security type system during verification.
Security type checking is performed in two steps, which are repeated for each top-level declaration
found in the code of the project: first the abstract syntax tree (AST) for the declaration is recursively
traversed, which yields a set of constraints and a security type signature. User-defined security type
signatures are parsed with the FParsec library [13]. The second step substitutes level variables with
actual security levels by solving the constraint set. The resulting types and possible remaining con-
straints are added to the environment before proceeding with the next declaration. JSLINQ uses the
AST generated by the F# compiler, which is retrieved using the library FSharp Compiler Services [12].
We thus do not have to duplicate compiler features that are unrelated to the security type check and
benefit automatically from F#’s desugaring. This is a clear advantage over prototypes that enhance
existing type systems, for instance SELINQ or SIF.
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Chapter 6

Case Studies

We have used JSLINQ to implement different case studies as F# projects. In this section we first
describe the general design of the policy language and then remark on the policy requirements for
the case studies that we have implemented.

6.1 Library Policy

The largest part of the library policy are the security type signatures for WebSharper’s DOM and
JavaScript abstractions. The documents shown in the browser are constructed using these abstrac-
tions at runtime. For simplification, we consider the HTML elements as trusted sinks. The rationale
behind this is that the user has full access to the data once it has arrived in the browser, independently
of that data being displayed or not. However, this assumption does not hold for the full WebSharper
API, as it would allow to write and read the elements in the DOM tree in various ways. Therefore,
the policy only permits basic operations on the DOM. An important exception from our trusted sink
assumption are HTML elements which load external resources, such as images and IFrames. These
elements can be used to leak data either directly within the source attribute or indirectly via exter-
nally observable HTTP requests. Therefore, we annotate the creation of the source attribute with low
security level, both for the URL argument and the side-effects. The library policy for the case studies
has in total three functions that are supposed to be able to leak information to third-parties:

1. The HTML source attribute, for the reasons mentioned above.

2. Initialization of a Google Map, as it results in externally observable requests.

3. Panning of a Google Map, for the same reason as the initialization and additionally the trans-
mission of the coordinate to which the map is panned.

The corresponding security type signatures are expressed in the policy code as follows:

[<SecT("_^L ->^L _")>]
let Src (x:string) = ...

[<SecT("unit ->^L _^L")>]
let InitGoogleMapDiv () = ...

[<SecT("_^L -> _^L ->^L unit")>]
let PanGoogleMap lat lon = ...
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6.2 Scenario Discussion

We now comment on different aspects of the policy and provide examples for vulnerabilities that are
captured by JSLINQ, for each scenario.

6.2.1 Password Meter

We have included the password meter to demonstrate a policy with full client isolation, where the
password is not allowed to leak from the browser at all. The policy declares password fields as
sensitive sources. Leaks to third parties and to the application server are prevented by assigning low
levels to the source attribute and to the arguments and side-effects of RPC functions, respectively.
The scenario assumes that the server is untrusted, as it should not receive the password. Looking at
tier-level trust, this corresponds to case 5 of Figure 3.2. A problem with this view is that the JavaScript
code executed by the client is usually delivered by the same or another untrusted server. This means
that the integrity of the client-side code after the security type check is not guaranteed. Such changes
outside the normal build process are not subject to the security policy and can thus be abused to
leak confidential data. Therefore we have to put trust in the integrity of the code delivered by the
application server, which we summarize as partial trust. Alternatively, remote attestation methods
such as code or certificate signatures can be used to remove this assumption. The following code
snippets show a password check that is accepted by JSLINQ and two leaks via the source attribute
that are correctly blocked.

let content = // Allowed: Secret only in browser.
if (containsLetters password)
then Text "Passed" else Text "Failed"

let content’ = // Blocked: Leak via source attribute.
Image [Src ("http://example.com/img.png?" + password)]

// Blocked: Leak via side effects.
let content’’ = Src (if secret == "jSL!Nq42"

then "http://example.com/true.jpg"
else "http://example.com/false.jpg")

This application consists of 53 F# and 6215 generated JS LOCs.

6.2.2 Location-Based Service (LBS)

This scenario demonstrates declassification of a client-side secret, in this case the user’s position. The
position is considered secret because of the following declaration on the library policy, which marks
all data received from the callback function as confidential:

[<SecT("(_^H -> _^H -> unit) -> unit")>]
let GetPosition (callback : float -> float -> unit) = ...

Third parties and the application server may only receive declassified obfuscated coordinates. Our
implementation performs declassification by defining a function that adds a random offset to a float
value. The function is part of the library policy and declared as follows (implementation details
omitted for clarity):

[<SecT("_ -> _^L")>]
let addRandomOffset (x : float) = ...
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Its security type signature means, that this function accepts a float value of any security level (either
secret or public) and always returns a float value of low security value (public), which effectively
results in declassification of the input value. It is worth to note that such a security type signature
may only occur within the policy, using the same security type signature in the untrusted code that is
subject to the policy results in a constraint violation. The randomization is applied to the confidential
latitude and longitude values. The exact location coordinates are isolated in the browser in the same
way as the password in the previous scenario, which is why it also corresponds to case 5 of Figure 3.2.
This level of isolation also means that the exact coordinate should not be disclosed to the application
server as well, which requires to specify a RPC policy. Thus the only existing RPC function has its
parameters marked as public in the security type signature:

[<Remote>]
[<SecT("_^L -> _^L ->^L {lat:_; lon:_; note:_; dist:_} list")>]
let GetPois (refLat:float) (refLon:float) = ...

We provide two variants of the location-based service to showcase two different attacker models. The
first example embeds a map via an IFrame, where the position is an argument to the source attribute
of the IFrame. The following snippet shows how the use of declassified coordinates is permitted,
while exact coordinates are blocked:

let iframeSrc = Src // Allowed: Obfuscated coordinate.
"https://maps.example.com/?q=" +
(string (randomize Lat)) + "," + (string (randomize Lon))

let iframeSrc’ = Src // Blocked: Exact coordinate.
"https://maps.example.com/?q=" +
(string Lat) + "," + (string Lon)

The second example includes third-party library called via F#. We use the Google Maps extension
for WebSharper and wrap the initialization and panning of the map within the policy, both having
low side-effects and low values. Since the extension wraps the original JavaScript code, we have to
fully trust the F#-to-JavaScript extension and JavaScript code implementing the WebSharper APIs.
The scenario consists of 76 F# and 6279 generated JS LOCs.

6.2.3 Movie Rental

This scenario demonstrates the use of security policies on databases. The database consists of a list
of items (e.g. movies) subject to events (e.g. movie rentals) happening at a certain location and
time. The location of an event consists of latitude and longitude and it is confidential and all other
information is public. The policy is modeled as follows: the database policy assigns to the latitude
and longitude a high security level, as expressed by the following column definitions in the database
policy (omitting getters and setters for clarity):

[<Column>]
[<SecT("_^H")>]
member this.Lat

[<Column>]
[<SecT("_^H")>]
member this.Lon

26



Leaks to the client are prevented by labeling the return values of RPC functions as public. Note how
compared to the previously discussed location-based service this time the “L” labels are in the return
value. On the level of tiers, this corresponds to case 4 of Figure 3.2. The RPC policy of the only
existing RPC functions thus looks as follows:

[<Remote>]
[<SecT("_ -> {item:_^L; eventCount:_^L} list^L")>]
let GetAreaRanking (areaIndex : int) = ...

The following LINQ query joins rentals with movies and returns a list of movie titles. Movie titles are
input to an RPC function which is only allowed to return public values. As a result the first yield
statement is allowed to return the movie title. If instead we use the second yield statement, JSLINQ
will reject the program.

let events = query {
for e in db.Event do
for i in db.Item do
if e.ItemId = i.Id then
(* Allowed *) yield i.Name
(* Blocked *) yield (string e.Lat) }

Moreover, we allow the user to retrieve a ranking of movies that are popular within an area. The
implementation contains a pre-defined set of areas which are addressed using indexes. The user is
only allowed to specify the index for an area of interest. The application server filters the list of
movie rentals based on the coordinate values. JSLINQ will infer a high security level for the length
of the resulting list, as it depends on the secret coordinate values. Our policy allows that geographic
information about rentals is disclosed on the granularity of fixed-size areas, therefore we can directly
declassify the length of that list. The scenario consists of 87 F# and 6231 generated JS LOCs.

6.2.4 Friend Finder App

In this scenario we consider a completely untrusted application server. The client obtains the code
from a trusted source. We use the Apache Cordova framework [10] to package the client-side func-
tionality as an app that can be distributed to mobile devices via a trusted channel. Cordova also
provides access to the address book of the device. The program can access the address book only via
a callback function defined in the policy, whose main purpose is to assign a high security level to the
contact details:

[<SecT("({Name:_^H; Phone:_^H} list -> unit) -> unit")>]
let GetPhoneContacts (handler : Contact list -> unit) = ...

The policy allows declassification by means of a hash function on strings, which allows an arbitrary
security level for the resulting string and thus performs declassification:

[<SecT("_ -> _")>]
let Hash (s:string) = ...

Leakage of plain contact details to the untrusted server is prevented by assigning a low security level
to the arguments and side-effects of RPC functions:

[<SecT("_^L ->^L _")>]
[<Remote>]
let lookup (hash : string) = ...
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Overall is this again a client-isolation policy similar to the password example, thus it corresponds to
case 5 of Figure 3.2 as well. The following snippet illustrates a secure and an insecure RPC call:

// Allowed: Look-up of hashed phone number
let rpcResult = remoteLookup (Hash phoneNumber)

// Blocked: Look-up of plain phone number
let rpcResult’ = remoteLookup phoneNumber

The scenario has 62 F# and 9966 generated JS LOCs.

6.2.5 Battleship

We implement a simplified version of the classical Battleship game, which has already some history
as an IFC example [21, 34]. The client uses the browser to play against the server and both players
want hide the exact position of their ships on a grid. Both sides trust each other to correctly follow
the rules of the game, so we are only concerned about confidentiality and not integrity. A desirable
IFC policy for this game is to mark the values indicating individual ship positions as confidential and
all parameters and return values of RPC functions as public, so that confidential information is not
allowed to pass the barrier between the browser and the server. This is implemented by setting in
the RPC policy the parameters and return values of every RPC function as public:

[<Remote>]
[<SecT("unit ->^L {size: _^L; ships: _^L list^L}")>]
let Parameters () = ...

[<Remote>]
[<SecT("unit ->^L {size: _^L; ships: _^L list^L}")>]
let Initialize () = ...

[<Remote>]
[<SecT("{hit:_^L; shot:{x:_^L; y:_^L}; defeated:_^L} ->^L unit")>]
let Report (r:Response) = ...

[<Remote>]
[<SecT("{x:_^L; y:_^L} ->^L {hit:_^L; shot:{x:_^L; y:_^L}; defeated:_^L}")>]
let Play (s:Position) : Response = ...

This allows us to re-use the same security policy on both sides, as shown in Figure 6.1. Note that
since we have two different kinds of confidential information, it is not possible to map this to one of
the tier-level policies from Figure 3.2. The game rules require declassification, since the response to a
shot requires disclosure of one bit of information (“hit” or “miss”) to the other player per round. Safe
use requires a manual review of every function that makes use of declassification, while all others can
remain untouched. This is because only one bit is declassified, so that the meaning depends strongly
on the context. An alternative would be to have a declassification function that has greater awareness
of the game state. On each side we have to perform declassification twice: firstly for the hit/miss
response to a shot, as it directly depends on the presence of a ship at that location, and secondly
for indicating to the opponent if a player is defeated, which requires to test all occupied cells. The
latter can also be done locally, but for implementation reasons players report their own defeat to the
opponent. The following example shows this for the client-side:
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Figure 6.1: Symmetric IFC policy for Battleship.

Browser Application
Server

Player grid:
boolH listL listL

Player grid:
boolH listL listL

Client Shot:
(intL, intL)

RPC

Hit/Miss Response:
boolL

Table 6.1: Overview of implemented scenarios.
Trust # of Annotations

Scenario Client 3rd Party Server API RPC DB
Password Meter Yes No Partial 10 0 0
POI IFrame Yes No Yes 10 1 5
POI Embedded Yes Yes Yes 11 1 5
Movie Rental No No Yes 9 1 8
Friend Finder Yes No No 9 1 0
Battleship Isolated No Isolated 12 4 0

let serverShotResult =
{

shot = response.shot;
hit = DeclassifyBool !serverTarget.occupied;
defeated = DeclassifyBool clientDefeated

}

The scenario has 255 F# and 6348 generated JS LOCs.

6.3 Case Study Results

Table 6.1 summarizes our case studies. The different combinations of client, third party and server
trust illustrate the attacker models handled by JSLINQ. The battleship scenario is special due to its
symmetric policy, which is why we specify the trust for client and server-side separately as isolated,
meaning that their secrets remain isolated from each other and third-parties. The partial server trust
of the password meter scenario is used with the meaning as introduced in Section 6.2.1. The initial
effort of defining the API policy annotations comes with the benefit of minor burden on application
programmer side. The policy for JSLINQ requires only very few annotations within the application
code. As reported above, the LOCs for F# and JavaScript refer to the application (excluding comments
and blank lines) and wrappers in the policy. The difference between the number of lines in F# code
and resulting JavaScript shows WebSharper and its libraries at work. This allows the programmer to
focus on the application logic and its security-critical parts (subject to security type check in JSLINQ)
while standard boilerplate code is automatically generated by the framework. applications contain
considerably more code to offer a better user experience. We omit the verification time, as execution
time mostly consists of the compilation required to retrieve the AST. As the security type check is
based on a simple constraint solver, we expect it to scale well to larger programs.
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Chapter 7

Discussion

7.1 Design Choices

The design of JSLINQ as presented in Section 5 is a result of various design choices. The following
sections discuss the alternatives that were not considered for the implementation, thereby illustrating
the effort that went into the design of the implementation.

7.1.1 Building upon the SeLINQ prototype

The formal model used by JSLINQ is largely based on SeLINQ, which also includes a proof-of-concept
implementation done in Haskell. It was therefore natural to first consider the implementation of
JSLINQ as an extension of the already existing code base. SeLINQ performs its own parsing and
(data) type checking for an F#-like language in order to be able to introduce security type annotations
and the security type check. After successful verification does SeLINQ generate valid F# code, which
mainly means the removal of security type information from the source program. While this approach
allows SeLINQ to customize all aspects of the language and to stay close to the formal model, full
language support requires re-implementation of a significant amount of functionality from the F#
compiler. As a prototype, SeLINQ supports therefore only a very limited language subset and uses
a simplified type system for data types. Since the technical research provided usable solutions to
analyze F# and extend its syntax, the approach of extending SeLINQ was therefore neglected in
favor of a new prototype written in F# itself.

7.1.2 Code Quotations and Reflection

F# features a built-in technique for working with the abstract syntax tree which is called code quo-
tations [7]. This technique is primarily intended to be used by programs that transform F# code into
another language, as for example WebSharper converts F# definitions into JavaScript code. When
the F# compiler generates the assembly during compilation, a special attribute in the source code
tells it to also store the abstract syntax tree of the compiled program within the same assembly. This
information can then be read and traversed by another program when necessary. We had to neglect
this approach, since it does not support anti-quotations. A further motivator was that it is not de-
signed with program verification in mind, while F# Compiler Services state this as one of the main
goals.
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7.1.3 Security Type Annotations

The design decision to retrieve the abstract syntax tree using F# Compiler Services means that the
source code needs to be a valid F# program. This made it necessary to evaluate the different ways
in which a policy can be expressed using existing language features. An early on neglected option
was to provide the security type signatures in a separate file, as this results in very poor usability and
gives rise to various kinds of errors that need to be handled. Another candidate that is closer to the
original type system is to use F# type abbreviations, as in the following example:

type int_L = int
type int_H = int

This does however not work, since F#’s type inference does not really handle them as types that are
separate from int. It is therefore necessary to completely bypass F#’s type system, which makes it
necessary to find a new method for expressing the additional security type signatures. We focused
on .NET attributes, which can be used on top-level function definitions of the F# code and provide
a great degree of freedom. One initial idea for attributes was to directly annotate parameters and
return values as in the following example:

let add ([<H>] a) ([<L>] b) : [<H>] int = a + b

This approach does however not allow to add security type signatures to more complex data structures
such as lists or records. It thus can only be used in simple cases such as the shown example.

7.1.4 F# Type Providers for Database

F# provides a powerful way for the access to structured data, which is based on a language feature
called type providers [36]. In essence, type providers are components that dynamically create proxy
objects for access to structured information such as databases. Type providers are first invoked when
an F# project is loaded into Visual Studio, so that type information is available for auto-completion.
But more importantly are they also invoked when the F# compiler compiles the project. The types
created by type providers can however not be examined using F# Compiler Services due to their
dynamic nature. As JSLINQ relies on the use of F# Compiler Services, this makes it necessary to
avoid the use of type providers completely. F# allows to work around this by using attribute-based
mappings [1], which coincidentally turns out to be also very useful for expressing the security policy
for the tables and columns of the database.

7.2 Applications of JSLINQ

In Section 3.1 did we make the observation that for three-tier web applications only the ASP is in
the right position to properly use IFC techniques, as it is the only party that has access to the source
code for all tiers. We consequently only consider applications of JSLINQ by the ASP. We see JSLINQ
and similar systems primarily as development tools that help the ASP with secure software develop-
ment. This turns out to be close to a scenario described by Smith [33]. Our underlying assumption
is that changes to the implementation happen frequently, while changes to the general business logic
and trust relationships modeled in the IFC policy are rare in comparison. In such a case can JSLINQ
greatly reduce efforts, as it allows to automatically and frequently verify code before it moves from
development into production. By integrating JSLINQ already in the build process and reporting policy
violations to the developer in the IDE, can errors be spotted and avoided very early in the implemen-
tation process. The focus of this application lies on quality assurance and catching mistakes, but not
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necessarily in mistrusting application developers. JSLINQ can also be used to verify code supplied
from an untrusted source, a scenario which is for example described by Sabelfeld and Sands [26].
This can be the case when the ASP outsources software development to contractors or otherwise uses
an implementation that is provided by a third party (e.g. open source libraries or code snippets). In
this case can JSLINQ help to automatically verify that the used code does not secretly violate confi-
dentiality and integrity, thereby avoiding that a trusted developer has to verify the implementation
manually.

7.3 Related Work

JSLINQ is closely related to SeLINQ [30], which focuses on information flow between application and
database, leaving out the client tier that is present in web applications. SeLINQ’s implementation is
very close to the formal model and uses the Backus-Naur form of the language to automatically
generate lexing and parsing routines with BNFC [4], which are then used to translate the subset into
valid F# code. This contrasts with JSLINQ, which has a wider gap between the formal model and
the implementation, as the analysis is based on the AST of the full language. JSLINQ is not able
to guarantee that this translation preserves the semantics of the formally defined language. JSLINQ
provides also less sophisticated support for the database tier, as the support for algebraic data type is
for example missing.

SIF by Chong et al. [6] builds upon Jif [21], which in turn builds upon Java. A subset of Java’s
class library is made available using signatures and wrappers, which add the missing security type
information and restrict the functionality in order to preserve the security properties. They make
incompatible changes to the Java syntax but stay otherwise within the Java runtime for the execution
of the verified applications.

Mettler [20] proposes Joe-E, which allows capability-based verification of security properties for a
subset of Java. Its theoretical background is quite different from JSLINQ, but for the implementation
do both share many engineering challenges and basic approaches. The work introduces the term
overlay type system for the refinement and extension of the type system of an existing programming
language and provides a tight integration into the base language. Similar to JSLINQ, does Joe-E
aim to be compatible to the unmodified base language in order to increase usability. Additional type
information is for example added through special Java interfaces that have no effect on normal Java
compilation but are evaluated by the Joe-E verifier. Mettler uses honorary markers to make a subset of
library functions available, whereas wrappers are only used when the behavior of the functions needs
to be changed in order to preserve the security properties. He also acknowledges the importance and
difficulty of creating correct markers for the library.

Similar to the discussion in Section 3.3 do Swamy et al. [35] also use coarse-grained trust on the
level of tiers in their discussion of the FABLE type system. Corcoran et al. [9] use FABLE to extend a
previously published language for cross-tier development called LINKS [8] with a security type sys-
tem. The papers are missing details about the prototype implementation, but a look at the published
source code suggests that the authors have started with the LINKS source code and implemented
their extensions in it, which is a rather invasive approach.

7.4 Limitations and Future Work

The support for the database in JSLINQ is rather basic, especially compared to SeLINQ. A worthwhile
goal is to add the support for algebraic data types to JSLINQ. One step further, would it be beneficial
to make processing more efficient by picking up the idea of compiled UDFs (User-Defined Functions,
provided by SQL code that is stored and executed on the database) as used by SELINKS.
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JSLINQ’s prototype focuses on providing a pass/fail result for verification. Usability in the case
of failed verification is not a strong point of the current prototype, as it is not easy to pinpoint the
expression that caused the violation. We think that a worthwhile implementation goal is to provide
developers a better user interface for JSLINQ by giving better feedback about policy violations within
VisualStudio, down to the level of highlighting expressions within VisualStudio that are involved in
policy-violating information flows.

As explained in Section 7.2, is JSLINQ supposed to be used as a development tool, as which it
can verify the implementation. Based on the notion of the more abstract tier-level policies discussed
in Section 3.3, one possible future direction is to extend the verification into the design phase by
combining it with existing solutions in the field of software engineering. Tier-level policies would
thus allow to spot invalid information flows already in the design phase of software development.

JSLINQ does not consider the full complexity of web application development, as evident by the
assumptions introduced in Section 3.2 and the simplifications made in the implementation of JSLINQ
and the case studies. A look at JSLINQ and the related work shows that IFC prototypes that build
upon and remain compatible with an existing language have common problems: library functions are
extended with signatures, functionality of library functions is restricted using wrappers and special
care needs to be taken so that these steps do not violate the security properties. Further research on
how to efficiently increase library coverage and preserve security properties is thus another interesting
direction for future work.

33



Chapter 8

Conclusion

This thesis discusses cross-tier information flow control as an additional building block that helps to
increase application security. The obtained results contribute a practical approach for the protection
of information in web applications from unauthorized disclosure or modification, as they may result
from insecure implementation. It connects IFC techniques with trust relationships between tiers and
the parties involved, thereby giving an overview of what IFC means in practice. This is implemented
in the next step: starting from an existing security type system, this thesis provides a prototype imple-
mentation named JSLINQ that automatically verifies three-tier web applications against an IFC policy,
which required to make suitable choices from multiple alternatives. The feasibility of this approach is
demonstrated using six different example applications which cover browser-based web applications
and a mobile app. The resulting implementation favors practicality, as it integrates into the existing
development process for the commercially supported F# language and the WebSharper framework.
The experiences made during the development of JSLINQ are consistent with similar prototypes:
they show that there are important problems to be solved on the way to a useful development tool,
especially when it comes to the complete and safe integration of existing standard libraries.

As it is natural for a prototype, there are many things left for potential future work, such as
further improvements in completeness (e.g. language support, library coverage, more sophisticated
declassification) and overall usability. Once mature enough, systems similar to JSLINQ could allow
the introduction of advanced security mechanisms, such as policies that closely reflect the business
logic that stands behind the application. These mechanisms go beyond the capabilities of classical
security techniques and contribute to increased application security.
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Appendix A

Statement of Contribution

The work on this thesis is a joint effort with the Programming Language-Based Security research group
at Chalmers, the other project members are Musard Balliu, Daniel Schoepe and Andrei Sabelfeld.

A.1 Implementation

Turning the theoretical model into an implementation represents the main task of this thesis. There-
fore most of the F# implementation was designed and provided by Benjamin Liebe. The only ex-
ception is the constraint solver, which was contributed by Daniel Schoepe. The case studies were
implemented entirely by Benjamin Liebe.

A.2 Report

Chapters 5 and 6 are based on the submitted paper [2], which was co-authored with Musard Balliu,
Daniel Schoepe and Andrei Sabelfeld. The initial draft for these chapters was written by Benjamin
Liebe and the co-authors performed minor changes of the text while preparing the paper for submis-
sion. The other chapters in this report were written exclusively for the purpose of the thesis.
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