

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AMBIDEXTERITY IN LARGE-SCALE
SOFTWARE ENGINEERING

ANTONIO MARTINI

Department of Computer Science and Engineering
Division of Software Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2015

Ambidexterity in large-scale software engineering

ANTONIO MARTINI

ISBN 978-91-7597-285-5

© ANTONIO MARTINI, 2015.

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny serie Nr 3966

ISSN 0346-718X

Technical Report 121D

Department of Computer Science and Engineering

Division of Software Engineering

Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31-772 1000

Printed at Chalmers Reproservice

Göteborg, Sweden 2015

 2

To Ildikó and my family

 2

 i

ABSTRACT
Software is pervading our environment with products that become smarter and

smarter every day. In order to follow this trend, software companies deliver
continuously new features, in order to anticipate their competitors and to gain market
share. For this reason, they need to adopt processes and organization solutions that
allow them to deliver continuously.

A key challenge for software organizations is to balance the resources in order to
deliver enough new features in the short-term but also to support the delivery of new
features in the long-term. In one word, companies need to be ambidextrous. In this
thesis we investigate what ambidexterity is, what are the factors that hinder large
software companies to be ambidextrous, and we provide initial solutions for the
mitigation of such challenges.

The research process consists of an empirical investigation based on the Grounded
Theory approach, in which we conducted several case studies based on continuous
interaction with 7 large software organizations developing embedded software. The
results in this thesis are grounded in a large number of data collected, and corroborated
by a combination of exploratory and confirmatory, as well as qualitative and
quantitative data collection.

The contributions of this thesis include a comprehensive understanding of the factors
influencing ambidexterity, the current challenges and a proposed solution, CAFFEA. In
particular, we found that three main challenges where hampering the achievement of
ambidexterity for large software companies. The first one is the conflict between Agile
Software Development and software reuse. The second one is the complexity of
balancing short-term and long-term goals among a large number of stakeholders with
different views and expertize. The third challenge is the risky tendency, in practice, of
developing systems that does not sustain long-term delivery of new features: this is
caused by the unbalanced focus on short-term deliveries rather than on the system
architecture quality. This phenomenon is referred to as Architectural Technical Debt,
which is a financial theoretical framework that relates the implementation of sub-
optimal architectural solutions to taking a debt. Even though such sub-optimal
solutions might bring benefits in the short-term, a debt might have an interest
associated with it, which consists of a negative impact on the ability of the software
company to deliver new features in the long-term. If the interest becomes too costly,
then the software company suffers delays and development crises. It is therefore
important to avoid accumulation, in the system, of Architectural Technical Debt with a
high interest associated with it.

The solution proposed in this thesis is a comprehensive framework, CAFFEA, which
includes the management of Architectural Technical Debt as a spanning activity (i.e., a
practice shared by stakeholders belonging to different groups inside the organization).
We have recognized and evaluated the strategic information required to manage
Architectural Technical Debt. Then, we have developed an organizational framework,
including roles, teams and practices, which are needed by the involved stakeholders.
This solutions have been empirically developed and evaluated, and companies report
initial benefits of applying the results in practice.

 ii

 iii

ACKNOWLEDGMENTS
I would like to thank all the people that have made this work possible and my

journey a great experience. They are too many to fit here, but I thank them all and their
involvement will always be engraved in this thesis.

First of all, I would like to thank my supervisor, Professor Jan Bosch, for giving me
the opportunity to conduct this research. Jan has given me trust and freedom from the
beginning, and he has always supported me and believed in my work. I have learnt a lot
from his experience and his determined way of seeking novel and ground-breaking
contributions to the field of Software Engineering. Jan, as the director of the Software
Center, has provided me with a great environment for conducting high quality
empirical research, and has shown me how to make possible the successful interaction
between academia and industry. I also thank Jan for always giving his contribution to
the publications, despite, sometimes, my last-minute submissions.

I want to thank also Lars Pareto, my second supervisor for the first 2 years of PhD.
Before Lars unexpectedly and tragically passed away, he coached and supported me
with true dedication. Lars contributed to my growth with his experience in applying a
thorough methodology and his encouragement to problematize knowledge rather than
accepting common sense for truth: both have deeply influenced my approach to the
research reported in this thesis. Lars was also very important for my successful
interaction with the industrial partners of the Software Center, sharing his experience,
his contacts and his previous work from which I have taken inspiration.

I would also like to thank my second supervisor, Associate Professor Helena
Holmström Olsson, for her kind and patient review of the many pages included in this
thesis. Her point of view helped me looking at my whole work with a new and holistic
perspective. I am also grateful to Professor Michel Chaudron, who stepped in
supervising me when Lars Pareto passed away, and supported me with his knowledge
and new ideas for my research. Also a special thank to my examiner, Magnus
Bergquist, who has always provided me with very a responsive and extensive feedback.

A special thank to the Software Center for funding this research project, and to all
the companies that have been involved: the main contacts, who made this research
possible, the many development teams involved and the architects, who especially
contributed with their experience, knowledge and active work to this thesis. Just to
mention a few of them, I will mention: Jonas Holmgren and Fredrik Hugosson at Axis,
Jørgen Karkov, Eva Nielsen and Niels Jørgen Ström at Grundfos; Jesper Derehag,
Anders Dyvermark, Staffan Enhebom, Peter Eriksson, Henrik Harmsen, Peter
Kanderholm, Anders Kvist, Mats Lindén, Richard Lundberg, Pat Mulchrone, Anna
Sandberg and Björn Östlund at Ericsson; Peter Sutton at Jeppesen; Jesper Lindell, Sven
Nilsson, Christoffer Höglund and Vilhelm Bergman at Saab; Jens Svensson and
Andreas Henning at Volvo AB; Kent Niesel, John Lantz and Ilker Dogan at Volvo
Cars.

Many thanks to all my colleagues at the Software Engineering Division, where I
have found both friendship and great discussions. A special thank to Dr. Ali Shahrokni,
whose friendship has extended after his PhD; to one of the best office-mates that I’ve
ever had, Hiva Alahyari and to Dr. Emil Alegroth for the great discussions “on the
road”, Ulf Eliasson, Vard Antinyan and Abdullah Al Mamun for their collaboration on
the Technical Debt topic and to all the other PhD candidates at the division and the
departments of CSE, current and past, with whom I have shared tons of interesting
discussions, laughs and fun activities. Many thanks also to all the seniors of the
division, especially to Associate Professor Patrizio Pelliccione, for the great

 iv

discussions on research, teaching and many other topics, Professor Robert Feldt for the
always interesting input on research quality, to Associate Professor Eric Knauss for
discussing ideas and reviewing papers even very late at night, and to Associate
Professor Christian Berger for his constant interest in my research and for sharing his
knowledge on research opportunities. Thanks also to all the fellow researchers outside
this university: especially Senior Lecturer Romina Spalazzese, Senior Lecturer Ulrik
Eklund, and special thanks to Senior Lecturer Lars Bendix, who has been my Master
Thesis supervisor and who supported me in the choice of pursuing this PhD.

The most important thank is perhaps for my amazing and supportive life-companion,
Ildikó: nothing would have been possible without her, who was there in the best and
the worst moments of this journey. Since she is also involved in a very similar
academic experience, I hope that I will be as important for her success as she has been
for mine.

Another special thank to my family: my father Giuseppe, my mother Maria Luisa
and my sister, Francesca, who have always been supporting me in any possible
situation. A big thank also to all the rest of the family, who has always been there for
me whenever the work allowed me to visit my beloved Italy. I cannot thank all my
friends enough for always making my life interesting also outside work. A final thank
to my pet fish, who have made me company while writing this thesis, and to their 14
new-born, who symbolize how this is not the end of a journey, but perhaps just its
beginning.

 v

LIST OF PUBLICATIONS

INCLUDED PAPERS
1. Martini, A., Pareto, L., Bosch, J. ”Enablers and Inhibitors for Speed with Reuse”,

published in proceedings of Software Product Lines Conference, SPLC 2012 [71].

2. Martini, A., Pareto, L. & Bosch, J., 2013 “Improving Businesses Success by
Managing Interactions among Agile Teams in Large Organizations”, published in
the proceeding for 4th international conference in software business (ICSOB 2013)
[91]

3. Martini, A., Pareto, L. & Bosch, J., 2014. “A multiple case study on the inter-group
interaction speed in large, embedded software companies employing Agile” accepted
in Journal of Software: Evolution and Process (in press)

4. Martini A., Bosch J., and Chaudron M. “Investigating Architectural Technical Debt
Accumulation and Refactoring over Time: a Multiple-Case Study” Information and
Software Technology, in press [121].

5. Martini A., Bosch J.: “Contagious Technical Debt and Vicious Circles: a Multiple
Case-Study to Understand and Manage Increasing Interest” submitted to

6. Martini A., Bosch J.: “Towards Prioritizing Architecture Technical Debt:
Information Needs of Architects and Product Owners” Accepted for publication in
proceeding of Euromicro SEAA 2015 [130]

7. Martini A., Pareto L., and Bosch J., “Towards Introducing Agile Architecting in
Large Companies: The CAFFEA Framework,” in Agile Processes, in Software
Engineering, and Extreme Programming, 2015. [135]

OTHER PAPERS
1. Martini, “Factors influencing reuse and speed in three organizations,” Technical

Report GUPEA, 2012.

2. A. Martini, “Managing Speed in Companies Developing Large-Scale Embedded
Systems.,” in Proceedings of ICSOB, Potsdam, Germany 2013

3. A. Martini, L. Pareto, and J. Bosch, “Communication factors for speed and reuse in
large-scale agile software development,” in Proceedings of the 17th International
Software Product Line Conference, Tokyo, Japan, 2013

4. A. Martini, J. Bosch, and M. Chaudron, “Architecture Technical Debt:
Understanding Causes and a Qualitative Model,” in Proceedings of Euromicro
SEAA, Verona, Italy, 2014

5. A. Martini, L. Pareto, E. Knauss, and J. Bosch, “Boundary-spanning activities in
large embedded software companies employing Agile Software Development.” In
Proceedings of IRIS38, 2014

6. A. Martini, L. Pareto, and J. Bosch, “Role of Architects in Agile Organizations,” in
Continuous Software Engineering, Ed. Springer International Publishing, 2014

7. A. Martini, L. Pareto, and J. Bosch, “Teams interactions hindering short-term and
long-term business goals,” in Continuous Software Engineering, Springer
International Publishing, 2014

 vi

8. A. Martini, L. Pareto, and J. Bosch, “A Framework for Speeding Up Interactions
Between Agile Teams and Other Parts of the Organization,” in Continuous Software
Engineering, Springer International Publishing, 2014

9. A. Martini and J. Bosch, “The Danger of Architectural Technical Debt: Contagious
Debt and Vicious Circles,” in 2015 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2015

10. U. Eliasson, A. Martini, R. Kaufmann, and S. Odeh, “Identifying and Visualizing
Architectural Debt and Its Efficiency Interest in the Automotive Domain: A Case
Study.” In Proceedings of International Conference on Software Maintenance and
Evolution, Bremen, Germany, 2015.

11. B. Vogel-Heuser, S. Rösch, A. Martini, and M. Tichy, “Technical Debt in Automated
Production Systems,” Proceedings of International Conference on Software
Maintenance and Evolution, Bremen, Germany, 2015.

PERSONAL CONTRIBUTION
For all publications above, the first author is the main contributor. In all publications

appended in this thesis, I was the main contributor with regard to inception, planning
and execution of the research, and writing. The same applies for the additional
publications in which I am listed as first author.

For the two publications in which I am listed as co-author, the following
contributions were made by me:

• Eliasson et al.: the study was conducted by two Master Students at Volvo Cars.
Ulf Eliasson was the main coordinator for the conduction of the study inside the
company. I initiated the study, proposed the design and supervised the study
from a Technical Debt perspective, driving the research choices and I took part
in the writing.

• Vogel-Heuser et al.: the study is a vision paper about introducing the term
Technical Debt into APS system, including not only software development, but
also mechanical and electrical engineering. I contributed with the Technical
Debt perspective on the reported cases and with my knowledge of the existing
related work on the subject.

 vii

TABLE OF CONTENT

Abstract ... i	

Acknowledgments .. iii	

List of Publications .. v	

Included Papers .. v	

Other Papers ... v	

Personal Contribution .. vi	

Table of Content .. vii	

1	
 Introduction .. 1	

1.1	
 Preface .. 1	

1.2	
 Overall Framework ... 2	

1.2.1	
 Research Problem ... 2	

1.2.2	
 Solutions and evaluation .. 5	

1.2.3	
 Contributions of this thesis ... 7	

2	
 Background ... 8	

2.1	
 Business perspective: Ambidexterity ... 8	

2.1.1	
 Definition of ambidexterity .. 8	

2.1.2	
 Ambidexterity in Software Engineering 9	

2.2	
 Organization and Process Perspective: Large-Scale Agile
Software Development ... 10	

2.2.1	
 Large-Scale Agile Software Development 10	

2.2.2	
 Large-Scale Embedded Software Development and Agile .. 11	

2.2.3	
 Agile teams and large organizations 11	

2.2.4	
 Interaction challenges when prioritizing features and

architecture in Agile Software Development 12	

2.3	
 Architecture Perspective: Architectural Technical Debt 16	

2.3.1	
 Software Architecture ... 16	

2.3.2	
 Technical Debt and Architectural Technical Debt 16	

2.3.3	
 Architectural Technical Debt theoretical framework 17	

2.3.4	
 ATD as spanning activity to achieve ambidexterity 18	

2.4	
 Interaction and Coordination Perspective 19	

2.4.1	
 Internal and external interactions ... 19	

2.4.2	
 Coordination strategy to manage interactions with

spanning activities .. 20	

2.5	
 Mapping of Research Questions and Chapters 21	

3	
 Research design and methodology .. 22	

3.1	
 Research Context .. 22	

3.1.1	
 Software Center and Agile Research Collaboration 22	

3.1.2	
 Case companies .. 23	

3.2	
 Strategic research design: Grounded Theory 24	

3.2.1	
 Grounded Theory design .. 25	

3.2.2	
 Systematic combination of inductive and deductive

approach ... 25	

3.2.3	
 Validity of results and data saturation 26	

3.3	
 Tactical approach: Case-studies ... 27	

3.3.1	
 Rationale for Case-study research .. 27	

3.3.2	
 Quality and Validity of the results 29	

3.3.3	
 Case selection ... 32	

3.4	
 Data collection methods ... 33	

 viii

3.4.1	
 Interviews ... 33	

3.4.2	
 Questionnaires .. 34	

3.5	
 Data Analysis methods ... 34	

3.5.1	
 Qualitative Methods ... 35	

3.5.2	
 Quantitative Methods ... 37	

4	
 Factors Influencing Ambidexterity ... 38	

4.1	
 Introduction ... 38	

4.2	
 Conceptual Framework ... 39	

4.2.1	
 Influencing factors .. 40	

4.2.2	
 Reuse .. 40	

4.2.3	
 Speed .. 40	

4.2.4	
 ROI of R&D ... 41	

4.3	
 Research Design ... 41	

4.3.1	
 Case descriptions .. 41	

4.4	
 Research Process .. 43	

4.5	
 Results ... 44	

4.5.1	
 Classes of influence .. 44	

4.5.2	
 Factor maps .. 45	

4.5.3	
 Improvement areas ... 46	

4.5.4	
 Factor distribution .. 48	

4.6	
 Analysis – Examples from Case A,B,C .. 48	

4.6.1	
 Case specific results ... 48	

4.7	
 Discussions ... 50	

4.7.1	
 Generalization of output ... 50	

4.7.2	
 Limitations and threats to validity .. 51	

4.8	
 Related Work .. 52	

4.9	
 Conclusions ... 54	

5	
 Inter-team Interaction Challenges and Recommendations for
Ambidexterity ... 57	

5.1	
 Introduction ... 57	

5.2	
 Literature Review ... 58	

5.3	
 Theoretical Framework ... 58	

5.4	
 Research Design ... 61	

5.5	
 Findings .. 62	

5.6	
 Discussion ... 65	

5.7	
 Threats to Validity and Limitations .. 66	

5.8	
 Conclusions ... 66	

6	
 Inter-Group Interaction Challenges and Mitigating Spanning
Activities .. 68	

6.1	
 Introduction ... 68	

6.2	
 Background ... 69	

6.2.1	
 Speed .. 70	

6.2.2	
 Social interactions in Agile Software Development 70	

6.2.3	
 Interaction challenges and spanning activities 71	

6.2.4	
 Agile in large scale embedded software development 71	

6.3	
 Methodology ... 72	

6.3.1	
 Conceptual framework ... 72	

6.3.2	
 Companies’ contexts .. 72	

6.3.3	
 Data Collection ... 73	

6.3.4	
 Data Analysis: combination of qualitative and quantitative

analysis ... 76	

6.3.5	
 Quantitative Analysis ... 77	

6.4	
 Results and analysis .. 81	

 ix

6.4.1	
 Interaction challenges hinder the achievement of business
goals based on speed in all studied contexts 81	

6.4.2	
 Validation and prioritization of interaction challenges 82	

6.4.3	
 Boundary spanning ... 83	

6.4.4	
 Prioritization of boundaries for spanning activities 83	

6.4.5	
 Boundary spanning for each project 85	

6.4.6	
 Boundary spanning for each iteration 86	

6.4.7	
 Ad hoc boundary spanning ... 87	

6.5	
 Discussion ... 87	

6.5.1	
 Generalization and contextualization of challenges 88	

6.5.2	
 Generalization and contextualization of activities 88	

6.5.3	
 Comparison between embedded software development

and pure software development .. 89	

6.5.4	
 Limitations and Threats to validity 90	

6.5.5	
 Other Related Work .. 91	

6.6	
 Conclusion .. 92	

7	
 Architectural Technical Debt Management: Trade-offs for

Ambidexterity ... 93	

7.1	
 Introduction ... 93	

7.2	
 Architecture and Technical Debt .. 94	

7.2.1	
 Definition of ATD .. 94	

7.2.2	
 Previous research on ATD ... 95	

7.2.3	
 Previous research on management of TD 95	

7.2.4	
 Models for technical debt ... 95	

7.2.5	
 The time perspective .. 96	

7.3	
 Research Design ... 96	

7.3.1	
 Case Description ... 97	

7.3.2	
 Data collection .. 98	

7.3.3	
 Data analysis ... 101	

7.3.4	
 Factors and models evaluation ... 103	

7.3.5	
 Models of Accumulation and Refactoring of Architecture

Technical Debt ... 104	

7.4	
 Causes of ATD accumulation (factors) .. 104	

7.4.1	
 Business factors .. 104	

7.4.2	
 Design and Architecture documentation: lack of

specification/emphasis on critical architectural
requirements ... 105	

7.4.3	
 Reuse of Legacy / third party / open source 105	

7.4.4	
 Parallel development .. 105	

7.4.5	
 Uncertainty of impact ... 105	

7.4.6	
 Non-completed Refactoring ... 106	

7.4.7	
 Technology evolution ... 106	

7.4.8	
 Lack of knowledge ... 106	

7.5	
 ATD accumulation and refactoring models 107	

7.5.1	
 Crisis-based ATD management .. 107	

7.5.2	
 ATD accumulation and refactoring trends during feature

development ... 107	

7.5.3	
 Phases of ATD accumulation ... 108	

7.5.4	
 Comparison of refactoring strategies 110	

7.6	
 Detailed case-study ... 112	

7.6.1	
 Chronological narrative of events 112	

7.7	
 Evaluation ... 113	

7.7.1	
 Factors evaluation ... 113	

7.7.2	
 Models evaluation .. 114	

 x

7.8	
 Discussion ... 117	

7.8.1	
 Implications for research .. 118	

7.8.2	
 ATD and software architecture management 118	

7.8.3	
 Implications for practice ... 119	

7.8.4	
 Limitations .. 120	

7.8.5	
 Future work .. 120	

7.8.6	
 Threats to validity ... 121	

7.8.7	
 Related Work .. 122	

7.9	
 Conclusions ... 122	

8	
 Architecture Technical Debt Phenomena Hindering Long-Term

Responsiveness .. 124	

8.1	
 Introduction ... 124	

8.2	
 Architecture and Technical Debt .. 125	

8.2.1	
 Definition of ATD .. 125	

8.2.2	
 Previous research on ATD ... 126	

8.2.3	
 Previous research on management of TD 126	

8.2.4	
 Models for technical debt ... 126	

8.2.5	
 The time perspective .. 127	

8.3	
 Research Design ... 127	

8.3.1	
 Case Selection .. 128	

8.3.2	
 Data collection and analysis ... 128	

8.4	
 Taxonomy of Architecture Technical Debt Items, their Effects
and Vicious Circles in The Model .. 133	

8.4.1	
 Taxonomy of ATD Items and their effects 133	

8.5	
 Vicious Circles .. 135	

8.5.1	
 Contagious ATD ... 136	

8.5.2	
 Hidden ATD, not Completed Refactoring and Time

Pressure .. 137	

8.5.3	
 Propagation by bad example .. 137	

8.6	
 Understanding and managing the increment of the interest 138	

8.6.1	
 Presentation of the cases ... 138	

8.6.2	
 Monitoring the growth of the factors (If) in order to

optimize the benefits of refactoring 143	

8.7	
 Discussion ... 144	

8.7.1	
 Implications for research and industry 145	

8.7.2	
 Limitations .. 146	

8.7.3	
 Related work ... 147	

8.8	
 Conclusions ... 148	

9	
 Evaluation of Architecture Technical Debt Information for

Balancing Ambidexterity ... 149	

9.1	
 Introduction ... 149	

9.2	
 Background and Conceptual Models .. 150	

9.2.1	
 Features vs ATD refactoring prioritization model 150	

9.2.2	
 Prioritization aspects .. 151	

9.2.3	
 Architecture Technical Debt effects 152	

9.3	
 Research Design ... 153	

9.3.1	
 Case selection ... 153	

9.3.2	
 Data collection .. 153	

9.3.3	
 Data Analysis ... 155	

9.4	
 Results and Analysis ... 155	

9.4.1	
 Prioritization Aspects ... 156	

9.4.2	
 ATD effects usefulness in prioritization 157	

9.5	
 Discussion ... 159	

9.5.1	
 Implications for research .. 159	

 xi

9.5.2	
 Implications for practice ... 160	

9.5.3	
 Limitation and threats to validity 160	

9.5.4	
 Related work ... 160	

9.6	
 Conclusions ... 161	

10	
 The CAFFEA Framework and the Organizational Solution for

Ambidexterity Management .. 162	

10.1	
 Introduction ... 162	

10.2	
 Research Design ... 163	

10.2.1	
 Case Selection .. 163	

10.2.2	
 Data Collection ... 164	

10.2.3	
 Data Analysis ... 164	

10.3	
 Results ... 165	

10.3.1	
 Architect Roles ... 165	

10.3.2	
 Teams ... 167	

10.3.3	
 Overall Framework ... 168	

10.3.4	
 Introduction of CAFFEA in the companies 168	

10.4	
 Validation of Results .. 169	

10.4.1	
 Validation of CAFFEA .. 169	

10.4.2	
 Validation of teams .. 169	

10.4.3	
 Validation of roles .. 170	

10.5	
 Discussion and conclusions .. 171	

10.5.1	
 Limitations and Threats to Validity 171	

10.5.2	
 Related work ... 171	

10.5.3	
 Contribution to research and practice 172	

10.5.4	
 Conclusions .. 172	

11	
 Discussion and Conclusions ... 173	

11.1	
 Research Questions and Contributions of the Thesis 173	

11.1.1	
 RQ1 What factors influence long-term and short-term
responsiveness? .. 173	

11.1.2	
 RQ2 What interaction challenges affect ambidexterity? 174	

11.1.3	
 RQ3 What spanning activities are needed in order to

mitigate the interaction challenges affecting
ambidexterity? .. 175	

11.1.4	
 RQ4 What strategic information about Architecture
Technical Debt needs to be shared between architects,
product owners and teams in order to manage
ambidexterity? .. 176	

11.1.5	
 RQ5 What organizational solution can be applied in order
to facilitate spanning activities to manage ambidexterity? 178	

11.2	
 Future Work .. 178	

11.2.1	
 Implementation of Architectural Technical Debt methods

and tools ... 178	

11.2.2	
 Evaluation of CAFFEA (in progress) 178	

11.3	
 Conclusion .. 179	

Bibliography ... 181	

 xii

 1

1 INTRODUCTION

1.1 PREFACE
Software is becoming omnipresent in our environment, making everything “smarter”

and “smarter” every day. The advances in many scientific fields, including software
engineering, are contributing to create new features that are enriching our everyday
life. For example, I remember when a few years ago I was driving on the highway and I
received an important call to pick up a package that I was expecting. I stopped the car,
but I answered the call too late. In that moment, I wished that I could have answered
the call with just my voice. As if someone had heard me, cars have recently introduced
voice control to interact to the dashboard, making easier for the driver to activate
functions and to monitor parameters without using hands (“handsfree” features).

Many of this kind of features require software companies to develop and deploy
software on an existing physical product. The more and interesting features a company
is able to provide, the more attractive the product becomes for the customers.
Consequently, companies focus on delivering features as quick as possible in order to
release their products before the competitors, in order to win a market share (i.e.
convince a large portion of customers to buy their products). This competition is won
by the company that is able to understand the customers’ needs and is therefore able to
deliver new features fast. Such ability is called responsiveness.

However, sometimes software companies make short-term choices, in order to
quickly develop a feature, that might hinder how a company will be able to ship
another feature in the future. There are three alternative scenarios that might happen:

• A company is only focused into delivering new features as fast as possible,
without considering long-term responsiveness: the company might have a good
business in the short term, but in the future they might not be able to deliver to
the customers what they want because they focused only on short-term needs,
and therefore they might lose market share in the long run.

• A company is only focused in delivering features to the customers in the long
term: the company invests only in the future, without selling new products in the
short term. However, as a result, the company would lose market share and it
might not be able to anticipate what the customers will want in the long term.

• A company is focused in delivering features to the customers in the short term,
but it also invests some resources in order to be able to deliver features in the
long term. This way, the company has good chances of winning the market share
in the short term, but it is prepared for the same long-term goal.

In this thesis we try to understand how large software companies can achieve the
third scenario. In such case, we say that the software company is ambidextrous. Such
term means that the company is able to manage two different and conflicting tasks:
being responsiveness in the short term but investing enough resources in order to be
able to be responsive in the long term.

 2

1.2 OVERALL FRAMEWORK
In this section we present the overall outline of this thesis. First we describe the

research problem and how we have defined it in the first part of the thesis, while we
have investigated a possible solution in the second part, as highlighted respectively in
Figure 1 and Figure 2. The complete theoretical and empirical backgrounds behind the
research questions and the contributions will be elaborated in detail in the next Chapter.

1.2.1 Research Problem

Software companies develop a product (for example, a car and its software) or a
service (for example, a website), which is then used by one or more customers
according to their needs. Companies need to be competitive, or else they need to have
enough customers with respect to their competitors (i.e. have a good enough market
share) in order to have enough revenues to cover the development costs and also to
obtain a gain from the initial development investment (this measure is also called
Return on Investments, RoI).

One way to assure a good market share and therefore a good RoI is for software
companies to make available a product or service to the customers before the
competitors. Thus, one of the main business goals for software companies is to develop
a product or a service with new and attractive features and deliver it quickly: in this
case we say that companies achieve a short time-to-market. This is a short-term
business goal, since the companies want to gain competitiveness in the short-term.

After a product or a service is released and a market share is gained, the software
company needs to keep being competitive. This can be done by releasing additional
products or services (for example, products customized for a specific customer). Also,
new attractive features requested by the customers or the market can be added to
existing products or services. However, also in this phase it is important for the
software company to keep a short time-to-market, which would assure a good enough
market share by anticipating the competitors. The means for achieving such goal is to
reuse existing solutions rather than developing new ones. But in order to do this,
companies need to develop software systems that have certain qualities (for example,
they are flexible enough to satisfy future use cases) in order to allow them to be reused
or evolved. This is a long-term business goal, since the benefits of achieving qualities
come in handy in the long-term, after the system has already been delivered to the
customers for the first time. However, such qualities of a system are usually achieved
during its development, and they are costly to change once the system is in place.

In summary, software companies need to fulfill both short- and long-term business
goals to become and remain competitive. The current main challenge for software
companies is to balance, during the development of the system, the focus between one
kind of business goals and the other. In practice, the organizations need to deliver a
system fast but with enough quality to support the same ability of being fast in the
future. As a consequence of the lack of balance, there are situations in which the focus
is put either on short-term or long-term business goals. However, focusing too much on
one kind of goals only and neglecting the other one is risky, since such choice leads the
software company to not being competitive in the short- or long-term. In other words,
the unbalance between short-term and long-term business goals leads to lack of
competitiveness (bottom part of Figure 1). Therefore, software companies need to
balance short-term and long-term goals in order to remain continuously competitive
(such ability is also regarded as ambidexterity better explained in section 2.1).

 3

Research(Problem(

Long1term(
business(goals(

Short1term(
business(goals(

Unbalance(

Reuse(

Agile(
Prac7ces(

Conflict(

Architectural((
Technical(Debt((

Product((
Manager(

Architect(

Development(
Team(Development(
Teams(

Product((
Managers(

Architects(

Interac5on((
challenges(

Implementa7on((

Desired(
Architecture(

Difference(

Causes(
Causes(

Lack(of(short1term(or(long1
term(compe77veness((
(lack(of(ambidexterity)(

Leads(to(

Causes(

Figure 1 Research problem: three different factors cause the unbalance of short-term and long-term
business goals in a software company, which in turn forces the company to be focused on either short-term
or long-term competitiveness. Such factors are the conflict between Agile Practices and Reuse, the
presence of Architectural Technical Debt (which is the gap between a desired architecture and the actual
implementation) and the presence of interaction challenges among three key actors interacting in large-
scale software development: development teams, product managers and architects.

However, how to manage this balance is not well understood, scientific literature
lacks a solid theory and large software companies struggle in practice. Only recently
the concept of ambidexterity, the ability of combining conflicting business goals, has
been explored in the research fields of management and information systems, but not in
software engineering. This gap motivated the research conducted in this thesis.

In the first part of this thesis we focused on better understanding this research
problem. In fact, there might be many factors that influence the balance of short-term
and long-term business goals inside a large software company. Among many factors
(investigated in Chapter 4), three main factors were causing unbalance between short-
term and long-term business goals. They are visible in Figure 1, and they are briefly
explained below; they will be explored more in depth (since each of them include many
sub-factors) in the following of this thesis.

The first factor is the conflictual relationship between Agile software development
and the need for software reuse. The former one is a process recently introduced in
industry that aims, among other things, at shortening the delivery of features in the
short-term and focuses the development effort on quickly delivering value to the
customer. The latter is the need of reusing existing software in order to lower the
development and maintenance cost and decreasing the time-to-market of a new or
evolved product (a long-term business goal). Chapter 4 investigates this conflict in a
holistic and exploratory way, while Chapters 5 and 6 focus on a specific underlying
aspect of such unbalancing conflict, namely the interactions among different parts of
the organization that lead to the unbalance (as explained below as the second factor).

The second factor is related to the difficulty of balancing short- and long-term
business goals in large software companies where several employees have different
views and kinds of expertize. These roles are interconnected and the outcome of their

 4

interaction becomes quite complex. Besides, not all the stakeholders (consciously or
not) might act to reach the same business goal, or the combined outcome of several
stakeholders’ goals result as unbalanced. This is caused by several interaction
challenges present among these groups of employees. The complexity of such
environment and therefore the ability to control the outcome in order to reach balanced
business goals, further increases when software development is combined with the
development of a physical product, such as cars, telecommunication systems, phones,
etc. In Chapter 6 we show how the multitude of interactions between a software
development team and the rest of the organization influence the balance of short-term
and long-term business goals. The study shows how especially critical are the
interactions between the development team, the product managers and the system and
software architects for balancing short-term and long-term business goals.

The third factor is related to the relationship between the short-term delivery of a
system and its long-term qualities: the system needs to be delivered to the customer
fast, but it also needs to support the organization to deliver new solutions in the long-
term (features or products). Thus, although it is important to maintain competitiveness
with short-term deliveries, it is also important that the system would satisfy long-term
qualities: the means for technically achieving this is to have a desired (target) system
and software architecture that supports both short-term delivery and long-term
qualities. However, there is a common phenomenon that causes the business goals to be
unbalanced: in some cases, the system might be developed to achieve fast delivery
only, neglecting qualities related to the desired architecture, which in the long-term
might cause a delayed or prevented delivery. Such phenomenon is called Architecture
Technical Debt (ATD, explained more in details in section 2.3): this concept is based
on a financial metaphor, which relates developing a sub-optimal architectural
implementation (a system that does not satisfies certain desired qualities) to taking a
“debt” for achieving short-term goals; however, such debt needs to be repaid with extra
costs later on, which represents, in the metaphor, the interest of the debt. The
consequence of accumulating too much ATD in order to achieve short-term goals
might hinder the long-term ones (causing the unbalance between such business goals).
This phenomenon is studied in the second part of the thesis, especially in Chapters 7
and 8. This third factor is also related to the previous one: in fact, one of the main
interaction challenges among key stakeholders inside a large software company
(product managers, system and software architects, developers) is related to the
prioritization of short-term feature delivery against the allocation of development
resources to avoid (or refactor) ATD, and therefore maintain a desired architecture to
support long-term deliveries.

Figure 1 shows how the previous three factors are related to the unbalance between
short-term and long-term business goal. Such unbalance creates a lack of
competitiveness either in the short-term or in the long-term. This represents the
research problem that we have investigated in this thesis. Thus, the related high level
research question that we want to address is:

RQA: How can short-term and long-term business goals be balanced?

In relation to the concept of ambidexterity, this RQ can also be expressed as:

RQB: How can software companies be more ambidextrous?
In the next section we explain what solution was investigated in the second part of the

thesis to mitigate the research problem. Also, in Chapter 2 we will explain the
background in depth with more refined research questions and the link between them
and the rest of the thesis (see Table 1).

 5

1.2.2 Solutions and evaluation

In order to investigate a solution to the research problem, it was important to
understand how to treat the three factors explained above (Figure 1): mitigating the
conflict between Agile and reuse, mitigating the interaction challenges and managing
the accumulation of sub-optimal architectural solution (Architecture Technical Debt,
ATD). As explained earlier, these three factors are related: avoiding architectural
technical debt, meaning avoiding sub-optimal architectural solution that have a costly
negative impact in the long-term would allow software to be reused or evolved.
However, the accumulation of ATD, and therefore the unbalance towards short-term
goals, is due to the lack of a suitable practice that would allow the developers,
architects and product managers to effectively interact in order to balance the
prioritization of short-term deliveries with the ATD avoidance. We therefore
investigated a practice that would improve their interactions by managing the
prioritization of ATD.

In the current scientific literature, a generic solution for mitigating generic
interaction challenges is called spanning activity (more details in section 2.4). This is a
practice carried out by the groups involved in the interaction challenge. For our specific
research problem, the second part of the thesis is dedicated to the development and
evaluation of a spanning activity for the management of ATD. The aim of this practice
is to better balance short-term and long-term business goals among the key
stakeholders (product managers, architects and developers), in order for the software
company to be competitive both in the short- and long-term, which makes the company
ambidextrous, as explained in Figure 2.

The spanning activity of ATD management includes the management of several sub-
activities: collecting information about ATD (which usually involves architects and
developers, respectively the experts in the architecture and in the implementation),
understanding the potential risk to pay a high interest on a debt and the prioritization of
allocating resources to repay such debt (which includes the skills of the product
managers in prioritizing budgets and features). Then, in practice, the debt is taken or
repaid by the development teams, who are the ones developing the system. However,
teams working in parallel in large projects do not usually have the overall picture of the
system. Such overview is needed to assess if the architecture is optimal across the
implementation of many teams, or if the interest of the debt that is accumulated in one
part of the system is going to be paid by some teams or by the overall organization, or
else what budget can be dedicated to repay a specific debt. This is why there is a need
of a spanning activity such as ATD Management, which involves not only teams, but
also architects and product managers.

 We have dedicated several studies to develop the sub-practices for the spanning
activity of ATD management. In Chapter 7 we found how accumulation of ATD is
caused by several factors, internal and external to software companies. In Chapter 8 we
have recognized dangerous socio-technical vicious circles often occurring in the
organizations. Such phenomena lead to the accumulation of risky ATD that need to be
repaid timely to avoid situations in which the interest cause development crises. The
knowledge developed in Chapter 7 and 8 is necessary in order to manage (prevent,
identify, prioritize and refactor) ATD and needs to be shared among the different
stakeholders (teams, architects and product managers) in an appropriate way. For this
reason we also evaluate this information with different stakeholders (Chapter 9).

The information found in this part of the thesis is useful in order to develop methods
and tools that can be used to support the spanning activity of ATD management.
However, a practice that would make use of this information, in order to be effective,
needs to be introduced in the companies and therefore needs to be combined with the
existing organization and processes (in case of the companies studied here, related to

 6

large Agile software development, as explained in section 2.2). In practice, the ATD
information needs to be retrieved, analyzed and used by specific roles in the
organization. In the last part of this thesis (Chapter 10), we developed and evaluated in
practice an organizational solution that has been applicable in companies and has given
several benefits to the developing organizations. The proposed organizational setting,
including three different virtual teams connecting the main stakeholders (teams,
architects and product managers) provides the expected mitigation of interaction
challenges by facilitating the spanning activity dedicated to ATD management.

Proposed((
Solu,on(

Means(for(achieving(

Architectural++
Technical+Debt+
Management++

(spanning(ac,vity)(

Interac,on(

((
((

Interac,on(

Product((
Manager(

Architect(

Development(
Team(Development(
Teams(

In
te
ra
c,
on
(

((
Product((
Managers(

Architects(

Long@term(
business(goals(

Short@term(
business(goals(

Balance+

Short@term(AND(long@term(
compe,,veness((
(ambidexterity)(

Leads(to(

Figure 2 We have investigated a possible solution: Architectural Technical Debt management is a
spanning activity that is a means to balance short-term and long-term business goals and therefore leads
to achieve competitiveness in both short-term and long term, leading to ambidexterity.

In summary, the ATD management spanning activity would help the stakeholders in
mitigating their existing interaction challenges causing the unbalance of short-term and
long-term business goals. This practice is therefore the means for large software
companies to be competitive both on short and long term, which would make them
more ambidextrous.

 7

1.2.3 Contributions of this thesis

The main contributions of this thesis are the followings:

• Novel scientific knowledge about what creates the unbalance between short-term and
long-term business goals in large software companies:

o We compiled a comprehensive taxonomy of the main factors affecting the
balance of short-term and long-term business goals (respectively called speed
and reuse in Chapter 4).

o We identified and quantified the main interaction challenges between
development teams and the rest of large software organizations. These
challenges prevent the achievement balance between short-term and long-
term business goals (Chapters 5 and 6).

o We explain how ATD accumulation unbalances the organization towards
short-term rather than long-term business goals (Chapters 7 and 8).

• Novel scientific knowledge of the ATD phenomenon. This includes ATD-related
information to be used for methods and tools dedicated to the spanning activity of
ATD management:

o A taxonomy of the causes of ATD accumulation, useful for the avoidance of
known pitfalls

o Two qualitative models: the phases model on the trends of ATD
accumulation over time in different development phases and the crises points
model, useful for applying refactoring strategies and avoiding reduced
responsiveness

o A taxonomy of the most expensive (in terms of interest) ATD issues found at
the studied companies, important for ATD identification and prioritization

o Indicators for recognizing the previously mentioned ATD issues
o Models of socio-technical anti-patterns such as Contagious Debt and other

vicious circles generating ATD, useful for preventing ATD to spread in the
system

• A comprehensive framework, CAFFEA, for employing the ATD management
practices into a software company according to its Agile organization and process:

o We developed and evaluated in practice an organizational solution at the
studied companies, supporting the spanning activity of ATD management
among teams, architects and product managers.

 8

2 BACKGROUND
In the previous section we have presented the overall research framework of this

thesis. In the following sections, we explain the various theoretical and empirical
background elements that are the backbone of this thesis: we also introduce the specific
Research Questions and their connection to the contributions in the rest of the chapters.

First we will take a business perspective, by defining ambidexterity in general and,
as it has been considered in this thesis, as the successful balance of short-term and
long-term business goals. Then we will take an organizational and process
perspectives, describing the context of Large Scale Agile Software Engineering in
combination with embedded software development and explaining how we mitigate, in
this thesis, existing interaction challenges related to such context. Then we will explain
how architecture is a key aspect that needs to be taken in consideration in order to
achieve ambidexterity and how managing Architectural Technical Debt can be
considered a solution for improving the mentioned challenges. Finally, we will describe
how we have used existing theoretical frameworks on coordination theories and
organizational boundaries to study interactions and coordination.

2.1 BUSINESS PERSPECTIVE: AMBIDEXTERITY

2.1.1 Definition of ambidexterity

As introduced in Section 1.2, the main research problem is based on understanding
how to balance short-term and long-term business goals in order to sustain continuous
competitiveness. This ability is called ambidexterity, and in this section we define
ambidexterity and we relate it to the research problem and the first research question
that we answered in this thesis.

The term ambidexterity can be intended as generically balancing between two
conflicting goals, for example efficiency and flexibility [1]. In the specific domain of
software development [2], ambidexterity is more often referred as the balance of
conflicts such as the “need to emphasize repeat-ability of development processes on the
one hand and response-ability to dynamic market conditions on the other” [3] and
“make sure that the product and project portfolios satisfy existing customers while also
allowing for market expansion” [4].

The two quotes reported above refer to two different dimensions: the first one is
about a conflict in the present (internal vs external focus), while the second is about
focusing on short-term goals vs long-term goals. In this thesis, we take in consideration
a third perspective, which is the combination of such dimensions: we consider the
response-ability with respect to existing customers (short-term) and future market
demands (long-term). This means focusing on what is also regarded as responsiveness:
“Responsiveness is the ability to react purposefully and within an appropriate time-
scale to customer demand or changes in the marketplace, to bring about or maintain
competitive advantage” [5]. Responsiveness is considered an important business goal
of a company, since “provid[ing] the right product within an acceptable timeframe is
an essential cornerstone of sustained competitiveness” [5]. Achieving responsiveness
in short-term and in long-term are therefore the two conflicting business goals that need
to be balanced.

In practice, the outcome of software development is a product (for example, a car
and its software) or a service (for example, a website), which is then used by one or
more customers according to their needs. During the last decade, software companies
have tried to shorten the time between the identification of their customers’ needs and

 9

the delivery of a software solution that would satisfy such needs [6], which is to say
they have tried to increase their responsiveness. With respect to responsiveness,
software companies are considered ambidextrous if are “aligned and efficient in their
management of today's business demands, while also adaptive enough to changes in
the environment that they will still be around tomorrow” [7].

It’s therefore important, in order to sustain competitiveness, for software companies
to implement processes and organizations that support responsiveness. However, being
ambidextrous with respect to responsiveness means not only being responsive in the
short-term, but also keeping it stable in the long-term in order to continuously remain
competitive, as mentioned in Section 1.2. In this thesis, we consider ambidexterity as
the simultaneous achievement of these conflicting business goals, short-term and long-
term responsiveness.

A number of approaches have been suggested in order to achieve ambidexterity: for
example, structural ambidexterity [7] relies on the existence of two different
organizational units dedicated to the two different goals, in practice separating the
different conflicting concerns. However, such an approach has been found problematic
in software companies [2]. In contrast, it has been proposed a different approach, such
as contextual ambidexterity [2]. This approach suggests the achievement of
ambidexterity by not influencing and relying on high-level manager only, but rather
involving all individuals in the software development process (software developers,
system and software architects, product managers, and other stakeholders), in achieving
ambidexterity. In this thesis, when referring to ambidexterity we refer to contextual
ambidexterity, since this has been recognized as more suitable for software
development.

Although the concept of ambidexterity has been proposed in literature, the scientific
community is still lacking a deep understanding of ambidexterity [8], with contrasting
experiences reported on different success factors and different solutions. Specifically
for software development, although a first attempt has been made in [2] to apply the
concept of ambidexterity by extracting action principles from a single case-study on a
small software company, it has proven challenging to find experiences and software
engineering practices empirically evaluated in large software companies.

To summarize, in order to be ambidextrous, a software organization needs to
reconcile the conflicts between short-term and long-term responsiveness in order to
make both goals achievable to some degree [8]. Reconciling this conflict means
balancing different factors: for example, allocating resources and creating a
development environment that would promote both the goals and at the same time
would not hindering them. However, such factors need first to be recognized.
Therefore, the first step that we have done in this thesis is to answer the following RQ:

RQ1 What factors influence ambidexterity?

A first exploratory and holistic answer to this RQ is investigated in Chapter 4. As
mentioned in section 1.2, a high-level factor influencing the balance of short- and long-
term business goals (and therefore ambidexterity) is the conflict between Agile
practices and reuse (the connection is explained in the next section). In Chapter 4 we
investigate this relationship, although we don’t refer directly to Agile but to its claimed
benefit, speed (in the short-term).

2.1.2 Ambidexterity in Software Engineering

There have been several approaches to manage software development since the
50ies. However, a first approach for increasing (long-term) responsiveness has been
proposed about 15 years ago and is the Software Product Line Engineering (SPLE)
approach. Literature reports how “some cases of SPLE have reported improvements in

 10

the order-of-magnitude with respect to cost, quality, and time-to-market” [9]. Its
strengths rely in a preliminary phase called Domain Engineering, which is responsible
for creating a platform able to optimize the reuse of software (components) by
anticipating future variability among the products that are developed by the software
companies. This way, SPLE focuses on improving long-term responsiveness by
investing initial resources in order to plan and prepare a platform that would support
reusability and therefore the quick replication of products based on the first product
delivered. As explained in 1.2, reuse is one of the main means to achieve long-term
responsiveness. However, the SPLE approach suffers from slow release cycles [10],
which hinder the competitiveness given by short-term responsiveness to changing
requirements [5]. Therefore, the SPLE approach tends to unbalance software
development towards long-term business goals rather than short-term ones. This is in
conflict with the definition of ambidexterity, so SPLE cannot be considered (alone) as a
means to achieve ambidexterity.

In order to increase short-term responsiveness, in the last decade the software
engineering community has seen the establishment of new software development
paradigms, such as Agile Software Development (ASD, see next section) [6][11]. ASD
is directly connected to short-term responsiveness, as “At its core, agility entails ability
to rapidly and flexibly create and respond to change in the business and technical
domains” [6]. ASD is based on the concept of iterative development, where the
development does not rely on an extensive preliminary phase in charge of predicting
and taking care of all the possible future requirements, but it’s more dedicated to
reacting upon changing requirements. Among other aspects, ASD is focused in
improving short-term responsiveness by increasing the deliveries throughout the
development process, in order to quicken the feedback from the customer and to adjust
to changing needs (requirements).

Although ASD aims at improving short-term responsiveness, it’s still not clear what
are the impacts of such an approach on long-term responsiveness. In this thesis we
investigate the challenges in large companies employing ASD, in order to understand
what factors are hindering the achievement of long-term responsiveness, necessary to
be balanced with the short-term one in order to achieve ambidexterity.

2.2 ORGANIZATION AND PROCESS PERSPECTIVE: LARGE-SCALE AGILE SOFTWARE
DEVELOPMENT

2.2.1 Large-Scale Agile Software Development

Agile and Lean Software Development have been associated, among other given
benefits, with short-term responsiveness, as explained in the previous section. ASD has
been extensively studied in the last years [6] since 2001, when the Agile Manifesto was
created [12]. A number of methods have been developed, but very few empirical
evidences were available on their actual benefits if not on a principle level [13]. A
literature review in 2008 [14] highlighted how the most studied method was XP [15],
which was however reported to rarely be completely applicable in practice and only
suitable for small companies but not for large projects. Subsequently, the focus shifted
also to large projects [16], in which the Scrum method became more studied because it
seemed better adaptable for industry, as mentioned in [6]. A trend in the last few years
has been to combine ASD with Lean Software Development (LSD) [6], [17], [18].
LSD is another development paradigm aimed at improving efficiency and eliminating
waste throughout the whole product development from a holistic point of view.

 11

2.2.2 Large-Scale Embedded Software Development and Agile

Embedded software is developed to control machines or devices that are not
considered generic purpose computers. Such software is typically specialized for the
particular hardware that it runs on and has to match specific time and memory
constraints. Examples from such domains are cars, telephones, modems, robots,
appliances, toys, security systems, pacemakers, televisions and set-top boxes, and
digital watches.

 As mentioned in the previous section, ASD have been the subject of researchers’
attention in the last years [6]. Companies developing software for specific domains,
such as embedded software development, have shown the trend to adopt ASD
[19],[20]. However, such development process shows properties and difficulties that
are not common to generic software development, and have to be taken care of when
employing ASD. Examples are the necessity for the Agile teams to depend on strict
hardware requirements and resources and to the necessity of following the overall
product development [19],[20],[21].

2.2.3 Agile teams and large organizations

In small companies or small projects, an Agile development team might be alone
working on a project or might be connected with only a few other entities internal or
external to the company [22]. However, in large projects, the Agile development team
has to interface with several other teams and with other (social) groups [16]. In Chapter
6 we have investigated what are these other social groups.

Development*
Team*

Testers*

New*
Employer*

Project*
Management*

Business*Unit*

Architects* Product*
Management*

Supplier* Other*Dev*
Team*

Figure 3 Interaction connections between the Agile Development Team and the rest of the organization.

The diagram in Figure 3, extracted from Chapter 6, shows many possible
connections, especially rich for embedded software development, where not only
software but also a physical product is developed (e.g. a car). Such large number of
communication links increases the complexity of software development process [23].
Given the many dependencies among the different groups involved, it becomes very
complex to coordinate short-term and long-term goals across large projects. This
problem is still not well understood in ASD [6], and a recent study [24] reported on the

 12

difficulties of aligning the Agile teams with respect to short-term and long-term goals,
as there is “often a conflict between the need for short-term progress and the need for
long-term product quality at the end of sprints”. Although another study shows how an
Agile team can achieve ambidexterity internally [25], it remains an open issue how to
achieve it among different teams and other social groups.

In summary, aligning different parts of large Agile organizations developing
embedded software in order to achieve ambidexterity remains an open issue, and this in
turn does not allow large companies to control the balance of the two goals. This
challenge motivated the second research question:

RQ2 What interaction challenges affect ambidexterity?

In this regards, Chapters 5 and 6 have been dedicated to understand what challenges
are hindering team interactions with other teams and with other parts of large Agile
organizations, with respect to short-term and long-term responsiveness. We explain, in
the next section, the context in more details in order to introduce the next research
questions.

2.2.4 Interaction challenges when prioritizing features and architecture in Agile Software
Development

Short-term responsiveness is usually achieved, in ASD, by prioritizing the most
important features in the beginning of the development. Such activity is ideally carried
out by the customer, but in practice, especially in large organizations, this task is
performed by a surrogate of it, called Product Owner (PO) [26]. The PO usually
prioritizes a backlog for the team, which then invests a certain amount of time, called
sprint (usually a short cycle, such as few weeks), in order to develop the features
appearing on the top of such list. By continuously re-prioritizing the backlogs each
sprint, according to changing requirements [27], and by performing continuous
integration [28], in which every short amount of time the various parts of the software
are built and tested together, the companies have a complete product (including the
most important features) that is often deliverable to the customer and includes the most
important features.

Although architecture has traditionally been considered central for driving software
development in the last 35 years [29], there are reports that highlight how focusing on
long-term qualities is not as important as the fast and short-term delivery of features.
Also empirical evidence suggest that “Agile methods often tend to de-prioritize
architecture, leaving architecture erosion as a consequence.” [10]. This is a clear sign
that long-term goals are unbalanced in favor of short-term goals. This issue is due to
three main interaction challenges (summarized here and explained more in details in
Chapters 5 and 6), better understandable if we take a closer look at the Agile
prioritization process.

Figure 4 represents the overall prioritization process in balancing short-term and
long-term responsiveness. Business goals are used in Prioritization, in order to drive
the Development activity. Also the Development outcome is Assessed using the
business goals. The result of the Prioritization activity is a plan of action for the
Development. The outcome of the Development is then used in the Assessment activity
of the software with respect to the business goals. The Assessment provides feedback
both to change plans via further Prioritization (for example, if the business goals are
not met), or directly by the teams during the Development. Figure 5, Figure 6, Figure 7
and Figure 8 describes more in details how each activity in related to the others.

 13

Assessment'

Priori,za,on'

Development'

Business'Goals'

Business'Goals' Ac,vi,es'Legend:' Input/'
Output'

Figure 4. The overall process, including several activities and input/output among them: Business Goals
are used both for Prioritization and Assessment. The outcome of Prioritization is used during
Development, while the outcome of the Development is used for Assessment. This activity provides
feedback for both Prioritization and Development activities.

Legend:'

Business'Goals' Short&term)
responsiveness)

Long&term)
responsiveness)

Ambidexterity)

Assessment'

Priori5za5on'

Development'

Balance)

Business'Goals' Ac5vi5es' Input/'
Output'

Used'
for'

Figure 5 The Business Goals analyzed in this thesis are short- and long-term responsiveness. Their
balance makes companies ambidextrous. Both business goals are used in Prioritization. Long-term
responsiveness is also used in the Assesment of the output of the software Development.

The balance of two business goals, short- and long-term responsiveness leads to
ambidexterity (Figure 5). Such goals are used in the Prioritization activity as
Prioritization aspects both for Product Owners (POs), and Architects (Archs), The
outcome of this prioritization is communicated to the Agile teams (Development).

The first interaction challenge is the Alignment (Figure 6) between these two roles
and their views. The outcome of such activity is a plan of action, including respectively
a prioritized list of Feature requirements from the POs and a specification of the
Architecture Significant Requirements from the Architects to several Development
Teams. As shown in Figure 7 each development team receives both kinds of input and
then produces a Technical Solution (it might be a feature or an increment in general).
However, these two inputs for the Development might be in conflict between each
other, as explained in Chapter 6. This is the first source of unbalanced goals.

 14

Assessment'

Business'goals'

Development'

Priori4za4on'

Priori4za4on'
aspects'

Product''
Owner'

Architect'

Priori4za4on'
aspects'

Architectural''
Significant''

Requirements'
'Feature'

Requirements'

Alignment'

Legend:' Business'Goals' Ac4vi4es' Input/'
Output'

Used'
for'

InterG'
ac4on'

Figure 6 Architects and product owners prioritize based on prioritization aspects and communicate their
(aligned) input, Architectural Significant Requirements or Feature Requirements, to the Development
teams.

Assessment'

Business'goals'

Development'

Priori4za4on'

Development'
Team'

Development'
Team'

Technical)
Solu-on)

Technical)
Solu-on)

…'
Alignment'

…

Legend:' Business'Goals' Ac4vi4es' Input/'
Output'

Used'
for'

InterB'
ac4on'

Figure 7 The teams (should) align with each other and then develop a technical solution to be delivered to
the customers. However, the software can be Assessed in order to understand if it satisfies the long-term
qualities.

The second challenge is also related to Alignment, but among the teams (described in
Chapter 5). The developed Technical Solutions might not equally satisfy the quality
requirements necessary for long-term responsiveness. For example, one feature might
be developed according to the architecture, but another one might create several
dependencies that are not allowed (creation of Architectural Technical Debt).

The third challenge is related to the need for an Assessment of the actual technical
solution with respect to long-term responsiveness (Figure 8). It is possible to
understand if the process supports achieving short-term responsiveness thanks to the

 15

continuous integration process: if the software is built and released to the customer and
the customer is satisfied, then the solution clearly supports short-term responsiveness
and it’s possible to assess such quality iteratively. However, something that is more
difficult to assess is if the system is complying with the Qualities defined in the
architecture in order to achieve long-term responsiveness. There is currently a lack of
suitable mechanisms, for example an Architectural Technical Debt map, which would
show if such quality is achieved. This assessment would also make visible the Risk that
the solutions will not be able to support long-term responsiveness. The lack of such
assessment, and therefore of Feedback to POs, Architects and Development Teams,
makes it difficult for such actors to act upon such critical information and therefore to
adjust their activities in order to balance short- and long-term responsiveness. The
outcome might be that the balance between the two business goals is not achieved and
the company either focuses too much in only one of the goals, or it remains stuck in the
decision process between the two goals because of conflicts raising among the actors,
which in turn causes performance penalties.

Assessment'

Business'goals' Priori1za1on'

Risk/Quality'

Architecture'
Technical'
Debt'Map'

Development'

Risk/Quality'
Feedback'

Legend:' Business'Goals' Ac1vi1es' Input/'
Output'

Used'
for'

InterI'
ac1on'

Figure 8 The developed software can be Assessed in order to understand if it satisfies long-term qualities:
otherwise, there is the risk that the solution would not be able to support long-term responsiveness. Such
assessment gives feedback to the stakeholders in the Prioritization and Development activity, who can
reiterate the process in order to improve the balance.

In order to overcome these three interaction challenges involving several product
managers, architects and teams in large-scaled Agile Software Development, there is a
need for developing suitable spanning activities that would aid the interaction of such
actors. These activities are supposed to be conducted by the different actors involved,
in order to mitigate the challenges (spanning activities are explained with more details
in section 2.4, when we explain the coordination theoretical framework used for
investigating a solution). The third research question is therefore:

RQ3 What spanning activities are needed in order to mitigate the interaction
challenges affecting ambidexterity?

We contribute to this research question with the recommendations for inter-team
interaction in Chapter 5, while in Chapter 6 we list a number of spanning activities that
are needed among several groups in large companies developing embedded software
(among which we propose the Architectural Technical Debt management activity).

 16

2.3 ARCHITECTURE PERSPECTIVE: ARCHITECTURAL TECHNICAL DEBT

2.3.1 Software Architecture

Long-term responsiveness is usually achieved by providing a technical solution of
the system that would satisfy specific qualities, anticipating long-term goals (for
example reusability, flexibility, etc.). The achievement of such qualities is usually
based on an architecture defined by software experts (also called Architects): the
architecture of a system captures the desired properties of the system with the
specification of significant non-functional requirements to be satisfied or the
specification of patterns and rules to be followed when the features are developed. In
other words, architecture is defined as “the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution” [30].

2.3.2 Technical Debt and Architectural Technical Debt

As mentioned in the previous section, there is a need for a mechanism that would
create information to be assessed by architects, managers and development teams in
order to assess the quality of the software with respect to long-term responsiveness, and
therefore to be aware of the risks of not being able to sustain such responsiveness. A
suitable mechanism for making such information available is related to the Technical
Debt (TD) concept. This metaphor is borrowed from the financial domain and it relates
implementing sub-optimal solutions, developed to meet short-term goals, to taking a
financial debt, which has to be repaid with interests in the long-term. Such metaphor
has been recently researched in academia and in industry, as shown by a recent
systematic mapping study on the subject [31].

The term Technical Debt has been first coined at OOPSLA by Cunningham [32] to
describe a situation in which developers take decisions that bring short-term benefits
but cause long-term detriment of the software. The term has recently been further
studied and elaborated in research: in 2013 Tom et al. [33] conducted an exploratory
study involving a multi-vocal literature review, supplemented by interviews, in order to
draw a first categorization of TD and the principal causes and effects.

Some studies have been conducted on the management of TD, also supported by a
dedicated workshop (MTD), and usually co-located with premium conferences, such as
ICSE and ICSME. A first roadmap has been created in 2010 by Brown et al. [34]. In
2011 Guo et al. proposed an initial portfolio approach with the creation of TD items to
be managed in the companies. The same authors proposed a further empirical study on
tracking TD [35], in order to make the lack of quality and the risk visible for a software
development team. In relation to the problem of neglecting long-term goals in favor to
the short-term ones, Seaman et al. have identified the theoretical importance of TD as
risk assessment tool in decision making [36]. TD has also been used for defining part
of a method for assessing software quality, SQALE [37], which has also been
implemented in a tool for source code static analysis. The Technical Debt items can be
used in practice as explained in Figure 9.

A more specific kind of Technical Debt is regarded as Architectural Technical Debt
(ATD, categorized together with Design Debt in [33]). A further classification can be
found in Kruchten et al. [38], where ATD is regarded as the most challenging TD to be
uncovered since there is a lack of research and tool support in practice. Finally, ATD
has been further recognized in a recent systematic mapping [31] on TD.

Analogously to TD, Architectural Technical Debt (ATD) is regarded [33] as sub-
optimal solutions with respect to an optimal architecture for supporting the business
goals of the organization. Specifically, we refer to the architecture identified by the
software and system architects as the optimal trade-off when considering the concerns

 17

collected from the different stakeholders. In the rest of the thesis, we call the sub-
optimal solutions inconsistencies between the implementation and the architecture, or
violations, when the optimal architecture is precisely expressed by rules (for example
for dependencies among specific components). However, it’s important to notice that
(in the cases studied in this thesis) such optimal trade-off might change over time, as
explained in Chapter 7, due to business evolution and to information collected from
implementation details. Therefore, it’s not correct to assume that the sub-optimal
solutions can be identified and managed from the beginning.

2.3.3 Architectural Technical Debt theoretical framework

The studies in TD and ATD are quite recent, and the subject is not mature yet. Some
models, empirical [39] or theoretical [40] have been proposed in order to map the
metaphor to concrete entities in software development. We use, in this thesis, a
conceptual model comprehending the main generic components of TD.

2.3.3.1 Debt

The debt is regarded as the technical issue. Related to the ATD in particular, we
consider the ATD item as a specific instance of the implementation that is sub-optimal
with respect to the intended architecture to fulfill the business goals. For example,
referring to Chapter 8, a possible ATD item is a dependency between components that
is not allowed by the architectural description or principles defined by the architects.
Such dependency might be considered sub-optimal with respect to the modularity
quality attribute [41], which in turn might be important for the business when a
component needs to be replaced in order to allow the development of new features.

2.3.3.2 Principal

It’s considered the cost for refactoring the specific TD item. In the example case
explained before, in which an architectural dependency violation is present in the
implementation, the principal is the cost for reworking the source code in order to have
the dependency removed and the components not being dependent from each other.

2.3.3.3 Interest

A sub-optimal architectural solution (ATD) might cause several effects (for
example, as described in [42]), which have an impact on the system, on the
development process or even on the customer. For example, having a large number of
dependencies between a large amount of components might lead to a big testing effort
(which might represent only a part of the whole interest in this case) due to the spread
of changes. Such effect might be paid when the features delivered are delayed because
of the extra time involved during continuous integration. In this paper, we treat
accumulation and refactoring of ATD as including both the principal and the interest.

2.3.3.4 The time perspective

The concept of TD is strongly related to time. Contrarily to having absolute quality
models, the TD theoretical framework instantiates a relationship between the cost and
the impact of a single sub-optimal solution. In particular, the metaphor stresses the
short-term gain given by a sub-optimal solution against the long-term one considered
optimal. Time wise, the TD metaphor is considered useful for estimating if a technical
solution is actually sub-optimal or might be optimal from the business point of view.
Such risk management practice is also very important in the everyday work of software
architects, as mentioned in Kruchten [43] and Martini et al. [44]. Although research has
been done on how to take decision on architecture development (such as ATAM,
ALMA, etc. [45]), there is no empirical research about how sub-optimal architectural

 18

solutions (ATD) are accumulated over time and how they can be continuously
managed.

2.3.4 ATD as spanning activity to achieve ambidexterity

The Technical Debt metaphor seems to be a suitable communication device among
the stakeholders mentioned in 2.2 for aligning short-term and long-term goals. In
particular, part of the overall TD is to be related to architecture sub-optimal solutions,
and it’s regarded as Architecture Technical Debt (ADT). ATD is considered as
implemented solutions that are sub-optimal with respect to the quality attributes
(internal or external) defined in the desired architecture intended to meet the
companies’ business goals. Although there are very few scientific reports on the
benefits of employing ATD in practice, several experiences from the author of this
thesis have shown how the recent introduction of such metaphor in the industrial
partners of this research project have contributed in improving the communication
among the different stakeholders.

The following Figure 9 shows how Architectural Technical Debt can be used in the
previously presented framework (Figure 4). The information about Quality and the
consequent Risk in terms of threats for long-term responsiveness is Assessed in the
Technical Solutions developed by the Development Teams. As suggested in previous
research ([46]), and effective way of visualizing and utilizing the Technical Debt
information is to create a Portfolio (or Backlog) with TD items. We use the same idea:
including the information about ATD in an Architecture Technical Debt Map. Such
map is then shared between Product Owners, Architects and Development Teams. Such
information will therefore contribute to the Alignment among the stakeholder
(especially between Product Owners and Architects but also among Development
Teams). They need to take in consideration the risk of unbalancing the development in
favor to short-term responsiveness by neglecting qualities necessary for achieving
long-term responsiveness.

Assessment'

Product''
Owner'

Architect'
Alignment'

Development'
Team'

Development'
Team'

Technical)
Solu-on)

Technical)
Solu-on)

…'

Quality'/'Risk'

Alignment'

…'
InformaAon'type'

InformaAon'flow'

Architecture'
Technical'
Debt'Map'

Figure 9. Example of a spanning activity in which Development Teams, Architects and Product Owners
align and assess short-term and long-term responsiveness using an Architecture Technical Debt Map.

 19

In order to use ATD management as a suitable spanning activity, it’s important to
understand what information needs to be shared in such spanning activity, i.e. what
interactions need to be improved. Therefore, we want to answer the following research
question:

RQ4 What strategic information about Architecture Technical Debt needs to be
shared between architects, product owners and teams in order to manage
ambidexterity?

Although ATD management has been recognized as usable in practice, a recent
comprehensive study of existing literature [31] highlights several deficiencies in the
current body of knowledge: lack of reliable industrial studies, lack of focus on
architecture anti-patterns and lack of studies involving the whole TD management
process. This means that, although the idea of using TD management has been already
formulated, the implementation of such mechanism, including tools and its integration
in the software processes, is far from being fully employed in practice, as also
highlighted in Chapter 10.

We contribute to filling this gap with three in-depth studies of ATD, presented in the
second part of this thesis, including Chapters 7 and 8, where we have studied the
phenomenon in practice in order to build knowledge and useful information, which we
have started to evaluate with the involved stakeholders in Chapter 9.

2.4 INTERACTION AND COORDINATION PERSPECTIVE
In the previous sections of this Chapter, we have presented the background elements

underlying the Research Questions (RQs) and contributions of this thesis. We have
used, as a structure, the BAPO theoretical framework [47] (Business, Architecture,
Process and Organization, not necessarily in this order): such framework is extensively
studied and referred in recent research (e.g. in [48]) and successfully applied in practice
[47][49], both for the understanding and the assessment of various aspects of software
development.

However, as explained throughout the section several factors influencing the balance
of short-term and long-term responsiveness were related to the Interactions (interaction
challenges) among the involved stakeholders. This aspect is orthogonal to the
previously mentioned categories (BAPO), being related to the People (or social) aspect
of software development, which has also been recognized in other frameworks, such as
in [50]. The interaction dimension is also considered one of the pillars of the four main
ASD principles, as outlined in the first line of the Agile manifesto [12], where the
founders of ASD mention how there is more value in “Individuals and interactions
over processes and tools” (even though processes and tools have value as well). In
order to investigate the interaction challenges related to ambidexterity and in order to
develop a suitable solution (ATD management as spanning activity), we therefore
needed theoretical frameworks to underpin this aspect of our research.

In this section we introduce the concepts and terminologies that are extracted from
two theoretical frameworks, respectively from the theories on communication and
coordination. These concepts are useful to understand the theoretical underpinning and
the contributions of this thesis with respect to interactions.

2.4.1 Internal and external interactions

According to the theory of organization, between two social groups (for example, in
software development, these can be teams of different kinds, development, business,
architecture, cross-functional, etc.) stands an organizational boundary, defined as “the
demarcation of the social structure that constitutes an organization” [51]. As an
example, when splitting and assigning developers to two Agile teams, automatically an

 20

organizational boundary is created between the developers belonging to the two teams.
This has several implications: we do not discussed all of them here, but we pay
particular attention to how organizational boundaries affect the interaction between
different groups. In fact, the interaction between two groups crosses the organizational
boundaries that stands between them, and is defined as communication. This is
regarded as the activity of conveying information through the exchange of thoughts,
messages or information, as by speech, visuals, signals, writing or behavior. Although
teams are created to increase the internal communication among a few employees, the
creation of organizational boundaries among a large number of groups might create a
decrement of the external communication among these groups, since boundaries
function as barriers. Finally, interaction across boundaries is more expensive.

2.4.2 Coordination strategy to manage interactions with spanning activities

To overcome the barriers created by the organizational boundaries, special
communication practices have the function of facilitating the communication across
such barriers, or in a figurative way they have the effect of spanning across the
boundary (for example, they have the same effect that a bridge has on a river). For this
reason, such communication practices have been recently referred as spanning
activities in information system research [52]: “Boundary spanning occurs when
someone within the project must interact with other organizations, or other business
units, outside of the project to achieve project goals. There are three aspects to
boundary spanning: boundary spanning activities, the production of boundary
spanning artifacts, and coordinator roles”. Such concept has been used with respect to
Agile Software Development by Strode et al. [22]. Spanning activities are seen as part
of an overall coordination theory that includes roles, object and spanning activities.
This framework is based on the Malone et Crowston’s coordination theory [53], and
Strode et al. analyzed how co-located and small agile projects coordinate and what
spanning activities they used. We have used such framework in Chapter 6, where the
same theoretical framework has been used and the results have been presented in the
form of needed spanning activities between the Agile team and the other parts of the
organizations. Strode’s framework proposes the definition and description of spanning
activities, of spanning objects (artifacts) and the coordinators (roles). Each activity
needs to be carried out also at a specific frequency, i.e. per-project, per-iteration and
ad-hoc. According to the previous definition and the findings highlighted by Strode et
al. [22], Levina and Vaast [52] and Malone and Crowston [53], it’s necessary to
establish spanning activities for mitigating interaction challenges. This is why we
study, in this thesis, not spanning activities in general, but a specific instantiation of a
spanning activity dedicated to the interaction challenge at hand, as explained below.

Given the research problem explained in 1.2 and the interaction challenge outlined in
2.2.4, we came to the conclusion (Chapter 6) that Architectural Technical Debt
management would be a suitable spanning activity among product managers, architects
and development teams, as shown in Figure 9. The second part of this thesis is
therefore dedicated to the understanding and creation of ATD-related strategic
information that needs to be conveyed (communicated) among the interacting
stakeholders in the spanning activity.

However, this spanning activity, in order to be effective, needs to be introduced in
practice in large companies and therefore needs to be combined with a solution that
would fit the roles in the organizations and processes (in the studied context
represented by the large-scale ASD). This leads to the fifth RQ:

 RQ5 What organizational solution can be applied in order to facilitate spanning
activities to manage ambidexterity?

 21

The contribution to this RQ is given in Chapter 10: we propose an organizational
solution that needs to be introduced in the large Agile process and organization. The
overall framework is called CAFFEA: this allows product managers, architects and
Agile teams to perform the necessary spanning activity of managing Architectural
Technical Debt and therefore to better balancing short-term with long-term goals and
therefore allowing organization to be more ambidextrous.

2.5 MAPPING OF RESEARCH QUESTIONS AND CHAPTERS
The table below summarizes the research questions and their link to the following

Chapters of this thesis.
Table 1 Map of Research Questions and Chapters

RQ Chapter

RQ1 What factors influence ambidexterity? Chapter 4

RQ2 What interaction challenges affect ambidexterity? Chapter 5, 6

RQ3 What spanning activities are needed in order to mitigate the
interaction challenges affecting ambidexterity?

Chapter 5, 6

RQ4 What strategic information about Architecture Technical Debt needs
to be shared between architects, product owners and teams in order to
manage ambidexterity?

Chapters 7, 8, 9

RQ5 What organizational solution can be applied in order to facilitate
spanning activities to manage ambidexterity?

Chapter 10

 22

3 RESEARCH DESIGN AND METHODOLOGY
This Chapter describes and discusses the choices made during this thesis with

respect to the research methodologies applicable in the Software Engineering field.
First we will describe the research context and the collaboration between academia and
industry that led to the results presented in the rest of the thesis. Then we will introduce
the overall research design with the use of Grounded Theory on the strategic level and
of the case-study research at the tactical level. The last sections will go into details of
the research methods used for data collection and data analysis.

3.1 RESEARCH CONTEXT
This thesis is based on a research project that was set up as a collaborative effort

between Chalmers University of Technology and several companies located in
Gothenburg area and the whole Scandinavian area. The main purpose was to contribute
to the scientific knowledge and to improve the software development processes of the
involved industrial partners. Therefore the motivation for addressing the specific
research problem in this thesis is not only related to gaps found in the academic body
of knowledge, but is also strongly rooted in current practical needs of several large
companies developing software.

3.1.1 Software Center and Agile Research Collaboration

The project behind this thesis is part of a broader initiative called Software Center,
which defines a specific format to shape the collaboration between academia and
industry. Since this project and its format had a substantial impact on this PhD thesis,
we thing that it deserves to be explained, analyzing pros and cons.

The research format involved an initial strategic planning phase for the research
project, with long-term goals, followed by continuous adjustment to achieve short-term
goals and partially re-evaluate the long-term goals. This format is in line with the
action principles of Agile Collaborative Research recommended in [54]. This format
was followed for a number of reasons: this research project is a follow-up of the
previous research described in [54], with Ericsson being one of the main partners
contributing to this project. The involved partners were however expanded with respect
to [54], with the inclusion of several other companies. Nevertheless, the original action
principles were followed and adjusted to the involvement of more research partners.

These action principles were based on a number of success factors related to the
research activities described in [54]. For example, the large participation of several
companies to this project (see next section) shows how there was management
engagement and a fruitful network access for the main researcher in the project (which,
in this specific case, was the author of this PhD thesis). The continuous
communication, evaluation of results and further direction, formally performed every
six months, gave the researchers the means (communication ability) to report results,
which in turn gave the possibility to evaluate them or setting up activities to perform a
more in-depth evaluation of the results with the industrial partners. This was also very
important to keep continuity of the project, which is the ability of continuing on the
same (or slightly different) strategic goal set up in the beginning of the project: this was
critically important for the progress of this PhD thesis, since it gave the author the
possibility to keep the various investigations consistent and related to an overall
research goal, explained in the first Chapter of this thesis.

This continuous communication with the industrial partners and their engagement
was important for other reasons as well: first, it allowed us to apply both inductive

 23

(more exploratory) and deductive (more confirmatory) approaches, increasing the
strength and therefore the reliability of the results. This pattern is observable
throughout the whole thesis (Figure 10): in most publications, there is always an
exploratory approach and a subsequent evaluation approach that involves confirming
the results with more evidence.

The continuous communication approach allowed us to evaluate the results in order
to be useful for the industrial context (or, if not, a slight change in direction was
applied by the researchers): this way, the results were often aligned with industry goal
and had benefits for industry. For example, the CAFFEA framework (Chapter 10) has
been partially or fully employed in some of the companies and is in the process of
being evaluated (a first, static evaluation is visible in Chapter 10). Current evaluation at
one of the companies (unpublished results) suggests how such framework had a clear
impact in improving the company’s development process after having been tailored for
their specific context.

Finally, the research format resulted to be innovative: for example, in many
companies the Technical Debt metaphor was introduced, as well as the awareness and
the factors behind the need for balancing short-term and long-term development goals.
The meeting of this success factor was corroborated by several occasions when the
author of this thesis was invited for talks and presentation at several companies (even
external to the research project) or, in two occasions, his participation with
presentations in public events with hundreds of participants from industry such as the
Software Development Day (held each year in Gothenburg).

The research format presented also some obstacles, which have been however
mitigated in accordance to [54]: for example, the negotiation took time and resources
both from the researchers and from the industrial partners, especially in the beginning,
when the project was young and both the industrial partners and we needed to know
each other and we needed to align different goals (indeed, this kinds of projects involve
substantial learning effort). However, at this time the collaboration and the negotiation
has clearly improved, and the negotiation is usually carried out in a smooth way, given
the knowledge and the trust that has been built up during these years of collaboration.

Another partial obstacle was the difficulty to disseminate the results and goals in an
effective way within the companies. Such obstacle, to be mitigated, required the author
of this thesis to improve the communication of the scientific results in a visual way that
would also fit the industrial reality rather than mentioning unfamiliar theoretical
concepts. We found that this communication ability is also quite important for the
actual investigation of the studied phenomena from a research perspective: adapting the
theoretical concepts to the industrial context during investigation increases the internal
validity of the results, since there is less probability that the informants would
misunderstand the investigation device (for example, the posed question).

3.1.2 Case companies

In the following we describe the companies that were participating in the various
investigations. A detailed summary of which company has been studied in which part
of the thesis and the rationale for the selection of the cases is discussed and visible in
section 3.3.3.

Company A carried out part of the development out by suppliers, some by in-house
teams following Scrum. The surrounding organization follows a stage-gate release
model for product development. Business is driven by products for mass customization.
The specific unit studied provides a software platform for different products (projects).
The internal releases were short but needed to be aligned, for integration purposes, with
the stage gate release model (several months).

 24

In company B, teams work in parallel in projects: some of the projects are more
hardware oriented while others are related to the implementation of features developed
on top of a specific Linux distribution. The company combine in house development
with the integration of a substantial amount of open source components. Despite the
Agile set up of the organization, the iterations are quite long (several months), but the
company is in transition towards reducing the release time.

Customers of Company C receive a platform and pay to unlock new features. The
organization is split in different units and then in cross-functional teams, most of which
with feature development roles and some with focus on the platform by different
products. Most of the teams use their preferred variant of ASD (often Scrum). Features
were developed on top of a reference architecture, and the main process consisted of a
pre-study followed by few (ca. 3) sprint iterations. For this company, being a very large
one, we investigated several sites located across Europe.

Company D is a manufacturer of a product line of embedded devices. The
organization is divided in teams working in parallel and using SCRUM. The
organization has also adopted principles of software product line engineering, such as
the employment of a reference architecture. Also in this case, the hardware cycle has an
influence on the software release cycle.

Company E developed field equipment responsible for several large subsystems,
developed in independent projects. Implementation of agile processes has been
initiated, while team composition still followed formal and standard project processes
due to legal responsibilities. Projects are characterized by a long-lasting product
maintained for several years, by a strict formalization of the requirements and by the
need of substantial testing effort.

Company F is a company developing software for calculating optimized solutions.
The software is not deployed in embedded systems. The company has employed
SCRUM with teams working in parallel. The product is structured in a platform
entirely developed by F and a layer of customizable assets for the customers to
configure. Company F supports also a set of APIs for allowing development on top of
their software.

All the companies have adopted a component based software architecture, where
some components or even entire platforms are re-used in different products. The
language that is mainly used is C and C++, with some parts of the systems developed
in Java and Python or other languages. Some companies use a Domain Specific
Language (DSL) to generate part of their source code.

All the companies have employed SCRUM, and have a (internal) release cycle based
on the SCRUM recommendation. However, the embedded companies (A-E) depend on
the hardware release cycles, which influences the time for the final integration before
the releases. Therefore, some of the teams have internal, short releases and external
releases according to the overall product development.

3.2 STRATEGIC RESEARCH DESIGN: GROUNDED THEORY
The overall research strategy is based on the Grounded Theory (GT) approach [55],

[56]. Grounded Theory is a systematic approach to data collection and analysis,
introduced by Strauss and Glaser in 1967 [57]. It is specifically recommended for
building novel theories on complex phenomena such as, like in this thesis, the software
development process in large companies. In this section we describe and discuss the
rationale for using GT, its design and its implications on the validity of the results.

 25

3.2.1 Grounded Theory design

One of the principles behind GT is the avoidance of the hypothesis testing approach
alone, which is based on the researchers formulating an a priori hypothesis and then
testing it with the collected data. Instead, GT challenges such an approach by proposing
a bottom-up process in which the theories (and the hypotheses) emerge from the data
and therefore are grounded in it. Such inductive approach is complemented with a
deductive one, in which the researchers compare continuously the data in order to test
the obtained theories, and they use such theories in order to drive the collection of new
data (theoretical sampling [56]).

We have decided to start this research from an agnostic and exploratory perspective,
and therefore, for such an approach, Grounded Theory was the better than formulating
a priori hypotheses. There were two main reasons for starting an inductive investigation
on ambidexterity rather than following existing hypotheses:

• First, as mentioned in the introduction, the existing body of knowledge in
software engineering does not contain contributions on ambidexterity. Besides, in
other fields (such as Information Systems and Management areas) have just
started to study ambidexterity, and there is no consensus even on its definition
[2]. Furthermore, the current works on ambidexterity tackle the problem on a
principle level rather than taking the specific Software Engineering perspective.

• Second, and as a consequence to the above point, no theoretically sound work
was found on understanding what factors were influencing the balance of short-
term and long-term responsiveness in the Software Engineering research domain.
The “knowledge” existing on the subject was, when the research project started,
mostly anecdotic, based on opinions and beliefs that one or the other approach
would work for one or the other goal, rather than being based on a thorough
scientific investigation of the problem.
This situation required what is called a problematization approach [58]: a critical
thinking approach (one of the foundations of social science research) aimed at
demythicisation. In other words, the process involves rejecting “common
knowledge” (a myth based on anecdotal evidences or beliefs) as taken for
granted, and posing the target myth as a problem to be solved. In our case,
problematization was used in several cases, especially when the discussion was
quite politically charged: for example, the opinion that Agile would be a good
approach only for short-term responsiveness or the belief that architecture
improvements are not worth the time to improve long-term responsiveness but
are only considered a waste.
The first research question reflects this problematization approach by asking the
basic question “What factors influence ambidexterity?”. In several cases, this
technique have provided novel insights that are discordant from the “common
knowledge” and therefore can be considered steps further in increasing the
scientific body of knowledge in Software Engineering. An example among the
contributions of this thesis can be found in Chapter 7, where the models of crisis
point and monotonicity of Architecture Technical Debt (ATD) bring to light the
hypothesis that ATD, in practice, might be unavoidable because of the co-
occurrence of several factors. The problematization approach requires a first
inductive investigation approach.

3.2.2 Systematic combination of inductive and deductive approach

The systematic approach given by the GT framework provided the key principles
and tools to scientifically analyze and report the collected qualitative data in order to
avoid a pseudoanalysis mentioned by Seaman, which consists on “simply write down
all the researcher's beliefs and impressions based on the time they have spent in the
field collecting data” [59]. However, although GT provides excellent support for

 26

performing the kind of research that we wanted to do, such an approach is not perfect
and it’s not complete [60]: GT is not just a systematic tool that is applied and gives an
objective result, but it’s rather a critical thinking method that is scientific in challenging
and revising theories as they emerge from the data, which helps the researchers to
collect and analyze data minimizing the unavoidable bias given by human nature. Quite
a lot is required from the individual researchers themselves to implement GT in the
right way in order to avoid the several pitfalls mentioned in [60]. For example, the
inductive approach does not imply ignoring literature, but rather motivating the
inductive approach despite the existing literature (in this thesis case, as explained
earlier, we needed a problematization approach).

GT has been developed in two main paradigms: the Glaser one [61], more focused in
the inductive process and in the emerging concepts, and the Strauss and Corbin one
[55], who emphasized the combination of inductive and deductive approaches, an
iterative process of creating and testing theories (visible in Figure 10). The second
approach is also more focused on validating theories by the systematic comparison
across the data, the codes and the concepts. We followed mainly the second approach,
which aims at bringing more evidence to support the hypothesis by collecting
confirmatory evidence. Such an approach is also suggested in best practices of case-
study research [62] and is also mentioned in two articles related to the methodologies
suitable for Software Engineering research [63][59].

!!

!!

Chapter!4!
Chapter!5!

Chapter!6!

!!

!! !!

!!

!!

Chapter!7!
Chapter!8!
Chapter!9!

Chapter!10!

Induc6ve!approach!(exploratory)!

Deduc6ve!approach!(confirmatory)!

Research(approach(

Figure 10. The systematic and iterative combination of inductive and deductive research process (blue
arrows) throughout the thesis, proper of Grounded Theory.

The iterative approach can be seen throughout the whole thesis: an inductive
investigation followed by the deductive and confirmatory one. For example, in Chapter
6 part of the challenges (also mentioned as inhibitors) collected inductively in Chapter
4 were tested quantitatively through a survey, in which we asked the participants to
recognize such challenges in their contexts. In Chapter 7, the ATD factors and models
developed during the inductive phase were tested on an in-depth case-study through the
pattern matching (deductive) strategy, which is the one suggested in case-study
literature [62] as the most reliable. The inductive models of increasing interest for ATD
in Chapter 8 are also supported by confirming evidence emerging from other 12 cases
of ATD subsequently collected across 7 companies.

3.2.3 Validity of results and data saturation

A special mentioning is worth on the concept, also important in the GT framework,
called data saturation. Achieving saturation means that, with new data collected, no
new codes and concepts are added to the ones already found previously. For example,
saturation would be achieved with regard to Chapter 7, if conducting more interviews
with software architects from new contexts would reveal that all the ATD cases
mentioned in such new interviews were already covered in the previously collected

 27

data. However, such an approach is strongly or less recommended depending on which
communities we take in consideration, purists or pragmatics [60].

In this thesis, we strive to achieve as much data saturation as possible within the
practical constraints given by the research problem and the research context as well.
For example, we managed to achieve data saturation when investigating the crisis point
model in Chapter 7: such model was investigated in all the studied contexts, and the
data from the interviews showed that all the companies strongly recognized the pattern.
However, such practice was not always feasible, for practical reasons: saturation of
concepts would involve an unpredictably larger number of cases and larger number of
interviews, which was not possible to obtain from the research partners (the companies
involved in the project). Software engineers, architects and product owners are usually
quite busy with their software development projects, and obtaining their time, both
from a time and cost perspective, is quite challenging.

Considering again the two research communities writing about GT, purists and
pragmatics [60], the author of this thesis aligns himself closer to the latter ones. In his
view, there are two main reasons why this does not represent a drawback for the results
contained in this thesis: according to Yin [62], the data collection can stop when
confirmatory evidence is found in at least a new context. Runeson and Höst
recommend the use of different kinds of triangulation [63] in order to mitigate several
kinds of threats to validity: using confirming evidence from multiple sources (source
triangulation, for example getting the same answers from architects and developers),
using different methodologies (for example, employing quantitative and qualitative
methods), more than one observer (when more than one person is observing an event,
for example two researchers simultaneously, called observer triangulation) or applying
different theories (theory triangulation). We have employed approaches that are aimed
at mitigating these threats to validity, which are discussed more in depth in section
3.3.2.

The recommendations mentioned in [62], [63] weaken the heavy “completeness”
constraint put by the GT framework with the complete saturation concept, but it still
assures that the studied phenomenon is not only related to a single and exceptional
case. In many cases in the various Chapters of this thesis, it is possible to see how only
the quotations and phenomena that were recurrent across the studied companies were
taken in consideration: a representative example is shown in Chapter 7, where a
complete chain of evidence from quotations to theories is visualized using a screenshot
from the qualitative analysis tool. Each code in the example was linked to more than
one quotation in different contexts, which provides confirmatory evidence. This
example shows how difficult (if not impossible) it would be to gather always the same
answers from all the studied cases until everyone agrees on a general phenomenon. In
some cases it was possible (for example, for the crisis point model, Chapter 7), but in
most cases, especially when the studied phenomenon was very complex, the different
contexts would bring so many different contextual factors that it would be quite
difficult (if not impossible) to achieve a complete saturation. This is why, as explained
with respect to [62] and [63], the studies report on the findings that were covered at
least by confirmatory evidence and/or satisfying one or more triangulation criteria.

3.3 TACTICAL APPROACH: CASE-STUDIES

3.3.1 Rationale for Case-study research

The strategic choice of GT was complemented with the use of case studies as the
main tactical approach in order to handle, in practice, the empirical investigation. The
phenomenon of achieving ambidexterity in large software companies is strongly rooted
in a very complex industrial context. Case-study research, defined as “investigating

 28

contemporary phenomena in their context” [62] fits this purpose. The main design
choices related to case-study aim at “flexibility while maintaining rigor and relevance”,
as explained in the following and recommended in [63].

Case study research (in this thesis involving several cases) is a widely used approach
in social science research [62], but in the last years it has gained appreciation as a
suitable tool for investigating software engineering topics [63], especially related to
research questions concerning the study of complex systems including humans. In fact,
being software engineering a highly cognitive-intense discipline, many research
questions involve phenomena that are influenced by a wide number of socio-technical
factors. This is even more evident when considering phenomena that present
themselves in large organizations involving a large number of employees with different
backgrounds, expectations and perceptions.

Other possible candidates for conducting empirical research were experiments,
surveys and action research [63]. We used the canonical case study approach following
[62], [63]. This choice had the following advantages with respect to the other
approaches:

• Case-studies vs experiments - The RQs considered throughout this thesis required
answers rich in details in order to provide a contribution. That is to say, they
require a high degree of realism. This is due to the fact that the studied
phenomena occur in a context (in this work, large software companies) and the
boundaries between phenomenon and contexts are often not clear-cut [62]. There
are two problems with the approach of isolating the phenomenon from the
context in order to gain control on the factors and enabling a rigorous replication
(as is done in experiments [64]): one is that contextual factors, which might be
critical for understanding the phenomena, might be missed by design. Besides, it
is unfeasible, with the current technologies and cost constraints, to replicate the
whole development process in a laboratory.

• Case-studies vs surveys – Case studies differ from surveys in that surveys aim at
collecting a large amount of standardized data that provide a superficial view on a
subject [63]. This would not be our case in many investigated situations, since, as
explained in the previous point, the RQs implied the collection on several details
(high degree of realism) on the phenomenon in order to understand.

• Case studies vs action research – Action research provides quite a lot of realism
[65] and it would have therefore been a good candidate in order to answer the
research questions for such a point of view. However, the RQs in this thesis
usually span a time frame (understanding ambidexterity between short and long-
term responsiveness) that would involve the long-term involvement as action
researcher, which was not possible to perform in this short-term thesis and with
the research setting available for the research project. Another drawback of action
research would have been to be unable to replicate case studies in other
companies, which might have reduced the number of confirmatory evidence
collected.

Case studies are useful for different purposes [63], especially for exploratory
purposes but also for descriptive, explanatory and even for improvement: as explained
on the strategic perspective (section 3.2), we have always alternated exploratory and
explanatory purposes. Also, given that we have provided a solution in Chapter 10 we
have used case study for improvement as well: the in-progress validation of the
organizational solution uses a longitudinal case-study that shows what improvements
have been reported after the implementation of the solution. For more details, Table 2
shows the various cases and their purposes: there is not a direct correspondence
between the case-study and the high-level RQ of this thesis (there is, however, on a
more fine-grain level, as it is shown in the chapters), since in some cases the same

 29

study was performed for answering multiple questions, while at the same time some
research questions required more than one study to be answered. For example, R1 was
answered by the first case study, while R4 needed a combination of exploratory and
explanatory case studies in order to be accurately understood and answered.
Table 2. The purpose of each investigation carried out in relation with the RQs

RQ Purpose

RQ1 What factors influence ambidexterity? Exploratory

RQ2 What interaction challenges affect
ambidexterity?

Exploratory and improving

RQ3 What spanning activities are needed in order
to mitigate the interaction challenges affecting
ambidexterity?

Explanatory and Improving

RQ4 What strategic information about
Architecture Technical Debt needs to be shared
between architects, product owners and teams in
order to manage ambidexterity?

Exploratory and Explanatory

RQ5 What organizational solution can be applied
in order to facilitate spanning activities to
manage ambidexterity?

Explanatory and Improving

3.3.2 Quality and Validity of the results

In this section we discuss the quality of the case studies by highlighting the various
threats to validity with respect to the guidelines proposed in [63]: construct, internal,
external validity and reliability.

3.3.2.1 Construct validity

Construct validity is related to the investigation device. It is important that the data
collected are representative of what needs to be investigated according to the RQs. For
example, by using the metaphor of Technical Debt, it was important, during the
investigation, to make sure that we aligned our and the informants’ view of what
Technical Debt was referred to.

In order to mitigate construct validity threats, in most of the studies we have
performed a preliminary meeting with the informants or we spent the first part of the
data collection session in order to explain the terms used during the investigation and in
order to align the understanding among the informants. For example, we
operationalized the ATD as architecture inconsistencies (or alternatively sub-optimal
solutions or in some cases violations, depending on the class of ATD) with respect to
the current desired architecture related to a specific case.

The second approach was related to the research setting: as explained in section 3.1,
thanks to the Software Center format we could assure a prolonged involvement [63]
between the researchers and the involved participants, which assured the building of
trust and therefore of an environment in which concepts from academia where spread
in advance and understood by the industrial representatives, while the industrial jargon,
also different in different organizations, was understood by the researchers and mapped
to the same phenomenon in a more effective way.

Another approach applied in order to mitigate the construct validity threat is through
the selection of the sample: we investigated the phenomenon at hand with the most
knowledgeable informants for the kind of data required, and we triangulated the data
from more sources [63] (different roles). For example, when eliciting ATD cases we

 30

inquired software and system architects obtaining the best knowledge about both the
desired architectures and a good explanation of the sub-optimal solutions in place.

3.3.2.2 Internal validity

Threats to internal validity are present when investigating a direct cause-effect
relationship, for example if a phenomenon is influenced by a factor that has not been
taken in consideration by the researcher [63]. This threat is present for many of the
studies in this thesis, since we aimed at understanding factors influencing
ambidexterity, factors for the accumulation and refactoring of ATD and therefore
design a solution to mitigate such factors. Therefore, the cause-effect relationship has
always been involved, and threats needed to be mitigated continuously.

The first approach to mitigate internal validity threats was the collection of a large
amount of details for the cases studied (as explained before, this is why we strived to
obtain a high degree of realism and therefore we needed to use case-study research),
which would lead to obtain an architecture explanation [66] of a case. An architecture
explanation is the one that does not explain causal relationship by statistically
correlating two hypothetically independent events, but rather by describing how the
studied phenomenon has occurred in relation to the various contextual components of
the case. For example, in Chapter 7 we collected several instances of the ATD
accumulation phenomenon, and by describing the several components (events) of what
occurred, it was clear how the crisis point was determined by such sequence of events.
In order to make this explanation more reliable, we triangulated the obtained answers
from different sources (and several roles, in order to avoid the bias related to one role
only), internal to the company and we always asked follow-up questions in order to
probe the explanations. Also, collecting similar and confirmatory evidences across
different cases, supporting the same explanation, contributed to strengthen our
conclusions.

3.3.2.3 External validity

One of the major threats for case-study research is the ability to generalize the
findings from the case-specific results to other cases. Generalizing to a universal theory
(i.e. valid in all possible situation) is not necessarily the goal for an engineering
discipline: according to [66], middle-range theories, valid to a restricted ranges of
contexts, result more useful in practice. This is related to the data saturation discussed
previously regarding the GT approach: it’s important to find as many evidences as
possible in order to promote the results to middle-range theories, but it would not be
feasible to prove such theories valid universally, since the many different contexts
would yield a (slightly or not) different phenomenon, which in turn would make any
theory invalid or too abstract to give a practical benefit. The rationale in promoting
middle-range theories is the need, for the software engineering communities, of having
knowledge that is valid for the contexts contained in a subset of all the possible
contexts: however, this should be set as large as possible, in order to increase the range
of contexts where the results are valid. The reason for this is that the knowledge is
therefore transferable (e.g. valid) to other similar contexts as well. For example, the
crisis point model was recognized in 7 companies with some similarities (large,
developing embedded software, etc.). This means that other companies with similar
contextual factors might recognize the same phenomenon going on during their
development and could therefore prevent the occurrence of the crises.

Throughout this thesis, in order to develop such middle-range theories, we have
employed an analytical inductive strategy to generalize from case-studies [66]. This
means that we have collected architectural explanations (see also previous paragraph)
from contexts that are architecturally similar among themselves, but contain some
differences: in this thesis, all of the cases are large companies developing embedded

 31

software and having similar organizations. Only in a few occasions, we have tested the
“theories” in one case that would not produce embedded software, in order to
understand if the range of the “theories” that we were studying could be extended. The
main idea is that the similarities among the cases allow the researchers to make the
claims more robust through triangulation and confirming evidence, while the
differences allow the extension of the findings, if similar, to new contexts.

3.3.2.4 Reliability

Reliability is important in order to understand if the data and analysis are dependent
on a specific researcher or if the same study would lead to the same results by other
researchers. This threat to validity is especially present when qualitative data is
collected, since there are several points in which the researcher’s bias might be
introduce in the results.

The first approach that we took in order to mitigate reliability threats was peer
debriefing [63], the involvement of several peers in the research activities. At a design
level this was done among the different researchers involved in case, and this was also
supported by the research setting given by the software center, which gave us the
possibility to discuss the design early with some representative from the companies: in
such way, we took in consideration the industrial perspective in order to mitigate the
halo effect of discussing the studies considering the research problem only from an
academic point of view. Peer debriefing was also performed during the analysis of data,
by involving more than one author in the formulation of the coding scheme and in the
activity of checking the results. During data collection, the presence of more
researchers mitigated reliability threats of the study by what is defined as observer
triangulation.

Another approach to mitigate reliability threats included the member checking
technique [63] in which the results were reviewed by the participants in the case-study.
This was a technique used in all the cases carried out in this thesis, practice that was
supported by the research setting (see section 3.1), which assures, every six months, a
reporting session of the results with the involved companies.

3.3.2.5 Ethical considerations

There is a number of ethical considerations that needs to be taken in consideration
when performing empirical research with respect to the studied companies. The key
factors, reported in [67], are:

• Informed consent: participants, being students or employees of a software
companies, need to know that the information will be used in research. We have
been meticulous with this by asking feedback on the designed or on-going
investigation involving the employees before and after the case studies.

• Benifiance to humans: the research should not bring any harm for the
participants. In case of the software companies, it was important to be sure that
results shared by some of the employees would remain anonymous in order to
avoid problems with managers. The same issue might be incurred by looking into
artifacts and report measures.

• Benifiance to organizations and confidentiality: by publishing results,
competitors of the investigated software companies could take advantage of the
published data. In order to avoid this issue, we have always anonymized the
companies with fictitious names and asked for their consent to publish the paper
in the submitted form.

 32

3.3.3 Case selection

In case study research, it is particularly important to select cases that have suitable
characteristics for answering the RQs. In particular, the selection strategy needs to have
a rationale on the number of investigated cases and on the replication strategy. In all
the studies included in this thesis we usually conducted multiple case studies (with the
companies described in 3.1.2), which means that we involved several companies in the
study. The rationale was that by doing so we would increase the reliability and validity
of the results (see sections 3.2.3 and 3.3.2).

We usually followed a replication of (hypothetically) typical cases, in which we
applied variation on context elements that would possibly bring new insights according
to the maximum variation principle [62]. In some cases, for example when including
company E (not an embedded software company), we aimed at understanding if such
case was deviant (very different from the embedded domain), or if the results found for
the other companies would apply to company E as well. Sometimes, in order to
increase triangulation, we used embedded cases, in which we involved sub-
organizations of the same company as a case itself (for example for company C). We
made sure that such sub-cases had the same context as the other sub-cases. This
replication strategy is visible in Table 3.

In some cases we also performed case studies that lasted longer than one phase only.
Each phase can be seen as a different case. This was done in order to follow the GT
iterative strategy: usually wanted to evaluate our exploratory hypotheses, obtained from
the inductive phase, with an explanatory (or evaluative) phase in which we were
collecting further confirmatory evidence.

The distribution of the companies (described in section 3.1.2) with respect to the
following Chapters of this thesis is shown in Table 3. Such table highlights also how
many phases each Chapter involved. In some cases, we represent a company between
brackets if the results from such company have not been published yet (and therefore
are not present in this thesis, but are part of the data collection).
Table 3 Number of phases and companies involved in the data collection with respect to the chapters

Chapter Number of phases Companies involved

4 1 A, C, E

5 1 A, C, E

6 3 A, C, E

7 4 A, B, C, D, F

8 4 A, B, C, D, F

9 1 A, B, C, D

10 2 A,C (D,E,F)

 33

3.4 DATA COLLECTION METHODS
In this thesis we conducted a large number of interviews. The numbers are reported

in Table 4. We also compensate the qualitative data collection with quantitative data
collection, as visible in the table.
Table 4 Number of data collection sessions, type, number of informants and hours of qualitative data
collected and analyzed with respect to the research process. “Additional” are the interaction with
informants that were not recorded but occurred in spontaneous ways. Each “phase” (also called
“research sprint”) lasted approximately 6 months.

Phase Number of data
collection sessions

Qual./
Quant.

Number of informants Hours recorded
and analyzed

1 7 Qual. 7 14

2 38 survey answers Both 38 -

3 9 Qual. 14 15

4 3 + 15 survey answers Both 40 12

5 7 Qual. 25 11

6 3 + 12 survey answers Both 19 10

7 10 Both 27 21

8 9 Both 25 19

Additional (informal interviews) Qual. N/A N/A

Total 48 Qual. + 65 Quant. - 72 Qual.* + 65 Quant. 102

* Some of the informants participated multiple times in the interviews.

3.4.1 Interviews

Interviews have been one of the main investigation device used in this thesis. We
mostly used semi-structured interviews, in which we had pre-defined topics to be
covered and a few opening questions. Rather than having specific questions for the
whole session, we outlined a list of goals that needed to be covered in the interview and
we let the discussion flow. The questions were mainly related to following-up
questions on interesting topics brought up by the interviewees or attempt to probe the
interviewees’ statements with concrete facts. Semi-structured interviews are very
useful for exploratory purposes [68], while for more confirmatory and evaluation
purposes structured interviews (or questionnaires, described later) are more suitable.
The interactive nature of the interview was useful to catch and develop interesting and
unexpected themes brought up by the interviewee, which could not have been possible
with other methodologies such as a questionnaire.

Informants were chosen on the basis of their role and expertise and their relevance
with respect to the investigation performed. All informants were senior engineers or
managers. The interview protocols had usually fixed questions about the informant’s
role and context (when not known in advance), and open-ended questions to bring out
experiences and opinions. During the interviews we tried to follow the natural flow of
the discussion, with questions injected to cover all themes. Since the process of
interview included also a partial analysis, the successive interviews contained
references to ideas captured in previous sessions.

Interviews were useful because the participants could describe processes and
organizational features (useful for understanding the context), or the interviewee’s

 34

perspective on the studied phenomenon. Since there are many factors influencing
ambidexterity, interviews contributed to provide a broad landscape of factors.

Interviews were also useful to understand and map the terminology in place at the
studied site and perhaps to disseminate the academic vocabulary (or, on the other hand,
to update it), especially at the beginning of the project. This was especially important in
order to mitigate the construct validity threat [63] (see section 3.3.2.1): we always
wanted to make as sure as possible that the investigation device used in the data
collection was understood by the interviewees. For example, in the Technical Debt
investigation it was important to probe the understanding of the employees on the used
terminology, e.g. what was considered interest and principal of the debt.

Interviews provide additional tacit information: gestures, voice tone, facial
expressions and nonverbal communication in general play a key role especially in the
interpretation of the mere words [68]: this facilitates and makes the analysis more
reliable, for example it allows the researcher to weight the answers or might suggest the
right methodology to ask further questions. Although such additional information
cannot be recorded and systematically tracked in the chain of evidence, understanding
the employee is part of the interpretive role of the researcher as much as the data
analysis itself. Such interpretation includes a bias threat introduced by the researchers
in the interpretation of the data, but not applying it and weighting the evidences all at
the same level of reliability would have suffered from the opposite bias threat problem.
Therefore, we decided to apply the interpretation step in a cautious way: based on the
tacit information, we filter or weight data according to if they appear reliable or not.

Another useful property of interviews was the ability, for the researchers, to probe
the statements of the informants. In some cases, such as in a questionnaire, a statement
needs to be interpreted and follow-up questions are not always possible. However, in
an interview, it’s possible to ask for more evidence to support statements, which was
very useful when evaluating factors and models developed during the exploratory
interviews (hypotheses).

3.4.2 Questionnaires

In three cases we have used the questionnaire as an investigation device. The first is
visible in Chapter 6, the second one was used in Chapter 9 and another one was used in
Chapter 10. All the questionnaires were used for confirmatory purposes, in order to
evaluate previously obtained findings. This a suitable way to use questionnaires, and it
gives the results more reliability, since it provides more confirmatory evidence on a
specific phenomenon, but also provides more triangulation of the answers among
different respondents [63].

The preparation of the questionnaires have always followed a careful design, in
which we followed the best principles of survey design [69]. One of the major
challenges in this kind of approach is the threat to construct validity (discussed in
section 3.3.2.1). In the first one, we conducted two pilot runs, one with academics and
one with multiple participants from industry, in order to be sure that the device was
constructed in the right way and the concepts were understandable and represented
what we wanted to investigate. In the second and third surveys, we spent one or more
hours before the survey with the participants in order to make sure that they all aligned
on the meaning and purpose of the questions.

3.5 DATA ANALYSIS METHODS
Most of the research conducted in this thesis is based on qualitative investigation:

the reasons is that, as explained in previous Chapters, the main focus of this thesis is to
understand how several teams and individuals, with different competences and tasks,

 35

would need and consume information in order to coordinate for balancing the
development of short-term vs long-term software solutions. Such activity is complex
because it involves many human interactions and depends on a number of factors.

Qualitative research was chosen because “Qualitative research methods were
designed […] to study the complexities of human behavior (e.g., motivation,
communication, understanding)” [59]. Given the large amount of humans involved in
the studied phenomena and the complexity of the context, this was the best choice.
Therefore, even if we have applied, in some cases, quantitative methods (explained in
the specific Chapters), we will put the focus on explaining how qualitative research
was performed.

We analyzed the data using a combination of qualitative and quantitative
approaches, which contributed to apply methodological triangulation, as recommended
in [63]. Qualitative analysis gives in-depth understanding of a process or a system,
while quantitative analysis is more useful for strengthening results, to test hypothesis
and to find information related to respondents or contexts with specific properties.

3.5.1 Qualitative Methods

Actual'Events'within'
case'context'

Subjects’'percep8ons'
based'on'observa8ons'
and'experiences''

Codes'and'Quota8ons'

Categoriza8ons'and'
Sor8ng'

Theories'

Figure 11. Qualitative data collection and analysis process

The qualitative analysis process is described in Figure 11: from the actual events we
could access the practitioners’ experiences, in the form of written transcriptions. We
coded the text using a tool for qualitative analysis, which allowed us to maintain
traceability between the data and the produced codes. A screenshot of a concrete use of
the tool is showed in Figure 12, in Chapter 7. The codes were categorized and sorted in
order to link, compare and combine them into an organic representation of the
investigated data, which led to identify novel theories or to confirm existing
knowledge. We conducted the following steps, also showed in Figure 12.

Open Coding

As a first step for inductive analysis, we have used open coding: this process is
necessary to create “concepts [that] are building blocks of theory” [68]. We analyzed
the audio from interviews and the text from the open-ended answers in the
questionnaire, slicing it into small pieces and linking the relevant ones to quotations
and substantive codes. This was part of the open coding, in which we followed Strauss
and Corbin’s method [61]. Some concepts were the result of in-vivo coding (quotations
directly converted in codes), others were syntheses, made by the researcher, of the
overall concept or phenomenon expressed by the informant. The link between the
quotations and the codes was always traced thanks to the use of a Qualitative Data

 36

Analysis (QDA) tool, as shown in Figure 12. Then, the codes were grouped into
categories.

Antonio&Mar*ni&+&PhD&student&in&So4ware&
Engineering&

Quota*ons&

Codes&Categories&

The&number&represents&the&transcrip*on&doc&to&which&the"a*on&is&
linked:&for&example,&“non+completed&refactoring”&has&been&cited&six&*mes:&

three&in&case&2,&one&in&case&6&and&two&*mes&in&case&7&

Figure 12. Qualitative analysis process using a QDA tool in order to keep track of the chain of evidence:
from multiple quotation, collected and transcribed from the informants, to codes and categories.

Axial Coding

The codes and categories were compared through axial coding in order to highlight
connections orthogonal to the previously developed categories. Axial coding is a useful
way to analyze the data in order to find relationships and patterns related to a specific
dimension (axis) of the data. This technique has been used in various studies in this
thesis. A good example is reported in Chapter 7, where the time axis was used in order
to relate the various factors among each other, in order to understand their sequence
over time and therefore to relate their influence on the a studied phenomenon (in such
Chapter it was the accumulation of ATD over time).

Deductive analysis

Deductive qualitative analysis was performed when a structure was already in place
and we wanted to fit the data into such structure rather than creating new categories
(however, new codes were always created). Such analysis is useful for evaluation
purposes: first of all, such analysis shows what confirmatory evidences have been
collected with respect to a give category or concept. As an example, we might take a
factor in Figure 12: in the QDA tool we can see how many quotations and from which
case the quotations are related to the concept. This is important for triangulation
purposes [63] and in order to assess data saturation [61]: the more evidences
(quotations) were found related to the same factor, the more confirmed such factors
was considered by the researchers.

Other than the confirmation at a code level, another special case of deductive
analysis was done, which is called pattern matching: such analytical strategy is based
in having an hypothetical pattern coming from the exploratory data (for example, a
model of a sequence of events) and then having another, new case that is analyzed
separately. The last step of this technique consists of superimposing the two models

 37

and to compare if the second model is matching the previous one. In such case, we say
that the pattern is matched and therefore we have confirmatory evidence of the entire
phenomenon and not only on the single factors. Such strategy is one of the most
recommended in qualitative analysis and is considered one of the most strong strategy
for confirming exploratory phenomena [62]. It is also a very expensive strategy, since
the researchers need to collect new cases and study the overall phenomenon in order to
see if the newly found pattern matches the exploratory one. We have especially
employed this technique in Chapters 7 and 8. In Chapter 7 we specifically show how
the found patterns were matching.

Document analysis

In order to corroborate the findings with source triangulation, we conducted, when
possible, an analysis of the documents related to the studied phenomenon. This was the
case when studying Architectural Technical Debt, in which we especially focused on
understanding the mismatch of the code from the architecture (in which case we would
be able to find and understand the sub-optimal solutions).

Another set of documents studied were the architectural improvements databases
that (some of) the companies were keeping. The entries in such database were
considered ATD items (recognized sub-optimal solutions of the code with respect to
the architecture), or future architecture features that were planned for future
development. Examining these documents was considered especially useful for the
collection of confirmatory evidence when we were compiling the taxonomies in
Chapter 8.

3.5.2 Quantitative Methods

In the three surveys, we have usually employed simple descriptive statistics in order
to visualize a phenomenon (for example, comparison of answer frequencies), and in the
first one we could employ the chi-square test. Such test was usable for nominal data,
but in the second case (Chapter 6) such method could not be employed because the
sample size was too small and it would not give reliable results. In the first
questionnaire, we also applied the more advanced ANOVA approach during the
analysis: however, such approach was not considered very reliable because of the
limited sample size to which it was applied (as reported in [70], not included in this
thesis since an extended version was accepted for publication in a journal, where the
results from ANOVA were not reported).

 38

4 FACTORS INFLUENCING AMBIDEXTERITY
In this Chapter we investigate the factors influencing Ambidexterity. The speed

offered by agile practices is needed to hit the market fast, while reuse is needed for
long-term responsiveness. We presents an empirical investigation of factors influencing
speed and reuse in three large product developing organizations seeking to implement
Agile practices. We identified, through a multiple case study with 3 organizations, 114
business-, process-, organizational-, architecture-, knowledge- and communication
factors with positive or negative influences on reuse, speed or both.

The contributions in this Chapters are a categorized inventory of influencing factors,
a display for organizing factors for the purpose of process improvement work, and a list
of key improvement areas to address when implementing reuse in organizations
striving to become more Agile. Categories identified include good factors with positive
influences on reuse or speed, harmful factors with negative influences, and complex
factors involving inverse or ambiguous relationships. Key improvement areas in the
studied organizations are intra-organizational communication practices, reuse
awareness and practices, architectural integration and variability management. Results
are intended to support process improvement work in the direction of Agile product
development. Feedback on results from the studied organizations has been that the
inventory captures current situations, and is useful for software process improvement.

This chapter has been published as:

Martini, A., Pareto, L., Bosch, J. ”Enablers and Inhibitors for Speed with Reuse”,
published in proceedings of Software Product Lines Conference, SPLC 2012 [71].

4.1 INTRODUCTION
There is an ongoing paradigm shift in industry from plan driven to agile product

development, with increased speed, -throughput, and -customer value as common
business goals. The shift presents challenges when combined with other paradigms,
such as Software Product Line Engineering. Both industry and academia have
recognized the importance of this combinations (APLE), and academia has been
successful in theoretically prove their principles to be complementary [72]. However,
the combination presents challenges in all areas of product development (business
models, organizations, processes, and product architecture), but especially in the
Domain Engineering related practices [72]. Here the ideals of agile development (e.g.
big-design-upfront avoidance, and people over extensive documentation) seem, at a
first sight, to collide with best practices of software reuse (e.g., domain engineering,
variability management, components). Academia is currently exploring feasible
combinations of reuse- and agile practices [72]. Companies explore
hybrid forms. Reuse researchers evolve best practices for reuse to
new situations [72]. Agile researchers are to an increasing degree recognizing the
importance of maintaining “architecture runway” in their software processes [73].
However, too little empirical evidence has been provided about the effective
combination of reuse and agile practices [72]. Moreover, the focus is primarily put on
introduce Agile into well-established SPL rather than on the implementation of
software reuse into an agile-oriented company [72]. Besides, many emerging
combinations of agile and reuse practices are primarily exploratory hybrids seemingly
unguided by theory on how respective practices interfere or support each other [72]–
[75]. The premise of this paper is that software process improvement activities in the
direction of agile practices need to be informed by an understanding of these

 39

interferences (see e.g. Leffingwell [76]), or good intentions may worsen rather than
improve fulfillment of business goals.

 The purpose of the research presented in this paper is an analytical framework that
relates agile and reuse practices to the measurable phenomena reuse and speed in the
context of large-scale product development. By reuse, we mean the reuse of software
assets to decrease product development and maintenance costs. Speed stands for an
organizational unit’s ability to react quickly to requests with value for another partner.
By large-scale product development, we mean product development in organization
with several hundreds of developers, long-lived product families (5 years or more), and
evolving product lines.

The paper presents an exploratory qualitative multiple-case study, in which
experiences from reuse in three large product developing organizations (A, B, C), were
analyzed to recognize technical and organizational factors with influence on reuse or
speed, and their relationships.

The precise research questions addressed are the following. For company A, B, and
C:

 Q1: Which factors influence reuse?

 Q2: Which factors influence speed?

 Q3 Which factors influence both?

 Q4: Are influences positive, negative, or both?

 Q5: How can we decide which factors to address when implementing agile product
development?

The paper’s main results are an inventory of influencing such factors, displays for
categorization and presentation of large numbers of such factors, and recommendations
for the use of such displays to guide software process improvement work. The intended
use of such inventories and displays is to help organizations to optimize the return on
investment (ROI) of research and development (R&D) activities, through directing
improvement activities to areas where they have the most positive impact.

The paper is organized as follows. We present a conceptual framework, our research
design, the resulting displays and their principal usage. We then exemplify the use of
the displays by drawing inferences from our results and the displays from our three
cases. The chapter ends with discussions on the generality, validity and limitations of
our results, discussions of related works and our conclusions.

4.2 CONCEPTUAL FRAMEWORK
A conceptual framework [77] for our analysis, defining categories and relationships

of interest to our research questions, are given in Figure 13. We seek to identify factors
that influence reuse or speed (influencing factors), and ultimately also a company’s
return on investment on research and development activities (ROI of R&D). We are
also interested in the polarities of these influences, i.e., whether influences are positive
or negative (+/-). We recognize that reuse, speed and ROI are measurable phenomena
(Qualities), whereas factors in general are not. We also recognize that reuse, in itself,
has high influence on speed.

The framework emerged through analysis of interviews, bottom-up categorization of
factors found and by superimposition of van der Linden’s Family Evaluation
Framework [47]. It is used as backbone for presentation of analysis results, thus we
explain its constituents in detail.

 40

Figure 13. Conceptual Framework

4.2.1 Influencing factors

Influencing factors can be divided into manageable factors that a company can
control, and non-manageable factors belonging to the company’s context. Manageable
factors are divided into business-, architecture-, process-, organization-,
communication-, and knowledge related factors. Non-manageable factors include
legal, political, technological, social, and market factors. This paper is restricted to the
study of manageable factors, as these are more important than non-manageable factors,
from an improvement perspective.

Our framework recognizes that influencing factors sometimes hinder reuse (R-),
hinder speed (S-), boosts reuse (R+), boost speed (S+), and sometimes have combined
such influences (〈R-, S-〉, etc.). For instance, systematic platformization of features in a
new product increases reuse, but reduces development speed.

4.2.2 Reuse

The term reuse is, in its everyday use, heavily overloaded, thus when interpreting
interviews, reasoning about influences, and proposing improvement actions, precisions
is motivated. To this end, we use the following definitions.

Reuse is the degree to which assets occur in several products. We characterize reuse
along three dimensions: the asset dimension, the granularity dimension and the purity
dimension. In the asset dimension, we distinguish kinds of reuse with respect to the
level of concretization of the software: code reuse, model reuse, specification reuse,
and design-structure reuse in increasing order of abstraction. In the granularity
dimension we distinguish, module reuse, component reuse, platform reuse, and
subsystem reuse in increasing order of size. In the purity dimension we distinguish ad-
hoc (clone-and-own) reuse, and managed reuse (with respect to ownership,
transparency, replication, and other qualities).

Notice that an influencing factor may bear differently on these kinds of reuse. For
instance, introduction of domain engineering will increase managed platform reuse, but
decrease ad-hoc reuse.

4.2.3 Speed

Similarly, our framework recognizes different kinds of speed, which are presented in
Figure 14. There are 3 kinds of speed: first deployment speed, replication speed, and
evolution speed. These in turn have constituent speeds: decision speed and
development speed. Each kind of speed is defined as the duration between two key

 41

events, which are different for each kind: the leftmost column in Figure 14 shows
which. The first deployment speed involves the time for deciding whether to develop a
product with some new functionality (Product 1), and the time spent on actually
developing the product. Similarly, replication speed involves the time for the decision
to reuse functionality in some product (Product 2), and for actually developing this
product with reuse of code and artifacts from product 1. Evolution speed involves the
time used to decide whether an incoming evolution request should be addressed or not,
and the time for actually developing it.

Figure 14. Different kinds of speed

Notice that the different kinds of speed are important in different lifecycles phases in
product development. The first deployment speed is important in the very beginning of
a new function, while the replication speed is important later when a successful
function diffuses to other products. Evolution speed is important when the product is
new on the market (to quickly fix teething troubles experienced by early adopters),
while the product is expanding on the market (to compete on quality and new features),
and when the product is coming to age (to allow upgrades of the product with modern
components and features).

4.2.4 ROI of R&D

In the light of our framework, it is clear that different practices for reuse and speed
influence a company’s ROI of R&D in intricate ways, leading to difficult tradeoffs
between expected long-time and short-time payoffs. Although the study of these
relationships lies beyond the scope of our research questions, they motivate our
research questions and are, for this purpose, recognized.

4.3 RESEARCH DESIGN
We conducted a multiple-case study in three Swedish companies involved in large-

scale product development. Semi structured interviews were conducted for data
collection, whereas data analysis followed the Grounded Theory approach [55]. The
next sections describe the research setting and the research process.

4.3.1 Case descriptions

Our cases were software development teams within three large product developing
companies, all with extensive in-house embedded software development. All of them

 42

were situated in the same geographical area (Sweden), but they were active on different
international markets. Their characteristics are summarized in Table 5.

Our first case was a team inside a manufacturer of utility vehicles. The unit produced
middleware for services such as navigational support. The unit served different
projects, all of which provided requirements to the unit; the resulting middleware was
shared among all the projects. The unit was working in parallel with another team in a
partially agile environment. The unit’s product (the middleware) was developed using
modeling tools and code generation. Their processes used iterations of about 10 weeks,
after which the middleware was delivered to the testers. Testers were located in a
separate team that verified and validated the output. The unit outsourced some
components and had recently been working on implementing Software Product Lines,
which however, in the end (due to market pressure and internal decisions) resulted in
independent products.

Our second case was a team within another manufacture of utility vehicles; the team
developed a communication subsystem for one of their product lines.

The unit was responsible for several large subsystems, developed in independent
projects. Implementation of agile processes had been initiated, while team composition
still followed formal and standard project processes. Models were not used, but rather
extensive formal documentation. Outsourcing was absent, whereas some Open Source
components were used. They employed, in some cases, design-reuse for small
components, and they utilized a light framework of libraries extracted from previous
projects and extended by developers (ad-hoc reuse).

Our third case was a team within a company developing field equipment. The unit
developed a component for equipment control used in three product lines. The unit had
20 developers, organized as two cross-functional teams employing agile practices. The
requirements on the component and its design were received from an external
systemization team. The component was developed using traditional coding without
support from modeling or variability tools. The unit tested the component internally,
after which it was integrated in the three products to be verified and validated once
again against the respective product requirements. The unit represented a pilot project
in software reuse where common functionality from three products was commoditized.
This had meant that two of the three projects reusing the component had to replace
previously owned and non-shared components with a shared one.
Table 5. Context description of the cases

2.4 ROI of R&D
In the light of our framework, it is clear that different practices for
reuse and speed influence a company’s ROI of R&D in intricate
ways, leading to difficult tradeoffs between expected long-time
and short-time payoffs. Although the study of these relationships
lies beyond the scope of our research questions, they motivate our
research questions and are, for this purpose, recognized.

3. RESEARCH DESIGN
We conducted a multiple-case study in three Swedish companies
involved in large-scale product development. Semi structured
interviews were conducted for data collection, whereas data
analysis followed the Grounded Theory approach [7]. The next
sections describe the research setting and the research process.

3.1 Case Descriptions
Our cases were software development teams within three large
product developing companies, all with extensive in-house
embedded software development. All of them were situated in the
same geographical area (Sweden), but they were active on
different international markets.

Our first case was a team inside a manufacturer of utility vehicles.
The unit produced middleware for services such as navigational
support. The unit served different projects, all of which provided
requirements to the unit; the resulting middleware was shared
among all the projects. The unit was working in parallel with
another team in a partially agile environment. The unit’s product
(the middleware) was developed using modeling tools and code
generation. Their processes used iterations of about 10 weeks,
after which the middleware was delivered to the testers. Testers
were located in a separate team that verified and validated the
output. The unit outsourced some components and had recently
been working on implementing Software Product Lines, which
however, in the end (due to market pressure and internal
decisions) resulted in independent products.

Our second case was a team within another manufacture of utility
vehicles; the team developed a communication subsystem for one
of their product lines.

The unit was responsible for several large subsystems, developed
in independent projects. Implementation of agile processes had
been initiated, while team composition still followed formal and
standard project processes. Models were not used, but rather
extensive formal documentation. Outsourcing was absent,
whereas some Open Source components were used. They
employed, in some cases, design-reuse for small components, and
they utilized a light framework of libraries extracted from
previous projects and extended by developers (ad-hoc reuse).
Our third case was a team within a company developing field
equipment. The unit developed a component for equipment
control used in three product lines. The unit had 20 developers,
organized as two cross-functional teams employing agile
practices. The requirements on the component and its design were
received from an external systemization team. The component
was developed using traditional coding without support from
modeling or variability tools. The unit tested the component
internally, after which it was integrated in the three products to be
verified and validated once again against the respective product
requirements. The unit represented a pilot project in software
reuse where common functionality from three products was
commoditized. This had meant that two of the three projects
reusing the component had to replace previously owned and non-
shared components with a shared one.
A description and comparison of our cases is given in Table 1.

3.2 Research Process
Figure 3 outlines our research process. We followed a grounded
theory approach, with inductive analysis of qualitative data
extracted from the interviews [7]. The steps of the research
process are described below.

3.2.1 Interviews
We conducted 7 semi-structured 2h interviews with 1-4
informants from each company.

Informants were chosen on the basis of their role and expertise.
All informants were senior engineers or managers, and had
experience with the implementation of agile processes. For case A
we interviewed an architect and a line manager from within the

! Case!A! Case!B! Case!C!

Case!!
(Unit!of!analysis)!

Development team participating in
several projects!

Development team participating in
several projects!

Development team serving other units!

Product!
description!

Middleware for on-board information
systems.!

Communication system, signal
elaborating system, GUI system and
customized OS platform!

Common component for equipment
control shared by 3 products. !

Product!lifecycle! 6#7!years! >!15!years! ~15!years!

Business!Model!! International!Markets! International!Markets! International!Markets!

Processes! • SCRUM based implementation –
Several!weeks!iterations!

• Input:!requirements!from!
different!product!owners!

• Output:!deliver!a!platform!to!
testers!to!be!validated!and!
verified!

• SCRUM based implementation –
Several!weeks!iterations!

• Input:!specification!System!
Engineers!

• Output:!delivers!a!subsystem!to!
separate!unit!of!testers!to!be!
validated!and!verified!

• SCRUM implementation – few
weeks iterations!

• Input: white box specification from
System Engineers !

• Output: deliver a component to be
integrated by other units developing
other products !

Organization! • 20!developers!(including!
architects)!

• Cross#functional!teams!
• Testers!in!a!separated!team!
• Requirement!Engineers!in!
separated!business!unit!

• 2-25 developers (depending on the
project, including architects) !

• Organized in functional teams!
• Testers in separated team!
• System Engineers in separate team!

• 20!developers!(including!
architects)!

• Cross#functional!teams!
• System!Engineers!in!separated!
team!

Outsourcing! Some!components!outsourced! No!outsourcing! No!outsourcing!

Table 1. Characterization of our cases

 43

4.4 RESEARCH PROCESS
Figure 15 outlines our research process. We followed a grounded theory approach,

with inductive analysis of qualitative data extracted from the interview [68]. The steps
of the research process are described below.

Figure 15 Our research process

4.4.1 Interviews

We conducted 7 semi-structured 2h interviews with 1-4 informants from each
company.

Informants were chosen on the basis of their role and expertise. All informants were
senior engineers or managers, and had experience with the implementation of agile
processes. For case A we interviewed an architect and a line manager from within the
same project. For case B, we interviewed four developers from four different projects,
some of whom had also architect or product line management roles. In case C, we
interviewed one informant with the role of both senior developer and architect.

The interview protocol had fixed questions about the informant’s role and context,
and open ended questions to bring out experiences and opinions related to reuse and
speed: details are available in a technical report [78]. Interviews followed the natural
flow of the discussion, with questions injected to cover all themes.

4.4.2 Data analysis

Out of the seven interviews, four were selected for detailed analysis and coding. This
was to obtain balance between the three companies, and because some interviews
turned out to be more relevant to the research questions than others.

We first analyzed the audio, slicing it into small pieces and linking the relevant ones
to quotations and substantive codes. (This task was carried out by the first researcher
and checked by the second one) This was part of the open coding, in which we
followed Strauss and Corbin’s method [55]. In this phase, the first researcher
summarized and interpreted the informants’ words, which included different methods.
Some factors were the result of in-vivo coding, where we quoted the interviewee; this
was done in cases where the concept was well explained, e.g., F-111: “Improvements
depend on leaders mindset, open to listen and recognize strengths and weaknesses”.
For other factors we summarized from the source, e.g., F-37, “Long warming up

 44

periods for consultancy” summarized “[…] is very hard for a consultant coming in
[…] we see that we have a half-year initial period just for [tool name] tool; it’s
another half year or year for the product to come into that to know it on a pretty good
level […]”. Yet other factors, are referring to many statements, which are showing the
specified clear issue, only if considered together, e.g., F-3: “Business side afraid of
upfront investment for an SPL”. Where applicable, we used the terminology defined in
section 2. We also applied selective coding: we discerned, from the 369 total codes,
only the ones that we believed to be enablers or inhibitors of reuse or speed.

We then categorized codes according to our research questions, i.e., with respect to
positive or negative influence on reuse or speed. This categorization relied on the
informants’ and researchers’ experiences, relationships reported in literature, and
logical implications. The categorization revealed the need for several hybrid categories
for special influences, such as influencing several kinds of speed with different
polarities: for instance, “Lack of detailed documentation” has a negative influence on
1st deployment speed but a positive influence on the Replication Speed.

These 9 categories were then arranged into a visual display that we refer to as a
factor map. To allow feedback from each organization, and to allow reasoning about
differences in contextual factors for the three cases, distinct factor maps were created
for case A, B, and C; these were also coalesced into a common factor map (given in
Table 7 below). We also categorized codes with respect to improvement areas.
Categorization was done inductively, with attention to the BAPO framework [47], and
eventually led to the taxonomy of improvement areas.

4.5 RESULTS
This section presents the influence categories found, the factor maps and how these

can interpreted and used.

4.5.1 Classes of influence

Figure 16 shows the 9 influences categories, and how these relate to our conceptual
framework. Influence may be positive, or negative, which leads to six straightforward
categories: reuse enablers (R+), reuse inhibitors (R-), speed enablers (S+), and speed
inhibitors (S-), bi-inhibitors (BI-), and bi-enablers (BI+).

Other factors are inhibitors and enablers at the same time: inverse factors (IF) (in the
sense of inverse relationships), that inhibit speed and enable reuse or vice versa;
ambiguous factors (AF) that both inhibit and enable reuse, and those that both inhibit
and enable speed.

 45

Figure 16.Influence classes used in the factor maps

4.5.2 Factor maps

A factor map is 3x3 grid of influence categories, populated with concrete factors.
The inhibitors are placed to the left (reuse inhibitors, bi-inhibitors, speed inhibitors),
enablers to the right (speed enablers, bi-enablers, and reuse enablers), and inverse and
ambiguous factors in the middle.

Table 7 is an example of a factor map resulting from our case. It shows the layout of
influence categories, and gives representative samples of each, from our study. Notice
that Table 7 only includes some of the altogether 144 factors found in our study. The
full set of factors is available in a technical report [78].

The factor map structure (Table 6) is designed to support quick recognition of good,
harmful and complex factors. Good factors (R+, 〈R+,S+〉, S+) influence only positively
the development process in terms of reuse and/or speed, and are found in the right
column. Harmful factors, are only causing difficulties, and are all found to the left.
Complex factors, in middle influence reuse and speed in intricate ways.

 46

Table 6. Factor map layout

4.2 Factor Maps
A factor map is 3x3 grid of influence categories, populated with
concrete factors. The inhibitors are placed to the left (reuse
inhibitors, bi-inhibitors, speed inhibitors), enablers to the right
(speed enablers, bi-enablers, and reuse enablers), and inverse and
ambiguous factors in the middle.

Table 2 is an example of a factor map resulting from our case. It
shows the layout of influence categories, and gives representative
samples of each, from our study. Notice that Table 2 only
includes some of the altogether 144 factors found in our study.
The full set of factors is available in a technical report [8].

The factor map structure (Table 3) is designed to support quick
recognition of good, harmful and complex factors. Good factors
(R+, 〈R+,S+〉, S+) influence only positively the development
process in terms of reuse and/or speed, and are found in the right
column. Harmful factors, are only causing difficulties, and are all
found to the left. Complex factors, in middle influence reuse and
speed in intricate ways.

Table 3. The Factor Map Layout

4.3 Factor Map Usage
Based on this categorization, we can relate the characteristics of
an organization to the factors on the map. If there is a
correspondence with a factor belonging to the good factors, these
factors should be maintained or further improved. On the
contrary, if a property can be linked to a harmful factor, the
company should consider handling it. As for the complex factors,
they may be taken into consideration, but if so with great care,
since they influence both reuse and speed; their main importance
is in revealing difficult conflicts in need for further research. A
factor can be divided into smaller parts, which can then be
categorized again, and again. However, this would lead to an
overly fine-grained theory beyond our purposes.

4.4 Improvement areas
Our improvement taxonomy (Fig 4) recognizes business,
architecture, processes, organization, knowledge and
communication factors as improvement areas, and budget and
resource allocation (BRA-B), etc. as specific areas. It is useful for
prioritizing and communicating improvements. Classification of
our factors with this taxonomy is given in our technical report [8].

Figure 5. Taxonomy of Improvement Areas

Reuse Inhibitors (R-) Inverse Factors (IF2) 〈R-,S+〉 Speed Enablers (S+)

F-9. Different products initially managed with a
branch, then it became too late to merge the
branches into a SPL (RPK-K), case A

F-20. Reuse not supported from the PL -
individual initiative (BRA-B), case B

F-35. One of the products had a longstanding,
dated process of verification and validation
which suffered when applied to the new
component (VV-P), case C

Full set of R- factors: F-1 to F-36 [8].

F-100. Customer functionalities are preferred by
developers over architecture (PR-P), case A

F-103. Risk in planning reusable components -
lost time for the first client and having the
wrong variation points in the future (VM-A),
case B

Full set of 〈R-,S+〉 factors: F-99 to F-103 [8].

F-80. Co-located teams (AG-P), case A

F-81. Weekly prioritization of the functionalities
with the customer (AG-P), case A

F-83. Changing programming language
improved productivity (TEC-K), case B

Bi-Inhibitors (BI-) 〈R-,S-〉 Ambiguous Factors (AF) 〈R±,S±〉 Bi-Enablers (BI+) 〈R+,S+〉

F-58. Satellite unit auto prioritizes, have
different masters (OUT-O) case A

F-59. Consultancy has knowledge of others’
ways of working but don't have specific
knowledge of the product. (CWS-K), case A

F-70. “White box” specification from
systemization (ICP-C), case C

Full set of R- S- factors: F-55 to F-70 [8].

F-112. The same employees implement
functionalities and architectural improvements
(AG-P), case A

F-110. Lack of detailed documentation (DOC-
C), case A

F-111. Improvements depend on leaders
mindset (open to listen and recognize strengths
and weaknesses) (ICP-C), case A

Full set of R± S± factors: F-104 to F-114 [8].

F-89. Incentive from management side to
developers’ proactivity: communication of small
improvement through meetings (ICP-C) case A

F-92. Reuse of the design for small components
(RPK-K), case B

F-93. Developers have the will to take part in
the systemization (ICP-C), case C

Full set of R+S+ factors: F-88 to F-94 [8].

Speed Inhibitors (S-) Inverse Factors (IF1) 〈R+,S-〉 Reuse Enablers (R+)

F-41. Standard project structure doesn’t fit
some kinds of projects (PS-O), case B

F-53. Layer architecture against functional
domain of the component caused delays in
verification and validation of the component
against all the layers (AI-A), case C

Full set of S- factors: F-37 to F-54 [8].

F-96. Functionality requests from different
projects (PCF-C), case A

F-97. The company has a conservative mindset
and tends to keep old assets – this often needs
extra code to handle them (PCF-C), case B

F-98. Massive use of documentation (DOC-C),
case B

F-71. Reuse of models (RPK-K), case A

F-74. Frequent meetings and agreement
between Developers and System Engineers
discussing the benefits of Reuse. (ICP-C, ARB-
K), case B

F-75. Long term plan: having more common
components integrated in the different products
(ARB-K), case C

Full set of R+ factors: F-71 to F-79 [8].

HARMFUL
FACTORS

COMPLEX
FACTORS

GOOD
FACTORS

Reuse Inhibitors Inverse Factors Speed Enablers

Bi-Inhibitors Ambiguous Factors Bi-Enablers

Speed Inhibitors Inverse Factors Reuse Enablers

Table 2. Example of a Factor Map

Table 7. Example of a factor map

4.2 Factor Maps
A factor map is 3x3 grid of influence categories, populated with
concrete factors. The inhibitors are placed to the left (reuse
inhibitors, bi-inhibitors, speed inhibitors), enablers to the right
(speed enablers, bi-enablers, and reuse enablers), and inverse and
ambiguous factors in the middle.

Table 2 is an example of a factor map resulting from our case. It
shows the layout of influence categories, and gives representative
samples of each, from our study. Notice that Table 2 only
includes some of the altogether 144 factors found in our study.
The full set of factors is available in a technical report [8].

The factor map structure (Table 3) is designed to support quick
recognition of good, harmful and complex factors. Good factors
(R+, 〈R+,S+〉, S+) influence only positively the development
process in terms of reuse and/or speed, and are found in the right
column. Harmful factors, are only causing difficulties, and are all
found to the left. Complex factors, in middle influence reuse and
speed in intricate ways.

Table 3. The Factor Map Layout

4.3 Factor Map Usage
Based on this categorization, we can relate the characteristics of
an organization to the factors on the map. If there is a
correspondence with a factor belonging to the good factors, these
factors should be maintained or further improved. On the
contrary, if a property can be linked to a harmful factor, the
company should consider handling it. As for the complex factors,
they may be taken into consideration, but if so with great care,
since they influence both reuse and speed; their main importance
is in revealing difficult conflicts in need for further research. A
factor can be divided into smaller parts, which can then be
categorized again, and again. However, this would lead to an
overly fine-grained theory beyond our purposes.

4.4 Improvement areas
Our improvement taxonomy (Fig 4) recognizes business,
architecture, processes, organization, knowledge and
communication factors as improvement areas, and budget and
resource allocation (BRA-B), etc. as specific areas. It is useful for
prioritizing and communicating improvements. Classification of
our factors with this taxonomy is given in our technical report [8].

Figure 5. Taxonomy of Improvement Areas

Reuse Inhibitors (R-) Inverse Factors (IF2) 〈R-,S+〉 Speed Enablers (S+)

F-9. Different products initially managed with a
branch, then it became too late to merge the
branches into a SPL (RPK-K), case A

F-20. Reuse not supported from the PL -
individual initiative (BRA-B), case B

F-35. One of the products had a longstanding,
dated process of verification and validation
which suffered when applied to the new
component (VV-P), case C

Full set of R- factors: F-1 to F-36 [8].

F-100. Customer functionalities are preferred by
developers over architecture (PR-P), case A

F-103. Risk in planning reusable components -
lost time for the first client and having the
wrong variation points in the future (VM-A),
case B

Full set of 〈R-,S+〉 factors: F-99 to F-103 [8].

F-80. Co-located teams (AG-P), case A

F-81. Weekly prioritization of the functionalities
with the customer (AG-P), case A

F-83. Changing programming language
improved productivity (TEC-K), case B

Bi-Inhibitors (BI-) 〈R-,S-〉 Ambiguous Factors (AF) 〈R±,S±〉 Bi-Enablers (BI+) 〈R+,S+〉

F-58. Satellite unit auto prioritizes, have
different masters (OUT-O) case A

F-59. Consultancy has knowledge of others’
ways of working but don't have specific
knowledge of the product. (CWS-K), case A

F-70. “White box” specification from
systemization (ICP-C), case C

Full set of R- S- factors: F-55 to F-70 [8].

F-112. The same employees implement
functionalities and architectural improvements
(AG-P), case A

F-110. Lack of detailed documentation (DOC-
C), case A

F-111. Improvements depend on leaders
mindset (open to listen and recognize strengths
and weaknesses) (ICP-C), case A

Full set of R± S± factors: F-104 to F-114 [8].

F-89. Incentive from management side to
developers’ proactivity: communication of small
improvement through meetings (ICP-C) case A

F-92. Reuse of the design for small components
(RPK-K), case B

F-93. Developers have the will to take part in
the systemization (ICP-C), case C

Full set of R+S+ factors: F-88 to F-94 [8].

Speed Inhibitors (S-) Inverse Factors (IF1) 〈R+,S-〉 Reuse Enablers (R+)

F-41. Standard project structure doesn’t fit
some kinds of projects (PS-O), case B

F-53. Layer architecture against functional
domain of the component caused delays in
verification and validation of the component
against all the layers (AI-A), case C

Full set of S- factors: F-37 to F-54 [8].

F-96. Functionality requests from different
projects (PCF-C), case A

F-97. The company has a conservative mindset
and tends to keep old assets – this often needs
extra code to handle them (PCF-C), case B

F-98. Massive use of documentation (DOC-C),
case B

F-71. Reuse of models (RPK-K), case A

F-74. Frequent meetings and agreement
between Developers and System Engineers
discussing the benefits of Reuse. (ICP-C, ARB-
K), case B

F-75. Long term plan: having more common
components integrated in the different products
(ARB-K), case C

Full set of R+ factors: F-71 to F-79 [8].

HARMFUL
FACTORS

COMPLEX
FACTORS

GOOD
FACTORS

Reuse Inhibitors Inverse Factors Speed Enablers

Bi-Inhibitors Ambiguous Factors Bi-Enablers

Speed Inhibitors Inverse Factors Reuse Enablers

Table 2. Example of a Factor Map

Based on this categorization, we can relate the characteristics of an organization to

the factors on the map. If there is a correspondence with a factor belonging to the good
factors, these factors should be maintained or further improved. On the contrary, if a
property can be linked to a harmful factor, the company should consider handling it. As
for the complex factors, they may be taken into consideration, but if so with great care,
since they influence both reuse and speed; their main importance is in revealing
difficult conflicts in need for further research. A factor can be divided into smaller
parts, which can then be categorized again, and again. However, this would lead to an
overly fine-grained theory beyond our purposes.

4.5.3 Improvement areas

Our improvement taxonomy (Figure 17) recognizes business, architecture,
processes, organization, knowledge and communication factors as improvement areas,
and budget and resource allocation (BRA-B), etc. as specific areas. It is useful for
prioritizing and communicating improvements. Classification of our factors with this
taxonomy is given in our technical report [78].

 47

Figure 17. Improvement areas

Figure 18. Distrubution of the factor on the map, specified by context

Figure 19. Factors distribution with respect to the improvement areas and contexts

 48

4.5.4 Factor distribution

The bar charts in Figure 18 show the distribution of the factors for each factor map
(of case A, B, and C), whereas Figure 19 shows the distribution with respect to the
improvement taxonomy; when present, we have included context factors. These
diagrams suggest which areas the informants were most concerned with in each case
and among all.

4.6 ANALYSIS – EXAMPLES FROM CASE A,B,C

4.6.1 Case specific results

The factor maps (in Table 7 and its underlying report [78]) and the distribution of
the factors (Figure 18 and Figure 19) support the following inferences.

4.6.1.1 Case A

The black columns in Figure 19 show the number of factors found in each
improvement area, for case A (in all 41 factors); the leftmost bar-chart in Figure 18
shows the distribution of these factors over our influence categories (reuse inhibitors,
RI, etc.)

Knowledge is the most richly populated improvement area with 12 factors (see
Figure 19); among its subcategories the richest is ARB-awareness of reuse benefits
with 5 factors (all inhibitors). At a business and management level, where decisions
about resource allocation, budget distribution and process tailoring are taken, it is
crucial to have knowledge about the benefits of reuse (4 factors in BRA – budget and
resource allocation). Developers and architects need reuse practice knowledge to
implement reuse mechanisms (4 factors in RPK – reuse practices knowledge).
Consultancy’s lack of product specific knowledge hinders both reuse and speed (3
factors in CWS – consultancy competence factors).

Almost equally rich is the processes category with 11 factors, which are mostly
connected to prioritizing the backlog (6 PR-prioritization factors). The product owner
is responsible to achieve the optimal amount of reuse for cost benefits and improved
replication speed and to maximize the delivered customer value for the 1st deployment
speed through careful prioritization of tasks. When “the same developers are working
on both functionalities and architecture” it brings benefits in terms of speed, whereas
reuse benefits are unclear. In fact, developers’ knowledge of both architecture and
functionalities helps to recognize the common part to be reused. At the same time, a
weak prioritization mechanism allows them to often prioritize customer functionalities
to architectural improvements.

Communication is also a key area to be improved (with 8 factors), especially
regarding intra-organizational communication (3 factors in PCF-planning and
coordination frictions and 4 in ICP – intra organization communication problems). We
have only one documentation factor, but it’s a notable one. Writing a lot of
documentation hinders speed (especially the 1st deployment speed), while detailed
information boosts assets’ reuse. Documentation is also important to reduce long
warming up periods of new employees and consultants. This factor is thus ambiguous.

In company A’s context, the necessity to hit non-synchronized markets influenced
negatively the implementation of managed reuse. The business goal of increasing the
1st deployment speed (also discussed for prioritization) drove the development. The
effect is shown in Figure 18 (left): there are only 4 S- (indicating that the company is
doing well with respect to speed) but 14 R- (indicating that the company is doing less
well on reuse).

 49

All 4 organization factors belong to the outsourcing subcategory, which is also a
problematic approach (AF F-109 in [79]): the benefits of externally supplied
components are strongly reduced (even nullified) by communication overheads and
problems caused by attitudinal (cultural) incompatibilities.

The good factors in the map (the rightmost bars in Figure 18’s leftmost chart)
represent the interviewer’s perception that model-reuse is an effective reuse practice,
code centric Agile methods increase the 1st deployment speed while code generation
boosts both.

4.6.1.2 Case B

As for the factor analysis in case B, we refer to the grey bars in Figure 18 and the
middle bar-chart in Figure 19.

We observe again (see case A) that most of the factors (13) are grouped under
knowledge. The management and business parts of the organization don’t take into
account the benefits of reuse (3 ARB-awareness of reuse benefits factors) resulting in
lack of budget dedicated to common assets development and architectural
improvements (3 BRA-budget and resource allocation factors). This obstructs the
implementation of reuse practices (7 factors in RPK-reuse practice knowledge), which
is also represented by a substantial R- group of factors. However, an important context
issue is the business model: having few and big projects and waiting for new requests
by few special customers spread over time causes a high degree of uncertainty (see IF
in Figure 18, middle), causing the risk of investing resources in core assets not valuable
for the upcoming products.

Many factors belong to the communication between different units of the
organization (6 ICP-intra organizational communication problems factors), in
particular between developers and system engineers. An informant put emphasis on
communication problems with the systemization, not being able to take reuse into
account (factors in the ARB-awareness of reuse benefits subcategory that are R- in
Table 7). Another informant, responsible for a different subsystem, stressed the same
point, but described their capability to reuse a high percentage of the software through
different projects thanks to continuous communication with system engineers. In both
cases the agreement with system engineers influenced the success in reaching reuse.

As for processes, the standard structure of the projects hinders the introduction of
agile practices (2 AG-agile practices factors) and the process customization for the
small ones. The projects are also quite isolated, causing a phenomenon called “siloing”
(5 factors in PS-project siloing): most of the decisions aim for the local optimum (see
AF in Table 7), hindering the development of common assets among the projects (as
many R- in Table 7 and [78] show).

We identified two reuse approaches in this case: the first one is the ad-hoc reuse of a
light framework (of libraries), extracted from previous projects and expanded by
developers every time it is reused in a new product. This is an AF (Figure 16); since
this is a weak form of self-organized reuse (ad-hoc reuse) that is not managed, it’s
causing unhandled growth of artifacts that will need extra efforts to be managed,
thwarting its benefits (the 7 factors in RPK-reuse practices knowledge). Thus, it’s
unclear whether this could be considered an advantageous form of reuse or not. The
other approach is the design-reuse (complemented with quick reimplementation of
code), which is profitable for small components in combination with well-explaining
documentation.

The amount of documentation, as explained for the previous case, is a complex and
ambiguous factor (see Figure 16) with many aspects to be considered.

 50

4.6.1.3 Case C

For the third case (C) we refer to the white columns in Figure 19 and to the
rightmost bar-chart in Figure 18.

This case is quite different from the others: a team is in charge of developing a
shared component to be integrated in three products.

Most populated is Architecture with 19 factors. After a quick implementation phase,
the component has suffered a delay due to problems concerning its integration into
other products with their own architecture (10 AI-architectural integration factors).
The lack of VM-Variability Management (9 factors) is directly connected with speed
(see S- in Figure 16). Even though adaptors were correctly created to integrate the
component into different platforms, well-implemented VM for handling the sets of
functionalities delivered to the internal customers could have solved some coordination
and communication problems.

Most of the processes factors (5) show that VV-verification and validation had a
significant negative impact on speed (see S- in Figure 16). This suggests that the
development of common assets should not be isolated from the test team.

As for the 12 communication factors, 7 ICP-intra organizational communication
problem factors show that there were communication barriers between the units
developing the products (that had to receive the shared component) and the unit
implementing it. Some stable products were forced to integrate the common
component, replacing the exiting functionalities: this caused planning and coordination
frictions (5 PCF factors). Communication barriers with system engineers caused a long
decision time before the start of the component development.

In conclusion, reuse-aware decisions taken at management and business levels (no
business inhibitors mentioned, but one R+) led to successful achievement of
component reuse. It’s difficult to tell if the attempt was cost effective, especially in
terms of speed (see the presence of as many as 11 S-). However, contextualized into a
well-defined, long-term strategy of component-oriented architecture (see R+ in Figure
16), this approach gains a higher value.

4.7 DISCUSSIONS

4.7.1 Generalization of output

Comparisons of our three cases are shown in Figure 19 and Figure 20.

From the even distribution of the 30 factors in the communication column of Figure
19, (12, 10, 8 for case A, B, and C), we can infer that communication is a common
concern at all sites. Communication between teams involved with a common asset (for
example when applying managed component- or platform-reuse) should be well
supported, as should communication across projects related to the same product (17
factors evenly distributed in the ICP-intra organizational communication problems
column). Good communication infrastructure is also necessary among the development
teams, between teams, and the units these depend on, e.g. systemization and business
units. (This is visible in the PCF-planning and coordination friction factors and the
budget and resource allocation factors). Without adequate communication, reuse risks
being unorganized and ineffective (ad-hoc reuse), or it will cause a huge penalty in
terms of speed (see the 11 factors belonging to RPK-reuse practices knowledge most of
which are inhibitors).

Agile practices were discussed in all the cases (2, 2, 3 factors for A, B, and C), and
most of the interviewers were very positive, considering them as essential to improve

 51

agility on the market, customer satisfaction and 1st deployment speed (almost all of
them are S+).

The implementation of an extensive form of reuse (big component-, subsystem-,
platform-reuse) requires awareness of benefits, and an agreement of purposes, among
all actors involved in product development: the business side, the systems engineering
unit, and the developers. This suggestion comes from Figure 19 (9 factors in ARB-
awareness of reuse benefits): the absence of inhibitors among the ARB-awareness of
reuse benefits factors for case C (the only ARB-factor is R+, see Table 7) and the
presence of inhibitors for cases A and B together with the successful implementation of
component-reuse for case C, confirms that ARB factors directly influence reuse quality.

The component-reuse strategy of case C explains the prevalence of architectural
(Figure 19) topics. Case A couldn’t reuse the middleware for different projects, so no
architectural issues were raised; case B hasn’t experienced the development of a
common component for different running products, which was the source of AI-
Architectural Integration problems for case C. As for VM-Variability Management, it
needs to be handled (case C) when possible to avoid product coordination overhead,
while it seems to be particularly problematic in presence of high uncertainty about
markets.

As shown in Figure 20, the influence R- is the largest category with 36 factors; these
are mainly due to companies A and B focusing on the 1st deployment speed. However,
factors are not due to implementation of agile practices, but rather a lack of focus on
the implementations of reuse practices.

The18 S- and 16 BI- show that many factors influence speed negatively; these are
spread on many categories, even though communication and knowledge are the
dominating ones.

The 19 complex factors (IF1, AF, IF2) indicate topics that need further in depth
investigation, such as the right balance of documentation, desirable tradeoff in
prioritization, and (non) benefits of outsourcing.

4.7.2 Limitations and threats to validity

Our research design is sensitive to following sources of errors, many of which are
intrinsic to interpretive, case study research: (e1) the factor maps are based on the study
of four teams (plus three considered as secondary evidences) in three organizations,
thus the set of factors is incomplete; (e2) sampling is restricted in case C, which does
not include project- and line-managers; (e3) the relevance of the factors are influenced
by the informants’ daily work and daily concerns, some factors may have been
overlooked; (e4) the factors are influenced by the informants’ retrospective
reconstruction; (e5) factor identification is influenced by the analysts’ conceptions; (e6)
sampling and interpretation may be consciously or unconsciously biased to researcher
concerns; (e7) validation may not reveal and correct all misinterpretations and
misclassifications made by the analysts; (e8) statistics are based on the sheer number of
factors, without weights; (e9) our generalization is analytical, and may overlook
significant differences in the complex contexts of our three cases.

The following precautions have been taken to reduce the effects of these sources: to
handle e1 we have chosen informants with long experience in the companies, with
architectural roles and/or with management responsibilities. Moreover, we discussed
the results in a workshop (see below); for e2, we used open questions covering many
perspectives to reveal factors beyond daily use; for (e4−5), we have used a qualitative
data analysis tool that supports traceability of factors to underlying data sources,
presented results to employees of the same companies (in a workshop and draft
papers), and taken the feedback into account; to handle e6-7, we have used two

 52

complementary kinds of validation: individual interview for case C, a workshop and (in
progress) a survey to validate and deepen some of the factors; to address e8 we have
discussed also relevant factors belonging to categories not richly populated; to handle
e9, researchers have modeled and compared the contexts in search for differences that
may influence the result.

The factor maps have been validated through a workshop. About 30 employees
(with different roles) from the studied organizations were divided into six
heterogeneous groups of 5-6 to discuss the maps for one hour and to present their views
in a flipchart presentation. None of them questioned the right place of the factors on the
maps. One group in particular expressed explicitly the correctness of the maps. Another
group stated that “we recognize the many factors from case B too”. Thus, we had a
positive validation feedback on the correctness of our maps, but not on their
completeness.

Figure 20. Total distribution of the factors

4.8 RELATED WORK
Reuse and speed have been studied independently for years. Recently the scientific

community focused on the combination of Agile and reuse practices and their influence
on speed. Below are a few works that are particularly relevant to our topic.

Peterson presents a list of critical factors and their costs for the transition to an SPL
[80]. Factors are categorized into Cost Elements, Cost Drivers and Time Drivers, but
they are more abstract than ours and there is no notion of different kinds of reuse and
speed. For example, for each area such as architecture, processes, etc. he enumerates
different steps needed to obtain an SPL, such as Domain Analysis, Current
Architecture, etc. Our factors belong to the same areas but they are more concrete. A
good example of this is F-53: Layer architecture against functional domain of the
component caused delays in verification and validation of the component against all
the layers (detailed architectural problem). Further, Peterson, for each factor, estimates
a cost. In our framework (see Figure 13) this covers the influence arrows connecting
reuse and speed to ROI of R&D making the two papers complementary. The analysis in
Peterson does not include the relationships among the factors. Finally, the aim of our
case study was to discover the challenges of combining different degrees of reuse
within an agile organizational setting, rather than focusing on the goal of having a
completely established SPL.

Schmidt [81] identifies factors involved in the economic evaluation of a Software
Product Line. In his First Order Theory, a set of constraints (development constraints,
such as personnel resources, and process constraints) and attributes (software and
market attributes) are listed and compared in order to put a cost emphasis on the

 53

tradeoff between them. Reuse over time is considered at an abstract level: Schmidt
states that time-to-market depends on resources rather than on reuse effort; he also
relates time-to-market with revenues in different kinds of market. The paper is cost
focused; it does not explain how factors are interrelated. No details are given, whereas
our relationship analysis comprises a very concrete factor investigation.

Tracz [82], like us, mentions different kinds of reuse when explaining “Lesson #3:
You need to Reuse More Than Just Code”. The speed aspect is not discussed. We can
see how some generalized conclusions drawn in our case study, like the importance of
managerial decisions confirm Tracz’s reuse advice.

Gaffney and Cruickshank [83] provide an economic model of software reuse.
Different kinds of reuse are mentioned, and some examples of reuse application are
described (ad hoc reuse, systematic reuse, domain engineering or application
engineering reuse). The benefits of reuse are shown in terms of costs and productivity.
However, speed is not included in their framework.

Morisio et al. [84] conducted a questionnaire with 32 projects to find success and
failure factors in software reuse. Some of our R- and R+, are close to the ones listed in
[84]mo. Change nonreuse-specific processes matches our conclusion that management,
systemization, design, requirements, etc. have to be aware of the benefits of reuse and
therefore willing to apply a suitable strategy (ARB-K). Addressing human factors,
appears also in our conclusions, for instance in the need of a prioritized backlog to
guide teams towards reuse. However, reuse is not related to speed.

Menzies and Stefanos work [85] is based on the same data collected by Morisio et al.
[84], but it uses a different method of analysis. Menzies and Di Stefano question the
conclusion drawn in [84] about the relevance of the top management commitment as an
influencing variable. This slightly weakens the match between our results and theirs
concerning the R- and enablers. However, as in the previous paper [84], speed is not
taken into consideration.

Lynex and Layzell [86] propose a literature survey to identify reuse inhibitors. Some
of our results are analogous, as we also identify R-. For example, in the organizations
structure inhibitor, cited in [86], No coordination of development efforts between
overlapping areas and in economics Project managers have tight budgets that do not
allow for extra investment in developing reusable components can be mapped to our
PS-O and BRA-B area of R-. However, as the name “reuse inhibitors” suggests, the
paper [86] covers only a part of the problem, whilst our work includes some additional
factors, as R+, S- and S+ and other CF.

Diaz et al [72] use a systematic literature review to answer several research
questions about the combination of ASD and SPL. They assert that principles of the
two areas seem not to contradict each other (confirmed by our conclusions), although
this is done only with abstract principles. Domain Engineering (where reuse plays an
important role) is the most difficult part to conciliate ASD and SPL. Despite sporadic
studies [87], the challenges in DE still have to be addressed, and our work deals with it.

Kakarontzas’ approach [87] is based on elastic components and TDD is proposed to
handle variability and to ensure the quality of the variants. Although the approach
seems promising from the architectural point of view, the effectiveness is not yet
supported by empirical evidences.

John D. McGregor [74] explains how SPL and ASD don’t have to be necessarily
separated. He proposes method engineering to tailor the fitting agile practice for the
right area. However, he mentions Micro Approaches, but without specifying a concrete
application in the matter of reuse. Here our study may prove useful. As a Macro
Approaches, he states that agile teams can be used to develop core assets and that

 54

interfaces between teams have to be minimized, which is confirmed by the ICP-C
factors.

Some output from the XP 2009 workshop [88] seem to confirm our results, such as
the necessity of avoiding barriers among units (ICP-C in our work), while
documentation proved to be a complex topic of discussion (AF factors belonging to
DOC-C).

On the basis of a literature review on ASD, Turk, France and Rumpe, give their
perception about what the limitations of the ASD are [89]. They mention Limited
support for building reusable artifacts, describing the importance of reuse practices,
which bring especially long-term benefits. However, the authors don’t address the
issue. Our work focuses on this problem, trying to provide a first set of evidences.

In [50] a survey has been conducted with the aim of finding success factors in agile
software development. Our case study confirms the importance of Correct integration
testing, Managers’ style (within teams) and Project management processes concerning
the speed aspect. The reuse problem has not been mentioned in [50], but some success
factors, for instance the Right amount of documentation, belongs to our CF because of
the relationship with the reuse aspect. This suggests the value of our work in
identifying sensitive points in combining Agile and reuse.

Hanssen and Fægri [73] describe, through a single case study, the successful
combination of ASD (Evo) and SPL. The results are focused on applying the two
approaches on different levels (Strategic, Tactical and Operational). Reuse is
mentioned as a critical point in the combination. In the studied product, common
components are reused and customer variability is managed. However, the authors
don’t focus on how these processes were integrated in the Agile setting. Besides,
challenges in a medium size company delivering Internet based services are very
different from the ones of large scale embedded software companies.

Kettunen and Laanti [90] provide a framework, based on industrial experience,
aimed to understand how and why agility could be utilized for software process
improvement (SPI) in large-scale embedded software product development. The
framework explains how agility enablers support means, which are utilized to reach the
goals. Our work focuses on concrete enablers (and inhibitors) and their relationships as
responsible for goals such as speed and reuse qualities, when combining agile and
reuse practices (not discussed in 19). In fact, as the authors themselves say, means and
goals are based on enablers, which are of utmost importance. Some of the enablers
cited by the authors are confirmed by our results. Some matching examples are Do they
[project team] communicate frequently and with good will? What dependencies do the
product requirements have to external organizations? How easily information passes
from one part of the organization to another? with ICP-C, PCF-C, PR-P factors.

Petersen and Wohlin [75] conducted a case study in a large-scale development
company to identify problems and benefits of incremental and agile methods. The work
has analogies with ours, such as the case study method, the subject and the focus on
enablers and inhibitors of speed. However, we conducted fewer and longer interviews
in more companies, focusing also on the reuse aspect in relation to agile methods,
collecting a broader set of interesting factors. Nevertheless, some of the results overlap:
for example, the issues CI01 and CI11 can be mapped to F-44-48, and F-56-58, while
advantages such as CA04 to F-84-87. From a more general point of view, our
categories VV-P, CFP-C and AG-P have also been showed to be critical in [75].

4.9 CONCLUSIONS
Increased reuse and increased speed are common business goals in large-scale

software development enterprises. For this reason it is important to understand their

 55

relationships: such understanding benefits companies choosing among strategies for
R&D, which need to make sensible tradeoffs. We explored this problem by conducting
an exploratory multiple-case empirical study in three large-size Swedish companies
involved with software development for embedded systems. Our purpose was to gather
informants’ experiences and perceptions in order to answer the following research
questions:

 Q1: Which factors influence reuse?

 Q2: Which factors influence speed?

 Q3: Which factors influence both?

 Q4: Are influences positive, negative, or both?

 Q5: How can we decide which factors to address when implementing agile
product development?

Q1-Q4 have been addressed by creating a factor map (Table 7), one for each case.
The 114 factors placed here have been selected as the ones that influence reuse or
speed or both. The factor maps showing the factors influence, outlined in Table 8. For
Q5, we have provided a distribution of the factors across different areas (Figure 19).
The areas that were most populated are the ones most important to address.

Considering all cases, we have drawn the following conclusions:

• Knowledge deserves particular attention, especially awareness of reuse benefits
(ARB factors) across all parts of the organization, which influences business
decisions, organization structure of projects (PS factors) and the implementation
and management of correct reuse practices (factors in RPK).

• Effective communication among organizational units (see ICP factors) and between
different levels in the organizational hierarchy (PCF) is of utmost importance.

• Attention to architecture, especially integration of components (AI) and variability
management (VM) are crucial for effective reuse without hindering speed.

• Similarly, early and continuous verification and validation (VV) processes are also
crucial for speed.

• Prioritization (PR, processes) documentation (DOC, communication) and effective
outsourcing (OUT, organization) are complex practices and need to be further
studied before addressed in improvement projects.

• Agile practices (AGP, processes) are recognized as a key factor to improve the 1st
deployment speed.

• Reuse practices (especially for managed reuse) are necessary to obtain high
replication speeds.

• Agile and reuse practices do not (directly) hinder each other: the efficient
implementation of reuse practices is influenced by many other factors; Agile
methods can be successfully implemented at a unit level, while implementing
component-reuse.

• However, intra-organizational decision and communication issues (often due to
reuse practices) may decrease the speed advantages gained by Agile Development.

 56

Table 8. Influneces and answers to the RQs

Considering all cases, we have drawn the following conclusions:

• Knowledge deserves particular attention, especially awareness
of reuse benefits (ARB factors) across all parts of the
organization, which influences business decisions, organization
structure of projects (PS factors) and the implementation and
management of correct reuse practices (factors in RPK).

• Effective communication among organizational units (see ICP
factors) and between different levels in the organizational
hierarchy (PCF) is of utmost importance.

• Attention to architecture, especially integration of components
(AI) and variability management (VM) are crucial for effective
reuse without hindering speed.

• Similarly, early and continuous verification and validation (VV)
processes are also crucial for speed.

• Prioritization (PR, processes) documentation (DOC,
communication) and effective outsourcing (OUT, organization)
are complex practices and need to be further studied before
addressed in improvement projects.

• Agile practices (AGP, processes) are recognized as a key factor
to improve the 1st deployment speed.

• Reuse practices (especially for managed reuse) are necessary to
obtain high replication speeds.

• Agile and reuse practices do not (directly) hinder each other: the
efficient implementation of reuse practices is influenced by
many other factors; Agile methods can be successfully
implemented at a unit level, while implementing component-
reuse.

• However, intra-organizational decision and communication
issues (often due to reuse practices) may decrease the speed
advantages gained by Agile Development.

Table 4. Influences: answers to the Research Questions

Category of Factors (Q4) Tot A B C Speed
Infl.

Reuse
Infl.

Reuse Inhibitors (R-) 36 14 17 5 X
Speed Inhibitors (S-) 18 4 3 11 X
Bi-Inhibitors (R- S-) 16 5 4 7 X X
Reuse Enablers (R+) 9 3 1 5 X
Speed Enablers (S+) 9 3 1 5 X
Bi-Enablers (R+ S+) 7 2 2 3 X X

Inverse Factors (R+ S-) 3 1 2 - X X
Inverse Factors (R- S+) 5 4 1 - X X
Reuse En. & Inh (R+) 4 - 3 1 X
Speed En. & Inh. (R+) 1 - 1 - X

Other Ambiguous F. (R± S±) 6 4 2 - X X
TOT (Q3) 114 40 37 37

Factors infl. reuse (Q1) 86 33 32 21
Factors infl. speed (Q2) 65 23 16 26

These conclusions, together with the factor maps, can be used as a
guide for practitioners from contexts similar to the cases studied,
especially for those working with agile product development.
Factor maps support process improvement work by highlighting
good factors, harmful factors and complex factors (table 3) in an
accessible way.

Recently, the focus of the scientific community and of
practitioners has been directed towards combining reuse and
Agile practices. Our work represents a step forward towards the
understanding and the modeling of the interrelations between
those and speed, an intricate web of interaction of business,
process, architecture, and organizational phenomena influenced
by knowledge and communication variables.

In our future works, we intend to focus on improving inhibitors in
the most richly populated categories. In need of further

investigation are the inverse factors (IF), to understand how much
they contribute to one, and hinder the other aspect, and on
ambiguous factors (AF), which involve the same aspect for
conflicting reasons. As shown in the conceptual framework with
the dashed arrows, the influence of the companies’ contexts on
the manageable factors and of the reuse and speed qualities on
the ROI of R&D deserves a special attention (we are currently
working on a model for the studied contexts).

REFERENCES
1. Díaz, J., et al., Agile product line engineering-a systematic

literature review. Software: Practice and Experience, 2011.
41(8): p. 921-941.

2. Hanssen, G.K. and T.E. F\aegri, Process fusion: An industrial
case study on agile software product line engineering. Journal
of Systems and Software, 2008. 81(6): p. 843–854.

3. McGregor, J.D., Agile software product lines. deconstructed.
The Journal of Object Technology, 2008. 7(8): p. 7-19.

4. Petersen, K. and C. Wohlin, A Comparison of Issues and
Advantages in Agile and Incremental Development between
State of the Art and an Industrial Case. Journal of Systems
and Software, 2009. 82(9): p. 1479-1490.

5. Leffingwell, D., Scaling Software Agility: Best Practices for
Large Enterprises. 2007: Pearson Education.

6. Miles, M.B. and A.M. Huberman, Qualitative Data Analysis -
An Expanded Sourcebook 1994: SAGE Publications, Inc

7. Strauss, A.L. and J.M. Corbin, Basics of qualitative research :
techniques and procedures for developing grounded theory.
2nd ed. 1998, Thousand Oaks: Sage Publications. xiii, 312 p.

8. Martini, A., Factors Influencing Reuse and Speed in Three
Organizations, in Research Reports in Software Engineering
and Management, L. Pareto, Editor. 2012, University of
Gothenburg: Gothenburg.

9. Peterson, D., Economics of software product lines. Software
Product-Family Engineering, 2004: p. 381–402.

10. Schmid, K., A quantitative model of the value of architecture
in product line adoption. Software Product-Family
Engineering, 2004: p. 32–43.

11. Tracz, W., Confessions of a used-program salesman: lessons
learned. SIGSOFT Softw. Eng. Notes 1995. 20: p. 11-13.

12. Gaffney, J.E. and R.D. Cruickshank, A general economics
model of software reuse, in Proceedings of the 14th
international conference on Software engineering. 1992.

13. Morisio, M., M. Ezran, and C. Tully, Success and failure
factors in software reuse. Software Engineering, IEEE
Transactions on, 2002. 28(4): p. 340–357.

14. Menzies, T. and J.S. Di Stefano, More success and failure
factors in software reuse. Software Engineering, IEEE
Transactions on, 2003. 29(5): p. 474–477.

15. Lynex, A. and P.J. Layzell, Organisational considerations for
software reuse. Annals of Software Engineering, 1998. 5(1)

16. Kakarontzas, G., I. Stamelos, and P. Katsaros, Product Line
Variability with Elastic Components and Test-Driven
Development. 2008, IEEE. p. 146-151.

17. Ghanam, Y., et al., A report on the XP workshop on agile
product line engineering. ACM SIGSOFT Software
Engineering Notes, 2009. 34(5).

18. Turk, D., R. France, and B. Rumpe, Limitations of agile
software processes, in Third International Conference on
eXtreme Programming and Agile Processes in Software
Engineering (XP 2002). 2002.

19. Chow, T. and D.B. Cao, A survey study of critical success
factors in agile software projects. Journal of Systems and
Software, 2008. 81(6): p. 961–971.

These conclusions, together with the factor maps, can be used as a guide for

practitioners from contexts similar to the cases studied, especially for those working
with agile product development. Factor maps support process improvement work by
highlighting good factors, harmful factors and complex factors (Table 6) in an
accessible way.

Recently, the focus of the scientific community and of practitioners has been
directed towards combining reuse and Agile practices. Our work represents a step
forward towards the understanding and the modeling of the interrelations between
those and speed, an intricate web of interaction of business, process, architecture, and
organizational phenomena influenced by knowledge and communication variables.

In our future works, we intend to focus on improving inhibitors in the most richly
populated categories. In need of further investigation are the inverse factors (IF), to
understand how much they contribute to one, and hinder the other aspect, and on
ambiguous factors (AF), which involve the same aspect for conflicting reasons. As
shown in the conceptual framework with the dashed arrows, the influence of the
companies’ contexts on the manageable factors and of the reuse and speed qualities on
the ROI of R&D deserves a special attention (we are currently working on a model for
the studied contexts).

 57

5 INTER-TEAM INTERACTION CHALLENGES AND
RECOMMENDATIONS FOR AMBIDEXTERITY

In order to achieve a successful business, large software companies employ Agile
Software Development to be fast and responsive in addressing customer needs.
However, a large number of small, independent and fast teams suffer from excessive
inter-team interactions, which may lead to paralysis. In this chapter we provide a
framework to understand how such interactions affect business goals dependent on
speed. We detect factors causing observable interaction effects that generate speed
waste. By combining data and literature, we provide recommendations to manage such
factors, complementing current Agile practices so that they can be adapted in large
software organizations.

This chapter has been published as:

Martini, A., Pareto, L. & Bosch, J., 2013 “Improving Businesses Success by
Managing Interactions among Agile Teams in Large Organizations”, published in the
proceeding for 4th international conference in software business (ICSOB 2013) [91]

5.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive with respect to customer needs, minimizing the time between the
identification of a customer need and the delivery of a solution. An open issue is how
to scale Agile Software Development (ASD) from successful small software projects
[15] to large software companies. One successful approach is to split the products in
components and features and to parallelize the development using small, fast teams
[10]. However, such approach brings the drawback that a team requires interaction with
many other teams [16]. The support for such interactions with a high number of teams
or with the surrounding organization in Agile methods is weak and not well explored
[92]. Some studies highlighted how interaction issues often cause inefficiencies [93],
[14],[94],[71], and hinder the speed benefits gained by the parallelization of the
development [94]. Also, delays in interaction due to synchronization may turn fast
individual teams into slow and frustrated teams constantly forced to wait for others,
hindering the fast release of features [10].

There may be several reasons why the teams lose time to interact and to carry out
tasks related to such interaction. This speed waste decreases their interaction speed and
therefore their overall speed.

The purpose of this study is to identify the drawbacks of ASD employed in large-
scale software companies related to interaction speed and their impact on business
goals depending on speed.

The research questions addressed in this paper are the following: in the context of
large scale ASD,

RQ1 What is inter-team interaction speed?

RQ2 How does inter-team interaction speed affect software business?

RQ3 What factors influence negatively inter-team interaction speed?

RQ4 How can a practitioner detect and manage such factors to increase inter-team
interaction speed?

 58

The paper investigates these questions through a multiple-case case-study with three
software companies employing large scale ASD. We conducted exploratory group
interviews, followed by qualitative data analysis, and member checking sessions.

Our contributions are:

• We define a notion of interaction speed as an externally visible property of
organizational boundaries.

• We describe the impact of interaction speed on business goals dependent on speed.

• We identify factors associated with ASD that cause effects with negative influence
on inter-team interaction speed.

• We provide recommendations based on the interviews and the exiting literature.

5.2 LITERATURE REVIEW
When surveying the literature, we have found a constant dilemma between, on the

one hand, the need to create fast and independent Agile teams [10]and, on the other
hand, the need to increase inter-team communications [95]. We found important to
understand what interactions are affecting speed and what the causes are. Researchers
in Global Software Development have studied interaction problems with the focus on
geographically distributed teams [92],[95],[96],[16]. Recommendations found in [95]
(Optimally Splitting Work across Sites, Increasing Communication, Finding Experts,
Awareness) have shown to be important also in large organizations that are considered
co-located. This suggests that in large software organizations, even if co-located, the
size of the project creates some of the effects as the geographically distributed teams.
Therefore, our research may be of value for GSD and vice-versa. In [97] the authors
studies how knowledge management affects the coordination of teams.

A critical characteristic of ASD in interactions is the informal communication: it has
been considered of value for managing volatile requirements, which makes the
development flexible but creates challenges for inter-team communication and
coordination [98]. In [96] informal communication is suggested as working well for XP
with a strong bridgehead between the teams.

A socio-technical framework for evaluating technical and work dependencies has
been studied in [99]. However, such framework heavily relies on artifacts representing
the ongoing interactions among the employees, which requires reliable artifacts. Such
artifacts are not available and are not representative in an informal ASD environment.
Thus we found important to understand the interactions in such an environment.

Most of the abovementioned works study only parts of the problem from several
perspectives. In [94] the focus is similar to ours, but the studied impact of Agile
practices in communication is not related to speed and business goals. Our framework
provides a set of factors-effects affecting speed, and recommendations to handle such
factors that we haven’t found in literature. The research in social psychology presents
an opposite perspective on speed and interactions, in which time boundaries are
claimed to influence group performance and interaction process [100].

5.3 THEORETICAL FRAMEWORK
Our theoretical framework is based on an initial a priori framework, which has been

continuously updated during the study and the analysis of the data [77].

We define speed (borrowing the concept from kinematics) as the amount of the
delivered value (DV) divided by the value delivery time (VDT): the time between the
perception of a need and delivery of value by some external party. (See Figure 21).

 59

VDT is divisible into the time to identify the party (tN), time until call for action (tA),
the time to commitment (tC), and the time to delivery of value by the external party (tD).
We recognize the special case of end-to-end speed, where the need is perceived by a
customer and the value delivered by a supplier.

Figure 21 The definition of speed

A company that seeks to optimize its return of investment of R&D (ROI of R&D)
must manage three end-to-end speeds (Figure 22). The speed with which customer
needs lead to new product offers (1st Deployment speed), the speed with which new
features are replicated in new products (Replication speed), and the speed with which
change request to an existing product are realized (Evolution speed).

End-to-end speeds, in turn, depend on interaction speed: how fast teams (or other
organizational units), resolve each others’ needs. (Figure 23).

Interaction speed relates to both inter-organizational interaction (e.g., between
teams at the customers and the client side) and intra organizational interactions (e.g.,
between a product management team and a team in a design unit). Each interaction
involves several sub-interactions that address sub-needs, and also third party teams.

Figure 22 Three kinds of end-to-end speed and their dependency on interaction speed.

 60

Figure 23 Interactions, sub-interactions, and interaction speed

Figure 24 Factors creating or influencing interactions generating Speed Waste

Interaction speed depends on a number of organizational, architectural, and
individual factors that may or may not be managed (Figure 22). To optimize ROI of
R&D we must 1) understand what these factors are, and 2) find strategies to manage
them.

In this paper we focus on the impact of interactions on VDT (we assume to have a
fixed DV to be delivered, i.e. a set of features). We say that a factor generates speed
waste if it is either causing or delaying interaction, which in turn increments VDT
decreasing speed (Figure 24). The total speed waste (W) is the sum of all such speed
wastes.

 61

5.4 RESEARCH DESIGN
We planned a multiple-case case study with engineers and managers in product

developing organizations. Our unit of analysis is the cross functional agile team and
the phenomena of interest the interaction speed from the perspective of such teams.

Case Selection: To bring out the complexities of interaction, organizations were to
be product-developing companies, with significant maintenance activities, and at least
100 developers. The companies studied were to have several years of experience of
ASD. The cases chosen were three large companies with extensive in-house embedded
software development. All were situated in the same geographical area (Sweden), but
they were active on different international markets. For confidentiality reasons, we will
call the companies A, B and C.

Case Description: Company A was a manufacturer of telecommunication systems
product lines. The customers receive a platform and pay to unlock new features. The
organization was split in cross-functional teams, most of which with feature
development roles. Some of the teams had special supporting roles (technology,
knowledge, architecture, ect.). Most of the teams used their preferred variant of ASD
(often Scrum). Features were developed on top of a reference architecture, and the
main process consisted of a pre-study followed by few (ca. 3) sprint iterations before
the feature was deployed.

Company B was a manufacturer of utility vehicles; the team developed a
communication subsystem for one of their product lines. In this environment, the teams
were partially implementing ASD (Scrum). Some competences were separated, e.g.
System Engineers sat separately. Special customers requesting special features drove
the business, and speed was important for the business goals of this company.

Company C was involved in the automotive industry. Some of the development was
done by suppliers, some by in-house teams following Scrum. The surrounding
organization was following a stage-gate releasing model. The team we studied
developed in-house software, served some projects with different releasing deadlines.

Data collection: data collection was structured in three phases: initial workshops
with participants from A, B and C; focus group meetings; validation sessions for
reviewing the results.

In the first phase, we conducted semi-structured group interviews with team
members (developers and architects), line managers and process specialists. Interviews
included participants with mixed roles and revolved around Figures 1-3.

In the second phase we ran 3 focus groups, one for each company. We studied the
phenomenon from the team perspective. We included senior developers, team leaders,
architects and testers. In this phase we focused on extracting the main factors that were
causing or influencing interaction speed. We ran the focus groups separately for each
company. We discussed the problem by using models 1-3, then we asked the
participants for situations in which the team was suffering from interaction and finally
we injected the information from the previous sessions.

In the third phase, after the data analysis, we ran an interview session for each
company for validation purposes. Some of the same participants were involved in this
process, to adjust researcher’s representation of the data. Finally, a short validation
workshop with 2 employees from all the companies was conducted.

Data Analysis: After each session we analyzed the recorded interviews to develop
models and first results to be discussed in the following sessions. The analysis of the
data was carried out between the phase 2 and 3 and also afterwards, to refine the
results. We inductively further developed the initial theoretical frameworks and we
populated them with factors, effects and improvement practices emerging from the

 62

data. We defined each factor, classified it as either generating or influencing
interaction, classified by polarity, and illustrated the importance of managing the factor
to increase interaction and end-to-end speed. We have also extracted some suggestions
for improvement practices, although such hypothesis need further research.

Synthesis: On the basis of this analysis and suggestions by the informants in
interview data, we formulated mitigation strategies for the factors found. Such factors
and the mitigation strategies were reported back to informants, and the feedback
recorded, analyzed and incorporated in our results.

5.5 FINDINGS
In the following we show the factors and the effects distilled from the analysis. We

have identified 10 Root Factors, all manageable. Each factor produces one or more
interaction effects that are observable in the company. Such effects (and the factors as
well) have a negative influence on interaction speed. We have recognized 8 effects:
Table 9. Effects and their explanation

E1. Long waiting
time to comm.

A team has to wait before communicating with other ones. This
increases tN, tA or tC (Figure 21).

E2. Long waiting
time for value

As the previous one, but the team is waiting for the realization time tD
needed from the other team to deliver the value.

E3. Intense
communication

Each instance of inter-team communications requires a long time.
Again, this may influence tN, tA or tC.

E4. Corrupted
communication

The information received by the team is insufficient to deliver the
requested value. This, in turn, may cause intense communication or
high interaction frequency (see E5).

E5. High
interaction
frequency

The number of interactions between two teams is too high (i.e. it clearly
hinders the focus on the current development). An instance of this effect
occurs when a member in the team is continuously consulted for his or
her knowledge by many other teams. This phenomenon has also been
called “backpacking” in the interviews.

E6. High task
frequency

A single interaction may require many tasks to be carried out in order to
deliver the value.

E7. Heavy
interaction tasks

The time tD is long because of the large amount of time required for
carrying out the task to deliver the value.

E8. Corrupted
value

A (sub-) value has to be delivered to complete the interaction. However,
the received value doesn’t satisfy the need that started the interaction.

The length and frequency mentioned for characterizing the effects are not defined in
detail because of the exploratory nature of the study: we have used “long” and “high”
to emphasize what seems to be “too much” from the interviews. The same holds for
“high frequency”. We couldn’t establish a specific threshold for the frequency:
however, a higher number clearly corresponds to the increment of VDT.

In the following we list 10 Root Factors. For each, we give a definition and we
explain what interaction effects they cause in terms of speed. We also explain how they
are connected to ASD and what recommendations we suggest, based of the data and the
literature.
Table 10. Root Factors

F1.
Knowledge
unavailability

If a team doesn’t have all the knowledge to develop a feature
independently, they will try to interact with an expert outside the team,
creating interactions. The may have to wait for the expert to be available.
The team may alternatively decide to make assumptions on the answers
that lead to redo most of the work. The expertise may encompass different
kinds of knowledge, such as domain, product architecture and technical
knowledge [97]. This factor is connected to ASD and the trend of defining
small and self-sufficient teams: the more independent they are, the more

 63

isolated, the less effective inter-team communications might be [101].
Recommendation R1: make available part-time experts serving different
teams and covering critical knowledge (the most requested one). The idea
is to decrease the workload in the actual team that is not related to the
critical expertise from the expert and make him an inner consultant serving
the other teams. Grouping interactions in a defined time-box would avoid
high frequency of interactions. This involves a process of identifying the
critical knowledge, allocating time to the expert broadcasting the
information of such availability to the teams.

F2.
Expert’s
reputation

If an employee has a high reputation of having a specific knowledge, the
person will be contacted often. Reputation is not only based on the real
knowledge of an employee, but rather on his or her social reputation. ASD
principles value social interactions over formal knowledge, amplifying the
effects of this factor on interaction speed (as also hypothesized in [95]).
Thus, some experts might be more consulted than others because of their
social status: this might unbalance the interactions among the teams.

F3.
Unclear
requirements

The team receives requirement specifications for the features. They may
have two interaction problems: the long waiting time before the team is
able to receive the specification, or the continuous interaction for
clarification of the requirements afterwards. The two problems are
connected, according to the interviewees: the time spent on the feature
preparation determines the quality of the specification, which influences
the elaboration time by the team. Recommendation R2: the time spent on
creating requirements and architecture artifacts might be decreased in order
to start the development as soon as possible: to counter balance this
approach, part-time roles of architects and product owners should be
established in order to provide constant support to the team during
development, avoiding the continuous interaction for clarification.

F4.
Unexpected
 Feature
Dependencies

Two features may be designed to interact with each other through APIs or
through a component. In some cases, dependencies pop up unexpectedly,
e.g. due to indirect (software) interactions or because of socio-techincal
reasons (as studied in [99]). The team needs to negotiate APIs or to
frequently merge changes on a shared component. The dependencies
problem is not covered by any known Agile practice. Recommendation
R3: In this case, as in other kinds of team (see F3), a brigdehead between
the two teams would help coordination. Face-to-face communication is
infact beneficial as highlighted in [102]

F5.
No co-location

Large organizations are forced to spread teams in space. According to our
interviews, even the distance of one floor makes them distributed, with
consequent delays and lack communication and commitment.
Recommendation R4: The interviews suggest that the teams that have to
interact more intensely should be located closer. It can be considered as
another level of co-location with respect to intra-team co-location. Even if
something like “inter-team co-location” is not mentioned by ASD per se, it
can be considered an extended version of the intra-team co-location
suggested by the Agile principles. There are also attempt in literature to
mitigate this factor in GSD, e.g. [103],[104]

F6.
Lack of common
time

Teams may need to synchronize in meetings, which requires common
available time. If a team decides to not allocate time for interaction or the
allocated time-slots don’t match, there is a lack of communication or long
waiting times. Causes may be the different locations, different time zones
(or with different slots of working hours), calendar interferences or low
prioritized interaction. This has also been highlighted in [95].
Recommendation R5: some agile practices, such as SCRUM, include
support for meetings between SCRUM masters. However, other kinds of
programmed available time could be considered, e.g. as mentioned in
[105]. R6: Also shared calendars would help provide better alignment [95].

F7.
Mismatch of
team’s styles of

Different teams may have different “styles” of communication, which may
cause delays: e.g. one team mainly uses e-mails and doesn’t want to meet
in person, whilst the other doesn’t reply often to e-mails and is used to

 64

communication communicate through face-to-face meetings. The effect is a lack of
communication. Another issue may be the different uses of knowledge
containers such as boundary objects (e.g. wikis). The Agile culture of
letting teams have their customized processes somehow encourages this
mismatch. Recommendation: inter-team interfaces between team that need
interactions should be improved, for example, with bridgeheads, employees
having a strong influence in more than one team ([96] and R3). This could
also affect the study and the composition of the teams: each team would
require the presence of someone socially connected to another team that
requires a lot of interactions. Also R2 may be applied, if architecture or
product management teams are involved. Some other practices can be
found in communication literature, e.g. [102], [103]

F8.
Slow resource
indexing

When a member of a team needs to interact, he or she needs to find the
correct person or team to interact with. The time spent on such activity (tN,
Figure 21) may be long and therefore delaying. The informality suggested
in ASD seems to work as an amplifier for this factor. The choice of
consulting people over formal documents creates “Backpacking” (see E5).

F9.
Low prioritized
interaction

Once an interaction is needed, the involved parts (single employees or
whole teams) have to prioritize the interaction as an on-going task. If the
interaction is considered as “low priority”, the team will delay tasks and
communication, hindering the other team(s) involved. Recommendation
R7: Tools for creating awareness would help in the understanding the
overall situation of the involved teams [95]. Again, the presence of people
also connected to other teams would enhance commitment (R3, R2).

F10.
Inter-personal
conflicts

Two employees in different teams (or even the whole teams) may consider
each other “enemies” (for personal or political reasons). Interactions
between these employees may be strongly hindered by delays and
corrupted information. Again, a work environment strongly built on social
interactions may amplify this factor. Some recommendations for this factor
have been suggested on different levels in [106]. However, some social
aspects in software development and related (agreed) guidelines need
further research [106],[107]. The authors in [108] also suggest that these
conflicts may be rooted in unclear requirements (F7).

Finally, we can see, in table 3 below, which factor is responsible for which effect.

Table 11. Factors causing observable effects with negative influence on interaction
speed.

 65

5.6 DISCUSSION
In this section we explain why our results are relevant for the software business, how

the factors can be discovered and how recommendations can be applied by
practitioners (managers or teams).

As explained in [71] and in Figure 22, there are three end-to-end speeds influencing
Return of Investment: 1st deployment speed, replication speed and evolutions speed.
Interaction speed affects all of them, as explained in the following paragraphs.

• 1st Deployment Speed: when a set of features is released for the first time, the speed
is affected by the interaction speed among the teams that have to integrate the
features. This kind of speed helps hitting the market fast to anticipate the
competitors. Fast deployment speed also shortens the loop in market testing.

• Replication Speed: when a feature is embedded in a previous release, interactions
are needed between the team responsible for the new features and the teams that
had developed the former ones. Replication increases ROI when the effort made
for the 1st deployment speed is spread on the release of new products and services
based on the existing software.

• Evolution Speed: when a feature needs to be changed after its release, such
changes will affect other features, requiring interactions again. The speed in
reacting upon a change request can be critical for gaining the trust of the
customers.

Managers want to reach the abovementioned business goals. Delays over the
schedules may be due to speed wasted in interactions. Managers may recognize it but
they need the team(s) to observe the effects E1-E8. Since each effect is related to one
or more root factors (F1-F10), managers can immediately investigate the status of such
factors in the teams to find which one is the cause for the effect. In Table 2, the
connections between factors and effects reduce the solution space for the investigating
manager, who saves time and resources. In case the factors are recognized, both the
team and the manager (depending on the factor) may decide to apply the
recommendations (R1-R7). This process is outlined in Figure 25.

Figure 25 How the practitioner can use our results.

The results reveal that the employment of ASD in large organization brings new root
factors hindering inter-team interaction speed and amplifies some of known ones that
do not (or limitedly) appear in small projects. Practitioners should be aware of these
factors when implementing ASD in large organizations. From the synthesis of the data,
the comparison of the factors with Agile principles and solutions from literature, we
have summarized a set of recommendations in form of guidelines, which need to be
refined by further research, aimed at managing the factors (R1-R7). We have linked the
recommendations with the factors (Table 2): this way, whenever an effect is visible, the

 66

practitioner could check the corresponding factors and apply the given
recommendations (or an adaptation to the company’s current situation).

Agile practices (in small contexts) stress the importance of having the customer on
site In large companies, the team has to follow requirements defined by a reference
architecture and it has to negotiate various kinds of requirements with other teams, i.e.
the team has more than one customer: product management, architects and the other
teams. Following the “customer on site” principle, all these stakeholders should be
available and provide fast feedback to the team. This can be achieved by the creation in
the organization of part-time architects, product managers (as in [98]) (R2-R3) and
social/formal bridgeheads among interacting teams. Critical expert knowledge should
be identified and made available to the teams in form of part-time experts serving
multiple teams. As mentioned in [95], a team needs to be aware of the other teams to
align with them: shared calendars (R6) and other tools for awareness (R7) would help
teams synchronizing. Another solution is mentioned in [105], where “communities of
practice” are proposed as programmed events to bring together people from different
teams and to spread knowledge (R5). In ASD also the effect of social networks and
political dynamics may be amplified, so interacting teams have to be placed close or to
mitigate conflicts [106], [92] (R4). Also, the social capital [109] of the organization has
to be carefully developed and maintained (for example by defining competence models
[110]) in order to increase interaction speed.

5.7 THREATS TO VALIDITY AND LIMITATIONS
In this section we list and explain the limitations for this study. The factors F1-F10

and their recommendations R1-R7 have been analyzed in terms of interaction speed.
Other impacts have not been taken in consideration. The information is based on
employees’ statements and may be biased. The causality of the factors is a hypothesis,
and it’s not supported by quantitative data yet. The practices are hypotheses
synthesized from interview and have been validated in the last session of interviews,
but not with precise empirical measurements. One possible threat to validity is the
evaluation apprehension: the employees were interviewed usually in groups, which
helped balancing statements. To handle the mono-operation bias we collected data
from three companies and in some cases from more the one site. As for background
influence, we interviewed various roles, from managers to programmers. We limited
the threats to conclusion validity (such as influence posed on the subjects) by injecting
the preliminary results only after the respondents gave their statements. The threat to
external validity (generalizability) has been limited (but not completely solved) by
studying three cases with common attributes: size, development domain (i.e. embedded
systems) and introducing ASD. We highlighted the differences in the section about
their contexts.

5.8 CONCLUSIONS
The effective implementation of ASD in large companies developing embedded

software may be the way for the successful achievement of business goals depending
on speed. However, Agile teams need to avoid unnecessary interaction and, when
unavoidable, to interact efficiently among them and with the rest of the organization.
We have described interaction speed (RQ1) through the definition of a set of models to
frame it with respect to large organizations employing ASD. The reduction of
interaction speed negatively influences three business goals: 1st deployment speed,
replication speed and evolution speed (RQ2). To increase interaction speed and
therefore reach such goals, we provided the practitioners with effects (E1-E8, Table 1)
observable in the organization, and the factors causing them (F1-F10, Table 2)(RQ3).

 67

Finally we have proposed a set of recommendations (R1-R7) to manage such factors in
order to complement the practices suggested by ASD (RQ4).

Future research includes further strategies for managing the factors and a
quantitative study of the effects. The long-term objective may include a measurement
system for connecting a quantifiable amount of speed waste with the effects and with
specific indicators for the factors.

 68

6 INTER-GROUP INTERACTION CHALLENGES AND
MITIGATING SPANNING ACTIVITIES

The adoption of Agile Software Development in large companies is a recent
phenomenon of great interest both for researchers and practitioners. Although intra-
team interaction is well supported by established agile practices, the critical interaction
between the agile team and other parts of the organization is still unexplored in
literature. Such interactions slow down the development, hindering short-time and
long-term responsiveness, which in turn hinders the achievement of ambidexterity.

We have employed a two-year-long multiple-case study, collecting data through
interviews and a survey in three large companies developing embedded software.
Through a combination of qualitative and quantitative analysis, we have found strong
evidence that interaction challenges between the development team and other groups in
the organization hinder ambidexterity and are widespread in the organizations.

This paper also identifies current practices in use at the studied companies and
provides detailed guidelines for novel solutions in the investigated domain. Such
practices are called boundary-spanning activities in information system research and
coordination theory. We present a comparison between large embedded software
companies employing agile and developing a line of products based on reused assets
and agile companies developing pure software. We highlight specific contextual factors
and areas where novel spanning activities are needed for mitigating the interaction
challenges hindering speed.

This chapter has been accepted for publication as:

Martini, A., Pareto, L. & Bosch, J., 2014. “A multiple case study on the inter-group
interaction speed in large, embedded software companies employing Agile” accepted
in Journal of Software: Evolution and Process

6.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and the
delivery of a solution. Agile Software Development (ASD) gives support for such
goals, and has proven successful in small software projects in the last decade [6]. Less
evidence can be found on its success in large software companies, where research is
still ongoing [11]. The adaptation of ASD to embedded software, driven by an overall
physical product development process [20] seems to be even more challenging and
unexplored.

ASD stresses the importance of responsiveness, and the continuous interaction
between actors involved in the software development process. In large software
companies, an agile team needs to interact with a number of groups: the customers (or
their surrogates, i.e. product owners) or other stakeholders, such as hardware
development teams or system architects, suppliers [70], and other agile or non-agile
teams [91]. Some studies highlight how interaction among several social groups is
often a critical factor, hindering the speed benefits gained by the parallelization of
software development [71], [93], [94], [111]. Specifically, several interaction
challenges has been found to hinder three business goals dependent on speed: first
deployment speed, replication speed and evolution speed [71].

However, there is a need for understanding which boundaries exist between the agile
team and other groups with the surrounding organization and which interaction

 69

challenges are more relevant [6], [92], in particular for the embedded software domain.
Existing theories suggest the need for boundary-spanning activities in order to establish
a coordination strategy [22], [52], [53]. Such activities are meant to fill the interaction
gap existing between two social groups by spanning the existing boundary.

We employed a two-year-long case-study involving three firms to understand which
critical interaction challenges hinder achieving business goals dependent on
development speed and how widespread such challenges are in the companies. We
have also inquired the current status of practice regarding spanning activities at the
studied companies. This paper focuses especially on large embedded software
development companies employing ASD. We hypothesize a significant difference
between embedded and pure software cases reported in literature. In relation to context,
we aim at answering the following research questions:

• RQ1 Which inter-group interaction challenges influence business goals dependent
on speed in large-scale software development?

• RQ2 Which inter-group interaction challenges are more critical and widespread in
the organizations?

• RQ3 Which spanning activities for mitigating the interaction challenges are currently
employed or missing by practitioners?

• RQ4 What are the differences between embedded software companies and pure
software companies in terms of interaction challenges and spanning activities?

This paper has three parts and the main contributions are:

• a list of interaction challenges hindering several business goals dependent on speed.
The list is ranked based on the level of recognition (strong, controversial, weak)
and the spread through the companies. The challenges also show critical
organizational boundaries, and are discussed in relation to companies’ contexts and
participants;

• a set of spanning activities, objects and coordinator roles that are used by the
participants or are missing. Such activities can be used for the creation or
adaptation of a coordination strategy that will improve speed by mitigating the
interaction challenges and therefore increasing speed;

• a comparison of our selected cases (embedded software domain) and the pure
software cases analyzed in literature focused on the same topic. We show a
significant difference in the contextual factors and the areas where spanning
activities are needed.

In the next section we describe our conceptual framework and present the theoretical
components on which we built our research: speed, social interactions, spanning
activities and ASD. Then we describe our methodology, a two years long multiple-case
case-study including three firms, in which we have employed both qualitative and
quantitative methods. We then present our results and their analysis, in which we show
the previously mentioned contributions. The following section will discuss the
generalization of the main results, how they inform the research questions and how
they enrich the current body of knowledge in software engineering. The paper ends
with the conclusions and our targets for future research.

6.2 BACKGROUND
Figure 26 shows our overall conceptual framework: in the observed software

companies we found interaction challenges between the agile teams and other social
groups. Such challenges hinder three business goals dependent on three kinds of speed:
first deployment speed, replication speed and evolution speed [71] (shown by “-“

 70

arrows in the picture). Such interaction challenges can be mitigated by the application
of spanning activities. The results will be presented using this framework: the
discovered interaction challenges, which goal they affect and which spanning activities
are present or are missing in the observed companies.
Figure 26. Overall conceptual framework for managing inter-group interaction speed

6.2.1 Speed

Many studies dealing with speed, e.g. [71], [93], [94], [111]–[114], identified
interactions among several actors in the software development process as a major
generic influencing factor. Despite such recognition, we have found no studies that
tackle this problem in depth and in relation with speed.

According to previous research results [71],[91], large companies developing
multiple products with a substantial amount of embedded software need to manage
three end-to-end speeds (Figure 26): the speed with which customer needs lead to new
product offers (first deployment speed), the speed with which new features are
replicated in new products (replication speed), and the speed with which change
request to an existing product are realized (evolution speed). Lean Software
Development also stresse the importance of end-to-end speed for the release of a
product over the local speed of a single team, in order to optimize the whole instead of
local output [115], [116]. Such principle differs between Lean and ASD, where instead
the team speed is emphasized, which implies a distinction in companies’ development
approaches in practice [6], [17]. However, several mixed “Leagile” approaches have
been applied according to the cases studied by [17], showing that the combination of
principles is possible. For this reasons, we borrow the idea of waste elimination from
Lean literature, where speed has been defined as “absence of waste” [115], [116].
Therefore we investigate the source of such speed waste, more specifically the speed
waste due to interaction challenges (see next section) between the agile team and other
parts of the organization hindering the previously mentioned end-to-end business goals.
We also aim at finding possible solutions for such challenges: the results might be used
to complement existing agile practices, used by the teams to achieve local speed, with
activities that would benefit the end-to-end speed according to the Lean principles.

6.2.2 Social interactions in Agile Software Development

One important element in ASD is interaction, which also influences both the
delivered value and the time spent on coordinating all the actors in a large organization.

 71

The development team is a social group (Group dynamics research and theory,
1953) of interdependent employees responsible for the development of a portion of
software, which might be a feature or a component. Other social groups may be a test
unit, a supplier, a management team, etc. Between two social groups stands an
organizational boundary [51]. Interaction challenges may occur between the
development team and any other group in the organization. These challenges might
hinder the achievement of speed or other business goals, as reported in several studies
[71], [93], [94], [111]–[114]. However, the lack of in-depth studies on such interaction
challenges, especially related to business goals dependent on speed, motivated our
research questions:

RQ1 Which inter-group interaction challenges influence business goals dependent on
speed in large scale software development?

RQ2 Which inter-group interaction challenges are more critical and spread?

6.2.3 Interaction challenges and spanning activities

In order to mitigate the interaction challenges, it’s important to understand how the
practitioners currently avoid such issues and therefore what software development
practices are still missing. Such practices involving several social groups within an
organization have been recently referred as spanning activities in information system
research [52]. Such concept has been used by Strode et al. [22], who proposed the use
of the current results from coordination theory [53] and analyzed how co-located agile
projects coordinate. Among the coordination mechanisms, they mentioned spanning
activities as: “Boundary spanning occurs when someone within the project must
interact with other organizations, or other business units, outside of the project to
achieve project goals. There are three aspects to boundary spanning: boundary
spanning activities, the production of boundary spanning artifacts, and coordinator
roles”.

Such definition allows us to consider interactions challenges within the broader
scope of project coordination: we take inspiration by Strode’s framework for analyzing
and organizing our results and for comparing our cases with the only reference in
literature concerned, although only partially, with spanning activities.

Strode’s framework proposes the definition and description of spanning activities, of
spanning objects (artifacts) the coordinators (roles) responsible for carrying them out
in the organization. Each activity needs to be carried out also at a specific frequency,
i.e. per-project, per-iteration and ad-hoc. Our results might be used in the creation of
an overall coordination strategy, which is, however, beyond the scope of this paper.

According to the previous definition and the findings highlighted by Strode et
al.[22], Levina and Vaast [52] and Malone and Crowston [53], it’s necessary to
establish spanning activities for mitigating interaction challenges. This leads to our
next research question:

RQ3 Which spanning activities for mitigating interaction challenges are currently
employed or missing by practitioners?

6.2.4 Agile in large scale embedded software development

Embedded software is developed to control machines or devices that are not
considered generic purpose computers. Such software is typically specialized for the
particular hardware that it runs on and has to match specific time and memory
constraints. Examples from such domains are cars, telephones, modems, robots,
appliances, toys, security systems, pacemakers, televisions and set-top boxes, and
digital watches.

 72

 ASD had a great impact on software development, and has been the subject of
researchers’ attention in recent years [6]. Companies developing software for specific
domains, such as embedded software development, have shown a trend to adopt ASD
[19], [20] However, such development process shows properties and difficulties that
are not common to generic software development, and which have to be taken care of
when employing ASD. For example agile teams depend on strict hardware
requirements and resources and the necessity of following the overall product
development [19]–[21].

Consequently, we make the hypothesis that the embedded software domain would
bring more and/or different interaction challenges and therefore it would require
different boundary-spanning activities. The aim is to answer RQ4:

RQ4 What are the differences between embedded software companies and pure
software companies in terms of interaction challenges and spanning activities?

6.3 METHODOLOGY
In this section we describe our strategic and tactical research decisions: we

conducted a multiple-case case-study as a tool for data collection and the combination
of quantitative and qualitative data analysis, as recommended by Yin [62].

6.3.1 Conceptual framework

The components of our conceptual framework described in the previous section were
continuously updated with inputs from empirical studies and literature reviews. We
have combined inductive and deductive approaches for theory building, as described in
[77] and as an essential feature of the Grounded Theory approach [55], [61].

6.3.2 Companies’ contexts

The case selection followed a replication logic strategy, a tactic recommended in
case study design [62], which can consist of either choosing cases that are similar and
therefore likely to provide similar results (literal replications) or choosing cases that
are dissimilar and therefore likely to provide contrasting results for predictable reasons
(theoretical replications). The cases that we have selected represent literal replications
and therefore we expected to produce results that were similar. On this regard, we
chose all companies developing embedded software, and we aimed at strengthening the
results by inquiring several sources (source triangulation) as recommended in [63].
Our cases can, however, be considered theoretical replications when highlighting the
differences compared to the ones reported in literature: to fulfill this purpose, we will
discuss our cases with the ones included in [22].

Our cases were three large product-developing companies (A,B and C), all with
extensive in-house embedded software development. All were situated in the same
geographical area (Sweden), and active on several international markets. Table 12
shows the context details for each of them. As for the Organization fields, it’s
important to notice that, although the actual organizations were large, including
hundreds of employees, we needed to focus our research to units of analysis [62] that
would make our investigation feasible.

Company A was involved in the automotive industry. Some components were
developed by in-house teams following Scrum, whilst others were outsourced to
suppliers. The surrounding organization was following a stage-gate release model.
Business was driven by the development of products for mass customization.

Company B was a manufacturer of product lines of utility vehicles. In this
environment, the teams were partially implementing ASD (Scrum). Some competences

 73

were separated, e.g. System Engineers sat separately and deliver specification written
on documents. Special customers requesting special features drove the business, and
speed was important for the business goals of this company.

Company C was a manufacturer of telecommunication systems product lines. Their
customers receive a platform and pay to unlock new features. The organization was
split into cross-functional teams, most of which with feature development roles. Some
of the teams had special supporting roles (technology, knowledge, architecture, ect.).
Most of the teams used their preferred variant of ASD (often Scrum). Features were
developed on top of a reference architecture, and the main process consisted of a pre-
study followed by few (ca. 3) sprint iterations before the feature was deployed.
Table 12. Studied cases and different context parameters.

 Case A Case B Case C
Product
description

Several components of
automotive embedded
software.

Communication system,
signal elaborating system,
GUI system and
customized OS platform.

Components and
features development
for a
telecommunication
platform.

Product
lifecycle

6-7 years > 15 years ~15 years

Business
Model

International Markets International Markets and
individual customers

International Markets

Processes • Scrum based
implementation –
Several weeks iterations
• Input:
requirements from
different product
owners/different
projects
• Output: deliver a
platform to testers to be
validated and verified

• Scrum based
implementation – Several
weeks iterations
• Input: specification
System Engineers
• Output: delivers a
subsystem to separate unit
of testers to be validated
and verified

• Scrum
implementation – few
weeks iterations
• Input: white box
specification from
System Engineers
• Output: deliver a
component to be
integrated by other
units developing
other products

Organization
(unit of
analysis
only)

• 10-20 developers
(including architects)
• Cross-functional
teams
• Testers in a
separated team
• Requirement
Engineers in separated
business unit

• 2-25 developers
(depending on the project,
including architects)
• Organized in
functional teams
• Testers in separated
team
• System Engineers in
separate team

• 20 developers
(including architects)
• Cross-functional
teams
• System
Engineers in
separated team

Outsourcing Some components
outsourced

No outsourcing No outsourcing

6.3.3 Data Collection

Our data collection followed three steps, in which we alternated several
methodologies. First we employed a set of in-depth interviews for exploring the
challenges in the achievement of goals based on speed. In the second step we validated
and prioritized the interaction challenges through the collection of quantitative data
using a survey. We also used the survey for collecting qualitative data and exploring
which spanning activities were employed or missing in the companies. Finally, we
collected validation responses through focus groups.

 74

6.3.3.1 Problem investigation: what challenges are decreasing speed?

During the first step we conducted seven in-depth, semi-structured two-hours-long
interviews with informants from each company. Semi-structured interviews are usually
suited for exploratory studies, in which the researchers need to gain new insights on a
novel phenomenon and strive to understand the factors involved. [62], [68].

Informants were chosen on the basis of their role and expertise, and the aim was to
understand the issues by inquiring key employees rather than collecting a large amount
of more superficial data. This allowed us to ask follow-up questions and therefore to
follow multiple leads. All informants were senior engineers or managers, and had
experience with the implementation of agile processes. For case A we interviewed an
architect and a line manager from the same project. For case B, we interviewed four
developers from four projects, some of whom had also architect or product line
management roles. In case C, we interviewed one informant with the role of both
senior developer and architect.

The interview protocol had fixed questions about the informant’s role and context,
and open-ended questions to bring out experiences related to challenges when reaching
several kinds of speed.

Interviews followed the natural flow of discussion, and we included questions to
cover predefined themes. Two main themes in the interview guide were represented by
“agile practices” and “reuse practices”. Both of them were meant to capture key
practices clearly aimed at different business goals based on speed.

6.3.3.2 Validation, prioritization of the challenges and missing practices

The challenges revealed by the previous collection method, which relied only on
qualitative information, needed to be strengthened by a more quantitative validation.
Also, we wanted to understand which of the challenges were more severe in the
companies and therefore needed to be prioritized. Finally, we wanted to understand
what practices (spanning activities) were used or missing in different contexts.

For this purpose we created an on-line questionnaire that was designed using a
combination of closed- and open-ended questions [69]. The first version of the survey
was tested by two PhD students, to have feedback from an academic point of view and
by at least one contact in each company, to make the questionnaire fit the jargon and
being understandable for all the respondents. During the test we also monitored time
and caught misunderstandings due to formulation of the questions.

The motivation for using an on-line questionnaire was to maximize coverage and
participation without having to set up a time-consuming interview system. A survey is
a suitable method for data collection when asking structured questions [68], [69]. The
participants could access the survey whenever they wished. The answers were bound to
a web-link and a mail address, so the respondents could also interrupt the survey and
continue it in another moment. The questionnaire was made accessible on-line at
surveymonkey.com between April and June of 2012.

The questionnaire was structured into two parts:

• two questions about the role of the respondents and their organizational unit of work.
Different names, dependent on the context, were reported for the same role. We
decided to abstract the wide set of roles into “manager”, “system engineer”,
“designer” and “tester”. We have chosen this categorization because of the frequent
mention of such roles during the interviews and we could easily map these roles to
clear references in software development literature.

• a set of 23 interaction challenges. For each one, the respondents were asked to give
an answer among four alternatives: “No, I don’t recognize the challenge”, “Yes, I

 75

recognize the challenge in other units”, “Yes, I recognize the challenge in my own
unit”, “Yes I recognize the challenge in my unit and other units”. When
appropriate, we added a fifth answer, in which the respondents could express their
inability to answer due to a lack of experience of the described situation. Such
alternatives allowed us not only to validate the answers but also to obtain the
perceived spread of the challenges in the organization. For each challenge we
added an open-ended question using a text area. We asked which practices were
applied or missing by the practitioners in order to handle the challenge.

Table 13. Challenges found in the first step and in-depth studied in the second step.

Q01 The processes/ways of working that you have to follow are not suited for the kind of
product that you are developing

Q02 The processes/ways of working that you have to follow are not suited for the project
management

Q03 Project-related defects (defects in the same reused component fixed in some project but
not in others)

Q04 Developers and system engineers are not co-located, which causes communication
problems in requirement agreement

Q05 There is an upcoming product. Erroneous assumptions have been made on what part of
the existing software can be reused and/or adjusted, causing inaccurate budget or
resources allocation

Q06 Evaluation of costs and feasibility of new features don't take into account
implementations and constraints, causing inaccuracy in budget and resources (for
example time or workload) allocation

Q07 There is no time to improve parts of software shared among projects.
Q08 A satellite unit is “invisible”: for example, it's difficult to consult them, there is no clear

information on their work or cannot be guided properly (the kind of problem may
depend on your role)

Q09 A development unit has to build a component to be integrated in other units' (projects')
system, but the communication with them is not sufficient.

Q10 A development unit was forced to integrate a common component. This caused
communication problems, and now the unit is not willing to integrate new common
components.

Q11 Reuse is not supported by the Product Line Management, it's an individual initiative.
Q12 Different attitudes and values of distributed (not co-located) teams (or units, projects)

caused communication problems.
Q13 Team's (or unit, project) lack of will to integrate a common component.
Q14 Lack of understandable documentation or of proper communication causing long

warming up periods for consultancy or for new employees to understand the system
Q15 Documentation is abundant but it doesn't help to understand the code
Q16 Leaders' mindset is not open to listen and they are not able to recognize strengths and

weaknesses. This hinders the development of improvements.
Q17 Different favorite programming languages in the same team create communication .
Q18 Different favorite tools in the same team create communication problems.
Q19 Artifacts received from the system engineers are not clear enough because they were

created with inappropriate tools
Q20 Developers are too constrained by system engineers on design (for example, developers

receive white box/very detailed specification)
Q21 An internal interface had to be exposed to other units to allow their development. The

interface documentation provided didn't help to understand the code.
Q22 Disagreement between different development units (or projects) about what set of

functionalities a common component should provide. This creates communication
problems

Q23 Loss of knowledge about a reused framework's variation points, for example a
framework created some years.

The 23 challenges are the results from the previous exploratory interview study
conducted in the same companies, in which such challenges were categorized as related
to interaction. We operationalized the factors in a closed-question-survey. In some

 76

cases we decided to split the factor into two questions. For example, the inhibitor
“different tool and programming languages” was split into two questions, Q17 and
Q18. For most of them, however, there is a one-to-one correspondence between the
factors and the questions in the survey.

A 22-pages survey guide with detailed explanation for most of the factors,
complemented with concrete examples, was made accessible for the practitioners
through the web.

The challenges, which represent also the results collected in the first step, are
outlined in Table 13.

6.3.3.3 Sample for the survey and response rate

We obtained 36 complete answers. The web tool helped us to select only the answers
that came from respondents who finished the whole survey, i.e., incomplete answers
have been discarded.

We had an overall response rate of 68% for the quantitative answers, i.e. 45 out of
66 total email invitations sent out, of which 36 were completed answers. This entails
that 80% of the participants who started the survey finished it, which was, in the end,
54% of the total invited participants.

Figure 27 shows the distributions of answers across roles. We can see how all roles
were covered: company B and C respondents cover all roles, whereas company C
respondents cover all roles except testers. We notice a major presence of designers,
especially for company C.

0"
2"
4"
6"
8"

10"
12"
14"

Sy
ste

m
"

De
sig
ne
rs"

M
an
ag
er
s"

Te
ste

rs"

0"
1"
2"
3"
4"
5"
6"
7"
8"

Sy
ste

m
"

De
sig
ne
rs"

M
an
ag
er

Te
ste

rs"
A"

B"

C"

Figure 27. Sample of the respondents, divided by roles and companies.

6.3.3.4 Validation of spanning activities: collective interviews

In order to validate our results, we organized three collective interviews, one at each
company. Most of the practices were recognized and we have excluded the ones
rejected by the employees.

6.3.4 Data Analysis: combination of qualitative and quantitative analysis

We analyzed the data using a combination of qualitative and quantitative approaches
(methodological triangulation), as recommended in [63]. This choice is also regarded
as “strong analytic strategy” in [62].

 77

6.3.4.1 Grounded theory

For the qualitative data, the interviews from the first step and the open-ended
answers in the survey, we used an approach based on Grounded Theory [55], [61].
Instead of starting with a hypothesis and then testing it, it’s based on a bottom-up
process in which the theories (and the hypotheses) emerge from the data and therefore
are grounded in it. The aim is to avoid the researchers to fit the data to preconceived
hypotheses. The method used is also focused on validating theories by the systematic
comparison across the data, the codes and the concepts.

We coded the text using a tool for qualitative analysis (Nvivo), which allowed us to
maintain traceability between the data and the produced codes. The codes were
categorized and sorted in order to link, compare and combine them into an organic
representation of the investigated data, which led us to identify novel theories or to
confirm existing knowledge.

6.3.4.2 Coding

We first analyzed the audio from the interviews and the text from the open-ended
answers in the questionnaire, slicing it into small pieces and linking the relevant ones to
quotations and codes. This task was carried out by the first researcher and checked by
the second one, and was part of the open coding, in which we followed Strauss and
Corbin’s method [55]. In this phase, the first researcher summarized and interpreted the
informants’ words. Some factors were the result of in-vivo coding, where we quoted
the interviewee; this was done in cases where the concept was well explained:
“Improvements depend on leaders mindset, open to listen and recognize strengths and
weaknesses”. For other factors we summarized from the source, “Long warming up
periods for consultancy” summarized “[…] is very hard for a consultant coming in
[…] we see that we have a half-year initial period just for [tool name] tool; it’s
another half year or year for the product to come into that to know it on a pretty good
level […]”. Yet other factors, are referring to many statements, which are showing the
specified clear issue, only if considered together: “Business side afraid of upfront
investment for a software product line”.

6.3.4.3 Categorization

We then categorized the codes according to our research questions. In the first step,
dedicated to problem identification, the categorization revealed the need for several
hybrid categories for special influences, such as influencing several kinds of speed with
different polarities: for instance, “Lack of detailed documentation” has a negative
influence on first deployment speed but a positive influence on the Replication Speed.
The categorization depended on the perspective that we took: for example, in the first
step we gathered all the challenges concerning interactions under the “Interaction” area
of improvement and its sub-categories. In the results we show how “interaction” factors
(with negative influence on speed) were outnumbering the other factors, motivating the
follow-up survey.

6.3.5 Quantitative Analysis

We performed statistical analysis on the answers to the close-ended questions in the
questionnaire, using the tool SPSS. The purpose was to validate and rank the
challenges, for which we used frequency analysis, and to correlate the answers to roles
and companies by using Pearson chi-square tests. We could not perform more
parametric tests since the size of the sample was not large enough to provide
meaningful statistical evidences. The results are shown in Table 14.

 78

6.3.5.1 Frequency Analysis

We have used frequency analysis for the recognition of a factor. We have grouped
the factors in strongly recognized and weakly recognized, depending on the ratio of the
participants answering “yes” or “no”. However, when the number of yes and no was
similar, we considered the factors as controversial, which means that even if the factors
are strongly or weakly recognized, there was contrast in the answers. Combining these
two categorizations, we had four categories: strongly recognized, strongly but
controversial, weakly but controversial and weakly recognized factors.

We have also explored the perceived spread of a factor based on the respondents’
experience of the issue being not only local (for example, present in the respondent’s
team) but affecting other parts of the organization close to the respondents. In order to
evaluate the spread of the issues through the organization, we had to weight the four
answers provided by the respondents. We obtained ordinal data similar to a Likert scale
without a middle-point. We have weighted the answers with the following weights:
zero was mapped to “no”, one to “yes in other units/teams”, three to “yes in my unit”
and four to “yes in my unit and in other units” (1+3). We have weighted the answer yes
in my unit as three times yes in other units: this way we “trusted” the direct experience
more than the participants’ perception about the presence of the factor in other parts of
the same organization. We have emphasized the polarity between the “no” (zero) and
the “yes” (3): in this way the means around three would show strong recognition,
means around zero strong negation, and means around two would show high polarity in
answers (not many neutral answers). The one point assigned to in other units weakly
influences the means and is useful to give us an idea of how much the factor is
perceived as spread throughout the organization. We could have assigned a higher
weight to in other units and the results would have given a stronger result on the spread
of the factors, but we have chosen to be cautious.

6.3.5.2 Chi-square tests

To discover if the answers on the factors depended on the company, we have used
cross-tabulation, and performed a Pearson chi-squared test to check if the distribution
of the answers changed with respect to the companies B and C (we couldn’t use A
because of the few respondents). For factors that gave a significant response (p-value <
0.1), we could find evidence that there were differences in the expected distribution.
We performed the same test using the roles as categories. Finally, we combined the
categories, roles and companies, in another cross-tabulation, but the single cells
contained too few entries to perform a useful analysis. The selected and detailed data
relevant for the explanation of the results are displayed in Table 15, Table 16, Table 17,
Table 18 and Table 19.

 79

Table 14. List of challenges ranked by recognition, spread and their dependence on context or on role.

%
M
EA

N

De
ve
lo
pe

rs
.a
nd

.sy
st
em

.e
ng
in
ee
rs
.a
re
.n
ot
.c
o8
lo
ca
te
d

Q
04

93
.9

3.
52

Pr
oc
es
se
s/
w
ay
s.o

f.w
or
ki
ng
.n
ot
.su

ite
d.
fo
r.t
he

.k
in
d.
of
.p
ro
du

ct
.
Q
01

83
.3

3.
13

"I
nv
is
ib
le
".
sa
te
lli
te
.u
ni
t
Q
08

84
.2

3.
11

N
o.
tim

e.
to
.im

pr
ov
e.
pa

rt
s.o

f.s
of
tw

ar
e.
sh
ar
ed

.a
m
on

g.
pr
oj
ec
ts
.
Q
07

85
.3

3.
00

x
La
ck
.o
f.d

oc
um

en
ta
tio

n/
co
m
m
un

ic
at
io
n,
.lo
ng
.w
ar
m
in
g8
up

.Q
14

86
.1

2.
94

N
ot
.su

ffi
ci
en

t.c
om

m
un

ic
at
io
n.
fo
r.r
eu

se
Q
09

84
.8

2.
94

Di
ffe

re
nt
.a
tt
itu

de
s.a

nd
.v
al
ue

s.o
f.d

is
tr
ib
ut
ed

.te
am

s
Q
12

80
.6

2.
72

!
Er
ro
ne

ou
s.a

ss
um

pt
io
ns
.o
n.
re
us
ab

le
.so

ft
w
ar
e

Q
05

77
.8

2.
67

x
Pr
oj
ec
t8
re
la
te
d.
de

fe
ct
s.
Q
03

75
.0

2.
44

x
Ab

un
da

nt
.d
oc
um

en
ta
tio

n.
do

es
.n
ot
.h
el
p.
un

de
rs
ta
nd

in
g.
th
e.
co
de

Q
15

64
.7

2.
38

Re
us
e.
in
di
vi
du

al
.in
iti
at
iv
e

Q
11

61
.1

2.
14

Sy
st
em

.a
rc
hi
te
ct
ur
e.
ar
tif
ac
ts
.n
ot
.c
le
ar
.e
no

ug
h

Q
19

55
.6

2.
08

x
Di
sa
gr
ee
m
en

t.o
n.
fe
at
ur
es
.in
.re

us
ed

.so
ft
w
ar
e

Q
22

60
.0

2.
03

Lo
ss
.o
f.k

no
w
le
dg
e.
ab

ou
t.a

.re
us
ed

.fr
am

ew
or
k'
s.v

ar
ia
tio

n.
po

in
ts

Q
23

54
.5

1.
91

x
Di
ffe

re
nt
.fa

vo
rit
e.
to
ol
s.i
n.
th
e.
sa
m
e.
te
am

.Q
18

54
.3

1.
89

Es
tim

at
io
n.
of
.n
ew

.fe
at
ur
es
.w
ith

ou
t.i
m
pl
em

en
ta
tio

ns
.c
on

st
ra
in
ts

Q
06

52
.8

1.
86

!
Pr
oc
es
se
s/
w
ay
s.o

f.w
or
ki
ng
.n
ot
.su

ite
d.
fo
r.t
he

.p
ro
je
ct
.
Q
02

54
.3

1.
86

Le
ad

er
s'.
m
in
ds
et
.is
.n
ot
.o
pe

n.
to
.li
st
en

.Q
16

50
.0

1.
64

De
ve
lo
pe

rs
.a
re
.to

o.
co
ns
tr
ai
ne

d.
by
.sy

st
em

.e
ng
in
ee
rs
.o
n.
de

si
gn
.Q

20
52

.8
1.
64

An
.in
te
rn
al
.in
te
rf
ac
e.
ha

d.
to
.b
e.
ex
po

se
d.
to
.o
th
er
.u
ni
ts
.
Q
21

50
.0

1.
53

Di
ffe

re
nt
.fa

vo
rit
e.
pr
og
ra
m
m
in
g.
la
ng
ua

ge
s.i
n.
th
e.
sa
m
e.
te
am

.
Q
17

36
.7

1.
33

Te
am

's.
la
ck
.o
f.w

ill
.to

.in
te
gr
at
e.
a.
co
m
m
on

.c
om

po
ne

nt
Q
13

38
.2

1.
26

!
De

ve
lo
pm

en
t.u

ni
t.w

as
.fo

rc
ed

.to
.in
te
gr
at
e.
a.
co
m
m
on

.c
om

po
ne

nt
Q
10

29
.0

.8
4

x



0.

0
W

ea
k

0.
00

D
E

P
E

N
D

S

O
N

 R

O
LE

R
A

N
K

 W
IT

H
 S

PR
EA

D
D

E
P

E
N

D
S

O

N

C
O

N
TE

X
T

Strong Strong, Controversial

CH
AL

LE
N
GE

.(a
bb

r.)
RE

CO
GN

IT
IO
N

Weak,
Contr.

ID

 80

Table 15. Number of answers for Q03 by company, followed by the Chi-Square result.

Q03- Project-related defects
Answer
Company

No Yes, my other
units

Yes, my unit Yes my and
other units

C 6 1 3 1
B 2 1 7 11
Pearson Chi-Square 0.021

Table 16. Number of answers for Q07 by company, followed by the Chi-Square result.

Q07- There is no time to improve parts of software shared among projects
Answer
Company

No Yes, my other
units

Yes, my unit Yes my and
other units

C 4 1 1 4
B 0 0 8 13

Pearson Chi-Square 0.005

Table 17. Number of answers for Q23 by company, followed by the Chi-Square result.

Q23- Loss of knowledge about a reused framework's variation points
Answer
Company

No Yes, my other
units

Yes, my unit Yes my and
other units

C 4 0 2 0
B 5 1 1 7
Pearson Chi-Square 0.1

Table 18. Number of answers for Q05 by role, followed by the Chi-Square result.

Q05- Erroneous assumptions on reusable software
Answer
Role

No Yes, my other
units

Yes, my unit Yes my and
other units

System
eng. 1 0 1 5
Designer 4 0 5 4
Manager 0 2 3 5
Tester 3 0 1 1
Pearson Chi-Square 0.1

Table 19. Number of answers for Q10 by role, followed by the Chi-Square result.

Q10- There is no time to improve parts of software shared among projects
Answer
Role

No Yes, my other
units

Yes, my unit Yes my and
other units

System
eng. 4 0 2 0
Designer 11 0 1 0
Manager 2 2 1 2
Tester 5 0 0 0
Pearson Chi-Square 0.027

 81

6.4 RESULTS AND ANALYSIS

6.4.1 Interaction challenges hinder the achievement of business goals based on speed in all
studied contexts

With the first step we found the challenges hindering the achievement of business
goals based on speed. The qualitative investigation brought to light 114 factors [71].
After the categorization of the factors, we obtained a distribution of the factors in the
areas of improvement showed in the bar charts in Figure 28. The diagrams display
which areas the informants were most concerned with, within a single company and
cross-company.
Figure 28. Bar chart of all challenges. Interaction is the most populated category and also contains an
even distribution of the challenges.

The results show that interaction challenges had an impact on first development

speed, replication speed and evolution speed:

• First Deployment Speed: when a set of features is released for the first time, the
speed is affected by the interaction speed among the teams that have to integrate the
features. This kind of speed has an impact on hitting the market fast to anticipate the
competitors. Fast deployment speed also shortens the loop in market testing.

• Replication Speed: when a feature is embedded in a previous release, interactions are
needed between the team responsible for the new features and the teams that had
developed the former ones. Replication increases ROI when the effort made for the
first deployment speed is spread on the release of new products and services based
on the existing software.

• Evolution Speed: when a feature needs to evolve after its release, the changes will
affect other features, which requires interactions. The speed in reacting upon a
change request can be critical for gaining the trust of the customers.

 The even distribution of the 30 factors in the interaction column of Figure 28, (12,
10, eight for case A, B, and C), emphasizes that interactions is a common concern at all
sites.

These results called for further investigation of intra-group interaction challenges.
The category containing such factors was the most populated one, which showed its
importance for the respondents. This was also the category with the most evenly
distributed factors among the studied sites, which suggested a high degree of
generalizability of such factors.

 82

6.4.2 Validation and prioritization of interaction challenges

In the second step we conducted a survey to validate and prioritize the discovered
interaction factors.

Through a quantitative analysis of the answers, we produced an ordered table with
the factors, their recognition in terms of frequencies and their perceived spread in the
companies. The analysis of the data also highlighted factors recognized by the
respondents in some contexts but not in others, and factors recognized by some roles
but not by others. The results are summarized in Table 14.

The second column from the left (Recognition) displays the percentage of
respondents (calculated on the valid answers provided) that have recognized that factor.
All the factors are recognized at least by 29% of the participants. In the middle column
we highlighted the level of recognition (strongly, strongly but controversial, weakly but
controversial and weakly recognized) with bold borders grouping the rows of the
factors included in each cluster. Nine factors, with more than 75%, are strongly
recognized. The factors with more than 50%, another 11, are strongly recognized but
controversial, which means that there are more “yes” than “no”, but we found some
disagreement in the answers. The last three factors are weakly recognized but
controversial, which means that the number of “no” is larger than the number of “yes”,
but some of the respondents considered the challenge present in their context. None of
the factors were considered weakly recognized.

In the middle column (Rank with Spread) we show the spread calculated using the
means of the answers weighted from zero to four: such results, together with the
recognition, illustrate how much the respondents perceive the spread of the factor in
other parts of the organizations close to them. This partially changes the order of the
factors, as we can see for Q14 and Q01: the former one has a higher direct recognition
rate, whilst the latter one is acknowledged by less respondents than Q14 but is been
considered more widespread within the company. Notice that the spread doesn’t
influence the previous categorization of the factors (strongly, weakly, etc.).

In the last two columns from the left (Depends on Context and Depends on Role) we
have marked the factors with a “x” when we have statistical evidences that the factor
has the property.

6.4.2.1 Context-related challenges

The distribution of the answers with respect to the respondents’ company didn’t
change for 20 of the factors. This means that we could reject the hypothesis (as
explained in the section 6.3.5.2, the significance was 0.1) that the recognition of most
of the factors depended on the company of the respondents only for three of the factors
(Q03, Q07 and Q23). The results are shown respectively in Table 15, Table 16, and
Table 17. These challenges are reported in Table 14 with “x” on the column Depends
on Context. In the followings we describe the differences among the companies.

Q03: Project-related bugs or defects

For factor Q03 there is a great difference between company B and C: the
respondents in company C don’t recognize the factor, while the ones in company B
strongly recognize it.

Q07: There is no time to improve parts of software shared among projects

For factor Q07 the respondents in company B strongly recognize it, while the other
ones stand in the middle. This shows that this factor is strongly present in company B
while is controversial in the other companies. With respect to Table 14, this partially
weakens the strong recognition of Q07 since the mean is influenced by company B.

 83

Q23 - Loss of knowledge about a reused framework's variation points, for example a
framework created some years before.

In company B more than half of the informants (eight) strongly recognize this factor.
Even though the result is “strong but controversial”, it differs from company C, where
only two respondents recognized the factors.

6.4.2.2 Different roles’ view on some challenges

We found that the answers changed for only two factors (Q05 and Q10) when given by different
respondents with different roles. The results are shown respectively in Table 18 and

Table 19. These challenges are marked with “x” in Table 14 in the column Depends
on Roles. The mark “!” signals the presence of evidences in the data that need further
validation.

Q05 - There is an upcoming product. Erroneous assumptions have been made on
what part of the existing software can be reused and/or adjusted, causing inaccurate
budget or resources allocation (for example time or workload)

For this factor, managers and system engineers expressed a clear propensity to
recognize the issue, while designers and testers gave more controversial answers.

Q10 - A development unit was forced to integrate a common component (shared with
other units). This caused communication problems and now the unit is not willing to
integrate new common components.

6.4.3 Boundary spanning

In the previous sections we have identified and ranked the interaction challenges. In
Figure 29 we show the critical boundaries in need of interaction improvement. As
explained in the methodology section, we list the spanning activities related to the
mitigation of interaction challenges at each boundary. Each activity is defined
according to a specific boundary, a frequency (project, iteration and ad-hoc) and
involves a coordinator and a spanning object.

In the following section we perform an in-depth analysis of the critical boundaries
and the spanning activities that are currently needed for avoiding the interaction
challenges.

6.4.4 Prioritization of boundaries for spanning activities

The rank of challenges combined with the qualitative analysis of the textual answers
show a number of critical boundaries in need of spanning activities, between the agile
team and other social groups:

 84

Figure 29. Critical organizational boundaries in need of spanning activities. Each spanning activity has a
frequency, a coordinator and it might involve an object.

Team - System engineers. Q04 is the most recognized factor, almost by all the
respondents (93%, which include many system engineers): system requirements and
architecture should be continuously discussed between system engineers and the agile
team. This is especially important for software reuse, which has to be recognized at a
system level and mapped to the agile organization in an optimal way.

Team - Product development and management: the respondents’ answers about
factor Q01 and Q02 (process-related communication) are quite different. It seems that
ASD suffers particularly when the agile team needs to interact with the product
development rather than with the project. This aspect might be connected with the kind
of developed product (i.e. embedded systems): hardware’s design and development
process follow a more waterfall-oriented model, which conflicts with the iterative one
claimed by ASD. In general, software development is bound to the overall product
development process, which has longer iterations than the ones prescribed by ASD and
therefore hinders the responsiveness that would be gained by employing ASD at a team
level. However, we cannot say if this is a real constraint or a factor related to the legacy
of the product development in place. In the latter case, we hypothesize (supported by
the qualitative answers) that a change in the product development process to make it
more ASD-friendly (for example by providing frequent interfaces for strategic input)
would foster the interaction speed of teams with the product management.

Team - Distributed teams (Q08): the speed of the agile team might be hindered by
dependencies to other distributed teams. This includes suppliers commissioned to
develop outsourced software components but also teams distributed in several
buildings. Especially, when the quantity and the channels of communication are
constrained by contract terms such as time intervals or approval requirement, speed is
hindered by the occurrence of strong delays. The same, but less drastic issues, occur by
mismatches in processes, practices, attitudes and values. Frequent meetings on-site and
social network activities would ease this interface.

 85

Team - Other projects’ teams: Q07, Q03 and Q09 are strongly recognized, but the
results have been stronger for a specific context (Q07, Q03 for case B). The isolation of
the projects, especially in terms of budget and resources, create silos that hinder reuse
across the projects. The exclusive focus on one project by the team leads also to
hindering the communication (and speed) among teams in parallel projects: this creates
inefficiencies, especially if there are dependencies among the projects, and strategic
reuse always brings such dependencies. Solutions such as relocation in other projects
have been proposed in the qualitative answers, to spread knowledge of the system and
to gain acquaintance among the employees.

Team - Product Owners: factor Q05 shows that software reuse can be erroneously
considered during the selling process (or the marketing scope). In the qualitative
answers, respondents specified that no resource allocation was estimated when reusing
similar components. However, the business value of identical components seems to be
much higher than that of the similar ones. This suggests that full reusability of
components should be checked by the Product Owners. This would encompass
communication with the involved teams responsible for the components. The strong
recognition of this factor mainly by management and systemization shows that
designers and testers are not fully aware of strategic and business related goals. This
suggests that if the agile team is not guided continuously by strategic inputs, it might
incur in sub-optimal decisions.

6.4.5 Boundary spanning for each project

Once we identified the challenges and the critical boundaries, we analyzed the
qualitative answers of the participants in order to find spanning activities that were
used or missing for the whole project.

Several informants mentioned the need for activities at the beginning of the projects.

“Everyone start off being very busy with their own stuff and don't have time to talk to
others. Eventually this leads to a crisis in the project where the schedule slips and
integrations fails.”

The most common means to achieve synchronization is the organization of
workshops. The data suggest that the workshops should be focused especially on the
following actors and activities.

Architecture between the team and the system engineers (architects): architecture is
a synchronization mechanism and is important for achieving platform and component
reuse among several projects in all investigated cases. The architecture is also seen as a
boundary object, and the production of such object needs to be agreed upon. The
current implementation of ASD seems to suffer from the lack of suitable spanning
objects, for example, the architecture documentation. This documentation is currently
not fulfilling the needs of the stakeholders.

 “Better coordination and planning of how architectural changes should be
introduced in a product with high feature growth. The changes should be introduced in
steps and following a plan agreed to by all concerned parts”

A workshop in the beginning of the project would help agreement on the
stakeholders’ “requirements” for the necessary boundary object (both the team and the
architects).

“Some defined level of documentation describing the system/subsystem for a newbie,
requirement engineer to more easily get into/understand the system”, but “have less
complimentary documentation, in best case only some pictures to explain the overall
idea”.

 86

Furthermore, the discussion would increase the team’s awareness about the product
and product line (through the architects’ view) and ease the follow-up communication
with the architects with the increase of personal acquaintance. No coordinator role has
been identified, but we hypothesize that the architects would be the coordinators for
this activity.

Expectation between distributed development teams and between the team and the
suppliers: according to the informants, a clear challenge is, for a team, to know what to
expect from other teams. Teams need also to agree on future spanning activities in
order to avoid hindering each other during development and to find suitable points for
synchronization in the customized processes.

Negotiation and awareness between teams, architects and product owners: what the
respondents lament is the decision making based on wrong assumptions in the scope
analysis which would be reflected on the pressure suffered by the team to meet
deadlines. Activity tools such as planning poker is used within the team, for example
for estimating the cost of feature development, but we found the need for a workshop
covering the feasibility and the expectations (negotiation) on higher level development
capability, such as architecture goals (including other projects) and time-related
penalties to be agreed with the customers. This kind of workshop would also increase
information about business strategies in the development team, making them closer to
the customer perspective.

6.4.6 Boundary spanning for each iteration

Spanning activities aligned with iteration frequency can be used as a synchronization
mechanism among several teams and between the team and other kinds of
organizational groups [22]. However, often the respondents mention the lack of
coordination among interacting teams and between the team and other groups.

Process mismatch among teams: A major challenge in the former case is the lack of
organized opportunities for the teams to meet among themselves. Such problem is also
connected by the respondents to the mismatch of processes: the processes are usually
customized by the teams, for example the development of two features might start in
different times and the iterations and development phases within the iteration might not
be synchronized. Such challenge has been especially emphasized when an agile team
had to be in contact with external suppliers not complying with ASD (case A and C).

Process mismatch between the team and other groups: As for the coordination
between the team and other groups, a main challenge is the mismatch of processes
between the agile team, organized in iterations, and the rest of the organizational
groups/other organizations, which is usually not. The product development for all the
cases is bound to the creation of the actual physical system on which the software has
to be deployed. Consequently, the agile team lacks interaction with other engineering
experts (e.g. system engineers), product management and other resources that follow a
different process and therefore are not available. As an example, it might happen that a
feature is not tested as soon as it’s been developed.

 “A feature should be verified as soon as it has been implemented (and not a few
months later) to get fast feedback, save time and prevent a lot of bugs at the end of the
project. - When creating parallel implementation tracks in the same product/project
there should be a plan for how the tracks should be merged together.”

Spanning objects: generic process guidelines to be reused.

Coordination role: The spanning activities would include the presence of a
coordinator in the other groups, that would facilitate the communication with the agile
team by being available at the end of each sprint with the necessary information. For

 87

example, a system engineer or an electrical engineer should be appointed for the
interaction with the agile team.

Coordination among the teams: Many respondents argue that there is a need for
making the team responsible for their interaction with other teams. Such interaction is
usually due to socio-technical dependencies. In some cases such interaction might be
regulated through social links developed among the teams, through communities of
practices [105] or might be initiated by a Scrum Master (e.g. using Scrum of Scrums
[92]) by organizing inter-team meetings each iteration. However, the informants
usually consider part of the documentation necessary for coordination, since only face-
to-face interactions seem not to be enough in a large environment.

“Insert documentation stories into the backlog. Include documentation into
definition of done.”

Spanning objects: The activity is to include the creation of documentation as a
task/story in the backlog. Such boundary activity would assure the prioritization of the
boundary object (documentation) creation through the use of another boundary object,
the backlog itself.

Coordinator role: in the answers related to process mismatch, there is usually the
description of a needed activity but not the role responsible for it.

6.4.7 Ad hoc boundary spanning

Shared responsibility of integration: the respondents highlighted the need for
having clear responsibilities for the integrated parts of the software. Currently there is a
lack of clear reference about who should be responsible for implementing bug fixes, for
improving the code (including architecture) and for explaining past decisions. The
integrated “whole” might be a component (in case features spread to several
components) or a set of connected functionalities.

“Take responsibility for "your" product”, “[…] very clear who is doing what and
when everybody is supposed to deliver what and to whom. The overall objective of each
delivery and the limitations (not implemented functionality) should also be
communicated to all involved parties”

“Promote the attitude of taking responsibility for the WHOLE chain of functionality”

Respondents suggest a spanning activity consisting of monitoring and recognizing
such situations in which responsibility could “fall between the cracks”, and reacting by
defining responsibilities through a meeting with the involved actors.

“Review interfaces between different processes e.g. System design - SW Design to
enable a more continuous flow of information”

However, also in this case, a coordinator has not been identified by the respondents.
Such an activity could probably be carried out at each iteration, but according to the
respondents, it’s enough to monitor and react in an ad hoc way.

6.5 DISCUSSION
Our research focused on 23 challenges related to achieving business goals dependent

on speed. The emphasis is on interactions across organizational boundaries, specifically
between the agile team and other parts of the organization. Our findings are focused on
large organizations developing embedded software and employing ASD.

The results show several and widespread interaction challenges influencing business
goals dependent on speed. Highlighting the most recognized and spread interaction
challenges would help practitioners in selecting the targets for investing resources and
would provide guidelines for further research. Showing the relationship between

 88

challenges and context warns practitioners about known issues in applying ASD in
large companies developing embedded software. Showing the different views among
the roles on some factors reveal possible existing conflicts or lack of awareness about
some of the challenges, for example the lack, in the teams, of strategic goals that need
to be communicated by product managers and architects. Highlighting which practices
are implemented or missing would help organizations in defining a coordination
strategy that would include spanning activities, objects and coordinators in order to
mitigate interaction challenges and therefore eliminating delays in the reaching the
business goals.

In the following sections we discuss the generalizability and contextualization of
challenges and activities. Then, we compare the results to the cases found in the
literature [22] in order to highlight our contribution with respect to related work and to
answer RQ4. Finally, we discuss the main limitations and threats to validity and present
more related work.

6.5.1 Generalization and contextualization of challenges

The results show an overall recognition and spread of the challenges. 20 challenges
have been strongly recognized, of which 11 were still controversial. Only three
challenges were weakly recognized but controversial. No challenges were recognized
as weak without any controversy. These results allow us to make a further step towards
the generalization of the found challenges. In fact, there is convincing evidence that
companies B and C equally agreed on the recognition of the challenges. With less
evidence, we can consider company A on the same line. This means that Table 14 is
equally informative for the companies.

As for Q03 Q07 and Q23, the recognition varies according to the context, and Table
14 shows this together with the ranking of the challenges. These factors are strongly
related to context B. In this company projects were isolated, hindering the employment
of an overall strategy for reuse. The distinctive parameter related to context B is related
to the business model: individual customers with different needs and different time
constraints may strongly hinder the investment needed for the creation of a software
product line. This is shown also by the recognition of Q23 mainly by case B: according
to the qualitative data, the business value of the ad-hoc reuse was overestimated. If the
component was not reused exactly as originally implemented, even slight changes
would bring a lot of work to re-understand the implementation and to test the small
changes that could affect the behavior.

6.5.2 Generalization and contextualization of activities

The consistency among the respondents’ answers for these three cases is quite high.
We have not found controversial statements among the respondents, and the codes and
categories used for this analysis are linked to citation by at least two respondents. The
only misalignment in the statements was related to the balance between the need of
increasing boundary-spanning activities and team isolation. The actual amount of time
spent in interaction is not known and the spanning activities need to be limited in order
to allow the team to focus. Such topic, in our opinion, requires further research. The
beginning of the project needs more time dedicated to spanning activities (e.g.
communication of strategic goals to the team) and the creation of coordination objects
(e.g. documentation shared by the teams), Even though it seems to be against the
avoidance of a big upfront investment, as suggested by the ASD principles, other
experiences reported in literature [117] refer to a “Sprint Zero” in which the team needs
to understand strategic goals. The iterations are good opportunities for coordination and
for instantiating or carrying out spanning activities.

 89

Our results are not limited to one case only, but evidences from all three cases
support most of the spanning activities reported in the results section. Such activities
would help the creation, both for researchers and practitioners, of frameworks
dedicated to embedded software development for complementing existing ASD
practices. Especially the following areas are in need of improvements: the starting
phase of the project, the development and maintainability of software architecture
artifacts, the exchange of information between the team and the product owners and the
interaction with distributed teams.

A relevant practice especially related to company B would be the creation of inter-
project spanning activity for helping the agile teams, involved in several projects, in
communicating similar strategic goals concerning software reuse. This activity and
similar activities remain a challenge to be further studied, since the respondents could
not propose a suitable solution. What we can report from our results is that if the
business situation of the company includes non-synchronized customers, this kind of
spanning activity should be an ad hoc activity. Coordinator and roles need also to be
further investigated.

A major challenge in the current organizations is to find suitable roles: groups
differing from the agile team appear to have different views and mindsets, which do not
necessarily comply with ASD. This is hindering the development of boundary spanning
activities and objects.

6.5.3 Comparison between embedded software development and pure software development

In order to show the contribution with respect to RQ4, we highlight the differences
between our domain (large product companies developing embedded systems) and the
one described in [22]. The paper is focused on coordination strategies in agile software
development, which partially covers spanning activities as well. This paper is also the
only one found by the literature review related to spanning activities. However, the
companies analyzed in [22] are not large companies and they don’t develop embedded
software. We show which areas of improvement with respect to which contextual
factors are different in our studied domain and we claim that we need further research
dedicated to study new boundary spanning activities for such combination of context
and areas.

We recognize four major contextual factors that are different between our cases and
the ones described in literature:

• Reuse: the presence of heavy reuse (platforms, components) across the projects
versus stand-alone projects.

• Product development: an overall product-development process is present in our
domain but not mentioned in the cases in [22].

• Customer: in our domain the same product(s) is developed for multiple customers,
who, in most cases, are not available (for example, the product is developed for a
generic market). This is different from the cases studied in [22] where the
organizations developed one product for a specific customer. In particular, in our
cases we can differentiate between synchronized (cases A, C) and non-
synchronized customers (case B).

• Other disciplines: in our domain other disciplines need to be connected to software
development, such as electrical engineering, system engineering, etc. which brings
in more stakeholders for the team than in [22].

The major differences in the results are the needs for more boundary-spanning
activities, objects and coordinators in our cases, especially in the following areas:

 90

• Software architecture: spanning activities, objects and coordinators for this purpose
are strongly needed by the respondents, while they are not mentioned at all in [22].
We can relate this difference directly to the reuse factor, since software architecture
is the main coordination mechanism for reuse.

• Processes: in [22] it is mentioned that the iterations might be used as
synchronization mechanism. However, when a number of different processes
mismatch but need to interact, there is a need for more spanning activities and
coordinators. We can relate this issue with the context factors “product
development” and “other disciplines”, which we found are the main causes for
having processes that mismatch.

• Shared responsibilities: in our results there are many references to the need of
spanning activities for managing shared responsibilities across teams, while they
are only briefly mentioned in [22], without in-depth research focus. Such
responsibilities are mainly linked to the area of software architecture and therefore
to the reuse factor (and therefore the replication speed goal), since the
responsibilities are shared for integration and for the common understanding of the
system.

• Expectations: spanning activities are mentioned in [22] for connecting with the
customer that is not on site. In our cases, not only the customers are not on site, but
there are also many at the same time for a given product (linked to the same
contextual factor). This increases the need for boundary spanning activities and
roles, in order to assure the convergence in understanding requirements among the
teams.

Table 20 summarizes the need for new boundary spanning activities in embedded
software companies employing ASD, which would avoid interaction challenges and
would, therefore, improve speed.
Table 20. Comparison between embedded and pure software development according to current literature.
The black cells with “x” show that we need novel spanning activities in the areas on the left column due to
specific contextual factors.

 Contextual
 Factor
Area

Reuse Product Dev. Customer Other
disciplines

Architecture x
Processes x x
Shared responsibilities x

Expectations x x

6.5.4 Limitations and Threats to validity

This study has limitations: the ordinal data gained by the close- ended questions is
based on the employees’ perception about the presence of the issues in their unit or in
other units, which cannot be considered a precise measurement. However, we have
used appropriate statistical tools such as cross-tabulation and Chi-square analysis of
distribution. Randomization of the sample cannot be completely assured, since the
respondents have been conveniently selected by the companies themselves. However,
we have explicitly recommended our contacts in the companies not to influence their
choice.

The qualitative information is based on employees’ statements and may be biased.
However, the statements don’t usually conflict with each other. On the contrary, the
codes are often supported by quotations from several respondents and from several
cases. Moreover, we have mainly discussed and drawn conclusions on factors that were
strongly recognized, minimizing the possibility errors. The hypothesis and suggestions

 91

for improvements have been selected among the most cited improvements coded
during qualitative analysis.

We consider the threats to validity as presented in [63] and [118]. Possible threats to
construct validity are: evaluation apprehension, mono-operation bias and background
influence. We have handled these with the anonymity of the respondents, collecting
data from three companies and we made sure that the respondents represented several
roles, from managers to programmers. We limited the threats to conclusion validity
such as instrumental flaws and influence posed on the subjects by running pre-tests
with colleagues from academia and contacts in industries. As for internal validity, each
respondent has taken the survey just once, while boredom was avoided by the
possibility of interruption and continuation in a later moment. As for external validity
(generalizability), the chosen cases allow us to generalize some of the factors and
activities with respect to the commonalities in their contexts. By studying three cases
we have partially limited external validity.

6.5.5 Other Related Work

Lindvall et al. [16] collected experiences from large companies (similar setting) in
order to study the integration of ASD with standard processes already in place. The
focus was in tailoring XP to suit the standard process and quality management. Under
the category of “Cross-team communication support” the authors mention the presence
of challenges in inter-team communication as an open issue. We have found more
challenges and studied them in depth.

Karlström and Runeson studied the application of XP in stage-gate project
management [101]. They conclude that such combination is feasible, but the agile team
should interface with the gates, while at the same time the project management should
adapt to support informal communication and documentation with the XP team. This is
in line with our results: agile teams need spanning activities with product management
and system responsible. The study [101] adds the suggestion, for the agile team, to
adapt to the stage-gate model to coordinate with other teams.

Kettunen and Laanti [90] studied the large-scale organizational agility and proposed
a framework for a company to embed an agile software project in a successful way. In
the paper, the authors stress the need for an external process adaptable to the agile
team, which confirmed our findings. However, the paper is not focused on other
interactions that we have studied.

The paper by Lee [119] is an experience report on transitioning Large-scale project
into agile. However, the paper is mainly focused on the intra-team perspective. As for
the inter-team interactions, the authors propose an agile method for mail management
and discuss the competition occurring among teams as a result of the introduction of
metrics for assessing ASD.

On the basis of a literature review on ASD, Turk, France and Rumpe give their
perception about the limitations of ASD [89]. They mention Limited support for
building reusable artifacts, describing the importance of reuse practices, which bring
especially long-term benefits. However, the authors don’t investigate the issue in depth
and don’t provide any guideline. Our work focuses on this problem and analyzing the
inter-group interaction factors related to it.

In [94] the focus is similar to ours, but the study has been carried out in one
organization with several context, performing qualitative data analysis, while we have
surveyed the challenges also in a more quantitative way in order to have a prioritized
list of the most important ones. Moreover, we have studied specific interaction
challenges related to several kinds of speed, which is not included in the scope of [94].

 92

In [120] the authors present a set of interaction practices for Global Software
Development. However, the study is not related to ASD. Some practices may be used
to ease the factors studied in our paper, but such practices need to be adapted to an
ASD environment.

6.6 CONCLUSION
In this paper we have studied inter-group interaction challenges influencing business

goals dependent on speed. In particular, we have been focusing on large companies
developing embedded software and employing Agile Software Development. We have
thoroughly investigated the problem with a two-year case-study involving three large
companies and several employees with different roles. We have employed both
qualitative and quantitative research methods, with the aim of supporting the claims
with a high degree of evidence triangulation.

We have studied 23 interaction challenges (Figure 28), most of which have been
strongly recognized by the practitioners and they have been regarded as widespread in
the companies (Table 14). Our results help practitioners in selecting targets for
investing resources and provide guidelines for further research (RQ1, RQ2).

We have shown the relationship between challenges and different contexts, which
warns practitioners about known issues in applying ASD in specific contexts, such as
embedded software development and companies developing product lines (Table 20).
The main result is the recognition of the need for implementing more boundary
spanning activities for specific areas (RQ4). Especially in cases like company B, where
reuse is an imperative business goal (replication speed) and has to be combined with
the presence of multiple, non-synchronized customers, spanning activities need to be
employed to mitigate the challenges between projects. Also, we have showed the
different views among the roles on some factors, which reveal possible existing
conflicts or lack of awareness about some issues.

Although we have explicitly asked the practitioners to share the best practices in use,
we could see how many interaction challenges still miss a suitable solution, especially
across specific critical boundaries (Figure 29). We build our results on top of existing
research in coordination theory, and we provide guidelines by highlighting which
organizational boundaries are needed for improving critical development areas (Table
20) and with which frequency (e.g. each iteration, project etc.). The results underline
the importance of further research for defining new spanning activities, objects and
coordinators to mitigate interaction challenges hindering speed in embedded software
development combined with ASD (RQ3, RQ4).

Our future research is aimed at developing a framework including activities, roles
and objects that would fill the gap recognized in this study. We are currently
investigating the development of such framework in collaboration with several large
companies.

 93

7 ARCHITECTURAL TECHNICAL DEBT MANAGEMENT:
TRADE-OFFS FOR AMBIDEXTERITY

Architecture Technical Debt is regarded as sub-optimal architectural solutions taken
to improve short-term responsiveness but that would hinder long-term responsiveness.
This chapter aims at improving software management by shedding light on the current
factors responsible for the accumulation of Architectural Technical Debt and to
understand how it evolves over time. We conducted an exploratory multiple-case
embedded case study in 7 sites at 5 large companies. We evaluated the results with
additional cross-company interviews and an in-depth, company-specific case study in
which we initially evaluate factors and models.

We compiled a taxonomy of the factors and their influence in the accumulation of
Architectural Technical Debt, and we provide two qualitative models of how the debt is
accumulated and refactored over time in the studied companies. We also list a set of
exploratory propositions on possible refactoring strategies that can be useful as insights
for practitioners and as hypotheses for further research. We conclude how several
factors cause constant and unavoidable accumulation of Architecture Technical Debt,
which leads to development crises. Refactorings are often overlooked in prioritization
and they are often triggered by development crises, in a reactive fashion. Some of the
factors are manageable, while others are external to the companies. ATD needs to be
made visible, in order to postpone the crises according to the strategic goals of the
companies. There is a need for practices and automated tools to proactively manage
ATD.

This chapter has been accepted for publication as:

Martini A., Bosch J., and Chaudron M. “Investigating Architectural Technical Debt
Accumulation and Refactoring over Time: a Multiple-Case Study” Information and
Software Technology, in press [121].

7.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and the
delivery of a solution. The trend in the last decade has been the employment of Agile
Software Development (ASD) [6]. At the same time, the responsiveness in the short-
term deliveries should not lead to less responsiveness in the long run. To illustrate such
a phenomenon, a financial metaphor has been coined, which relates taking sub-optimal
decisions in order to meet short-term goals to taking a financial debt, which has to be
repaid with interests in the long term. Such a concept is referred as Technical Debt
(TD), and recently it has been recognized as a useful basis for the development of
theoretical and practical frameworks [38]. Tom et al. [33] have explored the TD
metaphor and outlined a first framework in 2013. Part of the overall TD is to be related
to architecture sub-optimal decisions, and it’s regarded as Architecture Technical Debt
(ADT) [31]. More precisely, ATD is regarded as implemented solutions that are sub-
optimal with respect to the quality attributes (internal or external) defined in the desired
architecture intended to meet the companies’ business goals.

ATD has been recognized as part of TD in a recent (2015) systematic mapping study
on TD [31]. However, such study highlights several deficiencies in the current body of
knowledge: lack of reliable industrial studies, lack of focus on architecture anti-patterns
and lack of studies involving the whole TD management process. In this paper we aim
at filling such current gaps by investigating, in several companies, the overall

 94

phenomenon of accumulation and refactoring of ATD. The study of such subject would
also contribute to ASD frameworks, by highlighting activities for enhancing agility in
the task of developing and maintaining software architecture in large projects [5].

In the context of large-scale ASD, our research questions are:

RQ1: What factors cause the accumulation of ATD?

RQ2: How is ATD accumulated and refactored over time?

RQ3: What possible refactoring strategies can be employed for managing ATD?

In this paper we have employed a 18 months long, multiple-case study involving 7
different sites in 5 large Scandinavian companies in order to shed light on the
phenomenon of accumulation and refactoring of ATD. We have analyzed the
qualitative data obtained from more than 50 hours of formal interviews complemented
with continuous informal meetings with key roles involved in the architectural work,
using a combination of inductive and deductive approach proper of Grounded Theory.
We have qualitatively developed and evaluated a taxonomy of the factors to inform
RQ1 and a set of models to inform RQ2. We have also derived some preliminary
conclusions on which refactoring strategies can be applied and what effects they have
to inform RQ3.

The main contributions of the papers are:

• A taxonomy of the causes for ATD: we present the factors for the explanation of the
phenomena such as accumulation and refactoring of ATD. These factors might be
studied and treated separately, and offer a better understanding of the overall
phenomenon.

• Two qualitative models of the trends in accumulation and refactoring of ATD over
time.

o Crisis model – Shows the strictly increasing trend of ATD accumulation and
how it eventually reaches a crisis point. We describe the evidences related to
the occurrence of the crisis point and we connect such phenomenon to the
different factors and their influence on the accumulation.

o Phases model – Shows when ATD is currently accumulated and refactored
during different software development phases. It helps identifying problem
areas and points in time for the development of practices that would 1) avoid
accumulation of ATD and/or 2) ease the refactoring of ATD. Such practices
would be aimed at delaying the crisis point.

• Possible refactoring strategies: we analyze how different refactoring strategies might
lead to best- and worst-case scenarios with respect to crisis points.

• A detailed description of an additional and in-depth industrial case, which
contributes to empirically evaluate the factors and to analyze the relationships
among them in a specific context.

7.2 ARCHITECTURE AND TECHNICAL DEBT

7.2.1 Definition of ATD

ATD is regarded [33] as “sub-optimal solutions” with respect to an optimal
architecture for supporting the business goals of the organization. Specifically, we refer
to the architecture identified by the software and system architects as the optimal trade-
off when considering the concerns collected from the different stakeholders. In the rest
of the paper, we call the sub-optimal solutions inconsistencies between the
implementation and the architecture, or violations, when the optimal architecture is

 95

precisely expressed by rules (for example for dependencies among specific
components). However, it’s important to notice that (in our studied cases) such optimal
trade-off might change over time, as explained in this paper, due to business evolution
and to information collected from implementation details. Therefore, it’s not correct to
assume that the sub-optimal solutions can be identified and managed from the
beginning. Examples of ATD are visible in [42].

7.2.2 Previous research on ATD

The term Technical Debt (TD) has been first coined at OOPSLA by W. Cunningham
[32] to describe a situation in which developers take decisions that bring short-term
benefits but cause long-term detriment of the software. The term has recently been
further studied and elaborated in research: in 2013 Tom et al. [33] conducted an
exploratory case study technique that involves multi-vocal literature review,
supplemented by interviews, in order to draw a first categorization of TD and the
principal causes and effects. In such paper we can find the first mentioning of
Architectural Technical Debt (ATD, categorized together with Design Debt). A further
classification can be found in Kruchten et al. [38], where ATD is regarded as the most
challenging TD to be uncovered since there is a lack of research and tool support in
practice. Finally, ATD has been further recognized in a recent systematic mapping [31]
on TD. Such recent research highlights the gap in the current scientific knowledge,
which gives us the motivation for this work.

7.2.3 Previous research on management of TD

Some studies have been conducted on the management of TD, also supported by a
dedicated workshop (MTD), usually co-located with premium conferences, such as
ICSE and ICSME.

A first roadmap has been created in 2010 by Brown et al. [34]. In 2011 Guo et al.
proposed an initial portfolio approach with the creation of TD items. The same authors
proposed a further empirical study on tracking TD [35] Seaman et al. identified the
theoretical importance of TD as risk assessment tool in decision making [36]. TD has
also been used for defining part of a method for assessing software quality, SQALE
[37]. Such model has been also implemented in a tool, but the main support is currently
given on a source code level (very limited on the ATD aspect).

7.2.4 Models for technical debt

The studies in TD are quite recent, and the subject is not mature. Some models,
empirical [39] or theoretical [40] have been proposed in order to map the metaphor to
concrete entities in software development. We use, in this paper, a conceptual model
comprehending the main components of TD:

7.2.4.1 Debt

The debt is regarded as the actual technical issue. Related to the ATD in particular,
we consider the ATD item as a specific instance of the implementation that is sub-
optimal with respect to the intended architecture to fulfill the business goals. For
example, a possible ATD item is a dependency between components that is not allowed
by the architectural description or principles defined by the architects. Such
dependency might be considered sub-optimal with respect to the modularity quality
attribute [41], which in turn might be important for the business when a component
needs to be replaced in order to allow the development of new features.

 96

7.2.4.2 Principal

It’s considered the cost for refactoring the specific TD item. In the example case
explained before, in which an architectural dependency violation is present in the
implementation, the principal is the cost for reworking the source code in order to have
the dependency removed and the components not being dependent from each other.

7.2.4.3 Interest

A sub-optimal architectural solution (ATD) might cause several effects (for
example, as described in [42]), which have an impact on the system, on the
development process or even on the customer. For example, having a large number of
dependencies between a large amount of components might lead to a big testing effort
(which might represent only a part of the whole interest in this case) due to the spread
of changes. Such effect might be paid when the features delivered are delayed because
of the extra time involved during continuous integration. In this paper, we treat
accumulation and refactoring of ATD as including both the principal and the interest.

7.2.5 The time perspective

The concept of TD is strongly related to time. Contrarily to having absolute quality
models, the TD theoretical framework instantiates a relationship between the cost and
the impact of a single sub-optimal solutions. In particular, the metaphor stresses the
short-term gain given by a sub-optimal solution against the long-term one considered
optimal. Time wise, the TD metaphor is considered useful for estimating if a technical
solution is actually sub-optimal or might be optimal from the business point of view.
Such risk management practice is also very important in the everyday work of software
architects, as mentioned in Kructhen [43] and Martini et al. [44]. Although research has
been done on how to take decision on architecture development (such as ATAM,
ALMA, etc. [45]), there is no empirical research about how sub-optimal architectural
solutions (ATD) are accumulated over time and how they can be continuously
managed.

7.3 RESEARCH DESIGN
We preformed a 18-monhts long, multiple-case, embedded case study involving 7

Scandinavian sites in 5 large international software development companies. We
decided to collect data from many large companies (multiple-case), in order to increase
the degree of source triangulation [63]. The reasons for conducting an embedded study
(including more than one case within the same context, see company C in the “Case
description” section) was to maximize the number of evidences and to strengthen the
internal validity of the results with respect to the chosen company.

The nature of the study was exploratory, since the lack of previous literature
focusing on the specific research problem. Therefore, we wanted to maximize the
coverage of possible software companies within the boundaries defined by the key
characteristics of large and Agile, in order to capture as many ATD items experienced
by the companies, but at the same time having the opportunity to dig out as many
details from the context as possible. The research design is outlined in Figure 30. In
such picture, we show phases of data collection (black boxes), data analysis (white
rectangles), results (grey ellipses) and the variable used for axial coding (Relationship
over time). The arrows, where not explicitly specified, represent the flow of
information from an activity to a specific result or vice-versa.

 97

!!!

Legend:!!

Open!

coding!

Factors!for!

accumula6on!

of!ATD!

Axial!

coding!

Time!models!of!

accumula6on!

and!recovery!

Refactoring!

effects!and!

priori6za6on!

Phase!I:!

Preliminary!

Study!

Phase!II:!

Exploratory!

Interviews!

Crisis!points!

M
o6
va
6o
n!

Valida6on!

Data!

Collec6on!

Data!

analysis!

Results!

Need!for!ATD!

Priori6za6on!

ATD!Items!

(Classifica6on)!

Variables:!!

•  Rela6onships!

over!6me!!

deduc6ve!approach!

Variable!

Valida6on!

deduc6ve!approach,!

model!applica6on,!

category!satura6on!

Confirmatory!

empirical!evidences!

Factors!

rela6onships!

Phase!III:!

Valida6on!

Interviews!

and!Ar6facts!

Analysis!

Phase!IV:!

CompanyO

Specific!CaseO

Study!

Figure 30 Our Research design

We conducted a first explorative study (phase I), followed by retrospective sessions
(phase II), a set of cross-company evaluative interviews (phase III) and finally a
follow-up case-specific study (phase IV). The retrospective sessions started by the most
effortful events faced by the companies in the recent past and tracking them to the
source of the problem, which in some cases would lead to ATD items accumulated in
the system. Since retrospective studies usually provide, as a results of the data
collection, more emphasis on the challenges currently faced by the interviewees, we
included organizations being in different phases of the development, which would
experience different occurrences of ATD instances. For example, one organization was
currently experiencing a crisis, while others where in the middle of big refactorings and
others where mainly focused in feature development.

7.3.1 Case Description

7.3.1.1 Companies description

Company A carried out part of the development out by suppliers, some by in-house
teams following Scrum. The surrounding organization follows a stage-gate release
model for product development. Business is driven by products for mass customization.
The specific unit studied provides a software platform for different products. The
internal releases were short but needed to be aligned, for integration purposes, with the
stage gate release model (several months).

In company B, teams work in parallel in projects: some of the projects are more
hardware oriented while others are related to the implementation of features developed
on top of a specific Linux distribution. The software involves in house development
with the integration of a substantial amount of open source components. Despite the
Agile set up of the organization, the iterations are quite long (several months), but the
company is in transition towards reducing the release time.

Customers of Company C receive a platform and pay to unlock new features. The
organization is split in different units and then in cross-functional teams, most of which
with feature development roles and some with focus on the platform by different
products. Most of the teams use their preferred variant of ASD (often Scrum). Features
were developed on top of a reference architecture, and the main process consisted of a

 98

pre-study followed by few (ca. 3) sprint iterations. The embedded cases studied slightly
differed: C3 involved globally distributed teams, while the other units (C1 and C2)
teams were mostly co-located.

Company D is a manufacturer of a product line of embedded devices. The
organization is divided in teams working in parallel and using SCRUM. The
organization has also adopted principles of software product line engineering, such as
the employment of a reference architecture. Also in this case, the hardware cycle has an
influence

Company E is a company developing software for calculating optimized solutions.
The software is not deployed in embedded systems. The company has employed
SCRUM with teams working in parallel. The product is structured in a platform
entirely developed by E and a layer of customizable assets for the customers to
configure. E supports also a set of APIs for allowing development on top of their
software.

7.3.1.2 Commonalities and differences in the studied companies

 All the companies have adopted a component based software architecture, where
some components or even entire platforms are re-used in different products. The
language that is mainly used is C and C++, with some parts of the system developed in
Java and Python. Some companies use a Domain Specific Language (DSL) to generate
part of their source code.

All the companies have employed SCRUM, and have a (internal) release cycle based
on the one recommended in SCRUM. However, the embedded companies (A-D)
depend on the hardware release cycles, which influence the time for the final
integration before the releases. Therefore, some of the teams have internal, short
releases and external releases according to the overall product development.

7.3.2 Data collection

We have employed a 4-phase investigation of the ATD items and effects. The four
phases (black boxes) and their results (the outcome of the phases, highlighted with
arrows connected to elliptic boxes) are visible in Figure 30. Table 21 shows several
properties of our data collection: for each phase (explained in details below), the total
number of participants, the total amount of hours recorded from the interviews, the
number of sessions, if the sessions were company-specific or cross-company and which
roles were part of the investigation.

We have conducted a case-study following the guidelines in [63]. We relied
especially on semi-structured interviews supported, when possible, by existing
architecture documentation in order to provide multiple sources of evidence. Interviews
with the architects assured the best representation of the desired architecture for the
given case, since the existing documentation was usually not updated or not sufficient
for analyzing if ATD was in place. Causes and effects related to the ATD also needed
to be reported by the employees directly involved in the case studied. We have asked
about possible archival data to analyze, for example source code commits and project
data, but we have not found reliable measures to track the extra-effort (interest) related
to the studied ATD. Nevertheless, we have surveyed many different roles involved in
the studied cases, in order to be able to compare different perspectives on the same case
and to mitigate the bias related to only one reporting person.

We have not followed the Grounded Theory strategy for data saturation [55], for two
main reasons: we did not aim at a complete saturation of the categories, since we
assumed that we might have encountered different situations in different settings and
we might have never reached such status. The second reason was because we could not
afford to reach complete saturation from a resources point of view, since the interviews

 99

conceded by the companies were too limited to be used for complete saturation.
Nevertheless, we have used the principle discussed by Yin in [62], in which the balance
between resources and findings is set when the researchers obtain confirmatory
evidence of the findings. We report, in the discussion session, a table in which we show
which results can be considered confirmed and which ones need further investigation.

Phase I - We started with a preliminary study involving 3 of the abovementioned
cases, in particular A, C1, and C2, in which we explored the needs and challenges of
developing and maintaining architecture in an Agile environment in the current
companies. We organized three multiple-participant interviews at the different sites
involving several roles. The combined interviews lasted 4 hours and involved
developers, testers, architects responsible for different levels of architecture (from low
level patterns to high level components) and product managers. The results from the
first iteration were evaluated and discussed in a final one-day workshop involving 40
representatives from all the 7 cases (see Table 21).

The preliminary study showed a major challenge in managing Architectural
Technical Debt (ATD) and its economical implications related to costs and time. In
particular, the studied companies emphasized the struggle, rather than in identifying the
debt, in estimating its impact and therefore in prioritizing the items among themselves
and comparing the ATD items against features (Need for ATD prioritization in Figure
30). During such investigation, we also collected several instances of what was
recognized as “crisis points”: the companies described such crisis as occurring almost
cyclically, points in time when development was particularly slowed down or even
stopped until a refactoring took place. From the data we developed the crisis point
model explained in 7.5.1.

Phase II - In the second phase we conducted 7 sets of interviews, one set for each
company (Table 1). Each set lasted a minimum of 2 hours, and we included
participants with different responsibilities, in order to cover many aspects: the source of
ATD (developers), the architectural implications (architects and system engineers), the
prioritization decisions taken (product owners) and also the stakeholders of the effects
(we included also testers and developers involved in maintenance projects when
assigned to a dedicated project).

The formal interviews were also complemented with the preliminary study of
software architecture documentation for each case, to which we could map the
mentioned ATD items. The collaboration format allowed the researchers to conduct ad
hoc consultations, several hours of individual and informal meetings with the chief
architects (at least one per company) responsible for the documentation and the
prioritization of ATD items. Such activity was conducted especially for further
explanations, follow-up questions and evaluation of the developed models. The main
rationale for meeting with architects was that they are the main stakeholders involved
in the prioritization of ATD, both for their prioritization with respect to the teams’
backlogs, but also for their prioritization “against” the features with the product
owners.

Each set of interviews followed a process designed to identify important architecture
inconsistencies (ATD) that needed to be tracked because of their impact in decreasing
developing time. We started with a plenary session where we briefly introduced what
ATD is, using references from several sources included in this paper (e.g. the purpose
of tracking ATD, [36]), which were also provided to the informants in advance. We
took a retrospective approach, in order to identify real cases happened in the recent past
rather than rely on speculations about what could happen in the future:

• we asked about major refactorings and high effort perceived during feature
development or maintenance work leading to architecture inconsistencies

• we investigated the causes for the identified inconsistencies (ATD).

 100

• we asked to explain the current process of identification of architecture
inconsistency.

• we asked how the ATD refactoring was prioritized. In particular, we asked when
it was prioritized as important or when it was postponed and not included in the
next development plan (in the following, we will refer to these two cases as high-
prioritized or low-prioritized refactoring).

The strength of this technique relies on finding the relevant (more costly)
architecture inconsistencies (ATD) by identifying their worst effects first, instead of
listing a pool of all the possible inconsistencies and then selecting the relevant ones.
We have found no other studies applying such “reverse” technique, which add
methodological novelty to the current results.
Table 21 Data collection: in the table is possible to see the various phases, each of which included a
number of participants covering different roles, either from one specific company or from several
companies. The table also shows how many sessions have been conducted for each phase, and how many
total hours the sessions lasted.

Phases of
data
collection

Number of
participants

Total of hours
recorded

Number of
sessions

Companies
involved in
each session

Roles involved

Phase I
(Preliminary
interviews)

25 12 3 Company-
specific

Developers, architects,
testers, line managers,
Scrum m.

Phase I
(Evaluation
workshop)

40 4 1 Cross-
company

Developers, architects,
line managers

Phase II
(group
interviews)

26 14 7 Company-
specific

Developers, architects,
product owners

Phase II
(Evaluation
workshop)

10 3 2 Cross-
company

Architects, line
managers

Phase III
(Evaluation
interviews 1)

10 4 1 Cross-
company

Architects, product
owners

Phase III
(Evaluation
interviews 2)

12 4 1 Cross-
company

Architects, developers,
scrum masters

Phase III
(Evaluation
workshop)

20 4 2 Cross-
company Architects

Phase IV
(Detailed
case-study)

7 6 3 Company-
specific

System architect,
software architect,
scrum master,
developers

Informal
interaction 7 NA NA Company-

specific
Software and system
architects

Phase III - The third phase consisted of two evaluation activities: we organized 3
multiple-company group interviews, including all the roles involved in the
investigation, developers, architects and product owners, where we showed the models
for their recognition and improvement. For example, we proposed the crisis model and
we asked, when recognized, to strengthen the model with further concrete and real
examples. For example, in one case we could see (but we cannot report the picture for
confidentiality reasons) the burn-down chart for feature development “abnormally
interrupted” due to the crisis point. We also included, where possible, the analysis of
artifacts such as lists of Technical Issues or Architectural Improvement identified
within the company. Such deductive procedure strengthened the inductive process

 101

employed in the first and second phases, leading to category saturation, an important
prerequisite for the development of grounded theories.

As a further evaluation step we organized 2 plenary workshops with around 20
participants also from 2 other large companies not previously participating in the study,
in order to further strengthen the external validity of the results.

Phase IV - Finally, we followed-up the workshop with a company-specific case
study. By studying a concrete example in-depth, we aimed at mapping the factors to a
typical example and understanding the relationships among the different factors for the
specific context. Such technique is recognized as one of the most effective in
qualitative research [62], [63] and is called pattern matching. In order to study such
case, we set up a 2-hour interview with the system architect, the software architect and
the scrum master of the involved team. We then followed-up with some team members,
4 developers together with the scrum master. We specifically studied the context of the
case described here as C2. Rather than showing the model to the participants in
advance, we preferred to start the investigation from the narrative of a recent ATD case
causing effort. We then proceeded with asking specific questions in order for the
researchers to recognize the factors and to understand their relationships, in order to
match the previously identified patterns. The difference between this case and the ones
collected during Phase II consists of the level of details. In this case, we didn’t aim at
having a collection of cases but rather at gaining as many details as possible in order to
provide a better understanding of the specific case.

7.3.3 Data analysis

The workshops were recorded and transcribed. The analysis was conducted
following an approach based on Grounded Theory [55].

Antonio&Mar*ni&+&PhD&student&in&So4ware&
Engineering&

Quota*ons&

Codes&Categories&

The&number&represents&the&transcrip*on&doc&to&which&the"a*on&is&
linked:&for&example,&“non+completed&refactoring”&has&been&cited&six&*mes:&

three&in&case&2,&one&in&case&6&and&two&*mes&in&case&7&

Figure 31 Screenshot of the QDA tool and the chain of evidences

Given the exploratory nature of our study and the need to develop novel concepts
and theories about ATD, we opted for using the following methods, frequently
employed for the analysis of large amount of semi-structured, qualitative data

 102

representing complex combinations of technical and social factors. The analysis
followed the steps highlighted in Figure 30.

Open Coding – In phases I and II (the exploratory ones) the first step was to analyze
the data in search for emergent concepts following open coding, which would bring
novel insights on the analyzed issue. For example, we did not know in advance that
non-completed refactoring would lead to new ATD. Without the open coding but just
looking for predefined categories would have probably caused us to miss this novel
concept. Then we categorized the codes using the taxonomies developed during the
pre-study. For example, we used causes as a pre-defined category. Codes within the
same category were also grouped in order to create concepts: for example, within the
causes categories we have found 34 codes, which were grouped in higher level codes
(or concepts), which are represented in the factors outlined in section 7.4.

We used a Qualitative Data Analysis (QDA) tool for open coding, atlas.ti. Such tool
gives support to keep track of the links between categories, codes and the quotations
they are grounded to (providing, as recommended in [63] a chain of evidence). A
screenshot with explanations is reported in Figure 31, showing the elements used in the
analysis (quotations, codes and categories) and how they are connected through the
tool. The initial codes were 144, of which 97 were selected as relevant for the RQs in
this paper. We then merged the redundant codes and filtered them by their
groundedness (based on how many quotation they were based on), selecting only the
ones that had at least 2 quotations (i.e., having confirmatory evidences): the final
number of codes is 38 [79]. The predefined categories were decided by the three
authors altogether. The open coding was performed by the first author, and the codes
were checked by the other authors periodically.

Axial Coding – The codes and categories were compared through axial coding in
order to highlight connections orthogonal to the previous developed categories. Since
ATD is strictly connected with time, we have used the time as axis for axial coding.
The aim was to understand relationships (e.g. causality, dependencies, etc.) among the
factors. This step showed the presence of sequences or patterns of accumulation factors
for ATD over time. In particular, such analysis produced the model for accumulation
and refactoring of ATD explained in section 7.5, and the same analysis on the in-depth
case study was done to conduct pattern matching with evaluation purposes (see section
7.7.2). The axial coding was carried out by the first author supervised by the second
author, while the third author checked the results.

For this research activity, we needed a tool for visualizing the factors and the
refactoring of ATD over time. We therefore exported the related codes and concepts
from Atlas.ti into Microsoft PowerPoint, which allows the easy creation of a graphical
timeline. In order to place the factors on the timeline, we used the time information
contained in the quotations linked to the factors: for example, the informants mentioned
that the uncertainty about the use cases was present in the beginning of the
development and that the urgency was present especially when close to a release. Some
of the factors, for which there was no specific time but they were mentioned as being
always on going, we represented them as spanning from the development start to the
release. As for those factors that were not bound to time but were happening in an ad-
hoc fashion (for example, non-completed refactoring) were omitted in the model since
they were not part of a recurrent pattern. The same approach was used for the concepts
related to the prioritization of ATD refactoring: for example, the quotations from the
informants usually reported the refactoring as postponed with respect to the release.
Therefore we represented the refactoring activities as the decrement of ATD happening
after the release point. The outcome of axial coding, the model of accumulation and
refactoring over time, is visible in Figure 33.

 103

Deductive Approach – We performed deductive analysis especially for evaluation
purposes, but also in order to relate two different models. For example, after the open
coding analysis phase, the factors and the models were deductively checked against the
overall model of crisis point, developed and evaluated during the first phase of the
research in order to understand if detailed models could fit and explain the overall one.
This last analysis step showed the results in 7.5.2.

In particular, we projected the model showed in Figure 33 over a longer time span,
taking three cases with respect to three different refactoring strategies: when all the
ATD is removed, when ATD is partially removed and when is not removed at all
(Figure 34, Figure 36, Figure 37). Then we have related these three options with
respect to the crisis point model in Figure 32. The outcome of the projection combined
with the crisis point model led to the hypothesis described in Figure 38, where different
refactoring strategies would lead to different crisis points.

The deductive approach was also used during interviews in the evaluation phase III,
when we used the models for eliciting concrete cases to confirm (or reject) the
inductively obtained hypothesis made during phases I and II. An example can be found
in section 7.7.2.1, where we report concrete quotes answering the evaluation questions
on the Crisis Model.

In phase IV, the deductive approach was used during data collection, when we were
asking questions in order to recognize, in the in-depth case study, the factors found in
phase I and II. More specifically, we have used the pattern matching analytical strategy
recommended in [62]. Such strategy is used to verify the existence of previously
formulated patterns (hypotheses) after a new collection of data. In our cases, we used
the models obtained by the data collection conducted during phase I and II as pattern
tests to be used during phase IV to reveal the pattern. This kind of evidence contributed
in evaluating the formulated models (with different strength for different results, as
explained in 7.7.2). In this case we used a similar practical approach used for Axial
Coding, placing the factors in a timeline. This way, we had two similar (with the same
factors over time) models to compare, one from the inductive analysis of phases I and
II and one from the case study: the comparison would lead to the matching (or not) of
the found patterns.

7.3.4 Factors and models evaluation

As explained in Figure 30 we conducted two steps of evaluation (phase III and IV).
The crisis point model (outlined in 7.5.1 was developed during phase I. It was
qualitatively evaluated during phase II, where all the informants recognized the model
as representing the facts in their company. During phase III and IV we also probed the
crisis model by asking more precise questions on the evidence of such a crisis model.
In one case, the participants showed us a burn-down chart for feature development
“abnormally interrupted” (citing from the whiteboard) due to the crisis. Unfortunately,
we cannot report the actual source for confidentiality reasons.

The models for accumulation and refactoring of ATD were developed in phase II
and took as input the deductive model about the crisis point developed previously. The
new models were then evaluated during the evaluation workshop of phase II and during
phase III.

The factors were evaluated both during phase III and by pattern matching during to
the in-depth case studied in phase IV. Such technique is recognized as one of the most
effective in qualitative research [62], [63].

 104

7.3.5 Models of Accumulation and Refactoring of Architecture Technical Debt

We have divided the results in four parts: first we highlight the causes for ATD
accumulation (factors). Then we use such factors to describe a model for accumulation
and refactoring of ATD over time. We then narrate in a chronological sequence of
events an additional industrial case, which shows the factors and their relationships
over time. We finally show results from the evaluation process of the factors and
models, both with quotations and matched pattern.

7.4 CAUSES OF ATD ACCUMULATION (FACTORS)

7.4.1 Business factors

7.4.1.1 Business evolution creates ATD

The amount of customizations and new features offered by the products brings new
requirements to be satisfied. Whenever a decision is taken to develop a new feature or
to create an offer for a new customer, instantaneously the desired architecture changes
and the ATD is automatically created. The number of configurations that the studied
companies need to offer simultaneously seems to be growing steadily. If for each
augmentation of the product some ATD is automatically accumulated when the
decision is taken, the same trend of having more configurations over time implies that
the corresponding ATD is also automatically accumulated faster.

7.4.1.2 Uncertainty of use cases in early stages

The previous point a) also suggests the difficulty in defining a design and
architecture that has to take in consideration a lot of unknown upcoming variability.
Consequently, the accumulation of inconsistencies towards a “fuzzy” desired
design/architecture is more likely to take place in the beginning of the development (for
example, during the first sprints).

7.4.1.3 Time pressure: deadlines with penalties

Constraints in the contracts with the customers such as heavy penalties for delayed
deliveries make the attention to manage ATD less of a priority. The approaching of a
deadline with a high penalty causes both the accumulation of inconsistencies due to
shortcuts and the low-prioritization of the necessary refactoring for keeping ATD low.
The urgency given by the deadline increases with its approaching, which also increases
the amount of inconsistencies accumulated.

7.4.1.4 Priority of features over product architecture

The prioritization that takes place before the start of the feature development tends to
be mainly feature oriented. Small refactorings necessary for the feature are carried out
within the feature development by the team, but long-term refactorings, which are
needed to develop “architectural features” for future development, are not considered
necessary for the release. Moreover, broad refactorings are not likely to be completed
in the time a feature is developed (e.g. few weeks). Consequently, the part of ATD that
is not directly related to the development of the feature at hand is more likely to be
postponed

7.4.1.5 Split of budget in Project budget and Maintenance budget boosts the accumulation of debt.

According to the informants, the responsibility associated only with the project
budget during the development creates a psychological effect: the teams tend to
accumulate ATD and to push it to the responsible for the maintenance after release,
which rely on a different budget.

 105

7.4.2 Design and Architecture documentation: lack of specification/emphasis on critical
architectural requirements

Some of the architectural requirements are not explicitly mentioned in the
documentation. This causes the misinterpretation by the developers implementing code
that is implicitly supposed to match such requirement. According to the informants,
this is also threatening the refactoring activity and its estimation: the refactoring of a
portion of code for which requirements were not written (but the code was “just
working”, implicitly satisfying them) might cause the lack of such requirements
satisfaction.

As an example, three cases have mentioned temporal-related properties of shared
resources. A concrete instance of such a problem is a database, and the design
constraint of making only synchronous calls to it from different modules. If such
requirement is not specified, it may happen that the developers would ignore such a
constraint. In one example made by the informants, the constraint was violated in order
to meet a performance requirement important for the customer. This is also connected
with the previous point 1.d.

7.4.3 Reuse of Legacy / third party / open source

Software that was not included when the initial desired architecture was developed
contains ATD that needs to be fixed and/or dealt with. Examples included open source
systems, third party software and software previously developed and reused. In the
former two cases, the inconsistencies between the in-house developed architecture and
the external one(s) might pop up after the evolution of the external software.

7.4.4 Parallel development

Development teams working in parallel automatically accumulate some differences
in their design and architecture. The Agile-related empowerment of the teams in terms
of design seems to amplify this phenomenon. An example of such phenomenon
mentioned as causing efforts by the informants are the naming policy. A name policy is
not always explicitly and formally expressed, which allows the teams to diverge or
interpret the constraint. Another example is the presence of different patterns for the
same solution, e.g. for the communication between two different components. When a
team needs to work on something developed by another team, this non-uniformity
causes extra time.

7.4.5 Uncertainty of impact

ATD is not necessary something limited to a well-defined area of the software.
Changing part of the software in order to improve some design or architecture issues
might cause ripple effects on other parts of the software depending on the changed
code. Isolating ATD items to be refactored is difficult, and especially calculating all the
possible effects is a challenge. Part of the problem is the lack of awareness about the
dependencies that connect some ATD to other parts of the software. Consequently,
there exists some ATD that remains unknown.

 106

Figure 32 Crisis point model

7.4.6 Non-completed Refactoring

When refactoring is decided, it’s aimed at eliminating ATD. However, if the
refactoring goal is not completed, this not only will leave part of the ATD, but it will
actually create new ATD. The concept might be counter-intuitive, so we will explain
with an example. A possible refactoring objective might be to have a new API for a
component. However, what might happen is that the new API is added but the previous
one cannot be removed, for example because of unforeseen backward compatibility
with another version of the product. This factor is related to other two: time pressure
might be the actual cause for this phenomenon, when the planned refactoring needs to
be rushed due to deadlines with penalties (see 1.c) and the effects uncertainty (see 5),
which causes a planned refactoring to take more time than estimated because of effects
that have been overlooked when the refactoring was prioritized.

7.4.7 Technology evolution

The technology employed for the software system might become obsolete over time,
both for pure software (e.g. new versions of the programming language) and for
hardware that needs to be replaced together with the specific software that needs to run
on it. The (re-)use of legacy components, third party software and open source systems
might require the employment of a new or old technology that is not optimal with the
rest of the system.

7.4.8 Lack of knowledge

Software engineering is also an individual activity and the causes for ATD
accumulation can also be related to sub-optimal decision taken by individual
employees due to:

7.4.8.1 Inexperience

New employees are more subjected to accumulating ATD due to the natural non-
complete understanding of the architecture and patterns.

7.4.8.2 Lack of domain knowledge

This factor might be related to the previous one, or, as the informants mentioned, to
the generalization of Agile teams, which might need to develop a feature accessing a
complex component of which they don’t have expertize.

ATD
$acc

um
ula

*on
$

Crisis$point$

AmountofBusiness$value$

decreasing$ ATD
$acc

um
ula

*on
$

Refactoring$

Time$

AT
D$
ac
cu
m
ul
at
ed

$

AmountofBusiness$value$

decreasing$

 107

7.4.8.3 Ignorance.

Lack of knowledge about where the architectural rules are stored (documentation).

7.4.8.4 Carelessness

Lack of awareness of the importance of architecture. A recurrent statement from the
informant is that having documentation is not enough to avoid having architecture
violations.

7.5 ATD ACCUMULATION AND REFACTORING MODELS
Using the previously listed factors for ATD accumulation and the data on refactoring

prioritization, we modeled the evolution of ATD over time with respect to the overall
speed of adding features and to one specific release. The values in the pictures are only
aimed at visualizing the trends perceived by the informants, and they don’t represent
any exact values. We have chosen the “function” format since it would explain the
results in a more visual way.

7.5.1 Crisis-based ATD management

The current management of ATD is driven by a crisis (Figure 32). The informants
explain that the ATD usually grows (black continuous line in the picture) until the
effect makes adding new business value so slow (dashed line in the picture) that it
becomes necessary to conduct a big refactoring or even rebuilding a platform from
scratch. The usual approach is to wait for such event with limited monitoring and
limited reduction of ATD growth during development. In fact, the long-term
improvement is considered risky invested time.

7.5.2 ATD accumulation and refactoring trends during feature development

In Figure 33 we present the various phases of ATD accumulation over time, on the
left part of the graph, and the hypothetical refactoring (“complete refactoring”) of ATD
on the right, divided by different kinds of identified ATD.

7.5.2.1 Constant ATD accumulation

From the analysis of the factors, we understood that part of the ATD is constantly
accumulated over a release (grey area in Figure 33). Such part is composed by several
components described previously in section 7.4: business evolution, parallel
development and project budget are the one that are most connected with the
companies’ direct decisions, whilst other factors are external to the company (for
example, the change of an Open Source module developed by third party or the
technology evolution). Some of them might be considered as multipliers for the other
kinds of ATD, but for simplicity and for lack of more precise measures, we treat them
as constants in the graph.

 108

Figure 33 Factors of constantly accumulated ATD, phases and kinds of refactorings

7.5.3 Phases of ATD accumulation

According to the informants, when the feature development starts, there is a certain
degree of uncertainty that tends to decrease over time. Since ATD is created when there
is uncertainty (see section 7.4.1.1 and 7.4.5), the curve on the graph in Figure 33
representing ATD accumulation tends to raise in the beginning until the team has a
clearer understanding of the requirements, desired design and desired architecture
altogether. At this point, the hypothesis is that ATD accumulation would slow down.
The ATD starts again being accumulated abundantly when the urgency for meeting the
deadline shows up in the team. Urgency seems to grow constantly with the deadline
approaching, causing the level of ATD to grow accordingly. We don’t know exactly
from the data when uncertainty stops and urgency starts and if the two phases overlap.
Some informants mention a time window when the team refactors part of the ATD
needed to deliver the feature, but it’s unlikely that all the accumulated ATD is
refactored during this phase (especially the constant one). However, this seems to be a
good opportunity for refactoring in the process when the team might decide to take
care of the ATD before the release. The project budget factor (7.4.1.5) might have a
negative impact on such practice though, demotivating the team to look for such
opportunities.

7.5.3.1 Refactoring and its prioritization

Once the feature is released, there is ATD left in the system. The ideal case is that
the ATD would be completely removed by the system. However, this is not done or
even possible according to our data, for two main reasons: part of the ATD is currently
not known (see uncertainty of impact in section 7.4.5), and the refactoring is usually
only partially prioritized.

Prioritization of the refactoring depends usually on the kind of refactoring: the
refactoring needed for easing (or especially allowing) the short-term release of features
is usually prioritized and performed by the team. This is possible both because of the
immediate clear business need of it and because such ATD can be refactored by being
included in the successive feature development. Examples of such short term
improvements include small or local (not spread out in the whole system) adjustments
of patterns to allow a feature to be implemented. These characteristics are represented
in the graph by the steep slope in the curve in correspondence to short term effects. As
for the long term effects refactoring, usually it’s represented by some extensibility or

Time%

AT
D%
ac
cu
m
ul
at
ed

%

Release% Complete%Refactoring%

Uncertainty%

Opportunity%for%
refactoring%

Urgency%

Parallel%Development%

Lo
ng
%te

rm
%%

eff
ec
ts
%

Sh
or
t%t
er
m
%%

eff
ec
ts
%

Constantly%
accumulated%ATD% Unknown%%

ATD%

Project%Budget%
Business%EvoluEon%
External%factors%

 109

maintainability mechanism at a higher level of abstraction that has not been
implemented during the development of the features. To introduce such mechanism the
needed time is usually substantial compared to the feature development time: for
example, if the refactoring is estimated to be 2 months and a new feature is supposed to
take the same amount of time to be developed, it would not make sense to include the
refactoring into the feature as a story. Also, such task would probably influence other
parts of the software, which might cause interruptions on other teams’ work. For such
reasons, such (as explained in section 7.4.1.4).

Figure 34 Refactoring maximization: some ATD is always accumulated and impacts next development
(e.g. release 2). Total Refactoring is not realistic in practice. The best option is Partial Refactoring, when
short-term and long-term ATD is removed.

Figure 36 Refactoring minimization: when No refactoring is applied, both short-term and unknown ATD
would impact release 2. However, there might be a short-term benefit with respect to doing long-term
refactoring (difference with Partial refactoring)

Time%

AT
D%
ac
cu
m
ul
a,

on
%

Release%1%
Delay%caused%by%%
unknown%ATD%

Total%refactoring%

Release%2%

Complete%Refactoring%

Lo
ng
%te

rm
%%

eff
ec
ts
%

Sh
or
t%t
er
m
%%

eff
ec
ts
%

Unknown%%
ATD%

Par,al%refactoring%

Time%

AT
D%
ac
cu
m
ul
a,

on
%

Delay%caused%by%short%
term%and%unknown%ATD%

Release%1%

Release%2%

Lo
ng
%te

rm
%%

eff
ec
ts
%

Sh
or
t%t
er
m
%%

eff
ec
ts
% Unknown%%

ATD%

Total%refactoring%

Par,al%refactoring%

Complete%Refactoring%

No%refactoring%

Figure 2. The model shows the causes for ATD accumulation (black boxes), the
classes of ATD (which represent the Debt), the phenomena caused by the items and the final
activities (which together represent the interest to be paid).

 110

Figure 37 Comparison of refactoring strategies: after a number of features released (symbolically 3 in the
picture), the long-term ATD starts to have an impact, decreasing the advantages of the short-term benefits
given by the No refactoring strategy.

Figure 38. Comparison of refactoring strategies: after a number of features released (symbolically 3 in the
picture), the time elapsed to deliver would be the same but the ATD present in the system would be more in
the No recovery strategy, which will affect long-term development

7.5.4 Comparison of refactoring strategies

We will show what implications, in terms of refactoring strategies, can be drawn
from the current results. We show this by analyzing the combination of the models
previously shown and how they lead to different outcomes (Figure 34-Figure 38), with
respect to different refactoring strategies. In particular, we show how projecting several
instances of the phase model over time and combining such projection with two
different refactoring strategies, refactoring maximization and refactoring minimization,
would bring different outcomes in term of development crises.

Refactoring maximization: in Figure 34 is represented the scenario in which both
short-term and long-term ATD are refactored. We can see how the constant ATD and
the delay effect from the unknown ATD are continuously accumulated, making the

Time%

AT
D%
ac
cu
m
ul
a,

on
%

Increased%delay%added%to%
the%previous%one%and%
caused%by%all%ATD%

Release%1%

Release%2%

Release%3%

Total%refactoring%

Par,al%refactoring%

No%refactoring%

Complete%Refactoring%

Time%

AT
D%
ac
cu
m
ul
a,

on
%

Total%refactoring%

Par,al%refactoring%

No%refactoring%Difference%of%ATD%at%the%same%
point%in%,me%with%the%same%
number%of%features%released%

 111

accumulation strictly monotone even when the refactoring is maximized. This would
exclude the possibility, for the companies, to apply a complete refactoring strategy, in
which all the ATD is removed. The maximization of refactoring consists of, for the
company, adopting a partial refactoring strategy.

Refactoring minimization: in Figure 36 we show the case in which a no refactoring
strategy is applied in contrast with the previously mentioned partial refactoring. Even
though the feature might be released earlier with respect to partial refactoring (when
all possible refactoring was performed), the delay caused by the ATD grows because of
the addition of unknown and short-term ATD.

Short-term comparison of strategies: in Figure 37 we have represented a further
projection of both strategies for a hypothetical number of 3 releases (the same effect
might be reached with a different number of releases, depending on the context): in the
no refactoring strategy we can see the increasing of the delay caused by the ATD with
long-term effect with respect to the partial refactoring function. In conclusion, after
some time partial refactoring might be as convenient (in terms of features released) as
no refactoring, with the difference that in the second case there is more ATD in the
system (Figure 38).

Long-term comparison of strategies: By projecting the same trend for longer time
and combining it with the crisis point model (assuming that the same crisis will happen
when the same amount of ATD is accumulated), we can see that with a partial
refactoring strategy the crisis point would be delayed (Figure 39).

Choice of the optimal refactoring strategy with respect to the crisis points: taking in
consideration the crisis points perspective, the main choice for the companies is to
balance the prioritization of refactoring in order to have as less number of crisis points
as possible, or to delay the crisis point over time according to the lifecycle of the
product. The evidences collected suggest that the best strategy to avoid development
crises is the partial refactoring.

Figure 39. Long-term comparison of the strategies: given the trend of inevitable accumulation of ATD, a
crisis point will eventually be reached in both cases. The gain for the company is to reduce the number of
crises and therefore the number of costly refactorings.

Time%

AT
D%
ac
cu
m
ul
at
ed

%

Total%
refactoring%

Par4al%refactoring%No%refactoring%

Crisis%%
point%

Crisis%point%in%4me%
for%“No%refactoring”%

Crisis%point%in%4me%for%
“Par4al%refactoring”%

Time%gained%before%reaching%the%crisis%point%
that%leads%to%a%necessary%big%refactoring%

 112

7.6 DETAILED CASE-STUDY
We conducted a follow-up, in-depth case-study with one of the cases involved

previously in the investigation. Specifically, we studied the case C2. We investigated
one of the recent refactorings conducted at the site in order to find patterns that would
evaluate our previous hypotheses (as recommended by Yin and Runeson and Höst,
[62], [63]).

Since we wanted to show the relationships among the factors over time, we will
describe the case in a chronological fashion. We highlight key events in the timeline
and then we describe what happened between the two events. We will focus only on
the part of the system that was studied during the interviews.

Figure 40 Simplified architecture layers (Platform- and Application-layer) of the studied system

7.6.1 Chronological narrative of events

T0: start of development: a new product of the product-line was requested by the
market and by specific customers. Such product would include a set of features, but
would also need to be integrated with the previous platform. Within the product, one of
the components (that we call CompA) was integrated in the platform since it contained
functionalities shared by to other components (that we call Comp1…n) included in
different applications. CompA, being a central component, had (legal) dependencies
with the other components, as visible in Figure 40.

TRefCompA: discover of the need of refactoring. After the integration of CompA and
after the component had been in use within the product for around 3 years, the system
responsible found that there was an anomaly in the number of defects reported in the
system, which led to a crisis. After the analysis of the bug reports, it was possible to
understand that the design of CompA was the cause for such anomaly (many problems
were tracked back to CompA). Given the situation, the system architect and the
managers decided to prioritize the refactoring of CompA. Such refactoring involved the
restructure of CompA, considered not well modularized and too complex. The
estimation for CompA was considered as RefA. CompA was therefore duplicated
(branched) in CompA’, in order to be refactored in parallel to the continuous
development of features. It was not possible, obviously, to stop the use of the
product(s) using CompA and its development during the refactoring, since the overall
re-design of CompA required a substantial amount of time (around 6 months).

TRefComp1…k: during the estimation for RefA, however, the impact of the changes
implemented in CompA with respect to Comp1…n was not correctly understood and
estimated. After the refactoring of CompA’ started, it became clear that the APIs needed
to be updated, and the work needed to refactor Comp1…n according to the changes in
CompA’ required more time than expected. The refactoring of Comp1…n was therefore
estimated and broken down to stories that would need to be prioritized in the backlog
of the teams allocated to such work. However, not all the refactoring work could start

Comp1& Comp2& Compn&Compn)1&

CompA&

Pla.orm&

Applica2on&

 113

in all Comp1…n before the changes in CompA’ would be completed. Therefore, the
refactoring was initiated in Comp1…k but not in Compk+1…n.

TNewReq: New application requirements involving Compk+1…Compn. While the
refactoring of CompA’ was still on-going, new feature requirements were received by
the teams developing Compk+1…n. The backlogs were re-prioritized and the new stories
were given a priority higher than the priority of the refactoring stories. Such decision
was also due to the fact that CompA’ was not ready at such moment. However, the
stories for coordinating the refactoring with CompA’ remained low-prioritized also
when it became possible to start.

TNewComp: New applications. Starting during this time, new features were requested
by the market and the customers. Therefore, new application components were created
(Compn+1…m). Such components were designed to interact with CompA’, since such
component was being refactored and was considered more updated and better usable by
the new application due to its re-design.

TNoRefCompk+1…n: When the refactoring of CompA’ was completed, the refactoring of
Compk+1…n were still not carried out. Despite the fact that the applications were using
the old CompA, such motivation was not enough to high-prioritize the stories for
refactoring. From this point on, the system was using a duplicated component (CompA
and CompA’), in which part of the applications were interacting with CompA and part
of them were interacting with CompA’, causing a duplication of maintenance work.

Figure 41 Timeline of the case-study in relation with the factors influencing the accumulation of ATD over
time

7.7 EVALUATION
To evaluate the exploratory results collected in phase I and II, we conducted and

analyzed interviews (phase III) and the in-depth case-study (phase IV). In this section
we show how the factors and the models where evaluated by the two approaches.

7.7.1 Factors evaluation

We deductively analyzed the case-study in order to recognize the factors previously
obtained from the multiple case study.

Figure 41 shows a time-line with the major events explained in the previous section.
Part of the events cannot be referred to a single point in time, but rather to a time
interval between two time points. We mapped the factors to the time-line, in order to

Time%
T0% TRefCompA% TRefComp1…k% TNewReq%

TNewComp%

Effects%(impact)%uncertainty%
•  Size%of%the%product%
•  Feature%growth%

New%business%requirements%
Parallel%development%%

Priority%of%features%over%product%

Time%Pressure%

Use%case%uncertainty%
•  Users%

Time%Pressure%

Non%completed%refactoring%

TNoRefCompk+1…n%%

 114

visualize their relationships over time (used in the next section for visualizing pattern
matching). The following factors were recognized:

• Uncertainty of use case in early stages: citing the interviewee: “the team did not
completely understand the impact of the developed component on the users of
such component”. Such factor was occurring at least in the beginning when the
ATD was accumulated, but also in the beginning of the refactoring, where not all
the users (stakeholder) of the refactored CompA were identified. For example, the
interviewee mentioned the lack of awareness about part of the testers interacting
with CompA.

• Uncertainty of impact: citing the system architect: “at time [TRefCompA] it was easy
to think that the issues [ATD] could be solved by just refactoring [CompA]”.
Clearly the team did not understand the impact of introducing ATD into the
system, affecting Comp1…n and therefore ignoring the impact of changes.

• Parallel development: this factor is clearly present and influencing the
accumulation of ATD for the whole period. First of all, the product was developed
in parallel to the other products, which contributed to “isolate” the development
from the users of CompA and the development of Comp1…n. Such isolation
contributed to the uncertainty.
After the refactoring of CompA was started at TRefCompA, the parallel backlogs
caused a misalignment in the prioritization of the distributed stories related to
completing the refactoring, which led to the duplication of component CompA
(accumulation of ATD through uncompleted refactoring).

• Time pressure: the need for delivering quickly (short lead time) was mentioned
especially in the beginning before the reaching of the crisis point TRefCompA, and
during TNewReq, after the new requirements came in and new stories were added to
the distributed backlogs. In the middle of the analyzed time-span, the refactoring
was started, so it could be easy to think that the time pressure decreased. However,
the reaching of the crisis triggered the refactoring, which was started in order to
avoid the time spent on fixing a large amount of bugs instead of developing new
features. We can see then how the time pressure played a role in that period as
well.

• New business requirements: new requirements were obviously received at T0,
when the product development started, and at TNewReq, when new features and
customer-specific products were requested or identified by the product owners.

• Priority of features over product: the low-prioritization, during TNewReq, of the
stories related to complete the refactoring is a clear sign of this factor, which
directly led to the uncompleted refactoring and the duplicated component (ATD).

• Uncompleted refactoring: from the start of the refactoring of CompA, the ATD
accumulated through the duplication of the component was constant. However,
the ATD (duplication) was not considered as such (but only temporary
duplication) until it became clear that the substitution of CompA with CompA’ was
not possible due to the low-prioritization.

In conclusion, the case study confirmed the presence of many of the factors listed in
section 7.4 that influenced the accumulation of ATD over time.

7.7.2 Models evaluation

For each model presented in section 7.5, we show how the evaluation interviews in
phase III and the case-study conducted in phase IV brought evidences to the
exploratory results of phase I and II. In particular, the distribution of the factors should

 115

be compared with Figure 32 and Figure 33 in order to understand the matching of the
patterns.

7.7.2.1 Crisis-based ATD management (7.5.1)

During the evaluation interviews we collected data on the models from company A,
B, and the three cases C1,2,3. We asked if the crises occurred recently and how the
informant experienced them. We list a selection of relevant quotations from different
informants all from different companies (not specified for confidentiality reasons). We
cannot report all the evaluation data due to space constraints, but the ones listed here
represent a good sample of the data used for models evaluation.

Chief architect:

“When we realized that we were going into a situation where we had so many
variants that the monolithic structure wouldn't be able to sustain that feature growth
and those types of variance. We actually realized this before we hit the crisis point. It
wasn't that we weren't able to deliver projects. We realized it before. So we didn't
actually hit the crisis point and people stopped delivering software, but we were pretty
close. We could see that the next project will not be able to deliver. So this will be a
more expensive project. We have the luck that we got buy in from management that we
needed to do these changes.”

System architect:

“So we had to take resources from feature development to stabilization. We just
stopped feature development to stabilize what we had first. Then we could continue
with features.”

Software architect:

“I think we have exactly the situation you described [referred to the slide showing
the description of crisis point].”

System architect:

“[] we had to stop introducing new features and just fixing bugs. And then we have
also started a redesign of some components. […] And then the management understood
that we need to do something about this component, redesign […]”

System architect:

“I recognize […], we had a lot of [bug fixing] in the same area. And we couldn't
continual fixing here and there with sort of workarounds or not clean fixing. So we
realized we needed real refactoring to solve all together and to ease the introduction of
new features.”

From the 5 companies interviewed, it’s quite clear that the informants agreed on the
validity of the model and they shared several experiences. We can also see
confirmatory evidences that the crisis model is valid for the in-depth studied case
(Figure 41). The crisis when the ATD was revealed is represented by the high number
of defects, which led to allocate a large percentage of development to bug fixing. Such
activity decreased the time dedicated to new features, together with the perception of
the slowing down of development feature themselves.

7.7.2.2 Constant ATD accumulation (7.5.2.1)

In the studied case we can see how it was never possible to avoid the presence of
ATD in the system, even by prioritizing the big refactoring. We could evaluate most of
the factors that we have claimed to be the cause of constant accumulation of ATD. In
the case study, parallel development is easily visible as influencing factor for the whole

 116

time, while business evolution is also quite persistent, excluding the phase after the
crisis, when the impossibility to develop led to the refactoring.

7.7.2.3 Phases of ATD accumulation (7.5.3)

We can compare the model of the phases for accumulation and refactoring of ATD
(Figure 32) with the distribution of the factors in Figure 41 related to the case-study
time-line, in order to understand the matching of the patterns.

Matching patterns:

• Uncertainty of use cases in early stages is confirmed as a factor boosting the
accumulation of ATD.

• The case suggests how the uncertainty of impact would also be extended until the
actual refactoring was started.

• Parallel development was impacting the accumulation of ATD. The news is,
parallel development had also an impact on refactoring.

• The “inflow” of new business requirements (business evolution) influenced the
accumulation both in the beginning of the development and also when new
features were added. Before the second wave of requirements, there was a time
span when the refactoring was started. However, we cannot map this decrement
of the ATD with the refactoring opportunity hypothesized in Figure 33 since the
main reason for such refactoring was not the lack of time pressure, but rather the
need to fix the bugs (and the source of them).

• Time pressure is present throughout the whole time in the case-study. Although
the refactoring has been prioritized, such decision was taken because the current
development was so slowed down that it was too difficult to add new features.
The refactoring was therefore also prioritized in order to improve lead time (time
pressure). Therefore, time pressure is to be considered as a constant accumulator
for ATD.

• Urgency, in Figure 33, was present close to the release, but it’s just part of the
overall time pressure, which is spread throughout the whole process. In order to
decrease the lead time, management focuses on different target in a reactive way:
first development, then refactoring when development starts to become difficult
(approaching of the crisis).

In conclusion, most of the accumulation phases and components of the model have
been confirmed, even though their spanning might vary and some components could
not be confirmed by this specific case study: uncertainty is more present in the early
stages but might be quite protracted, time pressure is constant throughout the
development, as well as parallel development and business evolution. The refactoring
opportunity (visible in Figure 33) needs to be further confirmed: in the specific case
study, the refactoring was high-prioritized for the same reasons why it was low-
prioritized in other phases, i.e. for time pressure.

7.7.2.4 Refactoring prioritization strategies (7.5.3.1 and 7.5.4)

The case-study is a good example of how the long-term refactoring was prioritized.
Only after a crisis the refactoring was reactively started, exactly as shown in Figure 32.
We cannot compare this chain of events with an hypothetical case where the long-term
refactoring would have been prioritized in advance, but we can see how the project
reached a crisis, and from the issues reported it was possible to identify the presence of
long-term ATD as a source of the crisis. We can therefore infer, from the evidence, that
the No refactoring strategy led to the crisis, but we don’t know how faster than if the
debt would have not been taken or refactored earlier. Once there, postponing

 117

architectural refactoring (long-term) resulted quite costly and was not completed,
leading to accumulation of different ATD. Therefore, the strategy of postponing long-
term ATD refactoring after the crisis seems to be a non-optimal solution. We can
consider these data as partially confirming the previous models, considering though the
need for further evidences from more cases in this direction.
Table 22 Exploratory and evaluated results

Results

C
on

fir
m

at
or

y
ev

id
en

ce
s f

ro
m

m

ul
tip

le

in
te

rv
ie

w
s

C
on

fir
m

at
or

y
ev

id
en

ce
 fr

om

ca
se

-s
tu

dy

Ex
pl

or
at

or
y

ev
id

en
ce

 fr
om

m

ul
tip

le

in
te

rv
ie

w
s

Ex
pl

or
at

or
y

ev
id

en
ce

 fr
om

ca

se
-s

tu
dy

Factors influencing ATD accumulation (RQ1):
• Uncertainty of use-case in early stages X X
• Business evolution X X
• Time pressure X X
• Priority of features over product X X
• Split of budget X
• Design and Architecture documentation X X
• Reuse of Legacy / third party / open source
components X

• Parallel development X X
• Uncertainty of impacts X X
• Non-completed refactoring X X
• Technology evolution X
• Lack of knowledge X X

Models of ATD accumulation and refactoring
(RQ2)

• Crisis-based ATD management X X

• Phases of ATD accumulation (X) X X

Refactoring strategies (RQ3)
• Partial refactoring is the best option for the
maximization of refactoring. Complete is
refactoring not realistic.

(X) X X

• Drastic minimization of refactorings (No
refactoring) leads to development crises often in
the long run.

(X) X X

7.8 DISCUSSION
We have conducted an exploratory multiple-case study in 7 large software

organizations, showing factors causing the accumulation of ATD (RQ1), trends in such
accumulation and refactoring over time (RQ2) and analyzing different outcomes (in
terms of development crises) for different refactoring strategies (RQ3). We have
backed up the exploratory results, collected in 2 phases, with cross-company evaluation
interviews and an in-depth case study about a concrete ATD case, which strengthened
the results.

The provided qualitative representation shows factors and trends that reveal, in our
opinion, important implications in the light of the recently emerging practice of ATD
management. One very important variable to be taken into consideration is time, and
we have done a first step in order to explain the relationship between such impacting
variable and the phenomena of ATD accumulation and refactoring. In the followings

 118

we therefore discuss a number of implications (expressed in the form of propositions)
that can be inferred by our results. They represent hypotheses qualitatively tested
through a substantial number of experts from similar domains or through an in-depth
case-study, but that need to be quantitative complemented and assessed in the future.

7.8.1 Implications for research

The investigation in this paper brought to light several results throughout different
phases, especially during the exploratory phases I and II. Some of such results were
evaluated through phases III and IV, where we run interviews and we conducted an
additional, evaluative case study. We add an evaluation table (Table 22), were we can
see a summary of the results and by which means they have been evaluated.

These results represents a first step towards the development of middle-range
theories [66], which are not considered unversally valid, but only within a range of
contexts. We investigated the results in 7 similar sites, which allows us to claim the
validity of our findings to the context of large software companies developing
embedded software and employing ASD. Another attribute of the context is the
geographical location of the companies, all placed in Scandinavia. In different
geographical areas the results might be different. We therefore encourage further
investigation of the results in other contexts in order to make another step towards
further generalizing the results (as explained in the external validity section).

Answering the RQs contributes to the body of knowledge, according to the gaps
identified in a recent systematic mapping study [31], by providing a reliable industrial
study based on the experiences of several ATD stakeholders: architects, developers and
product owners. In particular:

• RQ1: we have studied the socio-technical factors related to phenomena of
accumulation and refactoring of ATD. These factors might be studied and treated
separately. Such factors offer a better understanding of the overall phenomenon of
ATD accumulation and refactoring, which is a prerequisite for its management.

• RQ2: we have developed and evaluated two qualitative models of the trends in
accumulation and refactoring of ATD over time based on its prioritization: the
crisis model and the phase model.

• RQ3: we have provided constraints and recommendations about different refactoring
strategies and their effects on development crises. Such recommendations should
be tested with further case studies.

7.8.2 ATD and software architecture management
As we can see from

Figure 33, there is a constant accumulation of ATD for several reasons, some of
which are also external to the company. In conjunction with this, part of the ATD
remains unknown. These two factors together lead to the consequence that each
iteration brings a quantity of ATD in the system, and that part of it will remain. Even if
the magnitude of such accumulation is not yet clear, the function over time is
monotone. These results show two main findings important for the software
architecture community: that it’s quite likely that the initial software architecture would
change because of changing requirements and that a number of sub-optimal solutions
will always been implemented because of the several factors causing ATD. Therefore,
such drifting needs to be managed continuously, especially to uncover the ATD that
it’s unkonwn and in order to prioritize the ATD that have the worse effects over time.
It’s important to understand how to continuously analyze the architecture in order to
develop better solutions and apply a suitable refactoring strategy.

 119

7.8.2.1 ATD and Agile Software Development

The employment of Agile Software Development seems to bring both advantages
and disadvantages to the phenomenon of ATD accumulation. Such influences are
related to the incentives and disincentives previously mentioned. For example, the
Agile process and principles favor the focus on the features over the product and boosts
the accumulation of ATD, relying on a mandatory subsequent refactoring that is not
always recognized from the management point of view. On the other hand, Agile
provides an iterative process for gradually taking care of uncertainty and would allow
to iteratively keep track of the ATD. Another trend related to ASD is having teams that
have to focus on a feature and are free to touch any component. The lack of domain
knowledge, however, boosts the accumulation of ATD.

From this investigation we can see how the chosen strategy used for ATD
prioritization and management would have an impact on ASD: frequent crisis points
might nullify the responsiveness and continuous delivery achieved by the Agile
practices. Therefore, a set of lightweight practices for ATD management is needed and
would benefit from the Agile iterative process if well embedded. We are currently
studying such practice development by employing action research at the companies
involved in the results. The results contribute to the current body of knowledge
according to [31], where the authors claim the need to study

7.8.3 Implications for practice

The results have implications for multiple roles in the organizations: from product
managers and product owners, to architects and developers.

7.8.3.1 Implications for product managers and product owners

The goal for software companies is to avoid development crises, since platform
creation and/or huge architectural refactorings are long and costly activities and would
stop the continuous delivery of features to the customer. We have analyzed different
refactoring strategies with respect to the minimization of crises. The evidence suggest
that a complete refactoring strategy is not possible, and therefore that the main goal for
a software company cannot be to have an “eternal” system, but rather to reduce the
number of times the development crises are repeated over time before the retirement of
the product. This means that a company needs to proactively adopt a partial refactoring
strategy and needs to plan refactoring activities as part of the product development.

Some of the factors have a disincentive (or incentive) effect on ATD accumulation.
The known disincentives are the ones described in section 7.4.1 and related to business
factors, such as having too much focus on features with respect to the product, having a
split budget for project and maintenance and having high penalties on deadlines. To our
current knowledge, such disincentives don’t influence some specific ATD issues.
However, future studies could increase the understanding on such matter. An important
incentive, especially relevant for product owners, is the prioritization of ATD
refactorings, especially the long-term ones.

7.8.3.2 Implications for architects and developers

In many cases, the model in Figure 32 has been found valid to describe the current
events. Automatic static analysis tools together with the current practices of lightly
documenting software architecture don’t seem to be able to provide enough awareness
of the ATD present in the system, if not on an intuitive level. Therefore, more
continuous analysis needs to be done in order to assess the current ATD in the system
and its impact (interest). Uncertainty of impact might be decreased by identifying the
debt, localizing it and understanding the stakeholders involved in the payment of the
interest. Such practice might be supported by various metrics (usually context

 120

dependent), but the developers, architects and the involved stakeholder need to work
together for the aggregation of information and the communication of the risk incurred
in taking debt that has a wide impact on the organization.

7.8.4 Limitations

The graphs in this paper (Figure 34, Figure 36, Figure 37, Figure 39 and Figure 38)
are not meant to represent precise data coming from a measurement system. Therefore
the steepness of the curves and the projections might vary in real context. The
magnitude for the contribution of each factor is also to be further assessed. However,
we offer the recognition of factors that are not necessarily possible to be measured and
therefore discovered by quantitative analysis, such as urgency and uncertainty, and
their relationship with time. The results are qualitatively developed through a thorough
research process including several triangulation techniques recommended [63] for
qualitative studies: we used a wide amount of qualitative data coming from many
informants throughout four iterations of investigation (see Table 21), from seven sites
and with different roles, which allowed us to compare and test statements among
themselves. Furthermore, architecture documentation and improvements backlogs have
been evaluated as secondary data. This has allowed us to apply source triangulation.
We have also applied three ways of qualitative evaluation of the results: plenary
workshops, interviews and a company-specific case-study. Table 22 shows which
results have been consolidated with which method, and which are, on the other hand,
still exploratory and need further evaluation. Another limitation is the use of a single,
company-specific case-study: due to resource constraints, the authors could not
perform the same in-depth investigation in other organizations, but we are confident
that the whole research community, especially the empirical one, will contribute to this
topic with more evidence in order to build an even more solid body of knowledge on
the ATD management.

7.8.5 Future work

7.8.5.1 Specific interest of ATD items

The model of accumulation of ATD with respect to the crisis point does not separate
the ATD from its interest. It was not possible to do such separation from the data
analyzed during the current investigation. In order to further develop the models shown
here, it’s of utmost important to understand the interest associated with specific ATD
items, in order to prioritize them and to understand which one contributes more to the
total accumulation of extra-effort leading to a crisis point. An initial step has been done
by the same authors of this paper in a recent paper accepted for publication [42].

7.8.5.2 Other socio-technical patterns related to ATD accumulation and refactoring

As we have highlighted in the case study, ATD is not only a technical problem, but
involves several factors, from the psychological one to the organizational structure, to
the processes. Understanding socio-technical patterns that favor (or limit) how ATD is
accumulated might be useful for the proactive avoidance of its accumulation.

7.8.5.3 Further evaluation

The study of the ATD is quite recent and needs further evidences. We have provided
multiple sources of evidences for some results, but for other, of more exploratory
nature, the scientific community needs further evaluation. We have compiled Table 22,
which shows the results that need more evidences. Such results should not be
considered unreliable, since they are based on the combined experiences of several
employees from 7 sites in 5 large software companies. However, more in depth studies

 121

might be done in order to define more precise models and compare with multiple
sources of evidence. We have done a first step in such direction.

7.8.6 Threats to validity

We discuss the threats to validity with respect to the guidelines proposed in [63]:
construct, internal, external validity and reliability.

7.8.6.1 Construct validity

We did not use the ATD terminology (debt, principal, interest) during the
investigation, since it could have been interpreted differently in different contexts. In
order to keep construct validity, we operationalized the ATD as “architecture
inconsistencies” (or alternatively “sub-optimal solutions” or in some cases “violations”,
depending on the class of ATD) with respect to the current desired architecture related
to a specific case. With the same approach we operationalized the principal as the
refactoring cost to obtain an optimal solution and the interest as the extra-effort caused
by the ATD or other kinds of extra-impact. We investigated the actual existing cases
with software and system architects, obtaining the best knoweledge about both the
desired architectures and a good explanation of the sub-optimal solutions in place. As
for the principal and interest, we interviewed the developers involved in the case
studied, in order to be sure that estimations and evaluation of effort were as accurate as
possible.

7.8.6.2 Internal validity

Rather than investigating a direct cause-effect relationship, we have collected
arcthitecture explanations [66] from several cases, in order to understand which factors
caused the accumulation of ATD and how such accumulation is handled in the specific
cases. Since we aimed at understanding the causes of ATD accumulation, there exist a
threat to internal validity. We need to take in consideration the possibility that other
factors than the ones listed here would cause ATD, and that crises would be reached
because of other projects’ issues. We mitigated this threat by obtaining the information
about the causes of the same ATD item from several roles, and we asked follow-up
questions in order to probe the explanations. Also, collecting similar evidences
supporting the same explanation across the cases contribute to strenghten our
conclusions.

7.8.6.3 External validity

One of the major threats for case-study research is the ability to generalize from the
case-specific results to other cases. Generalizing to a universal theory is not necessarily
the goal for an engineering discipline: according to [66], middle-range theories, valid to
a restricted ranges of contexts, result more useful in practice. In order to develop such
middle-range theories, we have employed an analytical induction strategy to generalize
from case-studies [66]. We have collected architectural explanations from contexts that
are architecturally similar among themselves, but contain some differences (all of them
are large companies developing embedded software and having similar organizations).
The similaries allow the researchers to make the claims more robust (for example, the
same code was mentioned in three of the 7 cases), while the differences allow the
extension of the findings, if similar, to such contexts as well. In our case, we have
identified the findings that were confirmed by multiple sources (for example, the model
concerning the crisis point was found repeatedly valid from all the sources) and the
ones that need further investigation, in Table 22. As for the second kind of results, we
don’t say that such findings are not valid in all the contexts, but rather that it was not
possible, with our data, to find strong confirmatory results. The table can be used to
understand how much our results can be generalized based on the kinds of evidences

 122

obtained from the different sources. Although we don’t claim the results universally
general, we can say that for RQ1 and RQ2 the findings are supported by confirmatory
findings crossing multiple contexts, and therefore can be considered reaching a
generalizability of middle-range theories, where the range is represented by large
Scandinavian software companies developing embedded software and employing ASD.
As for RQ3, we report propositions that need to be further evaluated with different
means than the ones employed in this study.

7.8.6.4 Reliability

As described in the methodology section, three authors participated in defining the
research design, the questions and into checking the findings from the coding activities.
The results were presented in a workshop at the end of each of the four phases to the
industrial contacts involved in the investigation, in order to collect feedback and
strenghten the reliability of the results.

7.8.7 Related Work

Lehman et al. [122] propose a formal approach for process modeling. The paper
emphasizes the usefulness of formal models (e.g. functions) for effort prediction. We
have developed the crisis model (Figure 32), which can be considered the abstract
model, and we have done a first calibration by finding the factors that are needed to
describe the formal function (as parameters of the function). Our approach can be
considered as a first necessary step towards the formalization and the precise prediction
of the process, which needs more quantitative data. An empirical model of debt and
interest is described by Nugroho et al. [39]. However, such method only focuses on the
interest paid during maintenance and it’s not focused on finding the causes for the
accumulation of debt. The business factors that we have found are missing in the study
of ATD as also reported from a single case study [35]. Sindhgatta et al. [123] have
studied the software evolution in an Agile project, where some of the Lehman laws
were tested through project sprints. Some of the results suggest a confirmation of the
trends that we have identified. For example, the laws of (continuous) change and
growth show the monotonicity of system growth and the necessity for the system to
adapt to the business environment, which are recognized also in our factors. However,
the results are not directly connected with ATD.

7.9 CONCLUSIONS
Decisions on short-term and long-term prioritization of architecture refactoring need

to be balanced and need to rely on the knowledge of the underlying phenomenon of
ATD. The current management of ATD is an under-researched topic and we contribute
to the empirical software engineering body of knowledge by reporting from a multiple
case study investigating practitioners’ experiences from 7 large Scandinavian
companies employing Agile and developing product lines of embedded software.

In this paper we have shown what are the causes of the accumulation of ATD, and
we outline, through the recognition of different influencing factors, clear objectives that
can be treated or further studied in order to avoid or mitigate the accumulation of ATD
(RQ1), therefore easing the ATD management for architects and managers.

We have also presented 2 models for describing the accumulation and refactoring of
ATD over time (RQ2). Such models are the Crisis Model and the Phases Model. Such
models can be further studied and tested with the conduction of experiments and the
collection of quantitative data by the ISERN community.

Based on the models, we have identified possible strategies for refactoring ATD
(RQ3) and we provided recommendations with respect to the minimization of
development crises. We conclude that complete refactoring is not a possible strategy in

 123

the current studied companies, due to the continuous and inevitable accumulation of
ATD and the impossibility of removing it all. The No refactoring strategy leads to
crises points often, hindering the long-term responsiveness in providing new customer
value, as required in ASD. The best strategy is therefore to apply partial refactoring to
minimize crises and to push the crisis point as far as possible with respect to the
lifecycle of the products. The results highlight different outcomes related to different
ATD prioritization strategies, which would help architects and managers in balancing
the ATD management strategies with respect to the business goals and the life-cycle of
the products.

An important goal in research and industry is to improve the practices and tools to
uncover ATD present in the system and to keep track of it. It’s also important to
identify the best points in time for performing refactoring and therefore repaying the
debt that is going to generate more interest effort later on. Such practices need to
complement the current Agile process in place, in order to keep responsiveness stable
through the whole software development process.

 124

8 ARCHITECTURE TECHNICAL DEBT PHENOMENA
HINDERING LONG-TERM RESPONSIVENESS

In this Chapter we have investigated which Technical Debt items generate more
effort and how this effort is manifested, hindering short-term or long-term
responsiveness, during software development. We conducted a multiple-case
embedded case study comprehending 8 sites at 6 large international software
companies. We found that some Technical Debt items are contagious, causing other
parts of the system to be contaminated, which leads to the growth of interest. In order
to monitor the increasing interest we have investigated 12 concrete cases of
Architectural Technical Debt, finding important factors to be monitored to refactor the
debt before it becomes too difficult. We also identify a second socio-technical
phenomenon, for which a combination of weak awareness of debt, time pressure and
refactoring creates Vicious Circles of events during the development. Instances of these
phenomena need to be identified and stopped before the development is led to a crisis
point. Finally, this paper presents a taxonomy of the most dangerous items identified
during the qualitative investigation and a model of their effects that can be used for
prioritization, for further investigation and as a quality model for extracting more
precise and context-specific metrics.

This chapter has been submitted for publication as:

Martini A., Bosch J.: “Contagious Technical Debt and Vicious Circles: a Multiple
Case-Study to Understand and Manage Increasing Interest” submitted to

A short version of this chapter has been published as:

A. Martini and J. Bosch, “The Danger of Architectural Technical Debt: Contagious
Debt and Vicious Circles,” in 2015 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA) [42].

8.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and the
delivery of a solution. The trend in the last decade has been the employment of Agile
Software Development (ASD) [6]. At the same time, the responsiveness in the short-
term deliveries should not lead to less responsiveness in the long run. To illustrate such
a phenomenon, a financial metaphor has been coined, which compares the trend of
taking sub-optimal decisions in order to meet short-term goals to the taking debt, which
has to be repaid with interests in the long term. Such a concept is referred as Technical
Debt (TD), and recently it has been recognized as a useful basis for the development of
theoretical and practical frameworks [38]. Tom et al. [33] have explored the TD
metaphor and outlined a first framework in 2013. Part of the overall TD is to be related
to architecture sub-optimal decisions, and it’s regarded as Architecture Technical Debt
(ADT)[38]. ATD is regarded as violations in the code towards the intended architecture
for supporting the business goals of the organization. An example of ATD might be the
presence of structural violations [124].

ATD has been recognized as part of TD, but the various ATD items have not been
compared among each other in literature with respect to costs and time. A dedicated
study about which ATD items are the most dangerous, in terms of interests to be paid,
is still missing. In fact, given the high cost of architectural changes, a challenge for
software companies is to prioritize the refactorings that are really needed, in order to
optimize the employment of resources. Moreover, it’s important to understand what

 125

kind of interest (in terms of effort) is associated with the ATD items, both for their
recognition during development and for the development of measurements.

In the context of large-scale ASD, the research questions that we want to inform are:

RQ1: What are the most dangerous Architecture Technical Debt Items in terms of
effort paid later (interest)?

RQ2: What are the effects, (interest) triggered by such ATD items?

RQ3: What are the socio-technical anti-patterns that cause the ATD interest to
increase over time?

RQ4: How can the increasing interest be identified and stopped?

The main contributions of the paper are:

• We have qualitatively developed and validated (through multiple sources) a
taxonomy of effortful ATD items to inform RQ1.

• We model the effects associated to the classes in the taxonomy, to inform RQ2.

• To inform RQ3, we have found and conceptualized two important phenomena of
Architectural Technical Debt, contagious debt and vicious circles, which are
related to the occurrence, during the development, of dangerous patterns of socio-
technical events that may lead to the non-linear growth of interest to be paid over
time.

• To inform RQ4, we have identified two main kinds of interest, the interest on the
principal and the interest on other factors. Such factors lead to the increment of
interest of an ATD item. By monitoring the growth of such factors, we show how
the companies can proactively avoid the increment of interest.

The rest of the paper is structured as follows: section II gives the reader more
references and background on ATD and on the conceptual framework used in this
study. In section III we explain our research design: overall design, description of the
cases, methods for data collection and analysis and evaluation of results. In section IV
we list the results. In section V we examine how the results inform the RQs, we discuss
practical and theoretical implications of this study and we discuss the degree of validity
of each result. We also point at limitations and open issues for future research, and we
discuss the related work. We summarize the conclusions in section VI.

8.2 ARCHITECTURE AND TECHNICAL DEBT

8.2.1 Definition of ATD

ATD is regarded [33] as “sub-optimal solutions” with respect to an optimal
architecture for supporting the business goals of the organization. Specifically, we refer
to the architecture identified by the software and system architects as the optimal trade-
off when considering the concerns collected from the different stakeholders (which is
usually a “desired” architecture). In the rest of the paper, we call the sub-optimal
solutions inconsistencies between the implementation and the architecture, or
violations, when the optimal architecture is precisely expressed by rules (for example
for dependencies among specific components). However, it’s important to notice that
(in our studied cases) such optimal trade-off might change over time, as explained in
this paper, due to business evolution and to information collected from implementation
details. Therefore, it’s not realistic to assume that the sub-optimal solutions can all be
identified and managed from the beginning. For this reason, it becomes important to
continuously monitor architecture and ATD rather than relying only on the upfront
design.

 126

8.2.2 Previous research on ATD

The term Technical Debt (TD) has been first coined at OOPSLA by W. Cunningham
[32] to describe a situation in which developers take decisions that bring short-term
benefits but cause long-term detriment of the software. The term has recently been
further studied and elaborated in research: in 2013 Tom et al. [33] conducted an
exploratory case study technique that involves multi-vocal literature review,
supplemented by interviews, in order to draw a first categorization of TD and the
principal causes and effects. In such paper we can find the first mentioning of
Architectural Technical Debt (ATD, categorized together with Design Debt). A further
classification can be found in Kruchten et al. [38], where ATD is regarded as the most
challenging TD to be uncovered since there is a lack of research and tool support in
practice. Finally, ATD has been further recognized in a recent systematic mapping [31]
on TD. Such recent research highlights the gap in the current scientific knowledge,
which gives us the motivation for this work.

8.2.3 Previous research on management of TD

Some studies have been conducted on the management of TD, also supported by a
dedicated workshop (MTD), usually co-located with premium conferences, such as
ICSE and ICSME.

A first roadmap has been created in 2010 by Brown et al. [34]. In 2011 Guo et al.
proposed an initial portfolio approach with the creation of TD items. The same authors
proposed a further empirical study on tracking TD [35] Seaman et al. identified the
theoretical importance of TD as risk assessment tool in decision making [36]. TD has
also been used for defining part of a method for assessing software quality, SQALE
[37]. Such model has been also implemented in a tool, but the main support is currently
given on a source code level (very limited on the ATD aspect).

8.2.4 Models for technical debt

The studies in TD are quite recent, and the subject is not mature. Some models,
empirical [39] or theoretical [40] have been proposed in order to map the metaphor to
concrete entities in software development. We use, in this paper, a conceptual model
comprehending the main components of TD:

8.2.4.1 Debt

The debt is regarded as the actual technical issue. Related to the ATD in particular,
we consider the ATD item as a specific instance of the implementation which is sub-
optimal with respect to the intended architecture to fulfill the business goals. For
example, a possible ATD item is a dependency between components that is not allowed
by the architectural description or principles defined by the architects. Such
dependency might be considered sub-optimal with respect to the modularity quality
attribute [41], which in turn might be important for the business when a component
needs to be replaced in order to allow the development of new features.

8.2.4.2 Principle

It’s considered the cost for refactoring the specific TD item. In the example case
explained before, in which an architectural dependency violation is present in the
implementation, the principle is the cost for reworking the source code in order to have
the dependency removed and the components not being dependent from each other.

8.2.4.3 Interest

A sub-optimal architectural solution (ATD) causes effects, which have an impact on
the system, on the development process or even on the customer. For example, having

 127

a large number of dependencies between a large amount of components might lead to a
big testing effort (which might represent only a part of the whole interest in this case)
due to the spread of changes. Such effect might be paid when the features delivered are
delayed because of the extra time involved during continuous integration. The most
important findings in this paper are related to this component of Technical Debt.

8.2.5 The time perspective

TD is strongly related to time. Contrarily to having absolute quality models, the TD
theoretical framework instantiates a relationship between the cost and the impact of a
single sub-optimal decision. In particular, the metaphor stresses the short-term gain
given by a sub-optimal solution against the long-term one considered optimal. Time
wise, the TD metaphor is considered useful for estimating if a technical solution is
actually sub-optimal or might be optimal from the business point of view. Such risk
management practice is also very important in the everyday work of software
architects, as mentioned in Kructhen [43] and Martini et al. [44]. Although research has
been done on how to take decision on architecture development (such as ATAM,
ALMA, etc. [45]), there is no empirical research about how sub-optimal architectural
solutions (ATD) are accumulated over time and how they can be continuously
managed.

Antonio&Mar*ni&+&PhD&student&in&So4ware&
Engineering&

&&&
Legend:&&

Open&
coding&

Factors&for&
accumula*on&

of&ATD&

Axial&
coding& Interest&map&

Effects&of&ATD&
items&

Phase&I:&
Preliminary&

Study&

Phase&II:&
Exploratory&
Interviews&

Struggle&for&
ATD&

Mo
*va

*on
&

Evalua*on&

Data&
Collec*on&

Data&
analysis&

Results&

Need&for&ATD&
Priori*za*on&

ATD&Items&
(Classifica*on)&

Variables:&&
•  Time&
•  Causality&
•  Debt&
•  Interest&

Variable&

Inter+
mediate&
results&

Vicious&circles&
and&contagious&
debt&Models&

Input&for&case&selec*on&

deduc*ve&approach,&
category&satura*on&

Factors&for&
Increasing&
Interest&

Phase&III:&
Valida*on&

Interviews&and&
Ar*facts&
Analysis&

PaQern&Matching&
Case&Comparison&
Open&Coding&

Phase&IV:&
In+depth&case&
study&on&
increasing&
interest&

Proac*ve&
management&
of&interest&

Figure 42. Our Research Design: data collection, inductive and deductive analysis and results based on
different sources for triangulation

8.3 RESEARCH DESIGN
We conducted a 2-year long, multiple-case, embedded case study involving 8

Scandinavian sites in 6 large international software development companies. We
decided to collect data from as many large companies as we could, in order to increase
the degree of source triangulation [63] (collecting supporting evidence from different
sources rather than from a single context). The rationale for such a longitudinal
investigation (including several case studies rather than reporting a single snapshot of
one organization), is explained in [77] as systematic combining: since the goal of

 128

research is to match the theory with the empirical world, every time we look at the
empirical evidence we might discover something new that needs to update the
theoretical framework and the previous theories. This iterative and continuous
approach is in line with the need of flexibility in case studies suggested in [63]. By
replicating cases and adding new information coming from similar but not identical
contexts, we could discover new variables and factors that were important both for
theory building (for example the contagious debt model), but also for the evolution of
the framework itself (in this paper, we update the theoretical framework of TD by
redefining the interest to more factors rather than only one). The nature of the study
was mainly exploratory, since the lack of previous literature focusing on the specific
research problem. Therefore, we wanted to maximize the coverage of possible software
companies within the boundaries of “large” and “Agile”, in order to capture as many
ATD items experienced by the companies, but at the same time having the opportunity
to dig out as many details from the context as possible. On the other hand, in the later
phases (I-IV, see 8.3.2), we aimed at collecting more evidences that would strengthen
the theoretical power of the previously defined theories (for example, in phase IV we
collected an additional 12 cases in which we could match the contagious debt pattern).
The research design is outlined in Figure 42.

8.3.1 Case Selection

We have employed an embedded multiple-case study [63], where the unit of analysis
is an (sub-part of the) organization: the unit needed to be large enough, developing 2 or
more sub-systems involving at least 10 development teams. The total units studied
were 9. We selected, following a literal replication approach [62], 4 companies: A, B,
C (3 sub-cases) and D, F large organizations developing software product lines, having
adopted ASD and had extensive in-house embedded software development. We also
selected company E, a “pure-software” development company, for theoretical
replication [62] (hypothesizing different results from the other companies).

Company A is involved in the automotive industry. The development in the studied
department is mostly in-house, recently moved to SCRUM. Company B is a
manufacturer of recording devices. The company employed SCRUM, has hardware-
oriented projects and use extensively Open Source Software. Company C is a
manufacturer of telecommunication system product lines. They have long experience
with SCRUM-based cross-functional teams. We involved 4 different departments
within company C (C1, C2, C3, C4). Company D employed SCRUM to develop a
product line of devices for the control of urban infrastructure. Company E is a “pure-
software” company developing optimization solutions. The company has employed
SCRUM. Company F is developing devices used for defense systems. Some of the
contextual factors relevant for the investigation are visible in Table 24.

8.3.2 Data collection and analysis

We planned a 4-phase investigation of the ATD items and effects (described in
Table 23). The phases (black boxes) and their results are visible in Figure 42. The
properties and the number of participants are also summarized in Table 1. For each
phase we describe the data collection procedure and the analysis that followed. All the
interviews were recorded and transcribed. The analysis was done following approaches
based on Grounded Theory [55] and from case-study research [62][63], frequently
employed for the analysis of large amount of semi-structured, qualitative data
representing complex combinations of technical and social factors. For the analysis we
used a tool for qualitative analysis, (atlas.ti), which allows the categorization and
analysis of qualitative data according to the approaches described in [55] and keeps
track of the links between the codes and the quotations they were grounded to, in order
to create a chain of evidence [63][62].

 129

Table 23 Properties and numbers related to data collection

Phases of data
collection

N.partici
pants

N.ses
sions Companies Roles involved

Phase I (Preliminary
interviews) 25 3 Company-

specific
Developers, architects, testers,
line managers, Scrum m.

Phase I (Evaluation
workshop) 40 1 Cross-

company
Developers, architects, line
managers

Phase II (group
interviews) 26 7 Company-

specific
Developers, architects, product
owners

Phase II (evaluation
workshop) 10 2 Cross-

company Architects, line managers

Phase III (evaluation
interviews 1) 10 1 Cross-

company Architects, product owners

Phase III (evaluation
interviews 2) 12 1 Cross-

company
Architects, developers, scrum
masters

Phase III (validation
workshop) 20 2 Cross-

company Architects

Phase IV (increasing
interest interviews) 39 8 Company-

specific
Architects, developers, (other
stakeholders involved)

Informal interaction 7 NA Company-
specific Software and system architects

8.3.2.1 Phase I – Preliminary study

Data Collection - We conducted a preliminary study involving 3 of the
abovementioned cases, in particular A, C1, and C2, in which we explored the needs
and challenges of developing and maintaining architecture in an Agile environment in
the current companies. This phase contributed in identifying and selecting what
Research Questions (RQ1-3) were critical to be answered for the studied industrial
setting. This way, we could complement the literature review, assuring that answering
the RQs was not only important for a theoretical point of view, also for a practical
need. We organized three multiple-participant interviews of about 4 hours at the
different sites involving several roles: developers, testers, architects responsible for
different levels of architecture (low level patterns to high level components) and
product managers. The results from the first iteration were validated and discussed in a
final one-day workshop involving 40 representatives from all the 8 cases (see Table 1).

 In the preliminary study we asked open questions:

• “How do you control consistency between the implementation and the
architecture?”

• “Which architecture risk management activities are you employing on different
level of abstraction?”

• “How do you prioritize architecture improvements?”

This set of question aimed at understanding what architecture practices were
currently employed in the organizations in order to identify the architecture debt
(consistency), its interest (risk of effort) and how it was prioritized.

Data Analysis - The data were analyzed in an explorative manner, using a technique
called “open coding” analysis, suitable for exploratory: We then filtered the codes into
“challenges”. Then, by the inductive categorization of the codes, we could see how
several statements, consistently throughout all the cases, fell in the following
categories:

• “reactive behavior to architecture drifting” (abbr. RBAD)

 130

• “lack of continuous risk management activities for architecture drifting” (abbr.
LCRMAD)

• “down-prioritization of architecture” (abbr. DPA).

The combination of these three categories leads to the phenomenon of accumulation
of Architecture Technical Debt (ATD): sub-optimal solutions, the debt, are not
evaluated continuously (RBAD), the risky effects are not understood in time
(LCRMAD) and therefore the refactoring is down-prioritized.

The preliminary study showed a major challenge in managing ATD. In particular,
the studied companies emphasized the struggle, rather than in identifying the debt, in
estimating its impact and therefore in prioritizing the items among themselves and
comparing the ATD items against features (Need for ATD prioritization in Figure 42),
which led to the next phase.

8.3.2.2 Phase II – Investigating ATD classes of items and their effects (interest)

Data Collection - In the second phase we conducted 7 sets of interviews, one set for
each company (Table 1). Each set lasted a minimum of 2 hours, and we included
participants with different responsibilities, in order to cover many aspects: the source of
ATD (developers), the architectural implications (architects and system engineers), the
prioritization decisions taken (product owners) and also the stakeholders of the effects
(we included also testers and developers involved in maintenance projects when
assigned to a dedicated project).

 The formal interviews were also complemented with the preliminary study of
software architecture documentation for each case, to which we could map the
mentioned ATD items. The collaboration format allowed the researchers to conduct ad
hoc consultations, several hours of individual and informal meetings with the chief
architects (at least one per company) responsible for the documentation and the
prioritization of ATD items.

Each set of interviews followed a process designed to identify architecture
inconsistencies (ATD items) with high effort impact. Such interviews were aimed at
answering the first 3 Research Questions (RQ1-3). We took a retrospective approach:
we aimed at identifying real cases happened in the recent past rather than rely on
speculations about the future. We asked, in order, “Can you describe a recent major
refactoring, a high effort perceived during feature development or during maintenance
work?”, “Does such effort lead to architecture inconsistencies?” and “What are the
root causes for the identified architecture inconsistency?”. The output was a list of
ATD items with large effort impact. Then, for each identified architecture debt item,
we followed-up with the developers in order to understand the in-depth details.

The strength of this technique relies on finding the relevant architecture
inconsistencies (ATD) by starting from the worst effects experienced by the
practitioners instead of investigating a pool of all the possible inconsistencies and then
selecting the relevant ones. We have found no other studies applying such technique.

Data Analysis - First we analyzed the data in search for emergent concepts following
the Open Coding technique [55], which would bring novel insights on the analyzed
issue. We coded the identified ATD items in a taxonomy (ATD Items Classification in
Figure 42). We used the same technique for identifying the key effect phenomena
(Effects of ATD items in Figure 42) and the causing factors that were related to each
item (Factors for Accumulation of ATD in Figure 42).

We then apply the Axial Coding approach [55]: the codes and categories were
compared in order to highlight connections orthogonal to the previous developed
categories. Such analysis showed which category of items (in the ATD Items

 131

Classification, Figure 42) was connected to which effects (Effects of ATD items in
Figure 42). This way we could build the complete Interest Map visible in Figure 42, in
which we could represent the debt and the interest discovered through our
investigation.

8.3.2.3 Phase III – Evaluation interviews and Artifact Analysis

Data Collection - The third phase consisted of two validation activities: we
organized 3 multiple-company group interviews, including all the roles involved in the
investigation, developers, architects and product owners, where we showed the models
for their recognition and improvement. For example, we proposed the model for
contagious debt (section 8.5.1) and we asked, when recognized, to strengthen the
model with further concrete and real examples. In order to test the completeness of the
data, we also included, where possible, the analysis of artifacts such as lists of
Technical Issues or Architectural Improvement identified within the company, in order
to understand if the identified items were mapped to the developed taxonomy. Such
deductive procedure strengthened the inductive process employed in the first and
second phases.

As a further validation step we organized 2 plenary workshops with around 20
architects also from 2 other large companies not previously participating in the study,
in order to further strengthen the results. In the workshops we presented the findings
we asked if the participants agreed with the models and if they could provide cases to
validate the models.

Data Analysis - We applied the pattern matching [62] deductive approach for
evaluating the models of Contagious Debt and the Vicious Circles: the technique
consists of using existing theoretically developed models (developed in Phase II) in
order to match empirically provided patterns.

8.3.2.4 Phase IV – In-depth study of increasing interest

The models of Vicious Circles and Contagious Debt suggested that for some ATD
items the interest was continuously increasing, leading to severe development crises
([125]). We therefore decided to follow-up with another multiple case–study. We chose
to conduct a multiple embedded case-study [63], [62] where the unit of analysis was
the ATD item studied. The company, where the ATD item was studied, was considered
in order to analyze context factors for the increment of interest (see Table 24). For
example, for company B we identified the intense interaction with an Open Source
community as a factor for the (non-) increment of interest. The cases were also useful
for further evaluation of the Contagious Debt and vicious circle models.

Data collection - The investigation was structured in different steps (for which we
developed and maintained an interview protocol, as recommended in [63]).

Preliminary Workshop - We performed, at each studied site, an initial investigation
with the following purposes of identifying suitable cases with known or suspected high
increment of interest. We carried out this activity with the architects and we used the
model developed in Phase II and evaluated in Phase III in order to elicit suitable cases
that seemed to be contagious (see arrow Input for case selection in Figure 42). This
part also helped minimizing possible construct validity threats, by aligning the concepts
and the characteristics of the cases among the companies. We selected cases that were
similar because they reported of growing interest, but also seemed to have different
context factors, such as different stakeholder involved or to belong to different ATD
classes. This way, we tried to apply a replication strategy [62], having similar cases
from the point of view of the main phenomenon studied, but that would slightly differ
from each others, in order to maximize the variance. Such strategy allowed to find
more factors for the same phenomenon, dependent or not on the context. The

 132

preliminary investigation lasted between 30 minutes and 1 hour and also helped the
identification of participants: we prepared the real investigation by selecting the
suitable people able to provide the important information: the developers involved
during the development, in order to understand how the ATD item was injected in the
system and how it became contagious, and the developers, testers and other possible
stakeholders involved in the effortful of evolution and maintenance of the studied ATD
item.

Investigation workshop - In the investigation workshop, we first asked for an high
level explanation of the issue: the participants provided a description of the ATD
item(s) relating to the context. A short description of such issue is reported in Table 24.
Then, we performed a structured interview focused on the cases and following the
script:

• Tnow analysis. We performed an analysis of the current situation for the ATD
item: we investigated the Source of the problem, the Current Principal and the
Current Interest.

• Tpast analysis. We asked how the ATD was injected in the system and how that
happened. We then focused on the Propagation of the ATD. It was important to
understand at what point the interest of the ATD started to grow. By identifying
the point in time and the factors that led the ATD to be propagated, we aimed at
identifying what to monitor in order to avoid the contagion (Factors for
Increasing Interest in Figure 42). We asked this question only if we understood
that the ATD item was already propagated. In some cases, the propagation was
still hypothetical, so we did not need to analyze previous propagation, but we
focused on the future propagated interest (explained below in Tfuture analysis). In
other cases, the ATD item was refactored in time because of the estimated
growth.

• Tfuture analysis. We asked the participants to estimate the growth of the impact of
the ATD item and the growth of the refactoring, in order to understand what was
their current perception of the Factors for Increasing Interest and if it would be
possible to use the current estimation for the growth in order to decide for the
refactoring.

8.3.2.5 Data analysis

In this phase we coded the qualitative data starting with a deductive approach, in
order to identify the specific categories for each cases, as described in the data
collection script. In particular, we have used the following main categories:

• Description of the item

• Interest (or impact, current or predicted)

• Principal (or cost of refactoring, current or predicted)

• Factors for Increment of Interest

• Contextual factors

We then applied the Explanation Building analysis strategy defined in [62]: the
purpose is to define causal links by using a narrative approach (used by most existing
case studies [62]). The results from such analysis are shown in Table 24, followed by
the presentation of the Factors for Increment of Interest. The newly found explanations
were then analyzed in order to provide guidelines for Proactive Management of
Interest.

In this phase we also used the pattern matching analytical strategy recommended in
[62]. Such strategy is used to verify the existence of previously formulated patterns

 133

(hypotheses) after a new collection of data. In our cases, we used the models obtained
by the data collection conducted during phase II and III as pattern tests to be used
during phase IV to match the pattern. This kind of evidence contributed in evaluating
the formulated models related to contagious debt and other vicious circle.

8.4 TAXONOMY OF ARCHITECTURE TECHNICAL DEBT ITEMS, THEIR EFFECTS AND
VICIOUS CIRCLES IN THE MODEL

The ATD accumulated in the system is commonly represented by Items, also
according to recent studies on Technical Debt management [46],[126]. We discovered
that some kinds of items were connected to the occurrence of certain key phenomena in
software development. The results also show connections between such phenomena
and the effects in terms of triggered development activities. The overall model (Figure
43) helps the visualization of such relationships. The paths in the model represent the
connection between the debt and the interest, relationship that is of utmost importance
for prioritizing the items to be refactored. Through such model we will also be able to
show the real danger of some ATD items: the phenomenon called contagious debt and
the vicious circles highlighted by the links and loops between the various elements of
the model. This will show dangerous accumulation of ATD interest, which can be
considered a major threat for software development. We will then present the results
about how the interest increases, showing the major factors for its increment and then
what guidelines can be applied in practice to proactively avoid it.

8.4.1 Taxonomy of ATD Items and their effects

The ATD items identified during the investigation can be grouped in the following
categories. We do not list all the gathered items for space reasons, but for each category
we give a short explanation and a representative example. We also link the classes of
items with the triggered phenomena and activities. The overall model is shown in
Figure 43.

8.4.1.1 Dependency violations and unawareness

This category includes the items that are related to the presence of architectural
dependencies (for example at different component levels), which are considered
forbidden in the (context-specific) architecture. An example of this class of items is
represented by a component that, when executed, should not trigger the execution of
another component, as specified by the architects/architecture. Examples of these cases
were mentioned by all the interviewed companies.

In case C2 the interviewees mentioned a concrete example of the phenomenon
connected with this kinds of items: the large amount of dependencies among the
components in one of the sub-systems caused, each time a new release involved a small
change, the test of the whole sub-system (Big deliveries in Figure 43). Such event
hinders agile practices such as continuous integration, in which high modularity of the
system allows the fast test of small portions of the code (for example a single or a small
set of components).

This category also includes those items that are connected to other parts of the
system through the presence of dependencies that are not reconginzed by the
developers and architects, and therefore cannot be correctly located in a specific part of
the code. The main problematic effect related to this issue is that the actual ATD item
spreads out in the system as the system grows, making both the cost of removing it and
of its effects growing constantly: for this reason, we call it contagious debt. Moreover,
it creates hidden ripple effects that are caused by the chains of interactions that the
discovered ATD item is connected to. Since this phenomenon also represents one of

 134

the more dangerous vicious circles that we have found, a concrete example is analyzed
in section 8.5.1.

The developers and architects, although aware of the ATD item, are usually not
aware of the degree of “contagiousness” of such item, which would make it hidden
(hidden ATD in the model). In some cases, the ATD item present in the original
component would also trigger the creation of additional code in order to adapt 3d party
components (for example open source or supplied software).

8.4.1.2 Non-uniformity of patterns and policies

This category comprehends patterns and policies that are not kept consistent through
the system. For example, different name conventions applied in different parts of the
system. Another example is the presence of different design or architectural patterns
used to implement the same functionality. As a concrete example we bring Case A,
where different components (ECUs in the automotive domain) communicated through
different patterns.

The effects caused by the presence of non-uniform policies and patterns are of two
kinds: the time spent by the developers in understanding parts of the system that are not
familiar with and by understanding which pattern to use in similar situations. For
example, in case A, the developers experienced difficulties in choosing a pattern when
implementing new communication links among the components, since they had
different examples in the code.

A phenomenon involved specifically the feature teams interviewed at company C. In
such context, the teams were unlinked from the architectural structure (each team could
“touch” any component necessary for developing a feature). The interviewees
mentioned that the lack of experience and familiarity with the code favored the
introduction of additional ATD: for example, a developer from company C mentioned
that he applied a similar pattern found in the same component for developing a new
feature. Unfortunately, such pattern was already ATD (it was not an optimal solution),
and therefore the developer increased the ATD. This phenomenon also leads to a
vicious circle, as explained in section 8.5.

8.4.1.3 Code duplication (non-reuse)

Some ATD items were related to the presence of very similar code (if not identical)
in different parts of the system, which was managed separately and was not grouped
into a reused component leading to double maintenance.

Another important phenomenon related to code duplication is the presence of what
has been called, during the interviews (citing an architect from company B), “glue
code”. Such code is needed to adapt the reused component to the new context with new
requirements. Such code is usually unstructured and sub-optimal, because it is not part
of the architectural design but rather developed as a workaround to exploit reuse:
however, the risk is that, with the continuous evolution of the system around the reused
component, such glue code would evolve uncontrolled, becoming a substantial part of
the (sub-)system, which would contain ATD.

At the same time, some of the developers from different companies mentioned the
fact that the lack of reuse (citing interviewees, “copy-paste”) is not always a bad
solution. As mentioned earlier, extensive reuse might lead to the presence of glue code.
It might be more desirable to reuse the code to save development time but evolve it
without keeping it dependent to the original component.

 135

8.4.1.4 Temporal properties of inter-dependent resources

Some resources might need to be accessed by different parts of the system. In these
cases, the concurrent and non-deterministic interaction with the resource by different
components might create hidden and unforeseen issues. This aspect is especially
related to the temporal dimension: as a concrete example from company B, we mention
the convention of having only synchronous calls to a certain component. However, one
of the teams used (forbidden) asynchronous calls (which represents the ATD).

Having such violation brings several effects: it creates a number of quality issues
directly experienced by the customer, which triggers a high number of bugs to be fixed
(and therefore time subtracted to the development of the product for new business
value). However, the worse danger of this problem is related to the temporal nature of
it. Being a behavioral issue, it is difficult, in practice, to be tested with static analysis
tools. Also, once introduced and creating a number of issues, it might be very difficult
for the developers to find it or understanding that it’s the source of the problems
(explicitly mentioned by company B, C and D). A developer from site D mentioned a
case in which an ATD item of this kind remained completely hidden until the use case
slightly changed during the development of a new feature. The team interacting with
such ATD item spent quite some time figuring out issues rising with such sub-optimal
solution. The hidden nature of these ATD items create a number of other connected
effects (as explained in 8.5.2).

8.4.1.5 Unidentified non-functional requirement (NFRs)

Some NFRs, such as performance and signal reliability, need to be recognized before
or early during the development and need to be tested. The ATD items represent the
lack of an implementation that would assure the satisfaction of such requirements, but
also the lack of mechanisms for them to be tested. Some cases were mentioned by the
informants, for example case C mentioned the lack of a fault handling mechanism,
which was very expensive to be added afterwards, together with lack of testability
mechanisms. Case A reported frequent struggles with non functional requirements
regarding memory consumption and communication bus allocation. Case B mentioned
the difficulties in anticipating the future use cases for a given feature.

The introduction of such debt causes a number of quality issues, which are difficult
to be tested. The informants argue that it was difficult to repair this kind of ATD
afterwards, especially for requirements orthogonal to the architectural structure, when
the changes would affect a big part of the system: quantifying the change and
estimating the cost of refactoring has always been reported as a challenge, which brings
to other problems as explained in the next section.

8.5 VICIOUS CIRCLES
We have previously described the connection of classes of ATD items with

phenomena that might be considered dangerous for their costs when they occur during
the development. Such cost represents the interest of the debt, and the previously
explained categories of debt have been associated with a high interest to be paid.
However, such association can be considered as fixed, which means that each item
brings a constant cost. However, our analysis of the relationships among the different
phenomena have brought to light patterns of events that are particularly dangerous,
because they create loops of causes-effects that lead to linear and potentially non-linear
accumulation of interest, which might virtually have no end or, more probably, might
result into a crisis [125]: they are vicious circles.

Such vicious circles are well visible in our model in Figure 43: the column on the
left includes the possible causes of ATD accumulation ([125] for details), which we
have represented with black boxes (Cause of ATD generation). Among the phenomena

 136

triggered by some classes of ATD, we can find also causes of ATD (also represented
by black boxes). This means that when a path starts with a cause (all ATD items have a
cause), pass through some ATD items and ends in a phenomenon that is also a black
box, such black box also causes the creation of additional ATD. This loop represents
the vicious circle.

!
!

Dependencies!

Unawareness!

.!structure!

Duplica2on!.!reuse!

Temporal!proper2es!.!

behavior!

Repeated!wrapping!

Contagious!ATD!

Quality!issues!

Hidden!ATD!

Adapta2on!of!

exis2ng!code!

New!code!

Big!deliveries!

involving!many!

developers!

Tes2ng!

Non.completed!

refactoring!

Finding!hidden!

problems!

ACTIVITIES!!PHENOMENA!(EFFECTS)!CLASSES!OF!ATD!!

“Double”!effort!

Non!

uniformity!.!

Policies!

Confusion! Understanding!

Bug!Fixing!
Non!iden2fied!non.

func2onal!

requirements!

CAUSES!

Wrong!

es2ma2on!of!

effort!
Time!pressure!

Cause!of!

ATD!

genera2on!

Causes!

Duplicated!ac2vi2es!

Lack!of!familiarity!and!experience!

Debt! Interest!

Figure 43. The model shows the causes for ATD accumulation (black boxes), the classes of ATD (which
represent the Debt), the phenomena caused by the items and the final activities (which together represent
the interest to be paid).

The implications of vicious circles are important, since the presence of vicious
circles implies the constant increment of the ATD items and therefore of their effects
over time. Which means, each moment that passes with the ATD items involved in the
vicious circles remaining in the system, the interest increases. Such phenomenon
causes the ATD to become very expensive to be removed afterwards, together with the
hindering effects over the development speed: as shown in for each cycle of the vicious
circle, the cost might remain constant (for example the principal of fixing the ATD
item), linear but with low increment over time (low interest), linear but with a high
steepness (linear interest) or it might even reach non-linearity (non-linear interest). In
the end, such accumulation might bring to a crisis. It’s important to notice that the
worse case might not be consisting of non-linearity: if the linear accumulation is steep
enough, the crisis might happen earlier than in the non-linear case.

The highlighted vicious circles are:

8.5.1 Contagious ATD

We have introduced the concept of contagious ATD in section 8.4.1.1. Contagious
debt can be defined as an ATD item whose source affects other parts of the system over
time, causing the sub-optimality (the debt) and its interest to grow. Some examples are
reported in Table 24, and a more detailed example is explained in section 8.6.1.1. We
therefore point the reader at those references for a deeper understanding of the
phenomenon.

 137

8.5.2 Hidden ATD, not Completed Refactoring and Time Pressure

Hidden ATD is a common cause of more than one vicious circle: what happens is
that some ATD items cause the creation of hidden ATD (for example, the ripple effects
created by contagious debt). Then the unawareness of the hidden debt, by the
developers and architects, causes them to be unable to estimate correctly the time to
refactor or to deal with the ATD item. Consequently, when a refactoring is planned for
a certain period, it might result in being incomplete or when new features are added
where ATD is located, the time for delivering such features might increase. Incomplete
refactoring has been recognized to be a cause for new ATD accumulation in [125] and
[127] (in the latter one just for TD). To make things worse, the combination of wrong
estimation leads to increased time pressure during development or refactoring, which in
turn increases the probability of ATD accumulation.

To better describe this phenomenon, we have picked a concrete example of this
phenomenon described by the informants at one studied site: the architects identified an
ATD item consisting in a violation for which three different patterns were used to
communicate among components in different parts of the system. Such problem had
shown to create difficulties during development, since developers felt confused about
when using one or another. Therefore, a refactoring was planned by the architects in
order to remove the three different protocols and replace them with a unique fourth
one, consistent all over the system. However, during the refactoring, several ripple
effects where discovered that were connected to the implementation of the three
patterns to be removed. Such effects were not considered during estimation time. Given
the time pressure to finish the refactoring, the result was having a fourth protocol
included in the system without the developers being able to remove the other three.
Even worse was the fact that the management would not prioritize such refactoring
again, given that the problem was meant to be solved.

This example clearly shows how the presence of hidden ATD would lead to the
inclusion of even more ATD in the system, making it a vicious circle and creating a
trend of continuous increment of ATD and interest to be paid.

8.5.3 Propagation by bad example

As highlighted in the model, the lack of uniformity of polices and patterns,
combined with the Agile practice of having teams modifying also part of the system for
which they are not familiar, leads to more accumulation of ATD. Although this chain
of events might not create continuous growth of interest, it’s worth highlighting that
this particular combination might lead to a vicious circle in the worst cases. However, it
also shows how ATD and its interest, in such situation, might increase more than it is
perceived intuitively.

This phenomenon involved specifically the feature teams interviewed at company C
(see also the case Case_C12 in Table 24). In such context, the teams were unlinked
from the architectural structure (each team could “touch” any component necessary for
developing a feature). The interviewees mentioned that the lack of experience and
familiarity with the code favored the introduction of additional ATD: for example, a
developer from company C mentioned that he applied a similar pattern found in the
same component for developing a new feature. Unfortunately, such pattern was already
ATD (it was not an optimal solution), and therefore the developer increased the ATD.
It’s important to notice that such pattern can be repeated over and over again. In the
studied case, the same violation of the non-allowed dependency rules brought to have a
huge number of non-allowed dependencies in place, which represent a high lack of
modularity in the system, for which a lot of interest is paid.

 138

8.6 UNDERSTANDING AND MANAGING THE INCREMENT OF THE INTEREST
In section 8.4.1 we have presented a map of the ATD classes and their interest. In

section 8.5 we have identified which vicious circles lead to continuous accumulation of
interest. In this section, we present the results that would explain the factors involved in
the increment of the interest and how the increment of the interest can be proactively
avoided or managed. In order to do this, we first present the collected cases, to help the
reader understanding the contexts. Then, we present the findings related to the
increment of interest: the two main kinds of interests (interest on the principal and
interest on other factors), then we explain why their differentiation is important and
how to manage them in different ways with respect to an optimal refactoring strategy.

8.6.1 Presentation of the cases

First of all, we report all the cases specifically recorded for studying contagious debt.
We highlight the key attributes for the cases, for example the description, the
contagiousness and the contextual factors that might be useful for understanding the
context of the problem.
Table 24. Cases of ATD analyzed with increasing interest

Case Id Comp Status Description Growth of interest Contextual
factor

Case_B1 B Refactored

Lack of good
“communicatio
n mechanism”

for different
applications

sharing a
memory

resource. Such
TD created

quality issues
(bugs) for the

users
(customers)

Several new (external)
applications were going to

use the shared resource.
The interest affected the

testware: with the
refactoring, it was estimated

to have been saved 20% of
the test time. The refactoring

was not growing anymore,
many quality issues did not

require fixing or
workarounds.

Most of the time was spent in
refactoring the application,

which shows how much
interest it was accumulated

already.

Open
source

software
community

(external)
pressure to
remove TD

Case_B2 B Refactored

Quick fix of
data structure

to allow
performance

for a single
project.

If the solution was rolled out
for all the other projects, it

would have had a lot of
ripple effects, since the data

structure was used in several
place.

Open
source

software
community

(external)
pressure to

avoid the
TD

Case_B3 B Propagated

The old
version of an

external library
was used

because it was
difficult to

adopt the new
one.

The effort required to change
the library has grown since
the first release of the new

library. Several updates now
have to be refactored in order

to introduce the new library

Open
source

software
community

(external)
pressure to
remove TD

Case_C11 C1 Partly
Refactored

A common
component

was not
designed

The refactoring was growing
at least linearly with the

number of application added.
Once refactored, the growing

Reuse is not
planned.

Other
applications

 139

optimally.
Some

applications
have started
using it. The

component has
been

refactored, but
the

applications
using it cannot

be refactored
because of

other priorities,
while new

applications
are using the
new version.

stopped, but the double
maintenance (for the two
versions of components)

remained.
The number of external users

was also growing.

requested to
use the

component.

Case_C12 C1 Propagated

There is a non-
allowed

dependency
between two
components.

Every time a new feature is
added, the dependency is
made bigger and bigger,

meaning that new
information has to be known

about the status of a
component by the other.

Refactoring is too costly to
be put as story for the

dependency

The team
was not
familiar
with the
code, so

they
understood

the
dependency

late and
they did not

know that
there was

TD.

Case_C31 C3 Injecting

A component
is being reused
and adapted in

order to save
time for the

short-term
delivery of a

customer
feature that

would allow
the

customization
of some

functionalities
for the user.

Instead, a
better version
is planned to

be coded,
which would

bring better
NFRs.

There is a steep, linear,
increasing interest of the

refactoring cost with respect
to new features added to the

system and an increasing
impact on several NFRs.

Legacy:
existing of

previous
system

made of a
collection

of different
architecture

s

Case_C32 C3 Injected

A mediation
layer is written

without
satisfying
scalability

requirements.

Several new applications are
going to be affected by the
scalability problem. Also,

complexity would grow
because of the sub-optimal

mediation layer, and it would

 140

The solution is
going to work
now, but cold
be refactored
to be scalable

for later.

be exposed to the new
applications.

Case_D1 D
Propagated

and
propagating

An interface is
growing sub-

optimal
because of the

backward
compatibility

required by
previous

customers.

For every new product the
cost of refactoring grows

linearly. The interest is also
at least linear with respect to
the number of new products,
and consists of extra-testing,

higher complexity and defect
proneness.

Long-living
products,
backward

compatibilit
y

requirement
, low level
embedded

software
developed.

Case_D2 D
Propagated

and
propagating

An internal
interface is not

well defined. A
large number

of components
are already

using it, which
will need to be

refactored
together with
the interface.

For every new component
developed, the cost of

refactoring grows linearly.
The interest is also at least

linear with respect to the
number of new components.
New people have been hired

and the TD is going to be
propagated to their

knowledge (they will have to
be re-trained with the new

system). Since the
complexity is also growing,

the time to refactor will
increase.

Long-living
products,
backward

compatibilit
y

requirement
, low level
embedded

software
developed.

Case_E1 E Injected

A database
component

does not
provide a

standard API,
and an

application is
using the

private API.

Several new applications are
going to be developed and

connected with the database
component. If the standard
API is not in place the new

application would access the
private API and it would

become very costly to evolve
the database component

afterwards, since it would
require to change all the

accessing applications.

Non-
embedded

system.

Case_F1 F Propagated

Business logic
was embedded

in the dialogs
of the UI.

Every time a new dialog is
added to the system, the debt

is propagated.

Team
investigatio

n, design
TD

8.6.1.1 Increment of interest

In this section we highlight the key findings derived from the previous cases. The
first important property is that an ATD item changes with the change of the system
around it. An ATD item that seems not to be contagious today, might become
contagious tomorrow. Therefore it becomes important to monitor the known ATD.

An important distinction also emerges from the cases. The interest is composed by
two elements:

• the growing cost of refactoring (interest on the principal, IP) and

• the growing impact (interest, I).

 141

Both these elements can be considered interest, since the principal, according to the
financial metaphor, is to be considered only the original cost of repaying the source of
the original ATD item: for example, the cost of refactoring an APIs, but not the
components using it. We describe them in the following sections, by understanding
how the contagiousness depends on different factors. In the end, we highlight how the
various factors interplay together and how the practitioners can monitor the factors in
order to prioritize the refactoring at the right point in time.

Comp%A%

ATD%

Comp%A%

Sw%
Growth%1%

ATD%

Comp%B%

PropATD%

Comp%A%

Sw%%
Growth%2%

ATD%

Comp%B%

Sw%
Growth%1%

PropATD%

Comp%C%

PropATD%

Time%T0% T1% T2%
Figure 44. Model for Contagious Debt accumulation at different points in time: T1, T2 and T3

8.6.1.2 Increasing cost of refactoring (interest on the principal, Ip)

Although in the TD metaphor the interest would be separated from the principal, it’s
clear from the cases that the interest involves the cost of refactoring as well. In all of
the cases, the cost of refactoring was raising, at least linearly with respect to the added
software over time. As we can see in one of the refactored items (see Case_B1), the
developers said that most of the refactoring was not concerning the initial principal (the
source of the TD), but was concerning the applications built on top of it.

We will describe a model of the anti-pattern concerning the contagious debt for what
concern the cost of refactoring, that we call Interest on the Principal (or Ip).

In this case [Case_E1], according to the case-specific desired architecture, a database
in a layered architecture (we will refer to it as “component A”) could not be directly
accessed by other components. The reason for such architectural rule was that the
company, in its long term roadmap, saw the possibility of replacing the database with a
“better” version or even with a different persistency mechanism that would have
allowed the development of new features. However, the database component was
created without a standardized interface, which was the actual ATD item. In the
system, there was another component accessing the database A (we will call it “B”),
which would use the non-standard, direct interface provided by A every time B wanted
to interact with A. This meant that, even if the ATD item was located in component A,
the debt spread into component B as B grew and other parts of the code needed to
access A. This obviously made the cost of removing the original ATD in component A
higher, because component B also needed to be changed in many places. At the
moment of investigation, the company needed to add other components (C, D, etc.) that
would allow the development of customized features for different customers. The new

 142

components had to interact with the database (comp A): at this point, the company
faced the decision of removing the ATD item before “spreading” itself to the new
components, or implementing the new components with the ATD. However, the
removal of the ATD item at this point in time, would involve the refactoring not only
of the database (component A containing the ATD) but also of component B,
interacting with it: clearly, the interest was much higher than changing only A. On the
other hand, not removing the ATD item, would have meant spread it to component C,
D etc. making its removal even more costly. The interest, when the company would
have decided to change the database according to its roadmap, would have raised much
more, since the removal of ATD from A would have meant the removal of it also from
B, C, D, etc.

From the concrete cases, we built the model showed in Figure 44: at a certain time
T0 the system contains an ATD item in Component A. We consider this ATD as the
original ATD item, for which the cost of removal is fixed and called, according to the
financial metaphor, the principal P. At this point, there is no interest to be paid. At time
T1, there might be two (or more) events that contribute to the increment of the interest:
the code grows around the original ATD, interacting with it, and another component
needs to interact with Comp A, causing the ATD to be propagated to Comp B. We call
these two quantities SWGP1 (Software Growth related to the principal at time 1) and
PropATDB1 (ATD propagated to component B at time 1). At this point in time, the
interest is I= SWGP1 + PropATDB1. At time T2, as the software grows again and a new
component is added, we have three more quantities, SWGP2 (assuming that the
software in Comp A grows again), SWGB2 (growth of software in Comp B) and
PropATDC2 (the ATD is propagated to a new Comp C). The interest would therefore be
I= SWGP1 + PropATDB1 + SWGP2 + SWGB2 + PropATDC1. By assigning a fictious
value of 1 (for the sake of simplicity), and calculating the overall cost as P+I (Principal
plus Interest), we have that at T0 C=1, at T1 C=3 and at T2 C=6. Each time the ATD is
propagated, the growing code needs to interact with it increasing the cost of its removal
and propagating ATD even further.

Let’s show what happens if we apply this model to the previous concrete case
(Case_E1): at T0, when the component was created with the ATD, the cost of
removing/not introducing the ATD item would have been C0=1. At time T1, when
component B was already introduced, the cost would have been C1=4 (removing the
ATD from A, from the code around it, from B and from the code around B). At time
T2, after the new components C and D would have been introduced and grown and the
ATD would have spread, the cost could have reached C2=10 (the previous cost, C1=4,
plus the code grown around A and B, which is 2, plus the ATD introduced in C and D
and the code around them, which is 4). This scenario implies that the components grow
constantly, making it a worse case scenario, but we have to consider the fact that also
more components could have been added.

The cases studied suggest the steep growth of the interest on the principal over time
with respect to the growth of the connected parts. It becomes of utmost importance, for
the company facing the situation of being at T0 or T1, to know the risk of letting the
ATD spreading around before the vicious circle has gone too far (T2): at such point, the
company could be in the situation of facing the choice of refactoring component A
(which has become extremely costly), or renouncing to implement the new features
connected with such change. The main goal becomes, at this point, to be able to
estimate correctly how much the system is going to grow around the source of an ATD
item.

8.6.1.3 Factors related to the increasing of Interest (If)

From the cases studied, it’s clear that the interest (impact) of an ATD item is not only
to be related to maintenance, but it has ramification on other factors. It’s therefore

 143

important to understand what are these other factors in order to monitor their growth
(together with the growth of the system described before). We highlight the main
factors below. One of the main implications is that the interest is not only a property of
the source code, but it includes other artifacts and other parts of the organization.

Complexity – Although the complexity can be regarded itself as TD, in this case we
take the perspective of it being a factor for the growth of the interest related to another
ATD item. As clear from several cases, the growth of complexity makes both
maintenance difficult (growing of I) and the refactoring costly (growing of Ip). The
implication is that the growth of complexity needs to be monitored in those parts of the
software that are connected with an ATD item.

Testware – In many cases analyzed, the interest is related to the testware: often more
tests need to be in place or resources for testing (for example, time). Another important
point is that refactoring ATD implies, often, refactoring the related tstware as well.
Monitoring the growth of the testware in relationship to code affected by ATD is
therefore important to understand the if the interest is increasing over time.

Users – A component might be used by a number of other internal components,
applications (or features) or internal or even external systems. For example, in several
cases the increment of interest was considered linear to the number of features included
in the roadmap. In those cases where the interface with ATD was exposed, the teams
developing something related to such interface were affected by the interest related to
the ATD. By understanding how many users are connected to the ATD, it’s possible to
decide to refactor an item before the number of users, experiencing the inconvenient
effects related to the interest, would grow, minimizing the costs. Another reason why
the number of users is important is clear in case D2, where the training of the
newcomers would be more effective if happening after the refactoring: this way, the
time for learning is limited to the new system and not to the old system as well.
Consequently, monitoring the number of users might be related to information coming
from the Human Resources. In the cases related to company B and C2, the users where
external to the organizational boundaries, i.e. belonging to the ecosystem. In such case,
the interface would be used by an undefined number of users: such information
constitutes a risk factor that needs to be taken in consideration. In all the cases
including external users, it was decided to refactor the ATD, even if in Case_C21 the
refactoring was not completed, causing an internal extra-cost, but allowing the external
users to not experiencing the interest of ATD.

Non-Functional Requirement – in many of the cases, the problems related to interest
where not only coming from maintainability, but where involving other NFR and
where estimated to worsen NFR for the new part of the system developed. It’s therefore
important to monitor how ATD is going to affect the new system with respect to the
NFR that are important to the company.

8.6.2 Monitoring the growth of the factors (If) in order to optimize the benefits of refactoring

The usual rationale for refactoring ATD is the evaluation of the cost of the whole
refactoring (that can be considered as the cost for refactoring the source of ATD plus
the cost for refactoring the increment of principal, Ip) versus the remaining cost of the
interest (If). According to the cases, when the ATD item was discovered, the cost and
probability of If and Ip was low, and therefore the ATD was found not convenient to be
refactored according to the participants. However, when the interest If became too
much and the participants wanted to refactored the ATD item, the growth of Ip had
already happened, causing a struggle in deciding for refactoring because of the
increased total cost and the cost already spent on the interest If. It seems clear that the
more the interest on the principal (Ip) grows, the less convenient and likely it becomes
to remove the interest If. Also, it’s to be considered that in practice, large tasks are

 144

difficult to be approved by the management and to be adjusted together with the feature
development.

Another important consideration is that the growth of Ip and If are not necessarily
known. According to the previous results, obtained from the cases, both Ip and If
increase with the growth of the system and the growth of the factors (by definition of
the two interest indicators). What happens in practice is that the growth of the factors is
not necessarily known long in advance (or is considered not probable), but it appears
when the company starts paying If. However, at such point the factors are already
grown and therefore Ip is grown (which, as stated before, prevent the management to
prioritize the refactoring). Therefore, rather than monitoring the cost spent on the
interest based on the factors (If) in a reactive manner, it appears to be better to estimate
in advance the growth of the factors themselves: for example, using the roadmap it’s
possible to know how many new features are going to be developed, and which part of
the system will most probably grow, which in turn might anticipate the growth of Ip and
avoiding reaching the point when refactoring the ATD is too costly. In conclusion, by
monitoring the growth of the factors, the company would better know when and if to
refactor the ATD with as low Ip to be paid as possible, but at the same time avoiding as
much cost of If as possible, which in the end would be the optimal choice (visible in
Figure 45).

Time%ATD%%
injected%

Fa
ct
or
s%(
e.
g.
%u
se
rs
,%t
es
ts
,%e
tc
.)%

Cost%of%refactoring%
(source)%is%known%but%
the%interest%(both%Ip%and%

If)%is%unknown%or%
improbable.%The%

refactoring%is%considering%
as%not%convenient.%

The%cost%of%refactoring%
(source%+%Ip)%is%high,%it’s%

not%clear%if%it’s%convenient%
to%refactor%with%respect%to%
avoid%high%interest%(If).%
The%company%struggles%

The%cost%of%refactoring%(Ip)%is%
sEll%low,%but%both%the%interest%
and%the%cost%of%refactoring%are%
going%to%grow%together%with%
the%factors.%Refactoring%now%
would%cost%low%(Ip)%but%would%
avoid%a%high%and%probable%

future%cost%(If).%

Non%convenient%

Convenient%
Non%convenient?%

HypotheEcal%(recommended)%
monitor%of%the%growth%of%the%factors%

Experience%of%bad%
effects%of%the%interest%

Figure 45 By monitoring the factors, it's possible to pay low to refactor growing interest

8.7 DISCUSSION
The exploratory investigation that we have carried out contributes to inform the

research questions with the following results: by providing a taxonomy of the
architectural violations (ATD) that have been found in practice to lead to phenomena
and activities connected to high effort cost (RQ1). The employed research
methodology assures that the items come from recent costly efforts experienced in
practice by 8 organizations. To inform RQ2 we have built a model of the effects
(Figure 43) in which we show the phenomena connected to the items and the activities

 145

that are triggered. The model can be used as a quality model for developing context-
specific metrics and other artifacts in the companies in order to estimate and therefore
to prioritize the ATD items based on what they may cause in the future. To inform
RQ3, we have further analyzed the relationships, discovering and modeling pattern of
events such as the contagious debt and vicious circles that cause the continuous
increment of ATD interest to be paid over time, which might be linear but could
potentially reach non-linearity, leading to development crisis. As for RQ4, we have
investigated 12 cases of contagious debt, in order to understand which factors need to
be monitored to avoid the contagiousness and therefore the payment of high interest.

8.7.1 Implications for research and industry

The results suggest a number of practical and theoretical implications, which might
evolve, in future work, into practices for practitioners and new research studies.

Enabling iterative and proactive ATD management: first of all, constant and iterative
monitor of ATD items, even if still not supported by powerful tools, is necessary for
identifying the presence of ATD and for avoiding the dangerous phenomena described
here. The dangerous classes, interest activities, vicious circles, and the factors for the
increment of the interest that we propose here can be useful to support iterative
architectural retrospective. In such sessions, the models here serve as a guideline for
practitioners who might recognize the presence of dangerous classes of ATD items or
the verifying of the phenomena. The cases show how some ATD items belonging to
some classes (for example the contagious one) usually creeps in the system because its
interest is not evaluated continuously. When finally the interest becomes visible as a
software development crisis, it’s usually too late to refactor the ATD item. In order to
recognize this phenomenon, we have found, through the analysis of 12 cases, the
factors that can be monitored in order to identify the increment of interest, which would
facilitate the refactoring strategy.

Prioritization of ATD items based on the magnitude of the interest: there might be a
lot of suboptimal solution in a software system, and other studies show [125] that TD
accumulation is not completely controllable and avoidable. Therefore, the classes and
method proposed here help identifying and prioritizing ATD items that have more
impact and therefore more interest to be paid. Such prioritization is important both for
research and practice: for the former one, it points at classes of ATD and interest in
need for further research and for tool support (for example, new metrics), which seems
still quite scarce. As for practice, such prioritization would save the resources (often
largely inferior than the cost of repaying all the TD present in the system) when
deciding what to refactor. The impact analysis using the factors can be particularly
useful as input in the prioritization mechanism in order for the managers to understand
when an ATD item has to be refactored.

Predicting growth related to TD is the key prevention: The main prevention for
contagious debt and in general for increasing interest, is to understand the growth of
various factors: the growth of the system (in order to understand the growing interest
on the principal), the testware, the complexity, the users and the NFRs connected to the
injected ATD. This implication brings new knowledge in the field of software
engineering, since it contrasts with previously derived theories on Technical Debt in
which only maintainability is recognized as interest of an ATD item.

Technical Debt and Ecosystems: another important consideration is the relation
between the contagious debt phenomenon and the current evolving of big ecosystems,
in which many different parties cooperate and compete. The risk that the ATD present
in a single system (which would be epidemic, borrowing the term from medicine)
would spread in many systems in a pandemic fashion might result in a phenomenon
difficult to control once not contained in the beginning. For this reasons we see the

 146

need, in future research, to identify architectural solutions (or quarantines) that would
avoid the phenomenon, but also limiting the spread, once the contagious ATD item
would be identified. On the other hand, ecosystems such as the Open Source
community participating in company B highlights how such development collaboration
would actual have a positive impact on avoiding costly TD accumulation thanks to the
continuous external pressure and focus on internal qualities of the software.

Combination of linear accumulation with linear interest might lead to non-linear
interest: According to another study [125], there might be different causes of ATD
accumulation. Such causes are: Uncertainty of use cases in the beginning, Business
evolution creates ATD, Time pressure: deadlines with penalties, Priority of features
over product, plit of budget in Project budget and Maintenance budget boosts the
accumulation of debt, Design and Architecture documentation: lack of
specification/emphasis on critical architectural requirements, Reuse of Legacy / third
party / open source, Parallel development, Effects Uncertainty, Non-completed
Refactoring, Technology evolution, Human factor. As found in [125], the actual
number of items constantly increases over time, due to combination of several factors,
including down-prioritization of ATD refactorings and the presence of unknown ATD
(confirmed by our results: see hidden ATD as part of a vicious circle, 8.5.2). The
implications of blending the models in this paper with the ones in [125] lead to
combine the strict (linear) monotonicity of accumulating a number of ATD with items
for which the interest is growing linearly or even non-linearly. The result of such
combination, which is a multiplication of a linear function (the accumulation of ATD
items) with a linear or potentially non-linear one (the interest accumulated for each
item), leads in any case to non-linearity, and suggests that combining the accumulation
of items with high interests might be catastrophic, leading to a crisis quite quickly.

8.7.2 Limitations

The outcomes are the results of qualitative investigation. The results are not meant to
substitute precise models derived from quantitative data, but rather to facilitate their
creation. The magnitude and the proportions represented in the graphs are qualitatively
formulated and may vary from context to context. We didn’t aim, in this paper, at
giving precise measurable results, but rather showing sociotechnical macro phenomena
that represent potential threats for software development. The graphs are not supposed
to be used for precise estimation as they are in this paper, but might be used to drive the
collection of key data in order to build more exact models. In the field of software
metrics, the creation of measurement systems and the collection of meaningful data
need to follow a previously developed quality model. Our future work includes a
deeper investigation of several cases to provide a more precise characterization of the
phenomena. The taxonomy of ATD items might not be complete, since we focused on
the most dangerous violations. Also, different contexts might show different effects for
such items.

The possible threats to internal validity are the temporal precedence, covariation and
nonspuriousness. As for the first one, there is low possibility that the events described
by the informants and checked with the architectural documentation would not be in
the correct chronological order. As for the covariation, since we deal with real-context
examples, a complex interrelation of variables that we might have not taken in
consideration might have influenced the results. However, we have mitigated this
problem by validating the models by comparing data coming from multiple companies,
multiple sessions and multiple cases across several sites. The same holds for the third
threat, nonspuriousness, since we don’t see other alternative explanations, especially
when the phenomena were repeatedly mentioned across the sites. As for external
validity, although we cannot generalize, we can rely on the fact that a higher number of
cases (eight) have been studied, which is higher than in many other work in literature,

 147

where usually a single or few case studies are taken in consideration. In our work, we
included 8 organizations, which we might consider as a sufficient number considering
the effort that we employed in gathering extensive qualitative data form each site. The
last threat is the confirmation bias, which might happen at the validation step, when we
propose the models and the respondents might have tried to fit examples because they
would have liked to “believe” in the proposed model. However, many concrete
examples from different cases for each phenomenon were gathered, and we always
probed the statements by asking for explicit details that would confirm the legitimacy
of the validation. In the case of Contagious Debt, we validated the by collecting 12
cases explicitly reflecting such phenomena.

8.7.3 Related work

The phenomenon of ATD has only recently received the attention of the research
community [33][38]. It was difficult, therefore, to find extensive previous research
tackling the problem of prioritizing ATD items based on their effects in real contexts,
which motivated our exploratory study. Few single case-studies were related to code-
debt (e.g. [35]) or code-smell [128]. The work done by Sjøberg et al. shows that some
code-smells don’t create extra maintenance effort: the implications are that not all the
“smells” or the architecture quality problems identified in literature have necessarily a
big impact on effort: we followed such idea on an architecture level, and we
empirically classified ATD creating more effort (for prioritization purposes). In the
case-study conducted by Nord et al. [124], the authors studied a specific case in depth,
modeling and developing a metric based on architectural rework that would help
deciding between different paths leading to different outcomes. This initial attempt to
create a metric made by the authors focuses on the impact of modularity in the interest
to be repaid in the future. The resulting metric seems promising and, although not
complete (dependencies are not “weighted”) and presenting drawbacks, as the authors
explain themselves, we see the opportunity for it to be further developed in order to be
used for increasing the awareness of the contagious debt phenomenon that we have
modeled here. The scope of such paper is specific for one ATD item (which falls under
our Dependency violations class) and does not attempt to classify different ATD items
based on their effects. We find an interesting point of discussion the difference between
the intentional and unintentional debt, as introduced by Fowler [129], and the
assumption, in more than one work (e.g. [39], [124]) that unintentional debt is linked to
code debt while architectural debt is necessary strategically chosen and intentional.
However, our empirically collected results and a previous study [125], in which we
collected the causes for ATD items, suggest that also at the architectural level there is
an accumulation of ATD that is unknown and therefore unintentional. For example,
members of the teams are not always aware of the impact of low-level choices to the
whole system architecture. An empirical model of debt and interest is also described in
[39]. However, such method only focuses on a generic quality level and its
maintenance effort and not on the classification and prioritization of different ATD
items, and does not take in consideration the organizational- and processes-related
phenomena connected to it. Our work has been inspired by the work done by Seaman,
Guo et al. [36],[46],[126]. In [36] a model of cost/benefits has been proposed for
ranking ATD items. Our results suggest that the proposed models would need to
include the time dimension, as we have found that the interest might grow in different
ways, and the inclusion of specific properties such as the “contagiousness” of the ATD
item. In summary, none of the studies took a more holistic perspective taking in
consideration a broad landscape of socio-technical phenomena as we have done in this
paper, by surveying different sites. We offer the classification of dangerous ATD items
and effects and we include a set of socio-technical issues that, as we have shown, might
create vicious circles that go beyond the technical phenomena.

 148

8.8 CONCLUSIONS
Strategic decisions on short term and long term prioritization of Architectural

Technical Debt items need to be balanced and need to rely on the awareness of the
interest that needs to be paid in the future when some debt is taken. In order to estimate
the interest, it’s important to know the effects that such items will have in the future,
especially the ones that might lead to dangerous situations. The reaching of a crisis
point when the ATD is hindering the responsiveness in providing new customer value,
as required in Agile, has shown to be a relevant problem that many companies struggle
with. In this paper we have provided a taxonomy of the ATD items that have been
found, according to a wide amount of empirical data collected in 8 sites at 6 large
international software companies, the most dangerous in terms of generated effort. We
have provided a map of the effects and the related activities (which represent the
interest) that can be connected with the ATD classes in the previously mentioned
taxonomy. Such results would make aware the practitioners and would help researchers
in future directions. The paper shows newly discovered patterns of socio-technical
events such as contagious debt and vicious circles, which cause the continuous
increment of interest to be paid over time. Such increment has been empirically studied
in 12 concrete examples of ATD items: we provide an understanding of the factors that
are involved in increment of the interest. These factors can be proactively monitored in
order to strategically refactor the ATD before it becomes too late to be repaid. The
results reported here contribute to the field of empirical software engineering by
providing clear goals for which measures are needed in order to support the software
development (according the goal-question-metrics approach), and by updating the
theoretical framework for technical debt thanks to new empirical evidence, which show
how the interest is composed by several factors and cannot be restricted to maintenance
effort only. The results in this paper can be used in research and industry in order to
create and improve practices dedicated to monitor, uncover and prioritize the
dangerous ATD present in the system. This way we help practitioners in recognizing
and proactively avoiding situations where refactorings are not completed or ATD items
become “contagious”, which would benefit the companies itself but would also avoid
the pandemic spread of the ATD in entire ecosystems.

 149

9 EVALUATION OF ARCHITECTURE TECHNICAL DEBT
INFORMATION FOR BALANCING AMBIDEXTERITY

Architectural Technical Debt is a metaphor for representing sub-optimal
architectural solutions that might cause an interest, in terms of effort or quality, to be
paid by the organization in the long run. In this Chapter we evaluate if such metaphor is
useful for communicating risks of suboptimal solutions between technical and non-
technical stakeholders. It's fundamental to understand the information needs of the
involved stakeholders in order to produce technical debt measurements that would
allow proper communication and informed prioritization. We have investigated,
through a combination of interviews, observations and a survey, what key information
is needed by agile product owners and software architects in order to prioritize the
refactoring of risky architectural technical debt items with respect to feature
development. These results show how the information developed in the previous
chapters is useful for the stakeholders and requires to employ part of the development
in order to trade short-term responsiveness with the long-term one.

This chapter has been published as:

Martini A., Bosch J.: “Towards Prioritizing Architecture Technical Debt:
Information Needs of Architects and Product Owners” Accepted for publication in
proceeding of Euromicro SEAA 2015 [130]

9.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and the
delivery of a solution. The trend in the last decade has been the employment of Agile
Software Development (ASD) [6]. At the same time, the responsiveness in the short-
term deliveries should not lead to less responsiveness in the long run. To illustrate such
a phenomenon, a financial metaphor has been coined, which compares the trend of
taking sub-optimal decisions in order to meet short-term goals to the taking debt, which
has to be repaid with interests in the long term. Such a concept is referred as Technical
Debt (TD), and recently it has been recognized as a useful basis for the development of
theoretical and practical frameworks [38], [31]. Tom et al. [33] have explored the TD
metaphor and outlined a first framework in 2013, and a recent systematic mapping has
highlighted the current gaps in research [31]. Part of the overall TD is to be related to
architecture sub-optimal decisions, and it’s regarded as Architecture Technical Debt
(ADT) [38], [31]. ATD items are considered as violations in the code towards an
intended architecture for supporting the business goals of the organization [31]. An
example of ATD might be the presence of structural violations [124].

According to a recent study carried out by the same authors of this paper [125], the
prioritization of ATD with respect to feature development is an important activity in
order to balance the short-term value delivery and the long-term responsiveness of a
company. Not prioritizing ATD might lead to software development crisis followed by
big refactoring activities preventing the continuous delivery of features [125]. Although
such prioritization seems a critical activity, the recent mapping study found a gap in the
current scientific knowledge: “More industrial studies are needed to show how to
prioritize a list of TD items to maximize the benefit of a software project and which
factors should be considered during TD prioritization in the context of commercial
software development.” [31]. We therefore intend to fill such gap by exploring how the
prioritization activity is performed and what are the information needs between the key
actors in such activity: the software architects and the product owners (POs). We

 150

especially investigated large Scandinavian companies developing embedded software
and employing Agile software development. Our research questions are the following:

RQ1: What is the information needed by product owners and architects to prioritize
ATD with respect to feature development?

RQ2: What are the differences between architects and product owners when
prioritizing ATD with respect to features?

We have employed a multiple case study involving 6 cases in 4 large companies. We
have interviewed four kinds of roles, software, system architects, product owners
responsible for single products and for portfolios. In order to shed light on what is the
important information needed to prioritize ATD, we have collected different kinds of
data, by qualitatively observing the prioritization activity and by collecting quantitative
data from the participants with a questionnaire.

9.2 BACKGROUND AND CONCEPTUAL MODELS
In order to prioritize ATD items with feature development, we need to understand

how they are compared in practice, what aspects are used for feature prioritization and
which aspects are influenced by the information about ATD.

9.2.1 Features vs ATD refactoring prioritization model

Figure 46 describes our conceptual model. Such conceptual model is based on
previous data collected of the same authors of this paper at the same companies
involved in the study ([44]).

When a decision needs to be taken between refactoring ATD and developing new
features, the main actors interacting in the prioritization activities are Product Owners
(POs in ASD) and software architects. The interaction between the two roles leads to a
decision to use resources for refactoring or for feature development, which in turn leads
to the outcome of the activity, a development plan. Depending on the size of the ATD
item, the plan can involve sprint planning, including items in the backlog for the Agile
teams, or it might be on a broader scope, for example the definition of a roadmap.

The prioritization activity is based on different aspects taken in consideration by the
decision makers. For aspects we mean “[…] a property or attribute of a project and its
requirements that can be used to prioritize requirements” [131].

The prioritization activity is based on different information: the one coming from the
customer (not covered in this paper), and the information about the ATD effects (for
example, the cost of refactoring, or else the principle of the ATD, and the impact of the
ATD, or else its interest). POs and architects take in consideration the input
information and evaluate it according to the prioritization aspects. When all the
important aspects are evaluated and weighted, the actors take a decision.

Our aim in this paper is to explore what ATD information is needed during the
prioritization activity in order, for POs and architects, to be able to take a decision
(RQ1). We also investigate how the prioritization aspects and ATD effects are
weighted in different ways by POs and architects (RQ2).

In the next sections we define the prioritization aspects used for the comparison of
weights between architects and POs, and the available information on ATD effects that
can be used during prioritization. As explained in the methodology section, these
concepts were used during data collection.

 151

Priori%za%on)Ac%vity)

Priori%za%on)
aspects)

Decision)
(refactoring)or)feature)development))

Product))
Owner) Architect)

Outcome)(plan))

Informa%on)about)
ATD)effects)

Informa%on)from)
the)customer)

Priori%za%on)
aspects)

Figure 46. Conceptual model

9.2.2 Prioritization aspects

[131] is a literature survey about prioritization aspects currently considered
important in literature and in industry. We have adapted such aspects to the ones used
in the investigated companies, by aligning the definitions in [131], [132] with the ones
given by the participants in the beginning of the data collection. This step is necessary,
as also suggested in [131], “It is important that the stakeholders have the same
interpretation of the aspects […]”

The aspects are:

• Competitive advantage: A superiority gained by an organization when it can provide
the same value as its competitors but at a lower price, or can charge higher prices
by providing greater value through differentiation.

• Customer long-term satisfaction: the ability of keeping the customer satisfied not
only with short-term value but also with value that lasts. An alternative definition is
“gaining the customer trust”.

• Lead time: the ability to deliver the same amount of features in a shorter time.

• Maintenance Cost: the development effort spent to maintain a product.

• Attractiveness for the market (also market attractiveness in the following): the
ability of delivering features that make the product attractive for new customers.

• Penalty: the penalty that is introduced if a requirement is not fulfilled (or a feature is
not delivered).

• Risk: “Every project carries some amount of risk. In project management, risk
management is used to cope with both internal (technical and market risks) and
external risks (e.g. regulations, suppliers)” [131].

• Specific customer value: the ability of delivering features that have value for a
specific customer rather than for all the customers.

 152

• Volatility: rate of change over a given period. Volatility varies, for example: the
market changes, business requirements change, legislative changes occur, users
change, or requirements become more clear during the software life cycle [131].

9.2.3 Architecture Technical Debt effects

The same authors of this paper have recently investigated several cases of ATD, and
found that there are effects of some ATD items for which the interest to be paid by the
company was particularly high [42]. Such paper reports a taxonomy of this effects, that
we have used in this investigation as the possible information about the ATD effects
that can be used during the prioritization by product owners and architects (Figure 46).
Since [42] is accepted for publication but is not accessible yet, we report the taxonomy
here.

• “Double” effort: it’s an effect generated by code duplication. The word “double”
is only indicative of the extra effort that could be mapped double maintenance of
the duplicated code. We cleared this term with the respondents, who interpreted
the value as possibly being between the 25 and 100% of extra effort.

• Big deliveries: the large amount of dependencies among the components in one
of the sub-systems cause, each time a new release involved a small change, the
test of the whole sub-system instead. Such event hinders agile practices such as
continuous integration, in which high modularity of the system allows the fast
test of small portions of the code (for example a single or a small set of
components).

• Contagious ATD: it’s the main problematic effect related to the large amount of
dependencies. The actual ATD item spreads out in the system as the system
grows, making both the cost of removing it and of its effects growing constantly:
for this reason, we call it contagious debt. Moreover, it creates hidden ripple
effects that are caused by the chains of interactions that the discovered ATD item
is connected to.

• Developers idling: the time spent by the developers in understanding parts of the
system that are not familiar with and by understanding which pattern to use in
similar situations.

• Many code changes: when the presence of ATD causes the adaptation of the
existing code, which needs to be continuously changed.

• Number/complexity of test cases: when ATD causes the existence of more test
cases or test cases that are more complex (and therefore more difficult to be
managed).

• Probable hidden TD: see “contagious ATD” for the explanation.

• Quality issues: when an ATD is likely to create a number of quality issues
directly experienced by the customer, which triggers a high number of bugs to be
fixed (and therefore time subtracted to the development of the product for new
business value)

• Wrong estimation of effort: the unawareness of the hidden ATD and its ripple
effects, by the developers and architects, causes them to be unable to estimate
correctly the time to refactor or to deal with the ATD item. Consequently, when a
refactoring is planned for a certain period, it might result in being incomplete or
when new features are added where ATD is located, the time for delivering such
features might increase.

 153

9.3 RESEARCH DESIGN

9.3.1 Case selection

We have employed an embedded multiple-case study [63], where the unit of analysis
is an (sub-part of the) organization: the unit needed to be large enough, developing 2 or
more sub- systems involving at least 10 development teams. The total units studied
were 6. We selected, following a literal replication approach [62], 4 companies: A, B (3
sub-cases), C and D, large organizations developing software product lines, having
adopted ASD and had extensive in-house embedded software development.

Company A is a manufacturer of recording devices. The company employed
SCRUM, has hardware-oriented projects and use extensively Open Source Software.
Company B is a manufacturer of telecommunication system product lines. They have
long experience with SCRUM-based cross-functional teams. We involved three
different departments within company B (B1, B2, B3). Company C employed SCRUM
to develop a product line of devices for the control of urban infrastructure. Company D
is involved in the automotive industry. The development in the studied department is
mostly in-house, recently moved to SCRUM.

9.3.2 Data collection

We have collected data using two complementary methods: we ran a questionnaire
and we complemented it with qualitative interviews with the same participants. This
way, we have collected both qualitative and quantitative data, while we have
complemented group thinking with individual responses. This strategy was used in
order to achieve method triangulation, as suggested in [63].

0

1

2

3

4

A B1 B2 B3 C D

Architect system

Architect sub-system

Product Owner portfolio

Product Owner product

Figure 47. Distribution of roles and companies

The roles of the participants are outlined in Figure 47. In total, we had three portfolio
managers, three product owners, five architects responsible for a system level and four
architects responsible for sub-systems. This combination assured that all the roles were
covered.

The workshop consisted of the following phases:

 154

1 – Preparatory workshop for prioritization aspects: before the investigation, we
spent 30 minutes in aligning the prioritization aspects used during the following
activities among the researchers and the participants from the companies. All the
participants were present in the preparatory workshop.

2 – Questionnaire on the prioritization aspects: we asked the practitioners to rate the
prioritization aspects. The main question was:

 Which Prioritization Aspects do you use for prioritization?

We then asked the practitioners to rate each aspect described in the background
section (Competitive advantage, Lead time, etc.) according to three parameters:

• Importance: how important is this aspect in the prioritization activity. We asked the
participants to rate the aspect using the following Likert scale: 1 – Low, 2 –
Medium/Low, 3 – Medium/High and 4 – High.

• Frequency: how often this aspect is used. We asked the participants to rate the aspect
using the following Likert scale: 1 – Seldom, 2 – Sometimes, 3 – Frequently and 4
– Always.

• Granularity: how precise are the values used during prioritization. 1 – Coarse, 2 –
Medium/Coarse, 3 – Medium/Fine and 4 – Fine. The Fine granularity was mapped
to precise measures, while the Coarse one was mapped to expert judgment not
based on measurable data.

This way we covered different dimensions of the same aspects. In the results, we
will report both the single value and a unique value for the average between importance
and frequency for each aspect: such index shows the overall contribution of such aspect
during the prioritization. The granularity shows how precise data is used in the
prioritization.

3 – Focus groups on the prioritization cases: in this phase we split the participants in
two focus groups, where we analyzed two concrete cases. The cases were presented by
company A and company C and were considered difficult to be prioritized when
deciding between refactoring and feature development. In each session, lasted one
hour, a case was reported by a participant from the related company and one researcher
was present to guide the relevant prioritization aspects to be covered. The other
participants were split in two groups, and the researchers made sure that there was an
even number of participants for each company and for each role in each group. Each
group then discussed the case with respect to the prioritization aspects explained
previously.

4 – Plenary summary session and ATD effects analysis: after the parallel focus
groups, the participants were gathered together. Both the groups summarized their
results to the other group. Then, the researchers introduced the concepts of ATD, the
ATD effects and aligned such concepts across the group. Then, the ATD effects were
mapped to the analysis done on the cases. The participants discussed if the information
about the ATD effects would be useful for the prioritization activity in the analyzed
cases and in other examples.

5 – Questionnaire on information needs about ATD: after the plenary session, we
asked the participants to answer the following questions for each of the ATD effects
mentioned in the background section (double effort, contagious ATD, etc.).

• Would you use this attribute in the prioritization? – we asked the participants to
answer one of the following Likert-scale options: 1 – Very Unlikely, 2 –
Unlikely, 3 – Likely, 4 – Very Likely.

 155

• Which granularity (precision of the value) would you need? – we asked the
participants to answer one of the following Likert-scale options: 1 – Coarse, 2 –
Medium/Coarse, 3 – Medium/Fine and 4 – Fine.

• How useful would be the ATD information during prioritization? – Possible answers
were: None, Low, Medium/Low Medium/High, High.

• How many resources would you allocate to obtain the information on the ATD? –
None, Low, Medium/Low Medium/High, High. We also asked the participants to
specify a percentage related to the development effort. We agreed with the
participants, before answering the question, that the scale could be mapped in the
following way: 0% – None, 10% – low, 20% – Medium/Low, 30% –
Medium/High, 40% – High.

We also asked the participants to map the effects to the prioritization aspects: this
way, we could understand which aspect the information from the ATD effects would
be useful for. More specifically, we ask the respondents to map, for each prioritization
aspect, the three most relevant ATD effects that would give more information for
evaluating such aspect.

9.3.3 Data Analysis

 Quantitative analysis – we have analyzed the answers from the questionnaire in a
quantitative fashion, i.e. by interpreting the numbers obtained from the answers. Given
the small sample, we could not use any statistical method. However, several numerical
comparisons could be performed, which helps understanding the role-specific
perception of the prioritization aspects and the information needed from the ATD
analysis.

 We have done three kinds of quantitative analysis, and the results will be presented
following the same structure:

• Overall results – we have considered all the answers together and we have used such
results to draw conclusions common to all the roles and companies.

• Role-specific results – we have divided the results as product owner view and
architect view. Dividing the answers also by level of abstraction (system/software
architects and product/portfolio owners) would have reduced the amount of data
for each role too much.

• Comparison – we have compared all the results coming from the different roles in
order to understand if there were differences and about what.

When interpreting the answers the Likert scales, we have weighted the difference of
each option with a unitary value. For example, for the answers on the importance of
each prioritization aspect we have weighted them as “Low” = 1, “Medium/Low” = 2,
“Medium/High” = 3 and “High” = 4. This was done in order to have similar intervals to
be compared. To the questions that were non-answered we assigned a value equal to 0,
as we specified several time with the respondents.

Qualitative analysis – We have qualitatively analyzed the discussions in order to
complement the questionnaire data and to understand which factors would influence
the discussion between the different roles. We have analyzed the case discussion in
order to understand which information was more requested by the different roles and if
there were conflicts.

9.4 RESULTS AND ANALYSIS
We will present our results by showing the questionnaire data for each question in

the three different perspectives mentioned in the previous section: overall, role-specific

 156

and comparison. In some cases, when possible, the findings will be condensed in a
unique table. We have colored the cells in order to make easier for the reader to
compare the values in the cells. We will offer, together with the results, the researchers’
interpretation of the data based also on the prioritization cases discussed during the
workshop.

9.4.1 Prioritization Aspects
Table 25 .Rank of Prioritization Aspects

Aspect\Rank Imp. Freq. Avg.
Gran
.

Competitive
advantage 3.4 2.7 3.05 1.9
Specific customer
value 2.9 2.3 2.6 2.4
Market attractiveness 2.5 2.3 2.4 1.8
Lead time 2.4 2.3 2.35 1.7
Maintenance Cost 1.8 2 1.9 1.4
Customer long-term
sat. 1.8 1.8 1.8 1
Risk 2 1.5 1.75 1.2
Penalty 1.9 1.3 1.6 2
Volatility 0.2 0.3 0.25 0.3

The overall rank given by the respondents about the prioritization aspects is shown
in Table 25. We show the rank of the importance, frequency, and their average (and the
aspects are sorted by using this attribute). We also show, in the last column, the
granularity currently used with each aspect.

Table 26 shows the ranked averages (calculated as in the Avg. column in the
previous table) for the architects, the POs and the difference in their ranking. The table
is sorted using the absolute value of the difference (not shown). The sign of the Diff.
value shows, if < 0, that the POs have ranked this aspects more important that the
architects, while if the Diff. value is > 0 the opposite statement is true.

From the analysis of these tables it’s quite clear that the POs use, when prioritizing,
the specific customer values and the attractiveness for the market of the products more
than the architects. Also lead time and competitive advantage show the same
differences, even though with less emphasis.
Table 26. Comparison of ranks between POs and architects

Aspect\Rank Arch. POs Diff.
Market attractiveness 2.05 3.1 -1.05

Specific customer
value 2.15 3.1 -0.95

Lead time 2.05 2.7 -0.65
Competitive
advantage 2.85 3.5 -0.65

Customer long-term
sat. 1.85 1.5 0.35

Penalty 1.35 1.7 -0.35
Maintenance Cost 2.05 1.8 0.25

Risk 1.7 1.5 0.2
Volatility 0.1 0.3 -0.2

 157

9.4.2 ATD effects usefulness in prioritization

Table 27 shows the overall rank of the usefulness of the ATD effects for
prioritization, the architects’ and POs’ rank and their difference. The table is sorted by
the absolute value of the difference (not shown).
Table 27. Ranks and comparison of ATD effects

Effect\Rank Over. Arch. POs Diff.
Big deliveries 2.3 2 2.8 -0.8

Many code changes 2.5 2.8 2 0.8
"Double" the effort 2.8 2.7 3.2 -0.5
Number/compl. of

tests 2.5 2.7 2.2 0.5
Quality issues (bugs) 3 3.2 2.8 0.4

Wrong effort
estimation 2.5 2.3 2.6 -0.3

Contagious ATD 2.8 2.8 3 -0.2
Probable hidden ATD 2 2 1.8 0.2

Developers idling 1.9 1.8 1.8 0

The table shows that the three top important ATD effects to be known for
prioritization are Quality issues, “Double” the effort and Contagious debt. The less
important ones seem to be Probable hidden ATD and Developers idling.

From the Diff column we can see how the POs are more concerned with big
deliveries than architects, while the architects are more concerned with code changes.
POs and architects agree on considering less important Probable hidden ATD and
Developers idling, while they agree on considering the information about Contagious
ATD as quite important for prioritization purposes. It’s interesting to see how Quality
issues (bug fixing), is considered more important by the architects than by the POs.
Table 28. Mapping of ATD effects to prioritization aspects

Effects\ aspects P M LT R V C S A LS
To
t

"Double" effort 4 8 26 2 0 0 0 0 0 40
Big deliveries 0 3 14 10 0 0 0 0 0 27
Code changes 1 7 9 21 0 0 0 0 0 38
Num/compl.
tests 0 11 13 4 6 0 0 0 0 34

Quality issues 0 15 10 10 0 4 2 1 2 44
Hidden TD 3 8 9 11 0 0 0 0 0 31
Wrong estim. 12 1 20 0 0 1 2 0 0 36
Contagious
ATD 5 9 10 13 3 0 0 0 0 40

Developers
idling 2 9 14 3 0 3 0 0 0 31

Total 27 71 125 74 9 8 4 1 2

Table 28 shows the connection between the ATD effects and the prioritization
aspects (identified by their initial letters: P = Penalty, M = Maintenance, etc.). The
numbers shown in the table are the sum, for all the participants, of the scores associated
with the effect when it was ranked as usefulness information for a certain prioritization
aspect. For example, Double effort has been ranked by 8 respondents as first most
important information (weighed 3) influencing lead time (LT), second most (weighted
2) important for 1 respondent, and no respondent has used it as third most important

 158

(weighted 1). Applying the weights, we have 8[respondents] * 3[weight] + 1
[respondents] * 2 [weight] + 0 [respondents] * 1 [weight] = 26.

The total in the bottom is the sum of the column values: such row shows how much
information, according to the participants, an ATD effect gives when prioritizing using
a given aspect. For example, the information about the ATD effects can be used quite a
lot when considering the lead time aspect (LT, 125), while the ATD effects don’t seem
to be useful for prioritizing based on attractiveness of the product for the market (A, 1).
The Total on the right shows how much each ATD effect contributes to the overall
prioritization activity.

From this table, we can see how the studied effects can be especially useful when
prioritizing based on lead time (LT). They are also quite useful when the maintenance
costs (M) is taken in consideration during prioritization and when risk is considered an
important aspect (R).

As for the comparison between the roles, we report the most relevant results without
reporting the tables, for space reasons. We have selected the responses that show
conflicts between the architects’ and the POs’ views. The architects don’t consider big
deliveries as impacting lead time, whereas POs consider it quite an influencing effect.
Architects consider contagious debt as more useful when prioritizing considering the
lead time and penalty aspects, while POs consider it more useful when considering the
risk aspect. In general, architects consider the ATD effects more useful for prioritizing
based on the penalty and maintenance cost aspects than POs.
Table 29 Usefulness of ATD information

Answer\Rol
e

Arch
. POs Total % Diff.

Low 0 0 0 0.00% 0
Medium
Low 0 1 1 12.50% 1
Medium
High 1 2 3 37.50% 1
High 3 1 4 50.00% 2

Table 29 shows the answers to the question “How useful would be the ATD
information during prioritization?”. We show the partial answers divided by the roles
and the total answers, also presenting the percentage of answers and the difference
between the roles. The table confirms that almost all the respondents considered ATD
information quite useful for prioritization; however, architects seem more convinced of
its usefulness than the POs.

shows the answers to the question “How many resources would you allocate to
obtain the information on the ATD?”. As explained in the methodology section, Low
corresponds to 10%, while High corresponds to 40% of the development time.
Table 30. Recommended resources for ATD information

Answer\Role Arch. POs Total
Percentag
e

None 0 0 0 0.00%
Low 1 1 2 25.00%
Medium Low 3 3 6 75.00%
Medium
High 0 0 0 0.00%
High 0 0 0 0.00%

 159

We can see how POs and Architects agree on the amount of resources needed for
providing information about ATD effects. 75% of them would allocate 20% of the
development time, whereas the remaining 25% would allocate 10%.

9.5 DISCUSSION
In this section we will discuss our contributions with respect to research and

practice. Then we will discuss limitations and threats to validity and we will compare
our results with the related work on this subject.

9.5.1 Implications for research

Most of the existing literature concerning ATD is related to the identification of
items. As pointed out in a recent systematic mapping [31], there has been little work on
the prioritization of ATD and most of it is on a theoretical level [36], [40] and “More
industrial studies are needed to show how to prioritize a list of TD items to maximize
the benefit of a software project and which factors should be considered during TD
prioritization in the context of commercial software development”. We have started to
fill this gap with this exploratory study, especially for what concerns prioritizing ATD
in large companies developing embedded systems and with an Agile setting in place.

The exploratory findings show that the information on ATD is regarded as quite
important both from architects and POs for practical prioritization of refactorings with
respect to feature development, especially when taking in consideration lead time. We
provide an important and missing piece of the puzzle in current literature, since no
studies investigate how applicable would be in practice the information about various
ATD items, especially with respect to a key stakeholder such as the business side of the
organization: the POs.

Furthermore, our results show a prioritization of the key ATD effects to be further
investigated in research because considered important for prioritization. Especially
important seems to be the understanding of the contagious debt phenomenon [42], the
ATD items related to “double” effort, such as duplication and reuse, and to quality
issues such as a high number of defects to be fixed and the time spent by the developers
on finding the source of the issues.

The results highlight how the risk aspect is quite difficult to be considered during the
prioritization activity, because of the expensiveness to produce evidences and the lack
of certainty about risk, and because of the difficulty for the stakeholders to compare the
values with the other prioritization aspects (as shown in one of the cases analyzed).
Further research is therefore necessary in this area in order to understand how practical
risk measures can be retrieved and automated from existing artifacts and how such data
should be interpreted.

We recognize a gap in the existing ATD effects: almost none of them are useful to
prioritize when considering competitive advantage and attractiveness of the product on
the market. However, such connection should be more investigated in order to
understand if ATD is not related to such aspects or if there has not been enough
research on such connection.

With this study we have provided an exploratory investigation of the research
problem: the design can be reused in research in order to gather further evidence
coming from larger samples and involving different kinds of companies. The same
authors of this paper are in the process of designing a larger study involving many
more participants, both POs and architects, from several companies in order to
strengthen the current results with a quantitative investigation.

 160

9.5.2 Implications for practice

The paper shows how the practitioners recognized the importance of the information
about ATD effects. Practitioners from other similar contexts can use the results
currently available in literature for better prioritizing between refactorings and feature
development. We offer a taxonomy of the ATD effects that need to be retrieved and a
map (Table 28) of such effects to the aspects that they can be used for prioritization.

The results in Table 30 can be useful for allocating resources in order to collect
company-specific data on current ATD. The current (and quite consistent)
recommendation, from the practitioner is to allocate between 10 and 20% of the
resources in order to take care of technical debt.

The information needs recognized in this paper can be used in order to collect
company-specific measures on ATD. The knowledge about the information needs of
the main stakeholders (architects and POs) is regarded as a prerequisite for the
development of reliable and useful metrics, as defined in the ISO standard for the
development of quality models [41].

9.5.3 Limitation and threats to validity

This study has the following limitations. The most important limitation is the limited
sample size of the respondents. However, we aimed at reporting the understanding
from a case study, which included both qualitative and quantitative data, rather than
surveying a large number of practitioners. Furthermore, as previously explained, we
offer a novel understanding of an important and overlooked research subject. The
authors aim at collecting such evidence, using an investigation tool improved with the
help of the exploratory results obtained from the study presented here.

As for the threats to validity in case studies, we refer to the ones mentioned in [63]:
construct, internal, external validity and reliability. We mitigated the threat to construct
validity (concerning the validity of the investigation device) by aligning the concepts
used during interviews and questionnaire with a preliminary workshop in which all the
participants were present. The researchers were also present during the participants’
activity of answering the questionnaire, which helped clarifying possible misinterpreted
issues during data collection. In this study we did not try to address internal validity
threats, since we did not investigate causal relationships, and therefore we did not need
to investigate the existence of possible factors influencing such relationships. However,
we have investigated the ATD effects and the prioritization aspects that other studies
have identified as the currently most relevant: other, less recognized aspects and effects
could be found to be as relevant as the ones investigated in this study. In order to
mitigate possible threats of external validity, we have investigated several roles from
several companies. We restrict our claims to the investigated context, large companies
developing embedded software, employing ASD and developing a line of products.
Also, our companies were located in the Scandinavian area, which might influence the
results with the presence of a cultural background that might not be present in other
contexts and other countries. Finally, we supported the reliability of our results by
employing three kinds of triangulation: observer triangulation (both the researchers
were present in the data collection and analysis), method triangulation (we collected
quantitative and qualitative data) and source triangulation (we collected data from four
different companies and 4 different roles). We have also reported quite extensively here
the questionnaire design and results, so that other researchers can replicate this study.

9.5.4 Related work

As mentioned by a recent systematic mapping [31], there is a need for more
industrial studies on how prioritization of ATD is carried out. The paper [36] is focused
on the theoretical prioritization of generic TD items among themselves, as well as

 161

[133], which is focused on design debt. Such results needs a next step in which the
theoretical model is put in practice with real and context-specific items. Also, such
items need to be put in contrast with the features prioritization, which is the main cause
for down-prioritizing ATD (the objective of our study). In [40] the authors propose first
a formal approach for defining the TD as evolution steps and technical debt items.
Although the approach gives a solid theoretical foundation to the decision making
about TD, such approach still suffers from several shortcoming (recognized by the
authors themselves) when used in practice: this approach is only based on the cost, and
it does not take in consideration other prioritization aspects (that we have investigated
here), proper of the prioritization of TD when compared to features. The authors
recognize the need of further research on this path “[…it would be interesting] if we
extend the metrics beyond development cost to customer benefit, training costs, time to
market and similar criteria”. We have done a first step to map the ATD effects, for
which metrics are being developed ([42]) to some of such aspects. In [134], the authors
survey software refactoring: while they take in consideration the prioritization of
refactorings among themselves, the section Identifying where to Apply which
Refactorings does not take in consideration the perspective of POs and feature
development. Our results are in line with the findings, in [26], that recognize how
(generic) TD is used as a prioritization aspect in Agile. However, such study does not
investigate in depth how information on ATD effects is used in the prioritization
activity. Our findings also confirms that risk is quite a difficult aspect to be taken in
consideration for prioritization and that further research is needed on the subject [26].
Also, our mapping shows how information about ATD effects would be useful for
using the risk prioritization aspect.

9.6 CONCLUSIONS
The prioritization of ATD with respect to feature development, a critical issue for

assuring constant value delivery, is currently overlooked in research and represents a
struggle for software companies. We have done a first step towards understanding the
information needs of the main actors involved in the prioritization of ATD refactorings
and feature development. We have investigated which prioritization aspects are most
relevant in the prioritization activity: the results show that some important aspects, such
as lead time, maintenance costs and risk, would largely benefit from the information
related to the ATD effects, for which we present a mapping tool 0We have also
highlighted how measures of ATD effects, especially contagious debt, quality issues
and “double” effort would be strongly appreciated by architects and POs developing
software for 4 different large companies. The respondents would dedicate between 10
and 20% of the resources in order to manage ATD. Finally, we highlight the
similarities and differences in evaluating different ATD effects and different
prioritization aspects by POs and architects, for example their different concerns about
big deliveries and maintenance costs. The next step, already in the authors’ plan,
consists of conducting a version of this investigation involving a large sample of
respondents from a large set of companies, in order to further strengthen the current
case study-specific findings with a broad, quantitative investigation. Another important
next step is to analyze the customer-related information used during the prioritization
activity in order to understand how they are compared to the ATD effects in order to
prioritize ATD refactoring against feature development.

 162

10 THE CAFFEA FRAMEWORK AND THE ORGANIZATIONAL
SOLUTION FOR AMBIDEXTERITY MANAGEMENT

In this Chapter we study a solution in order to achieve responsiveness both in short
and long term. A major concern is how to continuously develop and manage the
reference architecture shared by the Agile teams. Through empirical investigation of 3
sites from 2 large product line companies developing embedded software and the
conduction of analysis based on the Grounded Theory approach we have developed an
organizational framework, CAFFEA, for continuous architecting. The framework has
been statically validated through a cross-company workshop including participants
from 7 sites from 5 large software companies, discussion groups and a final survey.

The organizational framework includes (virtual) teams that need to be put in place to
take care of architecture activities overlooked in the Agile organizational shift. The
responsibilities for the activities have been mapped to key architect roles needed to
support the Agile teams. We have validated the results by a cross- case workshop
combined with a survey. The organizational framework has been recognized as sound
to be implemented.

A short version of this chapter has been published as:

Martini A., Pareto L., and Bosch J., “Towards Introducing Agile Architecting in
Large Companies: The CAFFEA Framework,” in Agile Processes, in Software
Engineering, and Extreme Programming, 2015. [135]

10.1 INTRODUCTION
Large software industries strive to make their development processes fast and more

responsive, minimizing the time between the identification of a customer need and the
delivery of value. Short term responsiveness is given by Agile Software Development
(ASD) [6]. Long-term goals and customization of the products for different customers
need to take advantage of software product lines, which relies on a platform capable to
support quick value delivery of new features or products, built on shared asset. Few
and mostly theoretical exploratory studies have been carried out to find out if ASD can
be applied to large software product lines [71], [72], [136], but definitive conclusions
with practical implications are still difficult to be drawn.

Recent research shows how the accumulation of architectural technical debt [137],
[33], (the presence of underdeveloped or quickly eroded architecture) might lead, in the
companies, to development crises [125], blocking long-term value delivery. A gap in
the current Agile frameworks is the lack of activities to enhance agility in the task of
developing and maintaining software architecture (Agile architecting), necessary for
long-term responsiveness [6][26]. The role of architects becomes crucial, but there is a
lack of knowledge, in literature, on how such roles are implemented in ASD.
Therefore, the research questions that we want to inform are:

RQ1 What are the challenges in conducting architecture practices in Agile software
development employed in large software product line organizations?

RQ2 Which roles and teams are needed in order to mitigate the challenges in
conducting architecture practices in large product line organizations employing Agile?

We have combined literature review, interviews involving several roles in large
product line companies employing Agile Software Development and a combination of
structured inductive and deductive analysis in order to find the gaps in the architect
roles and their activities. We have developed an organizational framework, CAFFEA

 163

(Continuous Architecting Framework For Embedded software and Agile),
comprehending roles and teams to address the challenges related to the architecture
practices. The framework has been preliminary validated, both statically by 40
participants from 7 companies and dynamically after its introduction in 4 companies.

The model can be used as guidance for defining roles and teams in a large product
line organizations employing ASD, with the aim of supporting Agile architecting. The
contribution of the study is threefold:

• We show the current gaps for managing software architecting in ASD employed in
large product line companies.

• We present an organizational framework (CAFFEA), composed by roles, teams and
practices aimed at addressing the gaps found.

• We report on the introduction of such framework in 4 companies, and on the
preliminary evaluation of its application.

In the next sections we show our research design, in section 3 we present the results,
in section 4 we discuss validity of the study, and finally in section 5 we discuss our
main contributions to research and practice together with limitations and related work.

10.2 RESEARCH DESIGN
Our research design is visible in Figure 48.

10.2.1 Case Selection

We have employed an embedded multiple-case study [63], where the unit of analysis
is an (sub-part of the) organization: the unit needed to be large enough, developing 2 or
more sub-systems involving at least 10 development teams. The total units studied
were 7. We selected, following a literal replication approach [62], 4 companies: A, B,
C (3 sub-cases) and D, large organizations developing software product lines, having
adopted ASD and had extensive in-house embedded software development. We also
selected company E, a “pure-software” development company, for theoretical
replication [62] (hypothesizing different results from the other companies).

Company A is involved in the automotive industry. The development in the studied
department is mostly in-house, recently moved to SCRUM. Company B is a
manufacturer of recording devices. The company employed SCRUM, has hardware-
oriented projects and use extensively Open Source Software. Company C is a
manufacturer of telecommunication system product lines. They have long experience
with SCRUM-based cross-functional teams. We involved 3 different departments
within company C (C1, C2, C3). Company D employed SCRUM to develop a product
line of devices for the control of urban infrastructure. Company E is a “pure-software”
company developing optimization solutions. The company has employed SCRUM.

 164

Rela%onships,
among,the,roles,

Roles,

Team,Arch.,

Governance,A.,

Chief,Arch,

Teams,

Feature,Team,

Runway,Team,

Governance,Team,

Architecture,Team,

Literature,

Architecture,ac%vi%es,

Risk,Management,

Decisions,and,changes,

Architectural,knowledge,

Monitoring,the,system,

3,Large,
Organiza%on

s,

Current,status,
of,prac%ce,

Current,Gaps,

Current,
Prac%ces,

2Gstep,,
Literature,,
Review,

Mul%ple,
interviews,

Axial,,
coding,

Organiza%onal,
Framework,
CAFFEA,
CAFFEA,

7,Large,
Organiza%ons,

Workshop,,
and,Survey,

4,Large,
Organiza%ons,

Empirical,,
Evalua%on,

Sta%c,valida%on,

Preliminary,
dynamic,
valida%on,

Legend&

Source, Finding,Data,Collec%on,
and,Analysis,

Data,
analysis,

Figure 48. Research Design.

10.2.2 Data Collection

Step 1 – Literature review – We surveyed the literature in two steps, to collect the
different activities carried out by the architects in practice. We selected [43] as an up-
to-date (2008) and comprehensive categorization of “what do software architects really
do”. From such classification, we conducted a literature review for each class of
practices, selecting the articles containing condensed knowledge [10]–[19].

Step 2 – Empirical mapping – We conducted 3 in-depth sets of interviews involving
3 of the cases, in particular A, C1, and C2. The interviews lasted 4 hours and involved
developers, testers and architects responsible for different levels of architecture (from
low level patterns to high level components). In total we collected 12 hours of
interactive workshop discussions involving 25 employees.

During the interviews we assessed if the architecture practices found in step 1 were
carried out, who was responsible, and what challenges they were facing. With this step
we identified the current gaps in ASD with respect to architecture management.

Step 3 – CAFFEA Static Validation – After the development of CAFFEA using the
previous data collection, we statically validated CAFFEA with a one-day workshop
including 40 employees from 7 organizations. The validation workshop included a
plenary session in which the researchers described CAFFEA in details (3 hours), a
survey including a selection of 16 participants and a follow-up group discussion. For
each question in the survey we used a Likert scale, ranging from 1 to 6. We have
calculated median for the central tendency of the answers (in order to down-weighting
outliers) and standard deviation to assess the polarity in the answers.

Step 4 – CAFFEA Preliminary Dynamic Validation – after the presentation of the
previous results, some of the companies decided to implement CAFFEA. After 6
months, we set up a workshop with 4 of the companies to investigate which practices
and roles were put in place and which benefits and challenges were found so far.

10.2.3 Data Analysis

The interviews and workshops were recorded and transcribed. The analysis was done
following an approach based on Grounded Theory [55], alternating structured inductive
and deductive techniques (described below) and using a tool for qualitative analysis, to
the trace the code to the quotations.

 165

Open Coding (inductive) – We analyzed the data in search for emergent concepts
following open coding, which would bring novel insights, such as the identification of
architect roles present in the organizations (after step 2).

Axial Coding (inductive) – The activities and roles were analyzed through axial
coding in order to highlight relationships among the roles (Figure 48), which mapped
the roles into the teams (right parts of Figure 48, after step 2).

Deductive Analysis – During step 1, we used the taxonomy of the activities in
Kruchten [43] to analyze the papers from the literature review. For step 2 we used such
approach when mapping practices and gaps to architect roles. As for step 3 and 4
(validation), we used practices, roles and teams both in the survey and questions.

10.3 RESULTS
First we show the identified architect roles in the companies, highlighting the

challenges connected to such roles. We have divided the challenges in 4 groups: risk
management, architectural decisions and changes, providing architectural knowledge
and monitor the current status of the system. Then we present the teams, the
organizational mechanism to address the challenges involving more than one role. The
overall components and framework CAFFEA is visible in Figure 49.

10.3.1 Architect Roles

For each role, we first give a description of the role and we map it to the typical
employee in the studied organizations, highlighting context differences when present.
Then, we list the challenges related to such role.

10.3.1.1 Chief Architect (CA)

The main role of the CA is to take high-level decisions and to drive the rest of the
architects and the Agile teams in order to build an architecture able to support strategic
business goals. In all the organizations that we have studied, the role of CA is present
and well recognized, and there are few challenges related to ASD.

Risk management

The CA is usually not directly involved in the detailed development: however, in
order to take decisions on feasibility and to assist the sales unit with technical
expertize, the CA needs to elicit the information about the current status of the system.
The current challenge is the lack of such reliable information and therefore the risk of
taking business decisions based on wrong assumptions made on the system.

Monitoring the current status of the system (communication input)

As mentioned before, the current communication practices lack good mechanisms
for providing input to the CAs to take informed decision and to address past erroneous
decisions (e.g. tool chains not working as expected).

10.3.1.2 Governance Architect (GA)

We found that the key for the scalability of Agile architecting in a large setting is an
intermediate role between the CA and the teams. Such role, (we called it Governance
Architect, GA) functions as a coordinator and support, giving strategic directions for a
group of Agile teams developing features within the same (sub-) system. Many
architecture practices were mapped by the informants to this role as the main
responsible, and we found many challenges in the current organizations. Such role is
not always formally recognized: this causes lack of coordination among isolated teams,
which favors the accumulation of architectural debt. Also, the non-recognition of this

 166

role leads to the lack of resources allocated for carrying out the needed architecture
practices.

Risk management

The prioritization of short-term and long-term goals in the team is done by Product
Owners through the backlog of the teams. However, such risk management activity
usually leads to the down-prioritization of refactoring and architecture improvements,
especially the long-term ones. A GA is needed to participate in prioritization to balance
the focus between feature development and the long-term goals.

Managing decisions and changes

The architecture needs to support several features and the safe cooperation of the
Agile teams. The investigation highlighted either the lack of such responsible for inter-
feature architecting or the lack of communication and cooperation between the GA and
the Agile teams.

Providing Architecture Knowledge (communication output)

With the shift to ASD, in some of the organizations (C1 and C2) the teams have
changed from “component teams” to “generalized teams”, free to change any part of
the code given a feature to be implemented. However, such approach caused, in the
teams, a lack of deep expertize about the components. The role of GA becomes
therefore critical for assisting the teams and maintaining the architecture, both with
face-to-face communication but also supported by documentation when the architecture
knowledge is complex and extensive. The purpose of documentation is not to specify in
detail the whole (sub-)system, but especially the critical points in which features and
teams might hinder each other during the implementation (see “Managing decisions
and changes”). An example mentioned by the respondents is describing mechanisms to
access data resources, shared by different features. Such practices are quite time
consuming and communication-intensive, and challenges have been reported in
allocating resources.

Monitoring the current status of the system (communication input)

One of the most emphasized challenges during data collection was the accumulation
of architectural debt [125]: the implementation in the code quickly drifted away from
the architecture defined and used for strategic decisions and risk management by the
CA and other management activities. GAs drive the monitoring and reacting to
architecture erosion and need for evolution, together with the support of TAs (see
“Team Architect”) in the Agile teams. However, we found several gaps in all the
organizations, especially the lack of iterative architecture consistency between
implementation and the design/architecture, the non-feasibility of costly code review
(growing code size with respect to the number of GAs), and the lack of resources
employed in automated tools to help monitoring the erosion.

An important requirement for the GA, as pointed out by the respondents, is the
combination of high technical skills, domain expertize and a communicative and
charismatic personality able to lead and coach the teams.

10.3.1.3 Team Architect

The TA, the responsible for the architecture in the FT, is often present in the current
organizations in the form of a technical leader or experienced developer. Such role is
however not formally recognized, which bring the lack of responsibilities for the
architecture practices in the teams.

Risk management

 167

A challenge was the lack of participation of the team in risk management activities,
such as tracking and reporting risky technical debt accumulated during the iterations
(activity led by the TA) or to represent the interest of the teams in feasibility
discussions with CA, GA and Product Owners (participation of TA).

Providing Architecture knowledge (communication output)

As mentioned for the CA and GA, the lack of capillary spread of architecture
knowledge need to be mitigated by a peer in the team, which has been identified with
the presence of TA, who would transfer the architectural knowledge from GAs.

Monitoring the current status of the system (communication input)

We found a lack of responsibilities, in the team, about tracking and reporting the
status of technical debt that might affect other FTs. The TA would cover such
responsibility, as well as lifting proposals for architecture evolution.

Legend&

AT1&

...
&

FT1& d& d& t& TA&

FTm+1& d& d& t&

...
&

...&

TA&

GA&

GA&

CA&

...&

FTm& d& d& t& TA&...&

FTl& d& d& t& TA&...&

...
&

...
&

AT2&

d& d& t&

d& d& t&a&

...
&

RT1&

RTn&

...&

...&

TA&

TA&

d& d& t&

d& d& t&a&

...
&

RTn+1&

RTk&

...&

...&

TA&

TA&

GT1&

GT3&

GT2&

...
&

FT1& d& d& t& TA&

FTm+1& d& d& t&
...
&

d& d& t&

d& d& t&a&

...
&

RT1&

RTn&

...& ...&

...&

TA&

TA&

TA&

GA&

GA&

CA&

...&

FTm& d& d& t& TA&...&

FTl& d& d& t& TA&...&

...
&

...
&

d& d& t&

d& d& t&a&

...
&

RTn+1&

RTk&

...&

...&

TA&

TA&

PO&

PO&

PM&

Architecture&Teams& Governance&Teams&

TA&&–&team&architect&
GA&&–&governance&architect&
CA&–&chief&architect& FT&–&&feature&team&

RT&–&&runway&team&&

PM&–&&Product&Manager&
PO&–&&Product&Owner&

d&–&designer&&
t&–&tester&&

AT&–&&Architecture&Team&

GT&–&Governance&Team&
BiGdirecHonal&&

communicaHon&

PrioriHzaHon&through&
backlogs&

 Figure 49. The components of CAFFEA: teams, roles and their relationships.

10.3.2 Teams

Analyzing the current gaps and the relationships among the architect roles
previously mentioned, we found that most of the practices need the roles to coordinate
and cooperate in order to mitigate the challenges. To achieve such coordination,
suitable organizational mechanisms are non-permanent teams responsible for such
practices visible in Figure 49. A special case is the Runway Team (RT), which involves
a whole Agile team (see next section).

10.3.2.1 Runway Team

As mentioned about the GA and also confirmed by [125], a challenge in the studied
companies is the down-prioritization of long-term refactorings or architecture
improvements, causing the constant accumulation of architectural debt leading to
responsiveness crisis. Such refactorings cannot be prioritized as stories in the backlog
of the Agile teams, and therefore remains excluded from the development. In order to
conduct such refactorings, a whole Agile team needs to be dedicated for one or more
sprints to focus on the “architecture feature” rather than on customer-related features.
We called such team “Runway Team” in order to recall the metaphor used in [76], in
which the architecture is seen as a runway for allowing fast airplanes (Agile teams) to
take off and land for a mission (feature development). The RT can be appointed
dynamically by a team of Product Owners and architects (see “Governance Team”)

 168

together, when a long-term refactoring is needed and therefore prioritized as more
important than feature development. RTs are visible on the right in Figure 49.

10.3.2.2 Architecture Teams (ATs)

Most of the identified challenges in the architecture practices are related to a single
role, but necessitate coordination and collaboration among different architects in
Architecture Teams (ATs in Figure 49): for example, in monitoring the current status
of the system, no single architects can have all the information needed: the system
might have different inconsistencies with architecture at different levels (for example,
low-level design on a class level or the presence of high-level dependencies among
components). The complete monitoring of the system can only be achieved by
continuous communication and interaction among different architects (bi-directional
arrows in Figure 49): TAs belonging to different teams with a GA or GAs coordinating
different groups of teams with the CA. The same degree of coordination is important
for spreading the architecture, from the high level concepts expressed by the CA to the
low level design implemented by the teams and known by the TA. Also when assessing
the risk of architectural debt and taking decisions about solutions and changes, for
example the prioritization of refactorings, the architects need to have a common forum
and resources allocated for communication, analysis and tools. We found, in the
organizations, the lack of an organizational mechanism such as ATs, which hindered
the implementation of the practices for Governance Teams (GT).

10.3.2.3 Governance Teams (GTs)

We have shown how some of the challenges related to architecture practices that we
have found can be mapped to architect roles and the Architecture Team. However, for
those practices regarding “risk management” and “architecture decisions and changes”,
we found a strong relationship between the architects and the Product Owners or
higher-level Product managers. The risk assessment of architecture changes and
decisions determines the ratio of resources allocated to the improvements or of the
architecture with respect to the resources used for feature development. We found the
need, in the organizations, of a team involving Architects and Product Owners or
Managers (Governance Teams on different levels, as illustrated in Figure 49) with the
responsibility of strategically prioritizing the backlogs of the teams (dotted arrows in
Figure 49) between features and architecture improvements, in order to balance the
short-term with the long-term value output.

10.3.3 Overall Framework

The overall framework of roles, teams and practices. A representation is shown in
Figure 49, which combines the visualization of different views: the relationships
among the organizational components (architects, managers, teams) with respect to
different perspectives (Architecture and Governance). Figure 49 shows also the
communication needs by the architect roles (central area on the Architecture
Perspective), between the roles and the Agile teams (left) and among the different GTs
(Governance Perspective). Figure 49 shows the prioritization relationships among the
roles and the teams (dotted arrows) and outlines, in both the perspectives, the RTs, our
new concept for some of the Agile teams. The are explained in the roles and teams
sections, since they could not fit in Figure 49.

10.3.4 Introduction of CAFFEA in the companies

The dynamic evaluation workshop (step 4) conducted after 6 months of introduction
of CAFFEA gave us insights about the first steps and prerequisites. The most important
prerequisite is for the management to invest in the organizational change. Then, the
first step was to introduce TAs in the teams and to create (or redefine with proper

 169

responsibilities) GAs. Usually a CA is already in place in the organization. The second
step is to create architecture teams (ATs) including TAs, GAs and CA(s) and set up
related tools and practices. Architects then were interfaced with the product
management through the creation of one or more GTs (third step).

10.4 VALIDATION OF RESULTS
We cannot show all the validation data available to the researchers for space reasons,

but we give an overview and we mention the most important points.

10.4.1 Validation of CAFFEA

The validation of the overall CAFFEA through the survey shows the perceived
usefulness of our contribution for the 7 organizations involved in the static validation
workshop (step 3). The response is very positive, with a median of 5 over 6 and a low
standard deviation. Also, during the dynamic validation (after 6 months after CAFFEA
introduction), some signals of better communication and cooperation among the
architects and the teams have been reported. The main challenges in introducing the
whole framework for the 4 interviewed companies were mainly due to challenges in
“buying” management commitment and therefore receiving resource allocation for
putting in place the teams and performing the practices in CAFFEA.
Table 31. Validation data for the whole framework and current position of the companies with respect to
our model

Proposition M SD I
The framework CAFFEA is sound for enhancing continuous
architecting in your organization

5 0.73 4.27

Your organization can be mapped to the framework CAFFEA 4 1.24 2.76

10.4.2 Validation of teams

10.4.2.1 Governance Team

The GT has also received quite strong positive feedback (all the median values in the
survey are 5), especially for the usefulness in giving strategic feedback to the FTs (such
as short-term/long-term directions) and helping their coordination. Practical
employment of such team has brought to the increment of the prioritization of
refactoring of risky technical debt, as we could have seen by analyzing the teams and
architecture teams backlogs. However, the challenges for implementing GTs were
mainly socio-political: (some) Product Owners, for example in company C, were afraid
of loosing resources dedicated to short-term feature development.
Table 32. Validation data for the Governance Team

Proposition M SD I
The GT is/would be useful for providing strategic input to the XFTs 5 0.94 4.06
The GT is/would be useful for coordinating the XFTs 5 1.3 3.7
The GT should be responsible for prioritizing between short term/long
term feature development

5 1.42 3.58

Within the GT , the GA should have power and resources for allocating
Runway Teams

5 1.72 3.28

10.4.2.2 Architecture Team

The architecture team received a strong positive validation for implementing Agile
architecting: ATs were employed in all the 4 companies that reported at the workshop
after 6 months. Clear benefits were reported, such as the increment of iterative
communication and cooperation among the architects and implementation of practices

 170

for tracking and assessing the risk of (architectural) technical debt. For the AT we don’t
have numerical validation data, since this team was recognized after the survey.

10.4.2.3 Runway Team

According to the validation data, the (dynamic) appointment of a RT is quite well
accepted as a suitable solution for supporting Agile architecting. Despite the multiple
activities mentioned during the qualitative data collection as being covered by the RT,
the consensus of the informants has been reached upon the need of dedicate the RT to
create runway infrastructure for continuous architecture, to conduct refactorings or
architecture improvements that cannot be included in feature development and to create
instruments for architecture consistency checks (less support). The main challenges
were related to the lack of GTs in charge of appointing RTs to such activities instead of
feature development. In some cases, a fixed amount of RTs was established: such
approach decreased the dynamic power of such solution, but also decreased the
political frictions among the architects and product owners.
Table 33. Validation data for Runway Teams

Proposition M SD I
It is necessary to appoint RT to conduct dedicated
runway work

5 1.41 3.59

It is necessary to appoint a RT to improve
infrastructure

6 1.56 4.44

It is necessary to appoint a RT to automate
architecture consistency checks or visualization

4 1.62 2.38

It is necessary to appoint a RT to refactor the code 5 1.82 3.18
It is necessary to appoint a RT to do test activities 2 1.24 0.76
It is necessary to appoint a RT to educate other XFTs
on architecture

2 1.58 0.42

It is necessary to appoint a RT to educate other XFTs
on context knowledge

2 1.59 0.41

It is necessary to appoint a RT to educate other XFTs
on best practices

2 1.67 0.33

It is necessary to appoint a RT to fix emergency tasks 3 1.39 1.61
The RT should be a team of high skilled employees 5 1.45 3.55

10.4.3 Validation of roles

From the validation data it’s clear how all the roles (CA, GA and TA) and their
mapping to the main activities were quite strongly validated by the informants.
Especially the establishment of the GAs was found to be a really important
improvement. However there were three main issues reported, which need further
investigation:

• Could GA be also a TA / CA or the roles should be exclusive?

• Should the TA be connected to specific parts (e.g. components) of the system?

• Citing an informant: “It’s difficult to find a combination of specialists and strong
characters” for such role.

Table 34. Validation data for Chief Architect

Proposition M SD I
CA should consult GAs and TAs in the sale phase for
estimation

5 1.54 3.46

CA should collect input for high level architectural
decisions through plenary sessions

5 0.75 4.25

CA should collect input for high level architectural
decisions through questionnaires

3 1.18 1.82

 171

Table 35. Validation data for the Governance Architect

Proposition M SD I
GA should have power to prioritize Runway work 6 1.26 4.74
GA should be responsible for maintaining inter-
feature architecture documentation

5 0.7 4.3

GA should be responsible for taking into account
future development of features

5 1.36 3.64

GA should distill high level architectural patterns
with the Chief Architect

5 0.68 4.32

GA should participate in FTs’ retrospective sessions 5 1.15 3.85
GA should monitor architecture consistency 5 0.68 4.32

Table 36. Validation data for Team Architect

Proposition M SD I
The TA is necessary in every FT 5 0.92 4.08
The TA should lift decisions about architecture
evolution (collecting input from the FT)

6 0.63 5.37

The TA should investigate if the taken decisions are
affecting other FTs and report to the GA

5 1.1 3.9

10.5 DISCUSSION AND CONCLUSIONS

10.5.1 Limitations and Threats to Validity

A limited amount of product owners/managers were involved, even though part of
the informants had such role or have covered similar roles in the past. This calls for a
further investigation on the perspective of such roles.

Given the time needed for macro-organizational changes, we could not aim at a
complete validation, which is however in the researchers’ long-term goal. The
preliminary evaluation gives researchers and practitioners valuable insights on how
CAFFEA was introduced and the challenges faced to implement CAFFEA in practice.

As for construct and internal validity, we have iteratively interviewed all the
architect roles in Agile organizations, triangulating perspectives from different roles
(design and architecture level), and from employees from 7 companies. As for external
validity, we cannot fully generalize the results for large scale Agile software
development. We limit our claims to large product line companies, and the current
investigation assures good validation (6 organizations) for embedded systems
development. The involvement and positive response from company E, developing
pure software, suggests the application of our framework also to such domain.
Conclusion validity was supported by involving 3 researchers in the investigation and
by reporting workshops where employees were validating our findings [63].

10.5.2 Related work

We haven’t found related work tackling the organizational aspects of employing
Agile architecting in large software product line companies with ASD.

Our work takes inspiration from Leffingwell’s work [76] and the concepts of
architecture runway. However, the work done by Leffingwell is not supported by
scientific investigation following a rigorous research process, and we employed the
investigation to a specific sub-domain of large companies employing ASD.

Kettunen and Laanti [90] provide a framework, based on industrial experience,
aimed at understanding how and why agility could be utilized for software process
improvement (SPI) in large-scale embedded software product development. However,

 172

the authors themselves claim to not providing organizational solutions for enabling
flexibility in architecture to support Agile.

Kructhen, in [43], defines several anti-patterns for software architects, based on
several experiences in architecture teams. However, the anti-patterns are not specific
for a given context, which in our case was specified as large companies employing
ASD and delivering product lines. We have built upon the results in [43] by using the
anti-patterns for formulating the interview guide, in order to investigate the current
two-ways communication practices missing in our specific context.

10.5.3 Contribution to research and practice

We have identified the main gaps in the current practices in order to employ Agile
architecting in large ASD, related to the following categories:

• architecture risk management (prioritization of short-term and long term tasks),

• architecture decision and changes and

• communication of architecture, composed by two-way directions:

o Providing architecture knowledge

o Monitor the current status of the system

The combination of the previous components leads to the identification of a major
gap in the current organizations, the lack of architecture technical debt management.
Such phenomenon is recently being studied from different angles [33], [124], and is
concerned with the organizations taking risk-informed architecture decisions about
which architecture changes, such as refactoring or evolution, need to be conducted for
having an acceptable ratio of cost/impact. The lack of architecture technical debt
management might quickly lead the companies to crisis points where adding new
business value to their products (new features or new products) incur in major efforts,
paralyzing the long-term responsiveness [125].

We contribute by highlighting current challenges with respect to architectural
practices (RQ1): such gaps point at the need for specific architect roles; Team
architects, Chief architects and especially important is the Governance Architect, an
intermediate key role for coordinating Agile architecting and scaling Agile in large
organizations. Such architect roles need organizational mechanisms to cooperate,
Architecture Teams, and to interface with Product Management for prioritization and
decisions. We developed the CAFFEA framework, including roles, teams and
practices, for giving support for Agile architecting (RQ2). Such framework, given the
current identified gaps, has a specific focus on architecture technical debt management.

10.5.4 Conclusions

The short-term responsiveness in delivering value offered by ASD needs to be
enhanced, in large software organizations developing embedded software, by Agile
architecting, the management of a software architecture supporting long-lasting
responsiveness. We have identified the gaps in the activities for conducting Agile
architecting and we have developed an organizational framework, CAFFEA, including
roles, teams and practices. CAFFEA has been statically validated by 40 employees
from 7 different sites (including non-embedded software companies), and has also been
introduced in 4 large companies. These results give guidance for the practitioners
introducing ASD in large software companies (especially developing embedded
software), and suggest directions for further research: future work includes additional
evaluation of the benefits and challenges of CAFFEA as well as the development of
practices for architecture technical debt management.

 173

11 DISCUSSION AND CONCLUSIONS
In this Chapter we will discuss the contributions of this thesis with respect to the

research questions. Then we will highlight possible future work and we will conclude
with a summary of the overall contribution.

11.1 RESEARCH QUESTIONS AND CONTRIBUTIONS OF THE THESIS

11.1.1 RQ1 What factors influence long-term and short-term responsiveness?

In the first study, presented in Chapter 4, we conducted an investigation that brought
to light several factors in different areas that have a positive or negative (or both)
influence on short-term (speed in Chapter 4) and long-term responsiveness (reuse in
Chapter 4). The main result is that organizations need to successfully manage several
factors spanning different areas, technical and not. Another contribution is that
particular attention is needed to be dedicated to Interaction factors among different
actors in the software development process. Especially inter-group interactions, among
teams and with other parts of the organization, need to be improved.

Such results are noteworthy in the software management field, since they show how
ambidexterity seems to be a goal that is not achievable by only a few steering
managers. On the contrary, in a large company such goal needs to be supported by
individual (contextual) ambidexterity in several roles, from managers to architects to
developers themselves. As discussed in the beginning of this thesis, there are several
approaches aimed at achieving ambidexterity, from structural (dividing the
organization in order to separately manage conflicting goals) to contextual
ambidexterity. Our results support the need of contextual ambidexterity (based on
individual ambidexterity) rather than structural, since several factors are intricately
intertwined. Since roles have several responsibilities, it seems difficult to sharply
separate who should be responsible for one side of ambidexterity only and who for the
other, since the conflict would remain either within the roles or across the sub-
organizations.

On the contrary, in the last Chapter we can see how there is a need to create a
structure in order to manage interaction among key actors and in order to reconcile the
conflicts among them. In such Chapter 10, we propose CAFFEA, an organizational
solution that would create a suitable environment for managers, architects and teams.
Such setup brings advantages in improving communication and in reconciling the
conflicts due to different views and information owned by the different roles. In
particular, the framework would have the following key activities as targets for
improvement: risk management, management of decisions and changes,
communication of architecture knowledge and monitoring the current status of the
system.

 174

Influencing)Factors)

Non1Manageable)Factors)(Context)) Short1term)
responsiveness)

Ambidexterity)

Manageable)Factors)

Influence'(studied)'

Business)

Long1term)
responsiveness)

Influence'(not'studied)'
E) Not'Studied'

Processes)

OrganizaGon)

Knowledge)

±'

±'

±'

±'

±'

Architecture)

±'

InteracGon)

E) Studied'in1depth'

Figure 50. Interaction challenges are among the manageable factors influencing short-term and long-term
responsiveness, which in turn affect ambidexterity.

11.1.2 RQ2 What interaction challenges affect ambidexterity?

Such research question can be split in two different sub-questions, depending on
which perspective we take. RQ2 becomes therefore:

RQ2.1 What interaction challenges among Agile development teams affect the
achievement of short-term and long-term responsiveness?

RQ2.2 What interaction challenges between Agile teams and other parts of
the organization affect the achievement of short-term and long-term
responsiveness?

Two chapters have been dedicated to answering this RQ. In particular, RQ2.1 is
answered in Chapter 5 and RQ2.2 in Chapter 6.

As for RQ2.1, we found that there was waste caused by interactions (especially in
terms of development speed and therefore responsiveness) among Agile teams. The
waste was created by eight main phenomena or else called effects, (for example,
waiting time for information) which were caused by ten factors (for example,
unexpected dependencies among the features). Chapter 5 also highlights seven
recommendations suggested by the practitioners in order to complement Agile
practices and improve inter-team interaction.

These results are useful for the Agile teams and project managers in order to
improve ambidexterity on a team level. Chapter 5 aims at improving both short-term
and long-term responsiveness by improving interaction among the Agile teams. By
recognizing the challenges, observable through the effects, it’s possible to track them
back to the root factors, which are manageable by applying the recommendations. This
way, the waste can be decreased and the teams are able to deliver features faster both in
the short and long term. However, these results don’t take in consideration a broader
perspective, considering the parts of the organization that are not only development
teams. This perspective is taken when answering RQ2.2.

As for RQ2.2 we evaluated, in Chapter 6, the presence of 23 interaction challenges
between the team and other groups in the organization. We quantified the presence of
such challenges in three studied companies thanks to the results obtained from a
survey. The results showed how all the challenges were recognized and most of them
were strongly perceived as hindering short-term and long-term responsiveness
(decreasing ambidexterity).

 175

On an academic point of view, these results greatly strengthened the exploratory
results obtained in Chapter 4 with new confirmatory evidences from 38 respondents in
three large companies. On the practical side, the results provide a prioritized list of the
main challenges across the boundaries between the Agile development team and the
other groups of large organizations developing embedded software. A map of such
boundaries is shown in Figure 3.

Furthermore, in Chapter 6 some of the challenges have been compared with similar
studies on Agile projects that are not related to embedded software development. The
results in the paper are novel since we found that some challenges were not highlighted
earlier with respect to the studied domain: one of the main contextual factor was related
to the need of attention, in Agile practices, to maintaining a good quality for the system
and software architecture. Architecture represents a synchronization mechanism for the
teams, which share the responsibility of reaching several internal and external qualities
of embedded systems: among these we found reusability, which is critical to achieve
long-term responsiveness, and performance, which usually represents and important
customer-related quality. Another two contextual factors are related to the process
aspect: the overall product management process and the disciplines not related to
software engineering (such as electrical or mechanical engineering) have a different
release cycle and different milestones with respect to the Agile ones, and therefore
need to be synchronized.

These results are important for the theories underpinning Agile Software
Development, since they highlight how the implementation of Agile practices depends
on the domain on which they are applied. Clearly, for embedded software, there are
interaction challenges that need to be mitigated, especially through spanning activities
improving architecture management and processes.

11.1.3 RQ3 What spanning activities are needed in order to mitigate the interaction
challenges affecting ambidexterity?

As mentioned for RQ2, we investigated in Chapter 5 and 6 what interaction
challenges were hindering ambidexterity. In the same study (Chapter 6), we also
investigated what spanning activities were needed in order to mitigate such challenges.
One of the most occurring challenges, in the studied organizations, involved teams and
(system) architects. The activities that were reported as missing by the practitioners
were related to architecture management. Therefore, it was clear that spanning
activities concerning system and software architecture management were needed.

Based on the previous contribution and employing new case-studies, in Chapter 10
we developed an organization solution, included in the overall CAFFEA framework in
order to improve the interaction challenges: such solution encompasses a set of
spanning activities that were missing at the studied companies and that CAFFEA is
aimed at covering. Such spanning activities involve architects and developers, but we
found how product managers are also critical roles both for conducting architecture
management but also in consuming the information related to the status of architecture.
The needed spanning activities should cover the following areas:

• Risk management:
The prioritization of short-term and long-term responsiveness involves the need
of understanding the risk of not being able to deliver in the present or in the
future.

• Managing decisions and changes
There is a need for roles responsible for inter-feature architecting and for
assuring communication and cooperation between the architects and Agile
teams.

• Providing Architecture Knowledge (to the Agile teams)

 176

It is important to assist the teams in maintaining the architecture, both with face-
to-face communication but also supported by documentation when the
architecture knowledge is complex and extensive.

• Monitoring the current status of the system
Often the implementation in the code quickly drifted away from the architecture
defined and used for strategic decisions and risk management by architects and
product managers. This phenomenon is called Architectural Technical Debt, and
monitoring its accumulation in the system is critical in order to estimate risks
and for architecture decision and changes (two activities mentioned earlier).

While in the previous results we focused into understanding which groups were
experiencing interaction challenges hindering ambidexterity, these four areas represent
the target for improvement. This means that the spanning activities to be implemented
need to cover these areas.

In particular, these results imply that managing ATD would contribute to improve all
the mentioned areas, which in turn would mitigate the interaction challenges.
Therefore, a main spanning activity to be introduced is Architecture Technical Debt
Management, which needs to involve architects, product managers and teams in order
to balance short-term and long-term responsiveness. This represents an important
implication for the Agile community: in large embedded software companies, in order
to balance short-term with long-term responsiveness, managers and software improvers
need to take in consideration a way to introduce practices that complement the Agile
ones in order to manage architecture with a risk management perspective. Such
hypothesis is also in line with a recent study that consider architecture management as
a risk management activity [147]. These results also contribute to understanding what
to improve, e.g. they offer a clear target rather than a generic and fuzzy need, as
reported in other related work (see [6]).

Thanks to these analytical results, it’s possible to design concrete solutions in order
to mitigate interaction challenges hindering ambidexterity. Consequently, these results
led to the design of the two solutions presented in the next sections: Architectural
Technical Debt Management and the CAFFEA framework.

11.1.4 RQ4 What strategic information about Architecture Technical Debt needs to be shared
between architects, product owners and teams in order to manage ambidexterity?

As mentioned in the previous section, ATD Management was found important in
order to manage ambidexterity. This research question aimed at understanding what
strategic information is needed by the stakeholders in order to perform the spanning
activity related to ATD. In order to provide answers to such RQ, we divided it into
three sub-questions and we performed two parallel, longitudinal studies in order to
understand:

RQ4.1 What causes the accumulation of Architecture Technical Debt and its
interest?

RQ4.2 How does the interest of Architecture Technical Debt affect long-term
responsiveness?

RQ4.3 What refactoring strategies can be applied in order to achieve a
convenient trade-off between short-term and long-term responsiveness?

We contribute to RQ4.1 with a taxonomy of the causes for the accumulation over
time of ATD with respect to the different phases of development (Chapter 7). These
causes are important since they need to be avoided, and therefore they have to be
recognized by the stakeholders. In the ATD management activity, the practitioners will
therefore need to analyze the current situation and monitor if the factors are occurring.

 177

The main reason why the practitioners need to avoid such factors and ATD to
accumulate is that such accumulation leads often to dangerous phenomena such as
development crises. This model, one of the main novel results highlighted in Chapter 7,
is particularly important for the strategic management of ATD with respect to
ambidexterity, since it shows how ATD is continuously and unavoidably accumulated,
and software will eventually contain ATD that would lead to a crisis (hindering long-
term responsiveness). However, such crisis needs to be avoided or postponed as much
as possible: Chapter 7 shows how it’s necessary to trade some short-term
responsiveness for conducting refactoring in favor of long-term responsiveness. This
way, although we argue that total refactoring is not possible, partial refactoring is
needed anyway in order to either minimize the number of crises or to retire the product
at the end of its lifecycle before the crisis. This answers RQ4.3.

However, once understood that ATD needs to be partially refactored in order to
improve long-term responsiveness, it is important to comprehend how to trade short-
term responsiveness in order to achieve long-term responsiveness. The main answer is
in prioritizing only those ATD items that have major negative effects on long-term
responsiveness. This is summarized in RQ4.2. In order to understand what ATD needs
to be refactored, we investigate more in depth what was the risk of lack of architectural
quality in particularly dangerous cases. Such information is needed by architects and
product managers (and, when possible, by the teams) in order to prioritize the
refactoring of specific cases of lack of architectural quality, which will cause an
expensive lack of long-term responsiveness.

With respect to RQ4.2, in Chapter 8 we provide a taxonomy of the classes of ATD
that led, in the studied companies, to expensive long-term delays and lack of
responsiveness. Another contribution is the identification of several socio-technical
anti-patterns that lead to such long-term issues: three Vicious Circles and a specific
phenomenon that needs to be taken in consideration: Contagious Debt. Such anti-
patterns need to be recognized and stopped before they lead the ATD to be so
expensive to repay that it is not possible to be fixed, and therefore a development crisis
is inevitable. The information provided in Chapter 8 can therefore be used as shown in
Figure 9, where a spanning object (for example, a tool providing such information),
used in the ATD management spanning activity, is shared between product managers,
architects and teams on the status of the system with respect to the dangerous ATD
items.

To summarize the contribution, by understanding the causes and the effects of ATD
(RQ4.1 and RQ4.2), we provide the key information required in the spanning activity
by the stakeholders. With this information, the stakeholders can proactively prevent or
monitor ATD, and can apply refactoring strategies (RQ4.3) in order to refactor the
ATD items that are more dangerous for long-term responsiveness. The refactoring
decisions, outcome of the ATD management activity, will then lead to balance the two
kinds of responsiveness and therefore would lead to managing ambidexterity (RQ4).
Such information can be also exploited either for developing methods and tools that
would visualize what the stakeholders need during the spanning activity.

11.1.4.1 Evaluation of the strategic information

The strategic information described above and contributing to RQ4 (by answering
the sub-questions RQ4.1-3) needed to be evaluated. In fact, we needed to collect
confirmatory evidence that such information would be useful for the stakeholders when
applying a spanning activity to achieve ambidexterity. In Chapter 9 we evaluated such
information. The main result of this Chapter is that the research done so far has brought
to light information that is useful and usable in practice by the stakeholders. The study
also highlights an important result, or else that the stakeholder would employ 10-20%
of the development time to manage ATD, which represents the suggested trade-off

 178

between allocating resources to achieve short-term delivery and the ones (10-20%)
dedicated to long-term responsiveness. This confirms that the studied information is
critical for the companies and might have an impact on the organizations’ processes to
achieve ambidexterity.

11.1.5 RQ5 What organizational solution can be applied in order to facilitate spanning
activities to manage ambidexterity?

In Chapter 10 we explored a possible organizational solution, CAFFEA, which
would support the implementation of various spanning activities among architects,
product managers and development teams. We mentioned before, in relation to RQ3,
how these spanning activities include risk management, management of decisions and
changes, communication of architecture knowledge and monitoring the current status
of the system, and we mentioned how Architectural Technical Debt management
contributes to manage the other ones as well. It is important that the collection and
assessment of the ATD information would be included in the companies’ processes, in
order to prioritize and align short-term and long-term responsiveness. To support this,
the stakeholders need an organizational structure that support this spanning activity,
otherwise such activity would never occur in practice. In Chapter 10 we report an
organizational solution developed on the basis of a coordination theoretical framework
and several empirical experiences from 7 companies. Such solution has also been
employed in practice by some of the studied companies, and we have started the
evaluation of CAFFEA, providing a static evaluation (which means that the companies
recognize the solution as fitting their needs without the actual implementation) and a
preliminary dynamic evaluation, which shows how in practice such solution brings
benefits with respect to the studied interaction challenges and help improving
ambidexterity. The dynamic evaluation, which usually spans a time interval that is not
controllable for the researchers, is still in progress and is not included in this thesis.

11.2 FUTURE WORK

11.2.1 Implementation of Architectural Technical Debt methods and tools

Chapters 7, 8 and 9 outline a series of results that can be used in order to define the
information that needs to be retrieved and analyzed during a spanning activity among
architects, developers and (in some cases) product managers in order to manage
ambidexterity. Such information needs to be practically retrieved from several sources:
source code, other artifacts (for example, architecture artifacts or project roadmaps), or
else it has to be (semi-)manually encoded when in form of tacit knowledge. In order to
facilitate such retrieval, we aim at developing a method and a tool that would assist
developers, architects and product managers in carrying out some spanning activity.
For example, as shown in picture Figure 9, we aim at creating an Architectural
Technical Debt map of the items present in the system and their risk with respect to
short-term and long-term responsiveness. This study is currently in progress.

11.2.2 Evaluation of CAFFEA (in progress)

The organizational solution included in the overall framework CAFFEA needs to be
evaluated by its application in practice. Since employing an organizational framework
is a task that is difficult and requires time and resources to be implemented by the
companies, the evaluation is not concluded yet. However, such process is in progress in
some of the companies participating in this research project and in one case we have
collected data (not yet published) that show how such company is beneficing from the
implementation of CAFFEA and from the related spanning activities.

 179

11.3 CONCLUSION
Ambidexterity is a complex goal for software companies to achieve: in particular,

large organizations struggle in balancing short-term and long-term responsiveness
across a broad number of factors and actors, from managers to architects to developers.
Current literature provides little understanding of the phenomena and only a narrow
range of solutions have been proposed, mostly on a principle level and without
empirical evidence especially related to the field of software engineering.

In this thesis we have enriched the software engineering body of knowledge by
reporting novel results with respect to the achievement of ambidexterity. We have
studied the phenomenon in depth, and we have provided a practical solution that makes
possible to interact, for several stakeholders in large embedded software companies, in
order to balance short-term and long-term responsiveness.

First, we have explained the complexity of the phenomenon by providing a list of
many factors influencing short-term and long-term responsiveness. We show how, in
order to manage ambidexterity, it is necessary to intervene on several aspects of
software development, technical and not.

We have investigated several of these factors influencing ambidexterity, and we
have focused the research effort in presenting and quantifying the most influential
interaction challenges present in Agile organizations developing embedded software.
Such challenges involve product management and architecture management and the
main challenges to be mitigated are among developers, architects and product
managers. We have identified Architectural Technical Debt (ATD) management as the
main spanning activity that is needed in order to mitigate the challenges and enabling
the active balance of short-term and long-term responsiveness.

With respect to ATD, we have studied what strategic information is needed by the
stakeholder in order to manage ambidexterity. First, we provide a taxonomy of the
classes of dangerous ATD items that lead to pay high interest with respect to long-term
responsiveness: such information can be used for identification and prioritization
purposes. Secondly, we highlight several causes of ATD accumulation together with
vicious circles and the dangerous contagious debt phenomenon, which triggers the
continuous growth of interest over time: such continuous growth of interest might lead
to severe events such as development crises, which could stop development and
therefore have a negative effect on responsiveness. Practitioners now have an
instrument to proactively manage the accumulation of ATD.

The information provided in this thesis can be collected using tools or methods
during a spanning activity dedicated to ATD management in software companies, in
order to monitor the accumulation of dangerous ATD and to drive the decisions of
employing resources to refactoring ATD. According to our results, the best strategy for
refactoring is to partial refactor: it’s necessary to trade part of short-term
responsiveness (in the order of 10-20% of R&D investment, as suggested by the
practitioners) in order to avoid the long-term crises.

Finally, we provide an organizational solution, CAFFEA, which is currently being
empirically evaluated in order to allow the stakeholder to practically employ the
spanning activity of managing ATD. Such solution has been found suitable by the
employees at the studied organizations, and its application is providing benefits to the
companies where was employed.

The results have been obtained through several phases of data collection. We have
followed a thorough research process based on Grounded Theory, complying with the
best principles and practices of case-study research for Software Engineering in order
to provide reliable results based on the collection of a large number of evidence in
collaboration with several experienced practitioners in 7 large software companies.

 180

 181

BIBLIOGRAPHY
[1] A. Martini, L. Pareto, and J. Bosch, “Enablers and inhibitors for speed with

reuse,” in Proceedings of the 16th International Software Product Line
Conference - Volume 1, New York, NY, USA, 2012, pp. 116–125.

[2] A. Martini, L. Pareto, and J. Bosch, “Improving Businesses Success by
Managing Interactions among Agile Teams in Large Organizations,” in Software
Business. From Physical Products to Software Services and Solutions, G.
Herzwurm and T. Margaria, Eds. Springer Berlin Heidelberg, 2013, pp. 60–72.

[3] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural Technical
Debt Accumulation and Refactoring over Time: a Multiple-Case Study,” Inf.
Softw. Technol.

[4] A. Martini and J. Bosch, “Towards prioritizing Architecture Technical Debt:
information needs of architects and product owners,” presented at the 41th
Euromicro SEAA conference, Funchal, Madeira.

[5] A. Martini and J. Bosch, “Towards introducing Agile Architecting in Large
Companies: the CAFFEA framework,” in XP Conference 2015.

[6] P. S. Adler, B. Goldoftas, and D. I. Levine, “Flexibility Versus Efficiency? A
Case Study of Model Changeovers in the Toyota Production System,” Organ.
Sci., vol. 10, no. 1, pp. 43–68, Feb. 1999.

[7] N. P. Napier, L. Mathiassen, and D. Robey, “Building contextual ambidexterity
in a software company to improve firm-level coordination,” Eur. J. Inf. Syst.,
vol. 20, no. 6, pp. 674–690, 2011.

[8] B. Boehm, “Get ready for agile methods, with care,” Computer, vol. 35, no. 1,
pp. 64–69, Jan.

[9] B. D. Reyck, Y. Grushka-Cockayne, M. Lockett, S. R. Calderini, M. Moura, and
A. Sloper, “The impact of project portfolio management on information
technology projects,” Int. J. Proj. Manag., vol. 23, no. 7, pp. 524–537, Oct.
2005.

[10] Matthias Holweg, “The three dimensions of responsiveness,” Int. J. Oper. Prod.
Manag., vol. 25, no. 7, pp. 603–622, Jul. 2005.

[11] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,” J. Syst. Softw.,
vol. 85, no. 6, pp. 1213–1221, Jun. 2012.

[12] C. B. Gibson and J. Birkinshaw, “The Antecedents, Consequences, and
Mediating Role of Organizational Ambidexterity,” Acad. Manage. J., vol. 47,
no. 2, pp. 209–226, Apr. 2004.

[13] S. Raisch and J. Birkinshaw, “Organizational Ambidexterity: Antecedents,
Outcomes, and Moderators,” J. Manag., vol. 34, no. 3, pp. 375–409, Jun. 2008.

[14] F. J. Linden, K. Schmid, and E. Rommes, Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer Science &
Business Media, 2007.

[15] J. Bosch and P. M. Bosch-Sijtsema, “Introducing agile customer-centered
development in a legacy software product line,” Softw. Pract. Exp., vol. 41, no.
8, pp. 871–882, 2011.

[16] R. Baskerville, J. Pries-Heje, and S. Madsen, “Post-agility: What follows a
decade of agility?,” Inf. Softw. Technol., vol. 53, no. 5, pp. 543–555, May 2011.

 182

[17] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R.
Martin, S. Mallor, K. Shwaber, and J. Sutherland, “The Agile Manifesto,” 2001.

[18] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New directions
on agile methods: a comparative analysis,” in 25th International Conference on
Software Engineering, 2003. Proceedings, 2003, pp. 244–254.

[19] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A
systematic review,” Inf. Softw. Technol., vol. 50, no. 9–10, pp. 833–859, Aug.
2008.

[20] K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 2000.

[21] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D. Kiefer, J.
May, and T. Kahkonen, “Agile software development in large organizations,”
Computer, vol. 37, no. 12, pp. 26 – 34, Dec. 2004.

[22] X. Wang, K. Conboy, and O. Cawley, “‘Leagile’ software development: An
experience report analysis of the application of lean approaches in agile software
development,” J. Syst. Softw., vol. 85, no. 6, pp. 1287–1299, Jun. 2012.

[23] T. Dingsoyr, T. Dyba, and P. Abrahamsson, “A Preliminary Roadmap for
Empirical Research on Agile Software Development,” in Agile, 2008. AGILE
’08. Conference, 2008, pp. 83–94.

[24] U. Eklund and J. Bosch, “Applying Agile Development in Mass-Produced
Embedded Systems,” in Agile Processes in Software Engineering and Extreme
Programming, Springer, 2012, pp. 31–46.

[25] M. Xie, M. Shen, G. Rong, and D. Shao, “Empirical studies of embedded
software development using agile methods: a systematic review,” in Proceedings
of the 2nd international workshop on Evidential assessment of software
technologies, 2012, pp. 21–26.

[26] J. Ronkainen and P. Abrahamsson, “Software Development under Stringent
Hardware Constraints: Do Agile Methods Have a Chance?,” in Extreme
Programming and Agile Processes in Software Engineering, vol. 2675, M.
Marchesi and G. Succi, Eds. Springer Berlin / Heidelberg, 2003, pp. 1012–1012.

[27] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located agile
software development projects,” J. Syst. Softw., vol. 85, no. 6, pp. 1222–1238,
Giugno 2012.

[28] L. Pareto, A. B. Sandberg, P. Eriksson, and S. Ehnebom, “Collaborative
prioritization of architectural concerns,” J. Syst. Softw., vol. 85, no. 9, pp. 1971–
1994, Sep. 2012.

[29] N. B. Moe, A. Aurum, and T. Dybå, “Challenges of shared decision-making: A
multiple case study of agile software development,” Inf. Softw. Technol., vol. 54,
no. 8, pp. 853–865, Aug. 2012.

[30] C. Lassenius, T. Dingsøyr, and M. Paasivaara, Eds., Management Ambidexterity:
A Clue for Maturing in Agile Software Development, vol. 212. Cham: Springer
International Publishing, 2015.

[31] M. Daneva, E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar, N.
Ajmeri, U. Ramteerthkar, and R. Wieringa, “Agile requirements prioritization in
large-scale outsourced system projects: An empirical study,” J. Syst. Softw., vol.
86, no. 5, pp. 1333–1353, May 2013.

[32] L. Cao and B. Ramesh, “Agile Requirements Engineering Practices: An
Empirical Study,” IEEE Softw., vol. 25, no. 1, pp. 60–67, Jan. 2008.

[33] D. St\a ahl and J. Bosch, “Modeling Continuous Integration Practice Differences
in Industry Software Development,” J Syst Softw, vol. 87, pp. 48–59, Jan. 2014.

 183

[34] M. Shaw and P. Clements, “The golden age of software architecture,” Softw.
IEEE, vol. 23, no. 2, pp. 31–39, 2006.

[35] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[36] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” J. Syst. Softw., vol. 101, pp. 193–220, Mar. 2015.

[37] W. Cunningham, “The WyCash portfolio management system,” in ACM
SIGPLAN OOPS Messenger, 1992, vol. 4, pp. 29–30.

[38] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” J. Syst.
Softw., vol. 86, no. 6, pp. 1498–1516, Jun. 2013.

[39] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.
MacCormack, R. Nord, I. Ozkaya, and others, “Managing technical debt in
software-reliant systems,” in Proceedings of the FSE/SDP workshop on Future
of software engineering research, 2010, pp. 47–52.

[40] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. Da Silva, A. L.
M. Santos, and C. Siebra, “Tracking technical debt—An exploratory case study,”
in Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
2011, pp. 528–531.

[41] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and A. Vetro,
“Using technical debt data in decision making: Potential decision approaches,”
in 2012 Third International Workshop on Managing Technical Debt (MTD),
2012, pp. 45–48.

[42] J.-L. Letouzey, “The SQALE Method for Evaluating Technical Debt,” in
Proceedings of the Third International Workshop on Managing Technical Debt,
Piscataway, NJ, USA, 2012, pp. 31–36.

[43] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to
Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, 2012.

[44] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt
and interest,” in Proceedings of the 2nd Workshop on Managing Technical Debt,
New York, NY, USA, 2011, pp. 1–8.

[45] K. Schmid, “A formal approach to technical debt decision making,” in
Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures, 2013, pp. 153–162.

[46] ISO - International Organization for Standardization, “System and software
quality models.” [Online]. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075. [Accessed: 08-
Mar-2015].

[47] A. Martini and J. Bosch, “The Danger of Architectural Technical Debt:
Contagious Debt and Vicious Circles,” in accepted for publication at WICSA
2015, Montreal, Canada.

[48] P. Kruchten, “What do software architects really do?,” J. Syst. Softw., vol. 81,
no. 12, pp. 2413–2416, Dec. 2008.

[49] A. Martini, L. Pareto, and J. Bosch, “Role of Architects in Agile Organizations,”
in Continuous Software Engineering, J. Bosch, Ed. Springer International
Publishing, 2014, pp. 39–50.

[50] M. A. Babar and I. Gorton, “Comparison of scenario-based software architecture
evaluation methods,” in Software Engineering Conference, 2004. 11th Asia-
Pacific, 2004, pp. 600–607.

[51] Y. Guo and C. Seaman, “A Portfolio Approach to Technical Debt Management,”
in Proceedings of the 2Nd Workshop on Managing Technical Debt, New York,
NY, USA, 2011, pp. 31–34.

 184

[52] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H. Obbink, “Software
Product Family Evaluation,” in Software Product Lines, R. L. Nord, Ed.
Springer Berlin Heidelberg, 2004, pp. 110–129.

[53] S. Betz and C. Wohlin, “Alignment of Business, Architecture, Process, and
Organisation in a Software Development Context,” in Proceedings of the ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, New York, NY, USA, 2012, pp. 239–242.

[54] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America, “A
general model of software architecture design derived from five industrial
approaches,” J. Syst. Softw., vol. 80, no. 1, pp. 106–126, Jan. 2007.

[55] T. Chow and D. B. Cao, “A survey study of critical success factors in agile
software projects,” J. Syst. Softw., vol. 81, no. 6, pp. 961–971, 2008.

[56] F. M. Santos and K. M. Eisenhardt, “Organizational Boundaries and Theories of
Organization,” Organ. Sci., vol. 16, no. 5, pp. 491–508, Sep. 2005.

[57] N. Levina and E. Vaast, “The Emergence of Boundary Spanning Competence in
Practice: Implications for Implementation and Use of Information Systems,” MIS
Q., vol. 29, no. 2, pp. 335–363, Jun. 2005.

[58] T. W. Malone and K. Crowston, “The Interdisciplinary Study of Coordination,”
ACM Comput Surv, vol. 26, no. 1, pp. 87–119, Mar. 1994.

[59] A. Sandberg, L. Pareto, and T. Arts, “Agile Collaborative Research: Action
Principles for Industry-Academia Collaboration,” IEEE Softw., vol. 28, no. 4, pp.
74–83, 2011.

[60] A. Strauss and J. M. Corbin, Grounded Theory in Practice. SAGE, 1997.
[61] “Bryant, A., & Charmaz, K. (Eds.). (2007). The Sage handbook of grounded

theory. Thousand Oaks, CA: Sage.,” .
[62] B. G. Glaser and J. Holton, Discovery of Grounded Theory. 1967.
[63] M. Crotty, The Foundations of Social Research: Meaning and Perspective in the

Research Process. Sage Publications, 1998.
[64] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557 –572, Aug. 1999.
[65] R. Suddaby, “From the editors: What grounded theory is not,” Acad. Manage. J.,

vol. 49, no. 4, pp. 633–642, 2006.
[66] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies

for Qualitative Research. Transaction Publishers, 2009.
[67] R. K. Yin, Case Study Research: Design and Methods. SAGE, 2009.
[68] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study

research in software engineering,” Empir. Softw. Eng., vol. 14, no. 2, pp. 131–
164, Dec. 2008.

[69] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software
engineering,” IEEE Trans. Softw. Eng., vol. SE-12, no. 7, pp. 733 –743, Jul.
1986.

[70] L. Dickens and K. Watkins, “Action Research: Rethinking Lewin,” Manag.
Learn., vol. 30, no. 2, pp. 127–140, Jun. 1999.

[71] R. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Sci. Comput. Program., vol. 101, pp. 136–152, Apr. 2015.

[72] J. Singer and N. Vinson, “Ethical issues in empirical studies of software
engineering,” 2002.

[73] U. Flick, An Introduction to Qualitative Research. SAGE, 2009.

 185

[74] R. Czaja and J. Blair, Designing Surveys: A Guide to Decisions and Procedures.
Pine Forge Press, 2005.

[75] A. Martini, L. Pareto, and J. Bosch, “Communication factors for speed and reuse
in large-scale agile software development,” in Proceedings of the 17th
International Software Product Line Conference, New York, NY, USA, 2013,
pp. 42–51.

[76] J. Díaz, J. Pérez, P. P. Alarcón, and J. Garbajosa, “Agile product line
engineering-a systematic literature review,” Softw. Pract. Exp., vol. 41, no. 8, pp.
921–941, Jul. 2011.

[77] G. K. Hanssen and T. E. F\aegri, “Process fusion: An industrial case study on
agile software product line engineering,” J. Syst. Softw., vol. 81, no. 6, pp. 843–
854, 2008.

[78] J. D. McGregor, “Agile Software Product Lines, Deconstructed.” [Online].
Available: http://www.jot.fm/issues/issue_2008_11/column1/. [Accessed: 10-
Sep-2015].

[79] K. Petersen and C. Wohlin, “A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case,” J. Syst.
Softw., vol. 82, no. 9, pp. 1479–1490, 2009.

[80] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises.
Pearson Education, 2007.

[81] A. Dubois and L.-E. Gadde, “Systematic combining: an abductive approach to
case research,” J. Bus. Res., vol. 55, no. 7, pp. 553–560, Jul. 2002.

[82] A. Martini, “Factors influencing reuse and speed in three organizations,” 2012.
[83] A. Martini, “Codes supporting results in accumulation and refactoring of TD:

https://dl.dropboxusercontent.com/u/41579684/Codes_grounded_more_than_2_
q.xml.” .

[84] D. Peterson, “Economics of software product lines,” Softw. Prod.-Fam. Eng., pp.
381–402, 2004.

[85] K. Schmid, “A quantitative model of the value of architecture in product line
adoption,” Softw. Prod.-Fam. Eng., pp. 32–43, 2004.

[86] W. Tracz, Confessions of a Used Program Salesman: Institutionalizing Software
Reuse. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[87] J. Gaffney Jr and R. Cruickshank, “A general economics model of software
reuse,” in Proceedings of the 14th international conference on Software
engineering, 1992, pp. 327–337.

[88] M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in software
reuse,” Softw. Eng. IEEE Trans. On, vol. 28, no. 4, pp. 340–357, 2002.

[89] T. Menzies and J. S. Di Stefano, “More success and failure factors in software
reuse,” Softw. Eng. IEEE Trans. On, vol. 29, no. 5, pp. 474–477, 2003.

[90] A. Lynex and P. J. Layzell, “Organisational considerations for software reuse,”
Ann. Softw. Eng., vol. 5, no. 1, pp. 105–124, 1998.

[91] G. Kakarontzas, I. Stamelos, and P. Katsaros, “Product Line Variability with
Elastic Components and Test-Driven Development,” 2008, pp. 146–151.

[92] Y. Ghanam, F. Maurer, P. Abrahamsson, and K. Cooper, “A report on the XP
workshop on agile product line engineering,” ACM SIGSOFT Softw. Eng. Notes,
vol. 34, no. 5, p. 25, Oct. 2009.

[93] D. Turk, R. France, and B. Rumpe, “Limitations of agile software processes,” in
Third International Conference on eXtreme Programming and Agile Processes
in Software Engineering (XP 2002), 2002.

 186

[94] P. Kettunen and M. Laanti, “Combining agile software projects and large-scale
organizational agility,” Softw. Process Improv. Pract., vol. 13, no. 2, pp. 183–
193, Mar. 2008.

[95] E. Hossain, M. A. Babar, and H. Paik, “Using Scrum in Global Software
Development: A Systematic Literature Review,” in Fourth IEEE International
Conference on Global Software Engineering, 2009. ICGSE 2009, 2009, pp. 175
–184.

[96] J. Bosch and P. Bosch-Sijtsema, “From integration to composition: On the
impact of software product lines, global development and ecosystems,” J. Syst.
Softw., vol. 83, no. 1, pp. 67–76, Jan. 2010.

[97] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still, “The impact
of agile practices on communication in software development,” Empir. Softw.
Eng., vol. 13, no. 3, pp. 303–337, 2008.

[98] J. D. Herbsleb and A. Mockus, “An empirical study of speed and communication
in globally distributed software development,” IEEE Trans. Softw. Eng., vol. 29,
no. 6, pp. 481 – 494, Jun. 2003.

[99] L. Layman, L. Williams, D. Damian, and H. Bures, “Essential communication
practices for Extreme Programming in a global software development team,” Inf.
Softw. Technol., vol. 48, no. 9, pp. 781–794, Sep. 2006.

[100] J. Espinosa, S. Slaughter, R. Kraut, and J. Herbsleb, “Team Knowledge and
Coordination in Geographically Distributed Software Development,” J. Manag.
Inf. Syst., vol. 24, no. 1, pp. 135–169, Jul. 2007.

[101] M. Korkala and P. Abrahamsson, “Communication in Distributed Agile
Development: A Case Study,” in 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, 2007, 2007, pp. 203 –210.

[102] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies on
software development productivity,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measurement,
New York, NY, USA, 2008, pp. 2–11.

[103] S. J. Karau and J. R. Kelly, “The effects of time scarcity and time abundance on
group performance quality and interaction process,” J. Exp. Soc. Psychol., vol.
28, no. 6, pp. 542–571, Nov. 1992.

[104] D. Karlstrom and P. Runeson, “Combining agile methods with stage-gate project
management,” IEEE Softw., vol. 22, no. 3, pp. 43 – 49, Jun. 2005.

[105] O. Gotel, V. Kulkarni, M. Say, C. Scharff, and T. Sunetnanta, “Quality
indicators on global software development projects: does ‘getting to know you’
really matter?,” J. Softw. Evol. Process, vol. 24, no. 2, pp. 169–184, 2012.

[106] K. S. Pawar and S. Sharifi, “Virtual collocation of design teams: coordinating for
speed,” Int. J. Agile Manag. Syst., vol. 2, no. 2, pp. 104–113, Aug. 2000.

[107] R. Giuffrida and Y. Dittrich, “Empirical studies on the use of social software in
global software development – A systematic mapping study,” Inf. Softw.
Technol.

[108] T. Kahkonen, “Agile methods for large organizations - building communities of
practice,” in Agile Development Conference, 2004, 2004, pp. 2 – 10.

[109] D. H. Gobeli, H. F. Koenig, and I. Bechinger, “Managing conflict in software
development teams: a multilevel analysis,” J. Prod. Innov. Manag., vol. 15, no.
5, pp. 423–435, Sep. 1998.

[110] C. Loureiro-Koechlin, “A theoretical framework for a structuration model of
social issues in software development in information systems,” Syst. Res. Behav.
Sci., vol. 25, no. 1, pp. 99–109, 2008.

 187

[111] J. Y.-C. Liu, H.-G. Chen, C. C. Chen, and T. S. Sheu, “Relationships among
interpersonal conflict, requirements uncertainty, and software project
performance,” Int. J. Proj. Manag., vol. 29, no. 5, pp. 547–556, Jul. 2011.

[112] A. Greve, M. Benassi, and A. D. Sti, “Exploring the contributions of human and
social capital to productivity,” Int. Rev. Sociol., vol. 20, no. 1, pp. 35–58, Mar.
2010.

[113] J. Saldaña-Ramos, A. Sanz-Esteban, J. García, and A. Amescua, “Skills and
abilities for working in a global software development team: a competence
model,” J. Softw. Evol. Process, p. n/a–n/a, 2013.

[114] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A
systematic review,” Inf. Softw. Technol., vol. 50, no. 9–10, pp. 833–859, Aug.
2008.

[115] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving speed
and productivity of software development: a global survey of software
developers,” IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 875–885, 1996.

[116] Z. Ma, J. S. Collofello, and D. E. Smith-Daniels, “Causes and solutions for
schedule slippage: a survey of software projects,” in Performance, Computing,
and Communications Conference, 2000. IPCCC ’00. Conference Proceeding of
the IEEE International, 2000, pp. 373–379.

[117] Z. Ma, J. S. Collofello, and D. E. Smith-Daniels, “Improving software on-time
delivery: an investigation of project delays,” in 2000 IEEE Aerospace
Conference Proceedings, 2000, vol. 4, pp. 421–434 vol.4.

[118] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash (The Addison-Wesley Signature Series).
Addison-Wesley Professional, 2006.

[119] M. Poppendieck, “Lean software development,” in Companion to the
proceedings of the 29th International Conference on Software Engineering,
2007, pp. 165–166.

[120] S. Lee and H.-S. Yong, “Distributed agile: project management in a global
environment,” Empir. Softw. Eng., vol. 15, no. 2, pp. 204–217, Apr. 2010.

[121] C. Wohlin, P. Runeson, M. Host, C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: an Introduction. Kluver Academic
Publishers, 2000.

[122] E. C. Lee, “Forming to Performing: Transitioning Large-Scale Project Into
Agile,” in Agile, 2008. AGILE ’08. Conference, 2008, pp. 106 –111.

[123] M. Paasivaara and C. Lassenius, “Collaboration practices in global inter-
organizational software development projects,” Softw. Process Improv. Pract.,
vol. 8, no. 4, pp. 183–199, 2003.

[124] M. M. Lehman, G. Kahen, and J. F. Ramil, “Behavioural Modelling of Long-
lived Evolution Processes: Some Issues and an Example,” J. Softw. Maint., vol.
14, no. 5, pp. 335–351, Sep. 2002.

[125] R. Sindhgatta, N. C. Narendra, and B. Sengupta, “Software Evolution in Agile
Development: A Case Study,” in Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, New York, NY, USA, 2010, pp. 105–114.

[126] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In Search of a
Metric for Managing Architectural Technical Debt,” in 2012 Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012, pp. 91–100.

 188

[127] A. Martini, J. Bosch, and M. Chaudron, “Architecture Technical Debt:
Understanding Causes and a Qualitative Model,” in 40th Euromicro Conference
on Software Engineering and Advanced Applications, Verona, 2014, pp. 85–92.

[128] N. Zazworka, R. O. Spínola, A. Vetro’, F. Shull, and C. Seaman, “A Case Study
on Effectively Identifying Technical Debt,” in Proceedings of the 17th
International Conference on Evaluation and Assessment in Software
Engineering, New York, NY, USA, 2013, pp. 42–47.

[129] M. A. A. Mamun, C. Berger, and J. Hansson, “Explicating, Understanding and
Managing Technical Debt from Self-Driving Miniature Car Projects,” in
Proceedings of Sixth International Workshop on Managing Technical Debt,
Victoria, British Columbia, Canada, 2014.

[130] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyba,
“Quantifying the Effect of Code Smells on Maintenance Effort,” IEEE Trans.
Softw. Eng., vol. 39, no. 8, pp. 1144–1156, Aug. 2013.

[131] M. Fowler, “Technical Debt Quadrant,” 2009. .
[132] P. Berander and A. Andrews, “Requirements prioritization,” in Engineering and

managing software requirements, Springer, 2005, pp. 69–94.
[133] “businessdictionary.com.” .
[134] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt investment

opportunities,” in Proceedings of the 2nd Workshop on Managing Technical
Debt, New York, NY, USA, 2011, pp. 39–42.

[135] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE Trans. Softw.
Eng., vol. 30, no. 2, pp. 126–139, 2004.

[136] J. Díaz, J. Pérez, and J. Garbajosa, “Agile Product-Line Architecting in Practice:
A Case Study in Smart Grids,” Inf. Softw. Technol.

[137] S. Bellomo, R. L. Nord, and I. Ozkaya, “A study of enabling factors for rapid
fielding combined practices to balance speed and stability,” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp. 982–991.

[138] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, “A comparative
study of architecture knowledge management tools,” J. Syst. Softw., vol. 83, no.
3, pp. 352–370, Mar. 2010.

[139] L. Pareto, P. Eriksson, and S. Ehnebom, “Architectural descriptions as boundary
objects in system and design work,” Model Driven Eng. Lang. Syst., pp. 406–
419, 2010.

[140] B. J. Williams and J. C. Carver, “Characterizing software architecture changes:
A systematic review,” Inf. Softw. Technol., vol. 52, no. 1, pp. 31–51, Jan. 2010.

[141] L. de Silva and D. Balasubramaniam, “Controlling software architecture erosion:
A survey,” J. Syst. Softw., vol. 85, no. 1, pp. 132–151, Jan. 2012.

[142] A. Qumer, “Defining an Integrated Agile Governance for Large Agile Software
Development Environments,” in Agile Processes in Software Engineering and
Extreme Programming, G. Concas, E. Damiani, M. Scotto, and G. Succi, Eds.
Springer Berlin Heidelberg, 2007, pp. 157–160.

[143] M. Drury, K. Conboy, and K. Power, “Obstacles to decision making in Agile
software development teams,” J. Syst. Softw., vol. 85, no. 6, pp. 1239–1254, Jun.
2012.

[144] O. Zimmermann, C. Miksovic, and J. M. Küster, “Reference architecture,
metamodel, and modeling principles for architectural knowledge management in
information technology services,” J. Syst. Softw., vol. 85, no. 9, pp. 2014–2033,
Sep. 2012.

 189

[145] H. Unphon and Y. Dittrich, “Software architecture awareness in long-term
software product evolution,” J. Syst. Softw., vol. 83, no. 11, pp. 2211–2226, Nov.
2010.

[146] J. McAvoy and T. Butler, “The impact of the Abilene Paradox on double-loop
learning in an agile team,” Inf. Softw. Technol., vol. 49, no. 6, pp. 552–563, Jun.
2007.

[147] E. R. Poort and H. Van Vliet, “Architecting as a Risk- and Cost Management
Discipline,” in 2011 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2011, pp. 2–11.

