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Abstract
The demand for higher data rates and efficient use of various resources has been an
unquenchable thirst across different generations of cellular systems, and it continues to
be so. Aggressive reuse of frequency resources in cellular systems gives rise to intercell
interference which severely affects the data rate of users at the cell-edge. In this regard,
coordinated multipoint (CoMP) is one of the ways to mitigate interference for these cell-
edge users. In the downlink, joint transmission (JT) CoMP involves the cooperation of
two or more geographically separated base stations to jointly transmit to these users by
treating the interfering signal as useful signal.
To realize the gains of JT-CoMP in a frequency division duplex system, the users need to
feedback the channel state information (CSI) to its serving base station. This needs to
be aggregated at the central coordination node for mitigating interference via precoding.
However, the process of aggregation poses tremendous burden on the backhaul. One
of the ways to reduce this burden is to use relative thresholding, where the users feed
back the CSI of only those links that fall within a threshold relative to the strongest base
station. The side effect of thresholding results in limited or incomplete CSI for precoding.
Efficient backhauling is achieved when the quantity of CSI available for certain links at
the central coordination node be correspondingly equivalent to the quantity of precoding
weights generated for the same links. The incomplete CSI poses problems for the simple
zero-forcing precoder to mitigate interference and also achieve efficient backhauling.
In this thesis, the main problem of simultaneously mitigating interference and achieving
efficient backhauling is addressed with a layered approach. Our physical (PHY) layer
precoding approach solves the problem and allowes the medium access control (MAC)
layer scheduler to be simple. The PHY layer precoding algorithms such as successive
second order cone programming are proposed using convex optimization in [Paper A],
and particle swarm optimization based on stochastic optimization is proposed in [Paper
B]. Also, we exploit the use of long term channel statistics for the incomplete CSI
and characterize the promising performance of the proposed precoder using numerical
bounds. Based on our results, we observed that the swarm algorithm struggles with the
increase in the problem size. The MAC layer approach exploits scheduling to solve the
problem keeping a simple PHY layer zero-forcing precoder [Paper C]. Our proposed
constrained scheduling approach provides the best tradeoff in terms of average sum rate
per backhaul use compared to other MAC layer techniques. These results can be applied
to a variant of the baseband hotel, a centralized architecture.
In a distributed architecture, the CSI is exchanged periodically between the base sta-
tions over the backhaul for JT-CoMP. Any CSI feedback update from the user must be
immediately exchanged over the backhaul to preserve the gains of JT-CoMP. We pro-
pose an improved decentralized local precoder design where the base station with new
local CSI can design the local precoding weights in between the CSI exchange between
base stations [Paper D]. With our approach some of the gains of JT-CoMP can still be
preserved without the need to burden the backhaul.
Keywords: backhauling, centralized, coordinated multipoint, convex optimization, de-
centralized, efficient backhauling, joint transmission, particle swarm optimization, pre-
coding, scheduling, stochastic optimization
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Preface
There are two kinds of truth: the truth that lights the way and the truth
that warms the heart. The first of these is science, and the second is art.
Neither is independent of the other or more important than the other.
Without art science would be as useless as a pair of high forceps in the
hands of a plumber. Without science art would become a crude mess
of folklore and emotional quackery. The truth of art keeps science from
becoming inhuman, and the truth of science keeps art from becoming
ridiculous.

Raymond Thornton Chandler
writer (23 Jul. 1888-1959)

It gives me immense pleasure to present this doctoral thesis. This thesis has
been organized in three parts. In the first part, coordinated multipoint (CoMP)
transmission is introduced in the backdrop of 5G in chapter 1. This part leads
into the problem addressed in this thesis, enveloping the OSI model for efficient
backhauling in chapter 2. In chapter 3, the tools used to achieve efficient backhauling
are discussed. Finally, this part concludes with the challenges in realizing CoMP
in practice and some visions for future work. In the second part of the thesis, the
papers that form this thesis are appended. The final part is the Appendix that
complements the material covered in this work.
In light of “Sita sings the blues” and using the tax payers money to fund this

work, I have chosen to make this thesis available under CC0 [1]. I hope you enjoy
reading this thesis as much as I have enjoyed writing it.
Thanks to the following bodies: the Swedish Governmental Agency for Innovation

Systems (VINNOVA), the Swedish Research Council (VR), the Seventh Framework
Program (EU FP7-ARTIST4G), and EU FP7 project ICT-317669 METIS for sup-
porting my work. Some computations were performed on the resources at Chalmers
Centre for Computational Science and Engineering, C3SE, provided by the Swedish
National Infrastructure for Computing.
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Part I.

Introduction



You become responsible, forever, for what you have tamed.

Antoine de Saint-Exupéry
Aviator, Writer (29 Jun. 1900-1944)
An extract from The Little Prince (1943)



1. Potential 5G technologies, the
1000x hype
The growth of this last area has in the last fifty years been even faster
than that of the other two.

Claude Shannon
Mathematician, Engineer, Cryptographer (30 Apr. 1916-2001)
Kyoto Prize acceptance speech in Mathematics (1985)

The hype so far in wireless communications has been branded with paradigm-
shifting, ubiquitous, revolutionary technology and many more [2]. The trend has
continued with the fifth generation (5G) of communication systems with ultra dense,
ultra lean, ultra high reliability, massive machine type communications, etc. The
hype also transitions from cellular systems to all type of systems that require comm-
unications that can be aided by cellular systems. The ambitious goal of having 1000x
higher mobile data volume per area [3] compared to existing technologies is punc-
tuated with services being offered anywhere, anytime for anyone for anything [4].
Based on a Federal Communications Commission (FCC) report, there has been

an exponential growth of mobile data traffic leading to 300 MHz of spectrum deficit.
This is even without considering the internet of things (IoT), where everything is
connected [5]. Cisco® reported with quantitative evidence that the wireless data
explosion is for real and this trend will continue [6]. Martin Cooper, the father
of the cell phone, noted that the throughput had doubled every 30 months over a
period of 104 years. In [7], this is translated to a million-fold increase since 1957,
and provide a breakup for this increase. Major gains are expected from reduced
cell sizes, due to an increase in the reuse of spectrum across a geographical area,
thereby relaxing the constraint on resource allocation. The existing cellular systems
are mostly macrocellular in nature, and the small cells would be deployed under the
umbrella of a macrocell.
The need for higher data rates has been the driving force for a new generation

of communication systems, this is accelerated due to the transition from circuit
switched to packet switched connections. Apart from the need for very high data
rates everywhere, some of the requirements driving 5G are massive system capacity
with lower energy consumption per bit. Learning from history, one of the most
expensive part in a cellular network is the front end (power amplifier) that triggers
a large electricity bill for the operators. With global warming, the objective to
have lower energy per bit could be the prime motivation. The new generation of

1



Chapter 1 Potential 5G technologies, the 1000x hype

communication systems also need to satisfy very low latency requirement, ultra-high
reliability and availability [3][4]. However, these requirements could oppose each
other’s objective. For example, for ultra-high reliability there could be a number
of transmissions bombarded across the air interface, however such systems might
not meet the objective of being energy efficient and having very low latency, even
though they are very reliable. This makes the design of 5G systems all the more
challenging. Multiobjective optimization (MOO) could be a key in addressing these
goals [8].
These 5G requirements drive the need for new technologies, such as massive de-

ployment of multiple antennas, higher throughput, densification, and even operating
with new frequencies such as those in the millimeter range [6]. This list is not ex-
haustive, however, these exciting technologies will enable a better world for all. In
this thesis, coordinated multipoint (CoMP) transmission is considered that could
address one of the 5G requirements of achieving higher throughput via network
coordination.

1.1. Cooperation and its use to mitigate interference
In traditional time division multiple access (TDMA) cellular system such as Global
System for Mobile Communication (GSM), a user equipment (UE) moving from one
cell to another results in a hard-handover. This is brought about with the event
of break-before-make. In conventional code division multiple access (CDMA) and
wideband CDMA (WCDMA) systems such as universal mobile telecommunications
system (UMTS), the UEs are served on the same frequency-time resource. When
a UE moves from one cell to another during an active call, a soft-handover is per-
formed, where the UE can communicate simultaneously with many base stations
(BSs) with the notion of make-before-break. Based on the quality of the received
bits, the core network can decide the BS to which the UE can be connected. This
leads to a concept called macrodiversity, where independent paths are setup to en-
sure that the probability of both paths simultaneously being affected with fading is
lowered [9, 10].
Multiple-input multiple-output (MIMO) systems promise high capacity [11, 12,

13]. Spectral efficiency is significantly increased when channel state information
(CSI) is available at the transmitter (CSIT). In this regard, consider the singu-
lar value decomposition (SVD) of a point to point MIMO channel H

(
∈ CR×T

)
=

UΣVH , where UH can be used for receiver shaping while V can be used at the trans-
mitter for exploiting diversity via preprocessing or precoding. Here R denotes the
number of receiving points and T is the number of transmitting points. With pre-
coding and receiver shaping, the MIMO channel is parallelized into its Eigenmodes
[13]. At low signal to noise ratio (SNR), one or few of the strongest Eigenmodes can
be used. When the strongest mode alone is used then this leads to MIMO beam-
forming. At high SNR, all the Eigenmodes could be used. In the absence of CSI at
the transmitter space-time coding can be performed [14]. With CSI at the receiver,
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Bell Laboratories layered space-time (BLAST) can be performed [15], while signal
processing at the transmitter side with CSIT leads to precoding. With single user
(SU) MIMO with T transmit antennas and R receive antennas, more data to one
UE is delivered over the same bandwidth to increase the spectral efficiency, while in
the case of multi-user (MU) MIMO, R single antenna UEs are multiplexed over the
same bandwidth to increase the system capacity. With multi-layered MU-MIMO, R
UEs each have multiple antennas which gives rise to multiple streams (layers) being
delivered to the same UE [16].
Theoretical investigations on improving the downlink cellular capacity based on

cooperation between the BSs was studied in [17] and potential gains of network
coordination for spectrally efficient systems with high-speed backhaul was shown in
[18]. The promising gains of cooperation with multiple antennas triggered immense
research with multicell MU-MIMO [19, 20], network MIMO [9], multicell processing
[10] and distributed antenna systems [21]. High spectral efficiency could be achieved
with advanced interference mitigation techniques for 5G systems [22].
Backhaul could be loosely called the backbone of the cellular network, where it

forms the interconnection between different nodes or BSs. The medium for back-
hauling has been wired links such as copper or optical fiber cables, and wirelessly
this has been with microwaves links. With the advent of small cells deployments,
where wired links can be impractical or expensive, millimeter waves (mmW) based
wireless backhauling could be effective [23].

1.2. Nitty-gritties of CoMP and its classification in
3GPP

In 3rd Generation Partnership Project (3GPP), long term evolution (LTE) systems
are spectrally efficient systems with frequency reuse factor of one between the cells.
However, this comes at the price that such systems are prone to intercell interference.
Traditionally, with careful radio frequency (RF) planning the intercell interference
was minimized by tweaking the antenna being selected and adjusting the antenna
patterns. The new line of thinking with CoMP is to mitigate intercell interference
via cooperating BSs, basically treat interference as useful signal [17]. In Fig. 1.1
(a), the UEs using the same frequency-time resource at the cell-edge are prone to
intercell interference. In Fig. 1.1 (b), the interfering signal is treated as useful signal.
This leads to the basic idea of joint transmission CoMP [17, 24, 25]. The term joint
transmission was first proposed in the context of time division (TD)-CDMA systems
[26]. Another way to look at CoMP is that the BSs take an active role in interference
mitigation for the spatially distributed non-cooperating UEs. It could be said that
the CDMA systems did have a primitive version of CoMP, however, note that in [27]
it is argued that soft handoff or handover does not aim to overcome interference.
The common aspect of CoMP and soft handover is that they both aim to improve
signal to interference plus noise ratio (SINR) by sending the same data from different
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BSs. In this thesis, the main focus will be on interference mitigation in downlink
CoMP joint transmission.

(a)

(b)

Figure 1.1.: Spectrally efficient cellular systems can be achieved with frequency
reuse factor of one. This leads to (a) interference limited system where the cell-
edge UEs are prone to interference from the other cell. In (b), treat interference
as useful signal, a basic idea of CoMP joint transmission.

Intercell interference coordination (ICIC) and enhanced ICIC was available in
Release 8 and Release 10 of the 3GPP specifications, to avoid intercell interference
in the frequency domain and time domain, respectively [28]. In particular, enhanced
ICIC primarily address interference mitigation in heterogeneous networks between
macrocells and small cells. In 3GPP LTE Release 11, CoMP is addressed as a work
item [29], and in this subsection, the nitty-gritties of CoMP is presented via its
classification in 3GPP.

Downlink CoMP transmission
In the downlink, CoMP can be classified based on how many transmitting points
are involved in serving the UEs. With coordinated scheduling (CS) and coordinated
beamforming (CB), only one of the BSs is involved in serving the UE, typically
the serving BS. The other BSs are involved in coordinating with this serving BS,
so that interference can be mitigated. CS/CB can be seen as an evolution of the
ICIC where much lower latency can be expected for coordination. For example,
coordinated scheduling over multiple cells allows ICIC on a time scale of individual
scheduling decisions [28]. To realize these gains, the CSI can be coarse for CS/CB
and the UE data needs to be available at only one serving cell. However, some control
signaling is needed over the backhaul to coordinate with other BSs, with reasonable
synchronization between the BSs with oscillator accuracy of 0.05 ppm and 3 µs
timing accuracy [28, Table 13.5]. The periodicity of CoMP Information Element
(IE) exchange over the backhaul X2 interface connecting the BSs is recommended
to be {5, 10, 20, 40, 80} ms from Radio Access Network (RAN) work group 1 to
RAN3 [30]. These numbers are currently under investigation in 3GPP. Bandwidth,
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latency and maximum possible distance for a given link would prove to be crucial
for realizing the new technologies.
In the case of joint processing CoMP, the non-serving BSs are also involved in

transmission towards a UE. This approach is further divided into dynamic point
selection (DPS) where only one cell is involved in transmitting to a UE, and joint
transmission (JT), where a group of BSs coherently transmit data to the UEs. To
realize the gains with dynamic point selection, the UE data needs to be available
at all the cooperating BSs which increases the load on the backhaul. However, the
data transmission occurs from one of the chosen transmitting points. The CSI and
the synchronization requirements for DPS are similar to that of CS/CB [28]. Note
that CoMP allows independent selection of transmission points in the downlink cell
selection, and uplink reception points which is useful in heterogeneous networks.
To realize the gains with JT-CoMP, the CSI needs to be accurate and the UE
data needs to be available at all the cooperating BSs. This poses heavy load on
the backhauling with more tighter requirement on the oscillator accuracy of 0.02
ppm and 0.5 µs timing accuracy [28]. JT-CoMP promises to provide the highest
throughput compared to other techniques. However, this is not yet mature for
realistic deployment.

Uplink CoMP joint reception
As the uplink CoMP reception does not affect the standards on the UE side, they
can be directly applied for Release 8 compliant UEs. However, on the network
side, the uplink UE data received at the geographically separated antennas needs
to be collected at a central receiver, where the UE data can be combined and more
faithfully reproduced. One of the limiting factors is transporting the UE data in
backhaul for the detection process.

CoMP and DAS
Distributed antenna systems (DAS) could resemble a CoMP scenario with the an-
tennas or remote radio heads (RRHs) being geographically distributed. However,
the important aspect to note in DAS is that with distributed antennas, the prop-
agation distance is reduced. Therefore, the distributed antennas can be operated
with lower transmit power.
In 3GPP, DAS was classified as intra-site CoMP in Release 10, where the coordi-

nated BSs share the same site. While for inter-site CoMP, the coordination occurs
over the backhaul with BSs located at different sites [21]. Hence, DAS is a compet-
ing technology compared to fixed relays and small cells. Unlike CoMP the primary
goal of DAS is to achieve coverage and then throughput. While in the case of CoMP,
the coverage is available, however the throughput is limited due to interference and
CoMP enables to overcome this interference.

Centralized and distributed architectures
JT-CoMP is more suited for a centralized architecture where a central coordination
node (CCN) acts as a controller of BSs or RRHs. With ultra-lean design of LTE
in future networks, the notion of baseband hotel can be realized. It consists of the
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RRHs being connected over high speed fiber to the baseband pool (or CCN) where
the protocol stack resides (see Sec. 2.2) and it is connected to the packet core [28].
This approach maps to CoMP scenario 2 in 3GPP and it could prove very use-

ful for JT-CoMP. In this approach, the link between the baseband hotel and the
“unintelligent” RF head is called the fronthaul. The baseband hotel can be in the
Cloud-RAN. However, unlike cloud computing the requirements on Cloud-RAN will
be a lot more aggressive in terms of data rate and latency. Recently, Ericsson
demonstrated a microwave fronthaul solution in China [31]. The fronthaul can be
regarded as the backhaul if the protocol stack is considered to be residing in the
“intelligent” RF head and the CCN is a logical entity that could reside at any one
of the BSs. Nevertheless, fronthaul or backhaul in the case of JT-CoMP need to
support tremendous capacity with very low latency [28].
In the case of distributed architecture, the protocol stack or the baseband resides

at each RF head, and there is no CCN. Thereby, the centralized approach could be
performed in a distributed manner [32]. In the case of decentralized approach, each
BS has its own version of the data or a subset of the data, for example the CSI
available at different BSs could be different [33].

Backhaul the bottleneck
When voice was still the killer application, wireless network operators such as Sprint
did not pursue having a split backhaul for voice and data separately [34]. With
current trends of exponential growth in mobile data traffic, and increasing operating
expenses due to energy consumption, operators can rely on heterogeneous solutions
with low-power BSs in addition to the macrocell. In [35], it is found that backhaul
could account for 50% of the power consumption, and that having a hybrid backhaul
architecture, such as those of microwave and fiber backhauling could be very useful
in ultra dense networks. The backhaul traffic can be minimized by jointly designing
the precoder and the UE data allocation at the BSs given a quality of service [36].

1.3. Signaling overhead: Channel state information
The cellular network was optimized for laptop type of traffic by keeping the connec-
tion active for better user experience [37]. However, with the advent of the smart
phone, there was a tremendous increase in the applications in the app market that
started to show catastrophic effects on the life of the battery. The handset manufac-
turers improved the battery life where the data connection was active only when the
download was needed and then the connection was torn down immediately there-
after. This improved the battery life, however it also triggered excessive signaling
for the network. This behavior is called fast dormancy [37]. Apart from the signal-
ing overhead generated from applications, there is a need to have efficient signaling
which indirectly addresses the need for energy efficient systems.
Focusing on the signaling overhead in downlink JT-CoMP, the CSI needs to be

available at the transmitter. This was first studied in this pay-walled article [38],
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where the capacity of the channel was found when the transmitter has causal side in-
formation. In a frequency division duplex (FDD) system, the UEs need to feedback
the channel to the transmitter. An overview of limited feedback in wireless systems
is presented in [39]. In particular, the channel information can be instantaneous
or statistical [14, 16]. Distributed strategies to harness the gains of CoMP using
instantaneous and statistical CSI is presented in [40] using novel distributed virtual
SINR framework. Statistical channel knowledge can be in the form of the channel
covariance information and channel mean information. Henceforth, the instanta-
neous channel information can be referred to as CSI, while the statistical channel
information can be seen as the received signal strength indicator (RSSI). The RSSI
feedback from the UEs already exist in the current cellular standards while feeding
back the CSI is yet to be incorporated.
To realize the gains of JT-CoMP, the CSI is required for interference mitigation

via precoding. In a centralized approach, as discussed in the previous section, if
all the UEs participating in JT-CoMP were to feedback the CSI over the air to its
strongest BS then forwarding them to the CCN for precoding could pose a heavy
burden on the backhaul traffic. As the precoding weights designed at the CCN needs
to be available at the cooperating BSs along with the UEs’ data, this could further
overwhelm the backhaul.
The important factors of a given backhaul technology is the latency, throughput

and its availability at a certain geographical location. Fiber access could provide a
latency as small as 2 ms and a throughput as high as 10 Gbps, while digital subscriber
line access could provide a latency of 15 ms supporting 100 Mbps. In places where
cabled access is not possible, wireless backhaul could prove to be useful with one-way
latency as small as 5 ms supporting 100 Mbps. These values are obtained from [41,
Table II]. Nevertheless, non-ideal backhauling has finite limits as to how much data
they can carry, and combined with IoT, backhaul could as well be the bottleneck.
CoMP with constrained backhaul would require backhaul-efficient cooperation

techniques [42, 43] such as imperfect CSI at the BS and UE [44], with achievable
tradeoff between throughput/backhaul use. Stochastic precoding is performed un-
der imperfect CSI with RSSI in [45]. Rate splitting approach is considered in [46]
for shared and non-shared user data, thereby optimizing data sharing under finite
capacity backhaul. Preclustering based on the backhaul could help [47], where a
large network is divided into a number of disjoint cluster of BSs. With limited over-
lapping clusters soft interference nulling (SIN) linear precoder can be applied when
complete CSI is available [48].
A suitable reduction in the quantity and quality of the CSI could aid in the re-

duction of the signaling overhead, leading to an efficient routing of UE data in the
backhaul. The long term channel statistics can also be used for making routing
decisions for the UE in the backhaul [49]. Keeping the quality of feedback to be
perfect, the quantity of the CSI feedback can be lowered with absolute or relative
thresholding. More details on how to reduce the feedback and the corresponding
effect on having an efficient backhaul is captured in Sec. 2.1.1 and Sec. 2.1.2, respec-
tively. Keeping the quantity of CSI to be complete, the quality of the CSI being

7



Chapter 1 Potential 5G technologies, the 1000x hype

affected by prediction and quantization errors in the case of centralized precoding
is captured in App. A. In [50], substantial throughput increment is achieved via
JT-CoMP with very limited number of feedback bits per BS. Imperfect CSI require
robust precoding be it centralized [51, 52] or decentralized [53]. In [54, 55], “who
needs to know what” indirectly addresses the quantity and quality of CSI required
at different BSs in a distributed setup. In this thesis, a homogeneous network of
macrocellular cell-edge UEs are considered at the cluster center for JT-CoMP (see
Chap. 2). In a centralized architecture (see Fig. 2.1), this closely maps to the 3GPP
CoMP scenario 2 where the high transmission power RRHs can be seen as another
macrocell with backhaul communications over the optical fiber. This leads to inter-
site JT-CoMP. To alleviate the backhaul traffic, relative thresholding is considered
which maps closely to dynamic point selection with JT. This reduces the quantity
of CSI being fed back by the UEs. However, this poses problems for mitigating
interference in the system. Nevertheless, there is a trade-off as to how much of the
CSI can be incomplete and still be able to mitigate interference in the system. This
leads to the notion of efficient backhauling (see Sec. 2.1.2).

1.4. CoMP in the umbrella of 5G technologies
In the previous sections, an FDD system was mainly considered. Here a brief note
on FDD and time division duplex (TDD) is presented. This is followed with the
prospective use of CoMP in 5G, as to when and where to use CoMP.

1.4.1. To FDD or to TDD?
In simplest terms, an FDD system has the uplink and the downlink separated in
frequency, whereas in a TDD system, the uplink and the downlink are on the same
frequency, however the uplink and downlink transmissions are separated in time.
Consider a typical web browsing experience, where clicking on a hyperlink fetches
the data and displays it on the UE terminal, and the user spends some time read-
ing/consuming that information. A similar experience could be with downloading
some file/attachment. The traffic is bursty and asymmetric (more downlink than
uplink), the act of fetching or downloading requires a larger bandwidth or data pipe
to serve the user in the downlink (assuming latency driven applications). While
the uplink resources are mainly for acknowledgments and to inform the need for
retransmissions. In this use case, the TDD approach could be better than an FDD
approach, as the downlink duration can be extended, resulting in squeezing the up-
link resource in that time-slot. However, in the case of FDD, the complete uplink
channel is mostly idle, if not for the occasional acknowledgments. Therefore, the
spectrum can be better utilized in the case of TDD. However, in a homogeneous
TDD system, the uplink and downlink flexibility could pose very strict constraints
to cooperate/synchronize the change in uplink/downlink duration with the neigh-
boring cells. Note that the bursty traffic causes discontinuous transmission wherein
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this could degrade the performance of the power amplifier.
Channel reciprocity could be utilized in TDD, for example, the downlink channel

can be learnt from the uplink pilots or training sequence. However, this is difficult
to realize in practice [14], as the different frequency transfer characteristics in RF
chains at the transmitter and receiver becomes part of the channel measurements.
Hence, the transmitter and receiver chains require calibration. In the case of FDD,
the channel characteristics are different on different frequencies, therefore explicit
pilots would be required to learn both the channels.
Given a fixed transmit power, a TDD system would have reduced coverage, as the

uplink resources are used part of the time in TDD, while it is used continuously in
FDD. A TDD system with 50% duty cycle would have a reduced average transmit
SNR or link budget by ~3 dB [56]. Therefore, in [56], it is envisioned that TDD
could be used within the cell to meet the asymmetric data usage for dynamic uplink
and downlink duration, while FDD is envisioned to be used to cover larger area
with the same transmit power as that of a TDD system. Hence, FDD devices can
achieve better cell-edge data rates. Also, in the case of TDD, the guard time used
to separate the uplink and downlink transmission would need to be increased if the
cell size increases. Therefore, some latency critical applications might suffer from
this [57]. Hence, TDD is more suited for small cells. A TDD small cell could be
under the umbrella of an FDD cell. This design leads to using TDD for small cells
while the macro cell could be more suitable to exploit FDD.
To FDD is when we have a macro cell aiming for more coverage when continuous

data traffic is expected, and to TDD is when we have small cells and higher fre-
quencies, with bursty data traffic. Thus, the best of both worlds could be exploited.
In this regard, 3GPP [58] is looking at the co-existence of both FDD and TDD,
and Qualcomm also envisions the deployment of both modes [56] with their array
of chipsets. In this thesis, CoMP downlink transmission is considered in an FDD
system.

1.4.2. When and where to use CoMP
Spatial diversity with CoMP appears to work against one of the important goals of
5G that the energy per bit needs to lowered. Hierarchically speaking, the require-
ments for 5G communication system could be firstly to have basic service, such as
reliable communication to improve the data rate of the cell-edge UEs. However, this
should not be at the expense of higher energy consumption per bit. To improve the
data rate of the cell-edge UEs, with CoMP, redundant data is sent to the UE from
multiple transmission points. However, this needs to be weighed with the fact that
the cell-edge UEs are normally sparse, assuming operators typically have deployed
a BS where there is high user activity. On the contrary, a scheduler at a given BS
could be serving more of cell-center users as their reported channel is much better
than that of the cell-edge user. With aggressive frequency reuse, cell-edge UEs are
bound to be interference limited and this is where CoMP will be useful to improve
the data rates of the cell-edge UEs.
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A possible use case of CoMP in 5G network
A TDD small cell could be deployed under an FDD macrocell for the bursty traffic
in dense urban environment. Lean control signaling could be used in the exist-
ing microwave range of frequencies, while mmW could be used for user plane data
transfer in the TDD cell. The mmW can provide thin-focused beams with high data
rates, and that interference is less important in mmW. With continued aggressive
frequency reuse, the throughput of the cell-edge UEs will still be affected by in-
tercell interference. Massive MIMO is seen as an alternative to JT-CoMP where
significant beamforming gains can be achieved such that intercell interference can
be kept low [22]. Moreover, in [22, 23], it is envisioned that there would be large
deployment of small cells, and advanced interference mitigation based on JT-CoMP,
massive MIMO and 2D-array antenna would be used. In particular, JT-CoMP could
be used where the UEs share the same frequency-time resource. Moreover, CoMP
could be applicable for operators where massive MIMO might not be a possible
option for deployment. The work performed in this thesis, could very well suit this
possible 5G network deployment.
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2. The motivation and the problem
formulation
The idea is to try to give all of the information to help others to judge
the value of your contribution; not just the information that leads to
judgment in one particular direction or another.

Richard Feynman
Physicist (11 May 1918-1988)
From a Caltech commencement address (1974)

In this chapter, the need for efficient control signaling in the backhaul is empha-
sized with the introduction to the system model. In particular, how this can be
achieved in the physical (PHY) layer and the medium access control (MAC) layer
of the protocol stack while mitigating interference.
Recall that spectrally efficient systems are limited by interference. In this re-

gard, consider a homogeneous network as shown in Fig. 2.1. The darker shaded
hexagonal structure in the middle is defined as the cluster area where the BSs are
allowed to cooperatively serve the UEs in this area. Modern cellular systems are
spectrally efficient, as the same frequency-time resource is used in a given cluster
area. This gives rises to intracluster interference. If one were to visualize Fig. 2.1
being replicated around itself, then the interference from the other clusters could be
seen as intercluster interference. The UEs at the cluster edge are prone to interclus-
ter interference that can potentially degrade the system performance. To overcome
this problem, the clusters also need to be coordinated. However, full coordination
is practically impossible. In [59], limited intercluster coordination is performed for
the disjoint clusters, and in [60], frequency reuse schemes are proposed to mitigate
the intercluster interference. In [61], interference floor shaping is considered with
the notion of tortoise concept, where the beamforming is combined with power dis-
tribution per cluster area defined by cell specific antenna tilting. The cluster center
beams has low tilt of 7° with strong power of 46 dBm, while the outbound beams
from the cluster area have strong tilt of 15° with low power of 40 dBm. The main
focus of this thesis is on the UEs at the cell-edge in the cluster center, as illustrated
in Fig. 2.1. Hence, we assume that the intercluster inference is already taken care
of by such means as in [60, 61]. In [62], it was shown that when a large network
is clustered together, the spectral efficiency saturates as it becomes independent of
power. This is due to the intercluster interference dominating the system giving rise
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to cluster-edge effects. Hence, it is highly important that the small cluster of BSs
are well protected from intercluster interference.

BS2

BS1

BS3

CCN

Precoding Weights 

Channel State Information

Figure 2.1.: A centralized network architecture for JT-CoMP. The shaded hexagon
is the cluster area with the UEs located near the cluster center.

In the case of downlink CoMP in an FDD system, the K transmitting points
or the BSs are geographically distributed while the M receiving points or the UEs
are from a group requiring service. For simplicity, single antennas can be assumed
at the BSs and the UEs. For precoding in a CoMP setup, the UEs need to feed
back the CSI, so that the BSs can cooperatively design the precoder. For transmit
beamforming, the overhead of learning the channel can be avoided if we have data
associated pilots, where the pilots are beam-formed along with the data [14]. Fig. 2.2
abstracts the main aspects of realizing centralized JT-CoMP. As step (1), the BSs
send pilots in the downlink so that the UEs can acquire the CSI for this link. In [63],
it was shown that it is difficult to estimate the channel if the difference with respect
to the strongest BS is greater than 15 dB. In step (2), the UEs feedback the CSI
to their serving BS, typically its strongest BS. In step (3), the CSI acquired at the
BSs is forwarded to a CCN to form the precoding weights to mitigate interference.
In step (4), the UE data is routed to the cooperating BSs based on the precoding
weights for JT-CoMP. Finally, in step (5), the UEs are served. The transmission
in steps (1), (2) and (5) are wireless, while the transmissions in step (3) and (4)
could be via an optical fiber link or wireless backhauling. Recall that the backhaul
constitutes all the connections and network entities used to interconnect the BSs.
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In Fig. 2.1, this would constitute the connections between the BSs and the CCN.
The focus of the thesis is mainly on the backhaul traffic, consisting of the CSI and
the precoding weights. In the case of TDD, the channel reciprocity would help the
BS to acquire the CSI knowledge at transmitter/CCN.

BS2

BS1

BS3

Cell-edge users 
located at the 
cluster centre

CCN

(3) CSI feedback in the backhaul

(4) Use precoding weights for user data routing in the backhaul

(4) Precoding weights 

Figure 2.2.: An abstract representation of CoMP in an FDD system where step (1)
shows the downlink pilots from the BSs to the UEs, step (2) shows the CSI being
fed back by the UEs to the serving BSs, typically the strongest BS, step (3) CSI
transported from the BS to the CCN, step (4) where the UE data is transported
to the corresponding BSs based on the precoding weights, and finally step (5)
where the actual UE data is transmitted to a cluster of UEs at the cell-edge.

2.1. System model
Consider a homogeneous network cluster consisting of |B| BSs, each with NT an-
tennas, where B is the set of BSs involved in cooperation. The BSs are coordinated
to serve |U| single antenna cell-edge UEs. The signal received by the uth UE is yu,
and it consists of the desired signal and intracluster interference

yu =
∑
b∈Bu

hb,uwb,uxu +
∑
i 6=u

∑
b∈Bi

hb,uwb,ixi + nu, (2.1)

where Bu is the set of BSs from which the uth UE is served. In this model, the
intercluster interference is made negligible for the cell-edge UEs located at the clus-
ter center, with suitable intercluster interference coordination scheme such as the
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tortoise concept [61], or fractional frequency reuse [60]. Therefore it is not ac-
counted for in (2.1). The channel experienced by the uth UE from bth BS with
NT antennas is hb,u ∈ C1×NT . The precoding weight for the uth UE with nor-
malized data xu from the bth BS with NT antennas is wb,u ∈ CNT×1, such that
wb,u = [w(1)

b,u, w
(2)
b,u, . . . , w

(k)
b,u , . . . , w

(NT)
b,u ]T where w(k)

b,u is the precoding weight on the
kth antenna of the bth BS for the uth UE, and nu is the receiver noise at uth UE
with power N0.
Treating interference as noise, consider the SINR evaluated at the CCN for the

uth UE as

γu =

∣∣∣∣∣ ∑b∈Buhb,uwb,u

∣∣∣∣∣
2

∑
i 6=u

∣∣∣∣∣ ∑b∈Bihb,uwb,i

∣∣∣∣∣
2

+N0

=

∣∣∣∣∣ ∑b∈Buhb,uwb,u

∣∣∣∣∣
2

∑
i 6=u


∣∣∣∣∣ ∑
b∈Bi∩Bu

hb,uwb,i + ∑
b∈Bi\Bu

hb,uwb,i

∣∣∣∣∣
2
+N0

, (2.2)

where the interference terms in the denominator of (2.2) are split based on relative
thresholding in terms of CSI known and unknown at the CCN. That is, the set
Bi ∩Bu denotes the set of BSs that are involved in serving both the uth and the ith
UE, as the CSI hb,u falls within the relative threshold window. However, those links
that fall outside this threshold constitute the term hb,u where Bi\Bu is the set of BSs
serving the ith UE but not the uth UE. The given set Bu is defined by the relative
thresholding algorithm as described in the next subsection. Finally, the weighted
sum rate of |U| UEs while designing the precoder is evaluated as

Rtot =
∑
u

αulog2 (1 + γu) [bps/Hz], (2.3)

where αu is a non-negative weight of the uth UE.

2.1.1. Reduced feedback overhead
Ultra-lean design is the future of wireless access networks [4], where the design
goal is to minimize any traffic not related to the delivery of UE data. With such
a design philosophy, a practical scenario could be that the UE data constitutes a
major portion of the backhaul traffic. In a centralized network architecture, the UE
data could be routed based on the precoding weights. Thus, the focus is more on the
control signaling part of the backhaul traffic. As mentioned earlier, to coordinate
all the BSs in the network would be impractical, and hence, clusters of BSs are
formed [64]. A predefined set of BSs forming a cluster that does not change with
time is referred to as static clustering [59]. Likewise, dynamic clusters of BSs can
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2.1 System model

be formed depending on the channel conditions [64]. Moreover, depending on where
the clustering decisions are performed, it can be classified as network centric or UE
centric clustering. Various combinations of the clustering can be performed. In our
work, particularly in papers A/B/C, a dynamic UE centric clustering is performed,
where the UE dynamically chooses the set of BSs from which it would like to be
served [65, 66]. To alleviate the problems of the CSI feedback overhead within
a cluster area, absolute thresholding and relative thresholding can be considered
[65, 67]. In the case of absolute thresholding, the UEs are instructed to feed back the
CSI of links that are above a certain value, while in the case of relative thresholding,
the UEs are instructed to feed back links that fall within a window relative to the
best link. Relative thresholding based on long term channel statistics is captured
in Alg. 2.1 [Paper A] or based on the instantaneous CSI as in [Paper B]. This
could avoid feeding back the poor channels. In [54, 55], CSI sharing strategies with
different cooperating BSs are proposed where performance close to the full CSIT
can be achieved. We consider a dynamic UE centric clustering based on relative
thresholding, due to which CSI feedback load over the air and over the backhaul
can be reduced.

Algorithm 2.1 Relative thresholding performed at the UE based on the long term
channel statistics (pathloss and shadow fading)
1: Set the feedback threshold, T (= 3 dB, for example)
2: for ∀u ∈ U do
3: Perform channel measurements of the BSs, B
4: c = max

b∈B

(
E
[
||hb,u||22

])
5: for ∀b ∈ B do
6: if

(
cdB −

[
E
[
||hb,u||22

]]
dB
)
≤ T then

7: Include b in the set Bu
8: end if
9: end for

10: The uth UE feeds back the CSI of the set of BSs in Bu
11: end for

Based on relative thresholding, consider the following channel matrix aggregated
at the CCN as shown in Table 2.1, where UE1 feeds back the CSI of BS1 and
BS2 while CSI of BS3 is not fed back as it falls outside the relative threshold
window. Likewise, other UEs also feed back the CSI that falls above the threshold.
Modeling of CSI that is not available at the CCN as zeros may not be the best
way to go about it. However, intuitively it makes sense to treat them as zeros
[67, 68, 69]. These zeroes denote the feedback reduction obtained with relative
thresholding. We define the feedback load reduction, fLR as the number of zeros
in a sparse aggregated channel matrix H̃ ∈ C|U|×NT|B| i.e., the cardinality of set
SFB =

{
H̃i,j = 0, ∀i, j ∈ N+, i ≤ |U|, j ≤ NT|B|}. The feedback load reduction is

calculated as
fLR = |SFB|. (2.4)
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Chapter 2 The motivation and the problem formulation

To overcome the signaling overhead, one could broadcast the CSI [33, 70, 71],
such that all the cooperating BSs can obtain the CSI without the need for a CCN.
The UEs estimating the channel is one aspect of obtaining the CSI. The inherent
delays due to the control loop emphasizes the other important aspect of estimating
and predicting the channel well in advance. The prediction horizon defines the
duration of time for which the channel is predicted. A short prediction horizon
will indirectly limit the UE velocity and it imposes a fast backhauling network with
very low latency, in the order of milliseconds. The predicted CSI is quantized and
fed back to the anchor BS. Quantization by itself gives rise to quantization errors
and the process of feeding back the CSI also occupies the uplink resources. These
practical aspects are considered in the precoder design and the results are presented
in App. A.

Table 2.1.: Aggregated Channel Matrix at the CCN

H̃ BS1 BS2 BS3

UE1 h11 h12 0
UE2 0 h22 h23
UE3 0 0 h33

2.1.2. Efficient backhauling and the limitation
Efficient backhauling is one of the main aspects being addressed in this thesis. Con-
sider the CSI obtained at the CCN is error free. The question that one would like
to ask is, if an equivalent backhaul reduction be obtained in terms of the precoding
weights as shown in Table 2.2 in comparison to Table 2.1. That is, can the quan-
tity of CSI coefficients for certain BSs-UEs available at the CCN be correspondingly
equivalent to the quantity of precoding weights for the same BSs-UEs? More impor-
tantly, this is a desired property for the precoding matrix. The main reason for this
is that the UE data is routed based on the precoding weights designed at the CCN.
In the case of a centralized architecture aiming towards ultra-lean radio access, the
UE data is several orders of magnitude greater than the control information (pre-
coding weights). This desired property will alleviate the burden on the backhaul,
and the need for the UE data to be present at all the cooperating BSs is reduced.

Table 2.2.: Desired precoding matrix based on H̃ from Table 2.1.

W̃ UE1 UE2 UE3

BS1 w11 0 0
BS2 w21 w22 0
BS3 0 w32 w33

We define the sparse precoding matrix as W̃ ∈ CNT|B|×|U| where the backhaul load
reduction is the cardinality of set SBH =

{
W̃j,i = 0,∀i, j ∈ N+, i ≤ |U|, j ≤ NT|B|

}
,
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2.2 The OSI model and the protocol stack

i.e.,
bLR = |SBH|. (2.5)

For equivalent backhauling,

if H̃i,j = 0⇒ W̃j,i = 0,∀i, j ∈ N+, i ≤ |U|, j ≤ NT|B|, (2.6)

and this results in fLR = bLR. Fig. 2.3 illustrates the CSI, precoding weights and
the user data in the network. Linear zero forcing (ZF) precoder can be obtained
with incomplete CSI due to relative thresholding. However, they are not aimed for
efficient backhauling [72]. In the following sections, a brief explanation of how this
can be solved is presented.

BS1

BS2

BS3

Central 

Coordination Node

Precoding Weights 

Channel State Information

[h11,h12]

[h22,h23]

[h33]

[w11]

[w21,w22]

[w32,w33]

Figure 2.3.: An illustration of the equal number of CSI coefficients and the pre-
coding weights. The uneven distribution of the CSI coefficients and the precoding
weights is also captured in the backhauling links. Moreover, the UE data is routed
based on the precoding weights.

2.2. The OSI model and the protocol stack
The notion of backhaul savings is partly inspired from [68] based on the layered
approach of the open systems interconnection (OSI) model. To understand the
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Chapter 2 The motivation and the problem formulation

subsequent sections better, a brief description of the OSI model is presented. The
OSI model is depicted along with the protocol stack of the UE and the BS in
Fig. 2.4. The layered structure of the communication software makes it easier to
realize complex systems. Every layer of the OSI model performs a dedicated task.
This provides an opportunity to design and test the layers in parallel. The lowest
layer is called the PHY layer or Layer1. It is mostly concerned with channel coding
and modulation. The second layer is the data link layer. In the protocol stack
of the UE, this corresponds to the radio link control (RLC) and MAC. The RLC
performs the segmentation of the data packets obtained from Layer3 which is the
radio resource control (RRC), and reassembly of data packets obtained from the
PHY layer. The MAC layer performs the scheduling as to when the PHY layer should
transmit a given data block. In this thesis, the focus is mostly on the control plane
aspects related to the PHY layer and MAC layer. More details about the functions
of various protocol stack layers can be found in [73]. Interference mitigation could be
considered at various layers in the protocol stack, along the lines of the OSI model of
the protocol stack in cellular communications where segmentation and reassembly
of packets is performed at various layers. Here we only focus on the PHY and the
MAC layer for interference mitigation.
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Data Link

Physical 
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Figure 2.4.: An illustrative mapping of the OSI model that maps to the protocol
stack of the UE and BS highlighted in rectangular blocks.
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2.2.1. Precoding, a PHY layer approach
In the case of CoMP systems, the transmitter is distributed at multiple geograph-
ically separated BSs, and in a centralized architecture, the precoder design resides
in the CCN. Now consider an aggregated channel matrix formulated at the CCN
as shown in Table 2.1. In this approach, the MAC layer scheduler is made simple
and the complexity is pushed to the PHY layer precoder for interference mitigation
and also to achieve backhaul savings with incomplete CSI feedback. In this regard,
stochastic and convex optimization algorithms such as particle swarm optimization
(PSO), and successive second order cone programming (SSOCP) are proposed, re-
spectively, where individual precoding weights can be tweaked by maximizing a
nonconvex objective such as the weighted sum rate. The performance of SSOCP is
validated using the branch and bound technique [74]. Minimizing the weighted sum
mean square error was shown to be equivalent to maximizing the weighted sum rate
in [75, 76]. In this regard, an MSE approach was also derived to obtain efficient
backhauling. The performance in terms of the throughput can be improved when
using the long term channel statistics such as RSSI as part of modeling the statisti-
cal interference when designing the precoder. In Chap. 3, PHY layer precoding for
efficient backhauling with these optimization tools are presented.

2.2.2. Scheduling, a MAC layer approach
Alternately, for a given frequency-time resource, the goal of interference mitigation
and backhaul savings comparable to the incomplete CSI feedback can be achieved
with a MAC layer approach. In this regard, a simple precoder such as ZF is con-
sidered. The ZF beamforming is asymptotically optimal to completely remove the
interference [77]. The simplicity of this linear precoding approach is very much pre-
ferred from an implementation point of view. This means that the complexity needs
to be handled by the scheduler, residing at the CCN. In [78], reducing the backhaul
requirements with limited clusters of BSs was carried out via MAC layer coordina-
tion at the CCN. In [79, 80], utility functions of internet applications is used as a
method for user selection in CoMP systems with limited backhaul. Their approach
also reduces the overhead in the CSI feedback with the preselection of users.
In our MAC layer approach, the backhaul usage could result in the total number of

precoding weights being less than or equal to the total number of CSI coefficients.
This is primarily due to the scheduling constraint where a given set of UEs that
feed back the CSI coefficients is not guaranteed to be served. Hence, to faithfully
compare the MAC layer approach with the PHY layer approach, one has to consider
what goes into the precoder in terms of the CSI that results in the precoding weights
for the actual transmission. Thus, efficient backhauling can still be achieved with
the MAC layer approach. On the contrary, with limited set of UEs, it can be argued
that the MAC layer approach as a whole does not achieve efficient backhauling.
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3. Precoding with optimization tools
for efficient backhauling
“What day is it,?” asked Pooh.
“It’s today,” squeaked Piglet.
“My favorite day,” said Pooh,

A. A. Milne
Novelist, Playwright, Poet (18 Jan. 1882 - 1956)
An extract from Winnie the Pooh (1924)

In this chapter, the focus is more on the optimization tools used for PHY layer
precoding to achieve efficient backhauling. In this regard, a stochastic optimization
algorithm such as PSO is used to design the precoding weights that leads to efficient
backhauling. Even though PSO provides a stable equilibrium solution, it does not
guarantee to provide a global optimum. However, different objectives can be quickly
explored. Alternatively, convex optimization tool can also be applied for precoder
design keeping efficient backhauling in mind. Transforming a non-convex problem
into a convex problem could be regarded as an art in itself [81, 82, App. A]. Once the
problem is made convex then it can be solved very efficiently. The chapter begins
with a brief review of stochastic and convex optimization for precoder design that
is considered in this thesis, taking PSO and SSOCP as an example. The chapter
concludes with the pros and cons of using these different tools.

3.1. Precoding via stochastic optimization
Nature provides a lot of inspiration to gain insights into the working forces around
us. An interesting part is how evolution has brought forth optimization as one of
its core elements. Evolutionary algorithms are stochastic algorithms whose driving
force is optimization. There are various evolutionary algorithms, such as ant colony
optimization based on the movement of ants, PSO inspired from the swarming of
birds, and genetic algorithms derived from the mutation of chromosomes over many
generations [83].
Stochastic algorithms are used in designing hardware. For example, PSO is used

for designing chipsets for lowering the heat dissipation or the run length of wires
in a given circuitry. It is also used for designing antennas with a desired side-lobe
level or the antenna element positions in a nonuniform array [84]. A comprehensive
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3.1 Precoding via stochastic optimization

analysis of the publications on the applications of PSO is presented in [85]. PSO
has been proposed to be used in some parts of a communication system. Limiting
ourselves to the scope of this thesis, PSO has been proposed to find the optimal
precoding vector that maximizes the throughput in a MU-MIMO system [86]. It is
also used for optimizing the scheduling in the downlink for a MU-MIMO system [87].
Apart from [85], PSO was also proposed in a MIMO-orthogonal frequency-division
multiplexing (OFDM) receiver for the initialization of channel estimates in iterative
receiver structures that jointly perform channel estimation and decoding [88].
A flock of birds or a shoal of fish or a swarm of bees tend to move together as a

group. The fish tend to avoid the shark by moving in a group without an apparent
leader in the swarm. Thus making it harder for the predator to catch its prey.
The birds move together looking for food, as more eyes can increase the chances of
finding food. Scientists simulating the coherent movement of these birds based on
the social interactions with their neighbors discovered that the birds were performing
optimization [89]. In Fig. 3.1, a flock of birds can be seen flying together. This helps
in reducing the drag and the effort needed for flying. PSO is viewed as a paradigm
within the field of swarm intelligence and its differences with other evolutionary
algorithms is captured in [90].

Figure 3.1.: Birds flying together to minimize the drag. This picture is taken by
Peter M. Prehn, a Flickr user, and it is used here under CC BY-NC-ND license.

In the remaining of this subsection, the basic understanding of how the PSO works
in finding the best possible precoding weights is presented. Each bird in a swarm
carries the real and imaginary parts of the non-zero elements of the BF matrix, i.e.,
the ith member of the swarm is the ith particle that carries all the (n = 2NT|B||U|)
BF coefficients. The ‘2’ is due to PSO treating the real and the imaginary part of
the complex BF coefficients as another dimension to the search space. Hence, the
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Chapter 3 Precoding with optimization tools for efficient backhauling

particle having the best n values needs to be found for a given objective function. For
example, an infinite threshold would yield n = 2NT|B||U| non-zero CSI coefficients
in the aggregated channel matrix of size [|U| ×NT |B|]. With an active set threshold
of 0 dB then only the best link (or reference link) would be fed back by each UE
yielding n = 2 · 1 · NT |U|. The real and the imaginary parts of the non-zero BF
matrix, W̃, are mapped to a particle. This mapping, during initialization, is only
for illustrating how the BF is translated to a particle. These steps can be omitted in
the actual implementation. The position, X(i, j), and the velocity, V(i, j), of the ith
particle with the jth BF coefficient are stochastically initialized as X(i, j) = xmin +
r · (xmax − xmin) and V(i, j) = 1

∆t

(
− (xmax−xmin)

2 + s · (xmax − xmin)
)
, respectively.

Here r and s are random numbers picked from a uniform distribution in the interval
[0, 1], and xmax is the maximum value that a BF coefficient is initialized with. This
does not mean that the position of the particle will not exceed this value, i.e., the
particles in the PSO can actually go beyond these limits. The same holds for the
velocity of the particle, but it is restricted by a maximum velocity, vmax, so that
the particle does not diverge. The time step length is ∆t, and the total number
of particles is Q. Recall that each particle is indexed using the variable i, where
each particle is carrying n BF coefficients. These coefficients are indexed using the
variable j.
A given objective function is evaluated for every particle i carrying the BF co-

efficients, and it is demapped to form the BF matrix as W̃(l,m) ← {X(i, j)} + i ·
{X(i, j + 1)} , l ∈ {1, . . . , NT|B|} ,m ∈ {1, . . . , |U|}. The ith particle keeps a record
of its best BF as Xpb(i, :), and the best BF achieved by any of the particles in the
swarm is stored as xsb. The equations governing the update of the velocity and the
position of a particle are:

V(i, j)←ψ ·V(i, j) + c1 · p ·
(

Xpb(i, j)−X(i, j)
∆t

)
+ c2 · q ·

xsb(j)−X(i, j)
∆t , (3.1)

X(i, j)←X(i, j) + V(i, j) ·∆t. (3.2)

The variables p and q are random numbers drawn from a uniform distribution in
the interval [0, 1]. The terms involving c1 and c2 are called the cognitive component
and the social component, respectively. The cognitive component tells how much
a given particle should rely on itself or believe in its previous memory, while the
social component tells how much a given particle should rely on its neighbors. The
cognitive and social constant factors, c1 and c2, are equal to 2, as highlighted in
[89]. An inertia weight, ψ, is used to bias the current velocity based on its previous
value, such that when the inertia weight is initially being greater than 1 the particles
are biased to explore the search space. When the inertia weight decays to a value
less than 1, the cognitive and social components are given more attention [91]. The
decaying of the inertia weight is governed by a non-zero constant decay factor β,
such that ψ ← βψ and ψ is confined within a limit.
The pseudocode of PSO described above is summarized in Alg. 3.1, and more

details are presented in [Paper B].
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Algorithm 3.1 Pseudocode for obtaining the precoding weights via PSO.
1: Initialization:
2: Determine the number of non-zero coefficients n needed in the BF matrix, W̃
3: Map the BF to the ith particle:
4: X(i, j)← <

{
W̃(l,m)

}
, l ∈ {1, . . . , NT|B|} ,m ∈ {1, . . . , |U|}

5: X(i, j + 1)← =
{

W̃(l,m)
}

6: Stochastically initialize particles with BF coefficients:
7: xmax = 1/max|H̃(i,j)|
8: xmin = −xmax
9: Position: X(i, j) = xmin + r · (xmax − xmin)

10: Velocity: V(i, j) = 1
∆t

(
− (xmax−xmin)

2 + s · (xmax − xmin)
)

11: while Termination Criterion do
12: for the ith particle in the swarm do
13: Demap the variables in a particle to form the BF matrix
14: W̃(l,m)← {X(i, j)}+ i · {X(i, j + 1)}
15: Evaluate the objective function f(X(i, :))
16: Store:
17: if f(X(i, :)) < f(Xpb(i, :)) then
18: Particles’ Best: Xpb(i, :)← X(i, :)
19: end if
20: if f(X(i, :)) < f(Xsb(i, :)) then
21: Swarm’s Best: xsb ← X(i, :)
22: W̃sb(l,m)←

{
xsb(j)

}
+ i ·

{
xsb(j + 1)

}
23: end if
24: end for
25: for Each particle in the swarm with BF coefficients do
26: Update:
27: Velocity: V(i, j)← ψ ·V(i, j) + c1 · p ·

(
Xpb(i,j)−X(i,j)

∆t

)
+ c2 · q · xsb(j)−X(i,j)

∆t
28: Restrict velocity: |V(i, j)| < vmax
29: Position: X(i, j)← X(i, j) + V(i, j) ·∆t
30: end for
31: ψ ← βψ
32: end while
33: return BF Weight Matrix, W̃sb

3.2. Precoding via convex optimization
Convex problems can be solved either in closed form or numerically [92, 93]. In
reality, most engineering problems are not convex, such as the weighted sum rate
maximization which is also NP-hard [94, 95]. An optimization problem in the stan-
dard form can be written as
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minimize
x

f0(x)

subject to fi(x) ≤ 0, 1 ≤ i ≤ P,

hi(x) = 0, 1 ≤ i ≤ Q.

(3.3)

The problem is said to be convex if the objective, f0 and the inequality con-
straints functions fi are convex, and the equality constraints functions hi are affine,
where x ∈ RN is the optimization variable. A function is said to be convex i.e.,
f(αx+βy) ≤ αf(x)+βf(y), for all x,y ∈ RN and α, β ∈ R with α+β = 1, α, β ≥ 0.
For convex problems, any locally optimal point is globally optimal. Transforming
the primal problem (3.3) to a dual problem using the Lagrange duality theory could
be simpler to solve the problem. The optimal value obtained from the dual problem
serves as the lower bound for the primal optimal value. The Karush–Kuhn–Tucker
optimality conditions could be exploited in most cases to obtain a closed-form so-
lution. There are different classes of convex problems depending on the form taken
by fi and hi. When f0 is quadratic and the constraints are affine, this results in a
quadratic program. A second order cone program (SOCP) includes constraints of
the form

||Ax + b||2 ≤ cTx + d, (3.4)
where A ∈ RK×N , b ∈ RK , c ∈ RN and d ∈ R are given.
There are many algorithms in the literature that address the nonconvex prob-

lem of weighted sum rate maximization under per-antenna power constraints when
designing the precoding weights. In this thesis, this problem is studied in [Paper
A] under the constraint of incomplete feedback and efficient backhauling. While in
[Paper D], a local precoder design is applied when there is new CSI. Some of the
techniques applied are linearization of the nonconvex constraint, successive convex
approximations (SCA) where the problem that is made convex is iterated until con-
vergence [48, 96, 97], block coordinate descent technique involves sequentially fixing
all but one of the optimization variables and iterating between them until conver-
gence [75, 76]. There are various software packages such as CVX [92] that support
different solvers such as Gurobi [98], MOSEK [99], SDPT3, SeDuMi, etc.
In this section, precoder design for efficient backhauling is presented based on [Pa-

per A]. Some of the art forms of making the problem convex is considered. SSOCP is
based on SCA that can efficiently solve the problem with guaranteed convergence in
every iteration. The optimization framework originally proposed in [100] is adopted
for linearizing a non-convex constraint that forms a constraint for the useful signal.
The techniques in [97, 101] are also adopted for handling the SINR, and reformu-
late as second order cone (SOC) constraints. The maximization of weighted sum
rate Rtot, recall (2.3) with per-antenna power constraint and incomplete feedback
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is formulated as

maximize
wb,u

∏
u

(1 + γu)αu

subject to
∑
u∈Ub
|w(k)

b,u |2 ≤ Pmax,∀b ∈ Bu, k = 1, . . . , NT,
(3.5)

where the logarithm being a monotonically non-decreasing function can be removed
from the objective, and Pmax is the maximum transmit power of an antenna of a
BS serving a set of Ub UEs. This can be recast by letting tu = (1 + γu)αu where γu
from (2.2) is manipulated to include the long term channel statistics from [Paper A]
and adding a slack variable βu as

maximize
tu,βu,wb,u

∏
u

tu (3.6a)

subject to

∣∣∣∣∣ ∑b∈Buhb,uwb,u

∣∣∣∣∣
2

βu
≥ t1/αuu − 1,∀u ∈ U , (3.6b)

∑
i 6=u


∣∣∣∣∣∣
∑

b∈Bi∩Bu
hb,uwb,i

∣∣∣∣∣∣
2

+ |Bi\Bu|
∑

b∈Bi\Bu

λ2
b,u||wb,i||22

+N0 ≤ βu,

∀u ∈ U , (3.6c)∑
u∈Ub
|w(k)

b,u |2 ≤ Pmax,∀b ∈ Bu, k = 1, . . . , NT. (3.6d)

The LHS of (3.6b) is of the form quadratic over linear, which is a convex function,
and t1/αuu is convex only when 0 < αu ≤ 1, and concave when αu > 1. Thus, the
constraint is non-convex. A concave approximation of the LHS can be obtained as
in [100, (6b)], by defining the following expressions

pu , <

∑
b∈Bu

hb,uwb,u

 and qu , =

∑
b∈Bu

hb,uwb,u

 . (3.7)

Applying the first order Taylor expansion for (p2
u+q2

u)
βu

around the local point{
p̃u, q̃u, β̃u

}
,∀u ∈ U , (3.6b) becomes

2p̃u
β̃u

(pu − p̃u) + 2q̃u
β̃u

(qu − q̃u) + p̃2
u + q̃2

u

β̃u

(
1−

(
βu − β̃u
β̃u

))
+ 1 ≥ t1/αuu . (3.8)

When αu > 1, t1/αuu in the RHS of (3.8) is not convex, it needs to be replaced by
its upper bound. Doing as in [100]-[101], with the first order approximation at the
point t̃u, the RHS of (3.8) becomes

t1/αuu ≤ t̃1/αuu + 1
αu
t̃

1
αu
−1

u

(
tu − t̃u

)
. (3.9)
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Otherwise, all the αu can be scaled such that t1/αuu becomes convex ∀αu. Therefore,
combining with (3.8) results in

2p̃u
β̃u

(pu − p̃u) + 2q̃u
β̃u

(qu − q̃u) + p̃2
u + q̃2

u

β̃u

(
1−

(
βu − β̃u
β̃u

))
+ 1

≥ t̃1/αuu + 1
αu
t̃

1
αu
−1

u

(
tu − t̃u

)
. (3.10)

Now consider (3.6c) which can be rewritten as an SOC constraint [101]
∑
i 6=u


∣∣∣∣∣∣
∑

b∈Bi∩Bu
hb,uwb,i

∣∣∣∣∣∣
2

+ |Bi\Bu|
∑

b∈Bi\Bu

λ2
b,u||wb,i||22

+
(√

N0

)2
+ 1

4 (βu − 1)2


1/2

≤ 1
2 (βu + 1) , ∀u ∈ U . (3.11)

Therefore, the reformulated convex problem for precoder design with the objective
of maximizing the geometric mean of tu becomes

maximize
tu,βu,wb,u

 |U|∏
u=1

tu

1/|U|

subject to (3.6d), (3.10) and (3.11),

(3.12)

where the geometric mean is concave, and the exponent does not affect the optimal
value. This is performed merely to simplify the implementation. Also, the interfering
terms can be collected in a vector as

ri =


∑

b∈Bi∩Bu
hb,uwb,i√

|Bi\Bu|λb′,uwb′,i

 , b′ ∈ Bi\Bu,∀i 6= u. (3.13)

The SSOCP with the above simplified notation is summarized in Alg. 3.2.
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3.2 Precoding via convex optimization

Algorithm 3.2 SSOCP algorithm for precoder design
1: To avoid numerical instability, rescale the aggregated channel matrix and the noise

power with a factor of the least pathloss such that the SINR is the same.
2: Set maxRetries := MAXRETRIES
3: while maxRetries do
4: Randomly initialize the non-zero precoding weight, wb,u, from CN (0, 1), apply effi-

cient backhauling, and ensure the power of each antenna is limited to Pmax.
5: Calculate γu as in [Paper A]∀u.
6: Set n := 0
7: Evaluate p̃(n)

u and q̃(n)
u from (3.7).

8: Evaluate t(n)
u = (1 + γu)αu and β(n)

u =

(
p̃

(n)
u

)2
+
(
q̃

(n)
u

)2

t
(n)
u −1

9: Set maxIter := MAXITER
10: while maxIter AND † do
11: Treat p(n)

u and q(n)
u as expressions in CVX [92] which will be used in (3.10).

12: Solve the convex problem (3.12) as

maximize
tu,βu,wb,u

geo_mean (tu)

subject to ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

ri√
N0

1
2 (βu − 1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ 1
2 (βu + 1) ,

∀i ∈ U ,
(3.6d),
and (3.10),∀u ∈ U .

13: Update: t(n+1)
u := t

(n)
u , β

(n+1)
u := β

(n)
u

14: Update: p(n+1)
u := p

(n)
u , q

(n+1)
u := q

(n)
u

15: Update: n := n+ 1
16: maxIter := maxIter − 1
17: Evaluate and save the best weighted sum rate achieved so far, as well as the

corresponding precoding weights.
18: end while
19: maxRetries := maxRetries− 1
20: end while
21: return Precoding matrix
† The weighted sum rate does not improve within a certain tolerance.

The weighted sum rate maximization is a non-convex problem, and the solution
may end up as an inefficient local optimum. In order to further improve the solution,
random initialization similar to [102] is introduced, where the best solution is selected
out of a number of random initializations. For a given aggregated channel matrix,
a small increase in the number of random initializations, as in step 2, increases the
probability to find a solution close to the global optimal [102].
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Chapter 3 Precoding with optimization tools for efficient backhauling

3.3. The pros and cons
Some extrapolated results on the optimization tools based on the PHY layer precoder
design are captured in Table 3.1. The PSO and SSOCP are taken as examples for
stochastic and convex optimization algorithms, respectively. PSO even with multi-
start struggles with the problem size when compared to SSOCP, however, stable
equilibrium solution can be obtained with PSO even when the objective of the
problem is obfuscated. In App. B, weighted interference minimization is explored
with PSO and compared with maximizing the minimum SINR of the UE. PSO would
require a one-time mapping of the optimization variables to that of the particles
and any new objective could easily be applied. While in the case of SSOCP the
subproblems are made convex and any change in objective requires reformulation of
the problem to make it convex.

Table 3.1.: Comparison of PSO and SSOCP

Characteristics PSO SSOCP
Increase in Poor Goodproblem size
Obfuscated Easy to get a result, Difficult to get a result,
nonconvex problem mapping required until made convex
objective/ No approximations when Approximations may be
constraint mapping the problem required to make it convex
Hardware Probably difficult to realize Probably difficult

implementation for large problems due to SCA
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4. Conclusions and future challenges
“How we look for new laws: Guess→ Compute consequences → Compare
experiment. If the guess disagrees with the experiment, then it is wrong.
That is all there is to it”.

Richard Feynman
Physicist (11 May 1918-1988)
The Scientific Method (1964)

This chapter introduces the contributions of this thesis, in particular emphasizing
the work performed by the author and coauthors. It concludes with the challenges
in realizing CoMP.

4.1. Contributions of the thesis and my roles
The focus of this thesis is to provide solutions to efficiently use the backhaul resources
in a CoMP system. An OSI model based approach for interference mitigation in JT-
CoMP is applied to achieve efficient backhauling. The papers presented in this work
can be categorized based on the following: (a) efficient backhaul based on a PHY
layer approach [Paper A/B], (b) efficient backhaul reduction based on a MAC layer
approach [Paper C]. The PHY and MAC layer approaches focus on a centralized
approach. In [Paper D], the focus transitions to using a decentralized approach for
local precoder design (LPD) so that backhaul use can be lowered when there is local
CSI updates. The papers can be summarized as depicted in Table 4.1.

Table 4.1.: A high level view of the contributions in this thesis

Layer CoMP Arch. Backhaul reduction approaches Contributions in
PHY Centralized SSOCP/PSO based precoding Paper A/B
MAC Centralized Scheduling Paper C
PHY Decentralized LPD based precoding Paper D

The thesis is mainly based on the following papers aimed towards efficient back-
hauling, and they are briefly introduced as follows:

• Paper A: T.R. Lakshmana, A. Tölli, R. Devassy, and T. Svensson, “Precoder
Design with Incomplete CSI for Joint Transmission,” accepted in IEEE Trans.
on Wireless Commun., Oct. 2015.
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Chapter 4 Conclusions and future challenges

In this PHY layer approach, relative thresholding is used to reduce the CSI
feedback load. However, this approach presents challenges in designing the pre-
coder due to this incomplete/limited information. For a centralized precoder
design, prior works considered the unavailable CSI to be modeled as zeros.
In this work, we pessimistically incorporate the large scale fading statistics as
part of the statistical interference for the incomplete CSI. The precoder de-
sign problem is efficiently solved using a SSOCP capable of achieving efficient
backhauling. As an alternative to SSOCP, we derive the precoder based on
the weighted MSE criterion. Branch and bound technique is used to show that
the proposed SSOCP is very close to the optimal. Also, the performance is
compared with a stochastic algorithm such as PSO with the increase in the
problem size. It was found that the PSO algorithm scales poorly. Prior to this
work in [Paper A], PSO was considered in [Paper B].

• Paper B: T.R. Lakshmana, C. Botella, and T. Svensson, “Partial Joint
Processing with Efficient Backhauling using Particle Swarm Optimization,”
EURASIP Journal of Wireless Commun. and Netw.., vol. 2012, 2012.
PSO was one of the first approaches studied to address the problem of inter-
ference mitigation with efficient backhauling. This PHY layer approach is an
extension of [103], where the PSO is analyzed in greater detail for backhaul
load reduction. A simple linear zero-forcing precoder is very attractive. How-
ever, they fall short of achieving efficient backhauling. A stochastic algorithm
such as PSO is used for precoder design in a CoMP setup that achieves the goal
for efficient backhauling. The objective function of sum rate maximization is
explored where it can be biased towards UEs with good SINR compared to the
low SINR UEs. In the ARTIST4G project, user fairness was heavily stressed.
This lead to the proposal of a new metric called weighted interference mini-
mization (WIM), where the objective function is to minimize interference and
recursively improve the weak SINR UEs. In App. B, the weighted interference
minimization is compared with the maximization of the minimum SINR UE,
and the benefits of considering weighted interference minimization is high-
lighted.
The PSO was used with field measurement data where the statistical un-
certainty of CSI or imperfect CSI were considered. Various algorithms from
different partners of the ARTIST4G consortium were considered. It was found
that the PSO outperformed all the other algorithms in the scenarios consid-
ered. Some of the interesting results from [104, 105] are provided in App. A,
which complement the work performed on PSO.

• Paper C: T.R. Lakshmana, J. Li, C. Botella, A. Papadogiannis and T. Svens-
son, “Scheduling for Backhaul Load Reduction in CoMP,” in proc. IEEE
Wireless Commun. and Netw. Conf. (WCNC), Apr. 2013.
In this MAC layer approach, scheduling is explored for efficient backhauling,
where a subset of UEs and BSs combinations are considered. Constrained
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and unconstrained scheduling are proposed. With the constrained scheduling
approach, subsets are formed by removing zeros from the aggregated channel
matrix, while in the case of unconstrained scheduling approach, the zeros are
allowed, however this leads to the zeros showing up in the precoding matrix
where it might not be needed. Our results show that the constrained schedul-
ing approach outperforms the state of the art block diagonal approach, in
terms of the average sum rate per backhaul use.

• Paper D: T.R. Lakshmana, A. Tölli, and T. Svensson, “Improved Local Pre-
coder Design for JT-CoMP with Periodical Backhaul CSI Exchange,” resub-
mitted to IEEE Commun. Lett., Oct. 2015.
Unlike the other papers in this thesis, a distributed JT-CoMP architecture is
considered where the CSI is exchanged between the BSs periodically. Mobility
of a UE could trigger a CSI update to its local BS, where this local BS can
design the local precoding weights in a decentralized fashion in-between the
periodic exchange of CSI between the BSs. The results show that with local
decentralized precoding, some of the gains of distributed precoder design can
still be preserved.

Other related contributions
In [103], a PHY layer approach precoding approach is investigated for minimizing
interference and achieve efficient backhauling. The state of the art precoding algo-
rithm for backhaul reduction in [68] is compared with PSO. This conference article
led to work in [Paper B]. In [33], a decentralized network architecture is considered
for backhaul load reduction. In this setting, the CSI coefficients broadcasted by the
UE undergo a certain probability of error as they are received at different BSs, hence,
giving rise to precoding loss and scheduling loss. It is shown that with a minimal
exchange of scheduling information, the decentralized architecture can achieve the
rates comparable to the centralized approach that makes use of the CCN, thereby
reducing the stringent latency constraints in the backhaul. In this work, the phase
information of the CSI alone is considered to undergo errors while the amplitude
or channel quality indicator (CQI) can be assumed to be error free. Moreover, one
could protect the CQI with robust channel codes, whose overhead is not significant.
In [106], we investigate how the frequency resources should be allocated to the UEs
in the case of non-coherent JT-CoMP with CSI at the receiver only. In this regard,
the UEs are served on shared frequency allocation or dedicated or partly shared and
partly dedicated. We discovered that it is best to completely share the frequency
resource at low/medium SNRs, or completely dedicate the frequency resources at
high SNR. As a fallback mechanism a closed loop system with one-bit hybrid au-
tomatic repeat request is also considered, resulting in high long term throughput
and low outage probability with affordable average delay under slow and fast fading
conditions. In [107], we consider a subcluster or an active set of BSs that are dyna-
mically defined by the UE. In a frequency selective channel such as the WINNER II
channel model, the active set thresholding can be performed frequency adaptively
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per resource block or non-adaptively, when the relative thresholding is averaged over
all the resource blocks. The advantages and disadvantages of these approaches are
studied in [107].

My roles in these contributions
Apart from the interactions with my co-authors, my contributions for the papers
included in this thesis are:

• Defining efficient backhauling where the precoding weights is correspondingly
equivalent to the CSI coefficients being fed back from the UEs [Paper A/B/C].

• Use PSO to achieve efficient backhauling [Paper B].

• To find the bounds on the sum rate with incomplete CSI and efficient back-
hauling. As stated in [14], with partial CSIT, we numerically arrive at these
bounds [Paper A].

• Derived the use of long term channel statistics, the MSE, branch and bound,
with feedback from coauthors [Paper A].

• Introduced the idea of new CSIT and its scope of performing local precoder
design without sharing the CSI with other cooperating BSs within the trans-
mission epoch [Paper D].

• Performance of precoders in ARTIST4G were evaluated by my colleagues
Rikke Apelfröjd from Uppsala University and Richard Fritzsche from TU Dres-
den. I was involved in integrating the PSO algorithm in their framework at
Uppsala University. These results are captured in App. A.

• Implemented all the algorithms except for the block diagonalization [Paper C]
which was performed by Jingya Li.

• Performed all the analytical investigations and simulations in all the papers.

4.2. Challenges for CoMP in practice
In this section, some of the major challenges to realize CoMP in practice are dis-
cussed with potential future steps.

4.2.1. CSI uncertainty, clustering, synchronization
From a standardization perspective, one of the main challenges of realizing a central-
ized JT-CoMP is the high impact on the user plane where the user data is required
to be available at all the coordinating BSs. Suitable clustering of BSs exploiting the
geometry of deployment and grouping of UEs could alleviate this overhead. Caching
in the backhaul would benefit in realizing JT-CoMP, and that the price of memory
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will be cheaper compared to having low-latency networks [108]. However, the sig-
naling information will still pose as a bottleneck, and efficient backhauling will be
necessary. In [28], the authors conclude that downlink CoMP is not a game-changer
to meet the growing capacity demands. In light of the recent trends with operators
tending towards Cloud-RAN, providing centralization and virtualization [109, 110],
there is still hope for JT-CoMP. The gains with centralization could be worsened
with the increase in the number of antennas at the cell-sites due to the load on the
fronthaul links. However, partial centralization could provide flexible and scalable
solutions [111]. The contributions from [Paper A/B/C] could be useful in mitigating
interference in this centralized setup and also achieve efficient backhauling.
Apart from this, acquiring the CSI, the need for CSIT and coordinating this

information with various BSs is still a challenge [112]. Some promising results are
presented in [113, 114] for the predicted CSI. The quantity of CSI feedback can be
reduced with relative thresholding, which lowers the signaling overhead in the air
as well as the backhaul. However the quality of CSI is prone to quantization errors,
where the complex channel coefficient needs to be represented with finite precision.
The promising results from [Paper A] needs to be studied under the lens of CSI
uncertainty, a joint effort with Uppsala university is planned.
Synchronization is another major aspect that should be addressed to realize

CoMP. Here all the cooperating BSs and UEs need to be synchronized for JT-
CoMP in a given frequency-time resource. Different local oscillators at different BSs
and UEs poses a challenge in having a common time. The exchange of CoMP IE
with suitable synchronization information via the X2 interface could help, where
these timing offset could be absorbed by the precoder. Cooperating BSs via the
proprietary X2 application protocol may not be the optimal path, as sharing the
network infrastructure between different operators could reduce the interference in
the system. This will result in better use of resources. Hence, one may need to
standardize the X2 protocol.
As a last resort, the UE receiver should be capable to suppress interference under

favorable conditions while the network has the primary responsibility for interference
mitigation for the UEs. Careful network design of various components can realize
the gains of JT-CoMP. In particular, MOO [8] could play an important role in
integrating CoMP with the requirements of 5G.

4.2.2. Practical tools
As pointed out in [82, 93] from [115]: “In fact the great watershed in optimization
isn’t between linearity and nonlinearity, but convexity and nonconvexity. Even for
problems that aren’t themselves of convex type, convexity may enter for instance
in setting up subproblems as part of an iterative numerical scheme”. A NP-hard
problem such as weighted sum rate maximization being nonconvex maybe iteratively
solved by making the subproblems convex. With incomplete CSI, equivalent efficient
backhauling can be achieved via numerical solutions as envisioned in [14].
Due to the limitations of PSO with increase in problem size, it might not be a can-
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didate to be implemented in the BS/CCN hardware for precoder design. However,
with a smaller problem size, PSO performs well when the CSI is imperfect due to
prediction errors and quantization errors as observed in App. A. The limitations of
PSO should not deter the use of stochastic optimization techniques in understand-
ing the solution space. As the PSO can be applied to any type of problem be it
nonlinear or nonconvex, the challenge is in the mapping of a given problem to PSO.
As observed with SSOCP, successive convex approximations are used to solve the
problem of sum rate maximization recursively. Even though the subproblem solved
is optimal, the recursive nature could hinder its deployment. Especially when it
comes to IoT where latency and memory requirements are at a premium in these
embedded systems. Simple linear approaches such as ZF is very attractive to be
used in practice. The complexity of ZF is further reduced using Neumann series
based approximations [116]. Even though this is a suboptimal approach, it could be
more practical depending on the tradeoff in terms of performance and complexity.
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