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Abstract—Stochastic digital backpropagation (SDBP) is an a great deal of attention, it only deals with deterministiear
extension of digital backpropagation (DBP) and is based on and nonlinear impairments and inherently does not consider
the maximum a posteriori principle. SDBP takes into account noise. It is known that the nondeterministic nonlinear etfe

noise from the optical amplifiers in addition to handling de- ch asnonlinear sianal-noise interactiofNSND between
terministic linear and nonlinear impairments. The decisims in su S ! signal-noise 1 ioN ) W

SDBP are taken on a symbo|_by_symbo| (SBS) basiS, ignoring the transmitted Signal and the ampllfled Spontaneous GmiSSi
any residual memory, which may be present due to nonoptimal (ASE) noise, limit the transmission performance of a fiber-
processing in SDBP. In this paper, we extend SDBP to accountrf  optic system [10], [15], [16]. Studies on the impact of NSNI
memory between symbols. In particular, wo different methals o\ 0] that there is a significant penalty due to NSNI fomiali
are proposed: a Viterbi algorithm (VA) and a decision directed . . . . .
approach. Symbol error rate (SER) for memory-based SDBP optlca_l dispersion-managed (DM) links, and the severitthef
is signiﬁcant]y lower than the previous|y proposed SBS-SDB. NSNI is dependent on modulat|on fOI‘matS and the Symbol rate
For inline dispersion-managed links, the VA-SDBP has up to@ used in the system [17], [18]. It is often argued that NSNI
and 14 times lower SER than DBP for QPSK and 16-QAM, cannot be compensated for in digital signal processing JDSP
respectively. due to the nondeterministic nature of ASE noise [18] and as
Index Terms—Digital backpropagation, factor graphs, near- a result, none of the DBP methods account for NSNI. To deal
MAP detector, nonlinear compensation, optical communicabns.  with stochastic disturbances, Bayesian detection theamybe
used to formulate maximum a posteriori probability (MAP)
detectors, which are provably optimal in terms of minimgin
I. INTRODUCTION the error probability. MAP detectors have been proposed

D IGITAL backpropagation (DBP) has been proposed é%r the disg_rete memoryless channel_ [19.] assumlinﬁ peg‘ect
a universal technique for jointly compensating for th romatic dispersion (CD) compensation in a DM link, and a

intra-channel linear and nonlinear impairments in the cefe ook?up ta_ble dgtector that can mitigate dat_a-patterr_eddpnt
fiber-optic system [L]-[5]. As a result, the DBP has bee?]onllnear|mpa|rments [20]. A low-complexity Viterbi deter

used to benchmark schemes proposed in the literature [éﬁ_s%gglestefqb as anl.alterngtivezor to C(;r;plerr]nent DE’P _for
[10]. The assumed optimality of DBP has spurred intené:aé’r,n Iattljngkl er non_mearltles [ 1|]' Inh[ ], the stoc aztl
research in low-complexity variations, including weighte igital backpropagation (SDBP) algorithm was proposed to

DBP, perturbation DBP, and filtered DBP [10], [11] Whilecompensate not only for deterministic linear and nonlinear

the focus of the current paper is on single-channel s>f§tfe_Ct,S' but also tI? account forbtr|1ebASE rgoils%Bl-éovt\;evgr, the
tems, for wavelength division multiplexing (WDM) systems; ecisions were taken on a symbol-by-symbol ( ) basis afte

DBP is typically employed for the center channel, there plying a matched filter. This approach was later shown to

accounting only for the intra-channel effects. Inter-ateln € sub_optimal [23]. .
nonlinear effects in WDM systems can be modeled by takin In this paper, we ex_te_nd [22] to qddress the_ sub-optimality
the advantage of the temporal correlations of the nonlinddy SBS-SPBP by explicitly accounting for residual memory,
phase noise using a time-varying system with inter-symb‘ef ich may be present due to nonoptimal processing in SDBP.

interference (ISI) and thereby compensating for theser-intd" particular, we propose two different methods based on the

channel nonlinear effects [12]-[14]. While DBP has receivew[erbi algorithm (VA) and a decision-directed (DD) appoba

The VA approach is similar to [21], but does not rely on
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Technologies, Scuola Superiore Sant'Anna, Pisa, Italycé&SiFeb. 2015, D. result is computationally less complex than the VA approach
Marsella is with Alcatel-Lucent, Vimercate, Milan, taly. Extensive simulation results indicate significant perfance
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provided by the Swedish National Infrastructure for Cormmut(SNIC) at DM links. While the proposed algorithm is computationally

C3SE. _— _ complex, we believe this receiver can serve as an inspiratio
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Conference (OFC), Los Angeles, CA, Mar. 2015. to design low-complexity approaches that still signifidant

outperform DBP.



The remainder of this paper is organized as follows. We first
describe the underlying mathematical framework on whiéhx
SDBP is built, namely factor graphs (FGs) and message-g
passing algorithms, in Sec. Il. In Sec. lll, the system mcimiell
detailed. Sec. IV is devoted to the description of the VA and
DD approaches, as well as how these are incorporated into ~——' -~ — 7 !

SDBP framework. We present numerical resuits in Sec. \F/i'g. 1. A fiber link with N spans where each span consists of an

foIIoweq by our conclusions in Sec. VI. SMF, a DCM module (for DM links), and EDFAs.
Notation: Lower case bold letters (e.gx) are used to

denote vectors, including sequences of symbols and vector

representations of continuous-time signals (e.g., thiamgr- the channel, and the received signal, over the unobserved va

sampling). The transpose of the vectoris denoted byv’. ables. The statistical relationship between all theseabtes

A multivariate Gaussian probability density function (ARF can be described with a FG (in this case a Markov chain),
a real variabler with meanp and covariance matri®: is and the marginalization is performed by message passing.

Pulse Shaper|
DBP/SDBP
Decisions

denoted byV (r; p, 3). However, the FG-based SDBP receiver proposed in [22] is
not a true MAP receiver due to a number of heuristic design

symbol-rate sampling was employed, similar to DBP, which

Optimal receiver design for digital communications in t8mjs sypoptimal and may not give rise to sufficient statistics
of minimizing the error probability is based on a MAPang may exhibit residual memory; (i) decisions were made
criterion. However, MAP detectors can be computationally, 5 SBS basis, ignoring any residual memory; and (jii) for
intractable (often with exponential complexity in the ditRe o5ch SBS decision, a Gaussian approximation of messages
sionality of the unknown variable), except for certain comyas introduced. The first issue was addressed in [38], while
munication systems. For this reason, much research effsrt i possible solution to the third issue was discussed in [23],
been devoted in developingear-MAP detectorswhich can  considering alternative distributions to a Gaussian irten
balance near-optimal performance with reasonable compWgordinates. An alternative approach would be to use a non-
tional complexity. A practical framework that has emergegarametric approach with a kernel, where the kernel barttwid

since the early 2000s as a general and automated wayidQ free parameter that should be tuned [39]. The secone issu
develop near-MAP detectors is that of FGs [24], [25]. An FGill be addressed in this work.

is a graph that describes the statistical relation betwen t
variable of interest (i.e., the unknown transmitted datad a
the observation (i.e., the received waveform). By perfogni I1l. SYSTEM MODEL
a message-passing algorithm on such an FG, it is possible to ) ) ) ) ]
determine the MAP estimate, or an approximation thereof. 1he System that will be considered is a single-channel fiber-
FGs have been widely used in wireless communication BIIC System as showniin Fig. 1, comprising a dual-polaopat
they provide a methodology to design receivers in a sysiemdfansmitter block (Tx), including a pulse shaper, a fibetieop
and near-automated way [26], [27]. Some applications ifink with v spans, anq a receiver block (Rx) t_hgt |mpllements
clude message-passing decoders for low-density partgich & compensatlpn aIgo.rlth.m foIIowed by a demsmq u_nlt. Each
(LDPC) and turbo codes [28], iterative demodulation and d&Pan of the fiber-optic link consists of a transmission fiber,
coding for bit-interleaved coded modulation [29], joinwed Which is a standard single-mode fiber (SMF) and an optional
ization and decoding [30], channel estimation [31], timinglspersmn.—compensatlng module (DCM) for DM links. In
synchronization [32], and phase-noise recovery [33]. dieth etween fiber spans, there are erblum-d_oped f|ber_ampl!f|ers
be noted that while FGs generally lead to the most powerftfDFAS) that compensate for the losses in the previous fiber.
known receiver algorithms with polynomial complexity, yhe AS indicated in Fig. 1, the transmitted data is denotedspy
are often too complex to be implemented as is. For that reasbf decoded data by and the received signal hy The noise
FGs are often used as a first approach from which practi@]d gain of the EDFAs are resp., denoted wy; and G,
algorithms can be developed with lower complexity [30]. Where: € {1,2} corresponds to EDFAL and EDFA2.
In the context of coherent fiber-optic communication, FGs A sequence of K four-dimensional symbolss =
have only seen limited utilization, mainly due to their highs1:52:---,sk] € QF is transmitted at a symbol ratg/T,
computational complexity. Examples include demodulatioMith @ pulse-shaping filtey(t), whereQ c R* is the set of
[34], decoding [35], equalization [36], and computation osymbols in the four-dimensional constellatlon,_con.sg;olhm-
information rates [37]. Nevertheless, FGs can serve as d gdthase and quadrature data from thandy polarizations. The
basis to develop low-complexity receivers. A key applioati ove_raII goal of the_recz_e|ver_|s t_o optimally rec_owelfrom_r.
is the design of a near-MAP detector in the nonlinear regim@/hile different optimality criteria can be considered, wna
as proposed in [22]. The resulting receiver, coined SDBP, minimize the error pro_bab|I|ty, leading to a MAP receiver
showed significant performance gains over DBP. In SDBP, tHeWhich the estimate of is
posterior distribution is obtained by marginalizing theénjo

R ; : : g § = arg max p(s|r), (1)
distribution of input, all intermediate, unobserved vhatis in seQk



wherep(s|r) is the a posteriori probability distribution af Algorithm 1 Pseudo-code for implementation of SDBP
given the received signal. Note that in all derivations, we
will consider all signals and vectors to be real. L procedure SDBPf)

2 rWer vn > createN,, replicas ofr

3: fori=Nto1ldo > Iteration over spans
. .IV. SD.BPAND PROPOSEDAPPI.?OACHES s () o (p) +W$))/\/@ Vi > EDEA2
As indicated in Sec. |, message passing on an FG relies af r(™ — SSFM L (r(™) n > DCM
Iopql erendenmes_. In a fiber, the Iowes_t Ievel_of Ioc_aI dete . r( (x4 Wiﬁ))/\/GT Vn > EDFA1
ministic dependencies that one can exploit are (i) the lined . r SSFl\/gl(rW) Vn, > SMF

nonlinear operation from the split-step Fourier methodqg$ 4. end for

and (i) the statistical dependency between input and datpu . 5« MF(r™) Vn
the EDFAs, including ASE noise. Considering the signaleraft 4 symbol rate

each linear and nonlinear step of each segment of each span pfanq procedure

the SSFM [22, Fig. 1], and the signals after each EDFA, all as

unobserved variablene can factorize the joint distribution

of the transmitted data, the received waveform, and these

unobserved variables. The posterior distribution in () #tas (line 6 in Algorithm 1) and through the inverse of the SSFM
be interpreted as a marginalization of the joint distribnti of the SMF (line 7 in Algorithm 1). This process is repeated
p(s, unobserved variablgg. This marginalization from the for all V spans. Note that wheN,, = 1 andwfg) = wfﬁ) =0
joint distribution to p(s|r) is done using the framework of for all n, these steps are identical to DBP.

FGs and a message-passing algorithm called sum-producig 4 final step (line 9 in Algorithm 1), SDBP must compute
algorithm (SPA) [28]. the message related to the transmitted dabesed on the mes-
Definition 1 (Particle representation of a distributio list sage describing the waveform after pulse shaping. A héuirist

> MF followed by sampling

of particles (or samplesx®), x(®, ... x(N») denoted by approach has been used in [22], where each particle waveform
{xM1r  form a particle representation of a distributionis passed through a matched filter (MF), matched to the pulse
p(x) whenp(x) ~ 1/N, SN §(x — x(M). shape, and sampled at the symbol fatiethe optimal sampling

o o _ _ _ times leading toN,, particles,{s(™})7,, with s ¢ R4,
Definition 2 (Dlstnbu}[lons associated with particlesiVith a 11,4 particles{é(”)}Nﬁl can be viewed as samples from a
list of particles{x(™},’7 | defined oveR*, we associate tWo istribution 4 (s) (defined fors € R4K), for which ga(s)
distributions_: ge(x) Is a di_stribution (obtained, e.g., thrf)”gh(defined fors € QK) provides an approximation gi(s|r).

a parametric approximation) defined ovét*!' for which | important to note thaga(s) is only an approximation of
the particles form a sample representation, whilx) is @ 5|1} and need not be identical ta(sr), as the use of a
distribution defined only ove®, with ga(x) o gc(x). MF followed by sampling at the symbol rate is a heuristic.
Hence, performing SBS decisions on the marginalg.g§)
A. Stochastic Digital Backpropagation as in [22] may not lead to optimal performance (in terms
The main idea of SDBP is to marginalize out the unobserv&§ minimizing the probability of error, either symbol-wise
variables through computing messages, which describis-stategquence-wise). In fact, alternatives to a MF were explared
tically (i.e., in the form of a distribution) the uncertajrdf the [38], indicating performance improvements. In this papes,
corresponding variable. This allows us to obtain a desoript Propose to exploit residual memory present due to nonoptima
of p(s|r). The messages are computed backwards, starting wiitpcessing, by making a decision regardingpased on the
the received signal at span\ of the fiber-optic link of Fig. 1 entire distributiong.(s), rather than its marginals, leading to

until the transmitter is reached. the following detector
For the fiber-optic channel, closed-form expressions of the § = arg max ga(s) @)
distributions are not possible to derive except for someifipe sEQK ’

scenarios,_so the message/distribution is representacMitt  \yhere agaim(s) x gc(s). Solving (2) is hard for two reasons:
of N, p.artlcles.. TheseT pa_rtlcles are propagated at ea_ch St@9ehe number of possible sequenc8s, is exponential ink,
of the fiber-optic link in Fig. 1 starting fronr as described making the optimization infeasible for large valueszof and

below. _ _ o (ii) for any specific sequence ¥, ¢4(s) is hard to determine
We start with the known received waveformin Fig. 1, gince we only have particle (™ Np representing(s). In

n=11

which exhibits no uncertainty and is thus representedBy o qer to address the first issue, we impose a Markov structure
identical particles (I|.ne 2 in Algorithm 1). These partglare ntq ga(s). To solve the second issue, the set of particles
passed through the inverse of the EDFAZ block of the last spangmoothed with a distribution, which will be discussed in

to get a collection of particles, which describe the uneetya gec \2B. We now present two approaches that use variations
regarding the variable before EDFA2 (line 4 in Algorithm 1)¢ (2) to make decisions o

The particles are then back propagated through the inverse
of the SSFM of the DCM (line 5 in Algorithm 1), where
1 n . . . .
SSFMI (r( )) |_mplements the inverse SSFM for entire fiber 1A matched filter maximizes the signal-to-noise ratio for gnal affected
span. The particles are then back propagated through EDFRAIAWGN noise [40, Ch. 10].



B. Viterbi Algorithm-Stochastic Digital Backpropagation

Assuming thaty(s) follows a Markov structure with mem-
ory> L > 0, we definex;, [Sk—1,8k—2,---,8k—r]* and
yi = [sk x1]T. Thengq(s) can be factorized as

K

qa(s) = H qa(Sk|Sk—1,Sk—2,. .., Sk—L)
k=L+1
K
= I aaCselxx)- 3)
k=L+1
Using Bayes’ rulegq(sk|xx) can be written as
qa(sk,xk)  qa(yr)
Sk|xk) = = ) 4
Qd( k| k) qd(xk) qd(Xk) ( )
Using (3) and (4), (2) can be rewritten as
s = arg max {Inga(s)}
K
= arg QS’IE {; Ingq(yx) —In qd(xk)]}
K
arg min ;wk(sk,xw, (5)

wherev, is the branch metric angy, is the state used in the

VA.

The values ofgq(yx) and qa(xx) can be computed by
marginalizingqa(s). However, we have access only 4¢(s)
through the particle§s™} . . Denoting the appropriate su
sequences frord™ by y{™ andx\™, we find thatg.(yx) ~
1/N, S0 8(ye — v) andae(xi) ~ 1/Np Y202, 8(xi —
xg”)). In order to evaluateq (yx) andgq(xx ), we can impose a
parametric approximation feg. (yx) andq.(xy) for which the
logarithm is easy to compute. The Gaussian distributionéf s
a parametric approximatichHenceq.(yx) = N (yx; p, =7)
andqq(xy) = N (xp; pi, X%). The meangs, ui and covari-
ancesX}, X¥ are estimated as

L L
R D (N D SE
P p=1 P p=1
1
_ (n) (n) T
ZZ*NPJ (¥ Dy —u)’,
n=1
L
x __ (n) x (n) z\T
E= N, -1 ,L=1(XkL *#k)(XkL - Bi) (6)

The factors in (4) can be written as

L i — )T (20) (i uz>}, @)

2

~5 bk (2D G- ) ®

qa(yr) o exp {

qa(Xx) o exp {

2The memoryL is a tuning parameter, where largerwill lead to higher
complexity and better performance.

3A non-parametric approach with a kernel can be used as amatite
[39], where the kernel bandwidth is a free parameter thatishioe tuned.

As a resulty), can be simplified as

Ur(srs %) o (vi — )" (S0 " (vi — 1)
— (=) () e —pp) )
To find an estimaté using (5), a VA is used with the current
state asx; and the current symbol as, with branch metric
as in (9) for thekth symbol slot. Observe that since the search
space fors is Q¥ the search space fgr, is QF+! andx;, €

QL. WhenL = 0, VA-SDBP reverts back to SBS-SDBP from
[22].

C. Decision Directed-Stochastic Digital Backpropagation

The second approach, DD-SDBP, combines the idea of
exploiting memory, as in VA-SDBP, with taking decisions on
a SBS basis, as in SBS-SDBP. In this approach, the previously
decoded symbols|s;_1,8k_2,...,38,_z]7, are used while
taking decisions for the current symbs} and as a result
x1 in (9) can be interpreted as a constant that does not affect
the optimization in (9). Thus, decisions af in DD-SDBP
are taken as

51, = arg max qa(sx|8k—1, k-2, -, Sk—1L)
SKLEN

= X 10

arg g}ggw(sk, Xk), (10)
which can be solved recursively starttrfgom & = L+1 using
a similar Gaussian approximation as in VA-SDBP. However, in
contrast to VA-SDBP, DD-SDBP can only account for causal

p-memory effects. Note that the search spaceyfprof (7) is

Q) instead ofQ/+! as the decisions have to be taken only for
si. WhenL = 0, DD-SDBP also reverts to SBS-SDBP.

V. NUMERICAL SIMULATIONS AND DISCUSSION
A. Simulation Setup and Performance Metrics

The simulation setup is shown in Fig. 1. The pulse shape
used at the transmitter is a root-raised-cosine pulse witti-a
off factor of 0.25 and truncation length of 16 symbol periods
The simulations are performed for a polarization-multiple:
signal, with no polarization mode disperstorither with 16-
QAM or QPSK as modulation format and symbol rafésof
14 Gbaud, 28 Gbaud, and 56 Gbaud. In each polarizakios,
4096 symbolg are transmitted in each block of the Monte
Carlo simulation. This signal is input to the channel with
spans. The parameters used for the SMFAre 16 ps/(nm
km),v = 1.3 (W km)~!, a = 0.2 dB/km, which are according
to the ITU-T G.652. We have considered a fiber Bragg grating
(FBG) as a DCM Propagation in the fibers is simulated using
the SSFM with a segment length [41] &f = (eLnyL2)'/3,
wheree = 1074, Ly = 1/(yP) is the nonlinear lengthLp =
T?2wc/(|D|)?) is the dispersion lengthy is the wavelength,

4We assume a uniform a priori distribution over all the statbich implies
the symbols at the start of trellis are unknown.

SFork =1, ..., L, decisions ons;, are taken on an SBS basis.

6Effect of PMD on DBP and SBS-SDBP has been reported in [22].

“Except for 56 GBd NDM links, where we have simulated with= 8192
symbols to properly account for the memory in the system.

8However, a dispersion compensating fiber (DCF), simulatzmraing to
G.655 specifications, exhibited similar trends as the FBG.



that the optimal power (i.e., corresponding to the loweRBE

TABLE | varies for each detector: compared to DBP, the optimal power
NUMBER OF SPANS V, USED IN DM AND NDM LINKS for SDBP is up to 2 dB larger for QPSK and up to 4 dB larger
| [ 1. [GBA] | DM | NDM | for 16-QAM.
14 50 110
QPSK 28 35 | 110 16 J L ‘

56 35 110

——DBP
14 50 110 —6— SBS-SDBP
16-QAM 28 40 | 110 —8— DD-SDBP
56 40 | 110 —&— VA-SDBP

-1

c is the speed of the light, an& is the average input power §
to each fiber span. We used the same segment lengths 1
simulating the channel and for both DBP and SDBP. 162
The number of spansy, used in each of the scenarios is
summarized in Table I. We also considered a non-DM (NDM)
system, wherein there are no DCMs. The span length used fi
SMF, Lswr, is 80 km for 16-QAM and120 km for QPSK?® .
FBG with an insertion loss of 3 dB and perfect dispersion %0 %5 5 4 =2 o 2 4 & 8§ 10
compensation for the preceding SMF is used. The launc.. Power(dBm)
power into the DCM is 4 dB below that of the transmission (@)
fiber, which is compensated for by the EDFA after DCM. The
noise figure is 5 dB for each of the amplifiers. Ideal low-pass 10
filters with one-sided bandwidth a?, are used in EDFAs and
in the beginning of the receiver. The filtered signal is sent t
DBP and three different SDBP detectors:
1) SBS-SDBP from [22]; 107F
2) DD-SDBP forL € {1,2}, as proposed in Sec. IV-C; .
and
3) VA-SDBP for L € {1,2}, as proposed in Sec. IV-B.

In all SDBP detectors)N,, = 500 particles were used to 10 ¢
generate the results, but we verified that even With= 1500,

similar performance was obtained. The receiver is assumed -
have perfect knowledge of the polarization state, as well a

T T

——DBP
—e— SBS-SDBP
—&— DD-SDBP
—6— VA-SDBP

SE

the carrier phase and the symbol timing. 1o;310 ey T e s 1o
We consider two performance metrics. To capture the absc Power(dBm)
lute performance of each detector, we determine the symbol (b)

error rate (SER). To capture the relative performance ghin o

. _ Fig. 2. SER as a function of input power for 56 Gbaud, FBG as
SDBP over DBP, we introducé’x = SERper/SERx-sper  pCM for (a) QPSK and (b) 16-QAM. Solid (resp. dashed) lines i

where X € {SBS,DD,VA}, and in which SERpgp and \a-SDBP and DD-SDBP represent cases whes 1 (resp.L = 2).
SERx-spep are lowest SERs obtained for the respective al-

gorithms. Similar behavior is observed for other symbol rates, al-
though we do not show all results. Instead, a summary of the
B. Results and Discussion performance gains is presented in Fig. 3 for QPSK Witk 2

The SER as a function of input power is shown in Fig.

for the 56 Gbaud system with FBG as DCM for (a) OPS rows exponentially withZ, the same value of. was used

) .Tor both DD-SDBP and VA-SDBP to have a fair comparison.
and (b) 16-QAM. Due to complexity reasons, VA-SDBP g, Fig. 3, irrespective of the symbol rate, DM or NDM

simulated only withZ = 1 for 16-QAM. Comparing the SER link | )
. | SER ERop.
of SBS-SDBP with DD-SDBP/VA-SDBP, we can conclud%nEéBgingsirvzgé:fr tTrﬁgdvi-SDDBB; <Casn ?é’czzftior

that by taking the residual memory into account, the SERB?
significantly reduced. One can also see that for both VA-SDBE. "\ . DD-SDBP. SBS-SDBP ignores both causal and

wd [3(D-SE)5\T, mcirr(]eat\&n@tlera?s ;‘;ig crjecreas?Nm tf:e SER, on-causal memory and thus exhibits the worst performance
€ expect this gain fo saturate creases. We aiso Seeamong the three selected approaches. The decreasing gains
9The number of spans and span lengths are selected such éhsyrtiol with increasing symbol rate for SBS-SDBP can be explained

error rate for DBP is around.o1. as follows. The larger the deviation of the particle clouds,

gnd for 16-QAM withL = 1. As the complexity of VA-SDBP

th causal and non-causal effect, giving it a performance
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Fig. 3. Gains in SER for the proposed algorithms comparedB®.D

given by {5 ,f:[;l, from a circular symmetric Gaussian, thehe proposed detectors for DM links with up to 10 times lower

higher are the expected gains in SDBP compared to DBP. B8&R for QPSK and up to 14 times lower SER for 16-QAM,
the symbol rate increases, the particle clouds in SBS-SDBBmpared to DBP.
tend to become more circular Gaussian and hence the gain¥he VA-SDBP can provide optimal decisions on the trans-
decrease. Also for a DM link, we have observed that thmitted sequence, but does so at a high computational cost.
particle clouds are less circular Gaussian and hence gegns Alternatives to consider are low-complexity variationstoé
higher for SDBP in DM links compared to NDM links. VA, as well as algorithms that provide symbol-wise optimal
The gains in VA-SDBP for QPSK increase with increasdecisions, such as the Bahl-Cocke-Jelinek-Raviv (BCJR) al
ing symbol rate whereas for 16-QAM, the gains increaggrithm [42].
from 14 GBd to 28 GBd and then the gains decrease. ThisFurther gains over the proposed algorithms may be possible
maybe due to the use df = 1 for 16-QAM, which is not and remains the topic of ongoing and future research. Lower
sufficient to account for the residual memory, especially &ER can be expected by increasing the memory in VA-SDBP
high symbol rates. The main drawback of VA-SDBP is itsintil the SER gains saturate. In addition, the use of a mdtche
complexity, which grows exponentially with the memaky filter is not necessarily optimal. Initial results in thigetition
So, an interesting case would be to test a low-complexitan be found in [38]. Finally, in SBS-SDBP, DD-SDBP, and
version of VA for 16-QAM with higher memory. DD-SDBP VA-SDBP, the particles after matched filtering and sampling
is a tradeoff between SBS-SDBP and VA-SDBP, in termare approximated with a multivariate Gaussian distribytio
of complexity and performance. Irrespective of which SDB®hich need not be a good approximation, especially at high
approach is used, there is always an improvement in termsimbut powers. Other types of distributions should be consid

SER compared to the traditional DBP algorithm (i@, > 1).
This means that NSNI plays an important role in the systems
under consideration and one can gain significantly by taking

these interactions into account. The NSNI is more importarj;
in the DM systems than the NDM systems, so that gains are
lower in NDM systems. An additional observation that can b )
made from Fig. 3 is that the gains are in general higher for 16-
QAM than for QPSK as 16-QAM has more nonlinearities than

QPSK and hence more signal-noise interactions, and thereby
more gains of SDBP approach compared to DBP. Gains in

QPSK NDM links (not shown here) turn out to be lower than[4]
corresponding gains of 16-QAM NDM case.

VI. CONCLUSIONS (5]

We have extended the SDBP algorithm to account for
residual memory that may be present due to nonoptimé!
processing in SDBP. Specifically, we proposed DD-SDBP and
VA-SDBP to account for this memory, at an increased cost in
terms of complexity. Extensive simulations were perforrted [7]
evaluate these methods for 16-QAM and QPSK, and for DM
and NDM links. Results suggest a significant improvement by

ered.
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