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Abstract—Stochastic digital backpropagation (SDBP) is an
extension of digital backpropagation (DBP) and is based on
the maximum a posteriori principle. SDBP takes into account
noise from the optical amplifiers in addition to handling de-
terministic linear and nonlinear impairments. The decisions in
SDBP are taken on a symbol-by-symbol (SBS) basis, ignoring
any residual memory, which may be present due to nonoptimal
processing in SDBP. In this paper, we extend SDBP to account for
memory between symbols. In particular, two different methods
are proposed: a Viterbi algorithm (VA) and a decision directed
approach. Symbol error rate (SER) for memory-based SDBP
is significantly lower than the previously proposed SBS-SDBP.
For inline dispersion-managed links, the VA-SDBP has up to 10
and 14 times lower SER than DBP for QPSK and 16-QAM,
respectively.

Index Terms—Digital backpropagation, factor graphs, near-
MAP detector, nonlinear compensation, optical communications.

I. I NTRODUCTION

D IGITAL backpropagation (DBP) has been proposed as
a universal technique for jointly compensating for the

intra-channel linear and nonlinear impairments in the coherent
fiber-optic system [1]–[5]. As a result, the DBP has been
used to benchmark schemes proposed in the literature [6]–
[10]. The assumed optimality of DBP has spurred intense
research in low-complexity variations, including weighted
DBP, perturbation DBP, and filtered DBP [10], [11]. While
the focus of the current paper is on single-channel sys-
tems, for wavelength division multiplexing (WDM) systems,
DBP is typically employed for the center channel, thereby
accounting only for the intra-channel effects. Inter-channel
nonlinear effects in WDM systems can be modeled by taking
the advantage of the temporal correlations of the nonlinear
phase noise using a time-varying system with inter-symbol
interference (ISI) and thereby compensating for these inter-
channel nonlinear effects [12]–[14]. While DBP has received
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a great deal of attention, it only deals with deterministic linear
and nonlinear impairments and inherently does not consider
noise. It is known that the nondeterministic nonlinear effects,
such asnonlinear signal–noise interaction(NSNI) between
the transmitted signal and the amplified spontaneous emission
(ASE) noise, limit the transmission performance of a fiber-
optic system [10], [15], [16]. Studies on the impact of NSNI
reveal that there is a significant penalty due to NSNI for inline
optical dispersion-managed (DM) links, and the severity ofthe
NSNI is dependent on modulation formats and the symbol rate
used in the system [17], [18]. It is often argued that NSNI
cannot be compensated for in digital signal processing (DSP)
due to the nondeterministic nature of ASE noise [18] and as
a result, none of the DBP methods account for NSNI. To deal
with stochastic disturbances, Bayesian detection theory can be
used to formulate maximum a posteriori probability (MAP)
detectors, which are provably optimal in terms of minimizing
the error probability. MAP detectors have been proposed
for the discrete memoryless channel [19] assuming perfect
chromatic dispersion (CD) compensation in a DM link, and a
look-up table detector that can mitigate data-pattern-dependent
nonlinear impairments [20]. A low-complexity Viterbi detector
is suggested as an alternative or to complement DBP for
combating fiber nonlinearities [21]. In [22], the stochastic
digital backpropagation (SDBP) algorithm was proposed to
compensate not only for deterministic linear and nonlinear
effects, but also to account for the ASE noise. However, the
decisions were taken on a symbol-by-symbol (SBS) basis after
applying a matched filter. This approach was later shown to
be suboptimal [23].

In this paper, we extend [22] to address the sub-optimality
in SBS-SDBP by explicitly accounting for residual memory,
which may be present due to nonoptimal processing in SDBP.
In particular, we propose two different methods based on the
Viterbi algorithm (VA) and a decision-directed (DD) approach.
The VA approach is similar to [21], but does not rely on
sending long training sequences to learn the VA branch
metrics. The DD approach uses previously decoded symbols
when taking the decisions for the current symbol and as a
result is computationally less complex than the VA approach.
Extensive simulation results indicate significant performance
improvements over DBP and SBS-SDBP, in particular for
DM links. While the proposed algorithm is computationally
complex, we believe this receiver can serve as an inspiration
to design low-complexity approaches that still significantly
outperform DBP.
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The remainder of this paper is organized as follows. We first
describe the underlying mathematical framework on which
SDBP is built, namely factor graphs (FGs) and message-
passing algorithms, in Sec. II. In Sec. III, the system modelis
detailed. Sec. IV is devoted to the description of the VA and
DD approaches, as well as how these are incorporated into
SDBP framework. We present numerical results in Sec. V,
followed by our conclusions in Sec. VI.

Notation: Lower case bold letters (e.g.,x) are used to
denote vectors, including sequences of symbols and vector
representations of continuous-time signals (e.g., through over-
sampling). The transpose of the vectorv is denoted byvT.
A multivariate Gaussian probability density function (PDF) of
a real variabler with meanµ and covariance matrixΣ is
denoted byN (r;µ,Σ).

II. FACTOR GRAPHS FORRECEIVER DESIGN

Optimal receiver design for digital communications in terms
of minimizing the error probability is based on a MAP
criterion. However, MAP detectors can be computationally
intractable (often with exponential complexity in the dimen-
sionality of the unknown variable), except for certain com-
munication systems. For this reason, much research effort has
been devoted in developingnear-MAP detectors, which can
balance near-optimal performance with reasonable computa-
tional complexity. A practical framework that has emerged
since the early 2000s as a general and automated way to
develop near-MAP detectors is that of FGs [24], [25]. An FG
is a graph that describes the statistical relation between the
variable of interest (i.e., the unknown transmitted data) and
the observation (i.e., the received waveform). By performing
a message-passing algorithm on such an FG, it is possible to
determine the MAP estimate, or an approximation thereof.

FGs have been widely used in wireless communication as
they provide a methodology to design receivers in a systematic
and near-automated way [26], [27]. Some applications in-
clude message-passing decoders for low-density parity-check
(LDPC) and turbo codes [28], iterative demodulation and de-
coding for bit-interleaved coded modulation [29], joint equal-
ization and decoding [30], channel estimation [31], timing
synchronization [32], and phase-noise recovery [33]. It should
be noted that while FGs generally lead to the most powerful
known receiver algorithms with polynomial complexity, they
are often too complex to be implemented as is. For that reason,
FGs are often used as a first approach from which practical
algorithms can be developed with lower complexity [30].

In the context of coherent fiber-optic communication, FGs
have only seen limited utilization, mainly due to their high
computational complexity. Examples include demodulation
[34], decoding [35], equalization [36], and computation of
information rates [37]. Nevertheless, FGs can serve as a good
basis to develop low-complexity receivers. A key application
is the design of a near-MAP detector in the nonlinear regime,
as proposed in [22]. The resulting receiver, coined SDBP,
showed significant performance gains over DBP. In SDBP, the
posterior distribution is obtained by marginalizing the joint
distribution of input, all intermediate, unobserved variables in
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Fig. 1. A fiber link with N spans where each span consists of an
SMF, a DCM module (for DM links), and EDFAs.

the channel, and the received signal, over the unobserved vari-
ables. The statistical relationship between all these variables
can be described with a FG (in this case a Markov chain),
and the marginalization is performed by message passing.
However, the FG-based SDBP receiver proposed in [22] is
not a true MAP receiver due to a number of heuristic design
choices that were made: (i) a matched filter followed by
symbol-rate sampling was employed, similar to DBP, which
is suboptimal and may not give rise to sufficient statistics
and may exhibit residual memory; (ii) decisions were made
on a SBS basis, ignoring any residual memory; and (iii) for
each SBS decision, a Gaussian approximation of messages
was introduced. The first issue was addressed in [38], while
a possible solution to the third issue was discussed in [23],
considering alternative distributions to a Gaussian in Cartesian
coordinates. An alternative approach would be to use a non-
parametric approach with a kernel, where the kernel bandwidth
is a free parameter that should be tuned [39]. The second issue
will be addressed in this work.

III. SYSTEM MODEL

The system that will be considered is a single-channel fiber-
optic system as shown in Fig. 1, comprising a dual-polarization
transmitter block (Tx), including a pulse shaper, a fiber-optic
link with N spans, and a receiver block (Rx) that implements
a compensation algorithm followed by a decision unit. Each
span of the fiber-optic link consists of a transmission fiber,
which is a standard single-mode fiber (SMF) and an optional
dispersion-compensating module (DCM) for DM links. In
between fiber spans, there are erbium-doped fiber amplifiers
(EDFAs) that compensate for the losses in the previous fiber.
As indicated in Fig. 1, the transmitted data is denoted bys,
the decoded data bŷs, and the received signal byr. The noise
and gain of the EDFAs are resp., denoted bywni andGi,
wherei ∈ {1, 2} corresponds to EDFA1 and EDFA2.

A sequence of K four-dimensional symbolss =
[s1, s2, . . . , sK ]T∈ ΩK is transmitted at a symbol rate1/Ts
with a pulse-shaping filterg(t), whereΩ ⊂ R

4 is the set of
symbols in the four-dimensional constellation, consisting of in-
phase and quadrature data from thex andy polarizations. The
overall goal of the receiver is to optimally recovers from r.
While different optimality criteria can be considered, we aim
to minimize the error probability, leading to a MAP receiver,
in which the estimate ofs is

ŝ = arg max
s∈ΩK

p(s|r), (1)
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wherep(s|r) is the a posteriori probability distribution ofs
given the received signalr. Note that in all derivations, we
will consider all signals and vectors to be real.

IV. SDBP AND PROPOSEDAPPROACHES

As indicated in Sec. I, message passing on an FG relies on
local dependencies. In a fiber, the lowest level of local deter-
ministic dependencies that one can exploit are (i) the linear and
nonlinear operation from the split-step Fourier method (SSFM)
and (ii) the statistical dependency between input and output of
the EDFAs, including ASE noise. Considering the signals after
each linear and nonlinear step of each segment of each span of
the SSFM [22, Fig. 1], and the signals after each EDFA, all as
unobserved variables, one can factorize the joint distribution
of the transmitted datas, the received waveformr, and these
unobserved variables. The posterior distribution in (1) can thus
be interpreted as a marginalization of the joint distribution
p(s, unobserved variables|r). This marginalization from the
joint distribution to p(s|r) is done using the framework of
FGs and a message-passing algorithm called sum-product
algorithm (SPA) [28].

Definition 1 (Particle representation of a distribution). A list
of particles (or samples)x(1), x(2), . . . ,x(Np), denoted by
{x(n)}Np

n=1, form a particle representation of a distribution
p(x) whenp(x) ≈ 1/Np

∑Np

n=1 δ(x− x(n)).

Definition 2 (Distributions associated with particles). With a
list of particles{x(n)}Np

n=1 defined overR4M , we associate two
distributions: qc(x) is a distribution (obtained, e.g., through
a parametric approximation) defined overR4M for which
the particles form a sample representation, whileqd(x) is a
distribution defined only overΩM , with qd(x) ∝ qc(x).

A. Stochastic Digital Backpropagation

The main idea of SDBP is to marginalize out the unobserved
variables through computing messages, which describe statis-
tically (i.e., in the form of a distribution) the uncertainty of the
corresponding variable. This allows us to obtain a description
of p(s|r). The messages are computed backwards, starting with
the received signalr at spanN of the fiber-optic link of Fig. 1
until the transmitter is reached.

For the fiber-optic channel, closed-form expressions of the
distributions are not possible to derive except for some specific
scenarios, so the message/distribution is represented with a list
of Np particles. These particles are propagated at each stage
of the fiber-optic link in Fig. 1 starting fromr as described
below.

We start with the known received waveformr in Fig. 1,
which exhibits no uncertainty and is thus represented byNp

identical particles (line 2 in Algorithm 1). These particles are
passed through the inverse of the EDFA2 block of the last span
to get a collection of particles, which describe the uncertainty
regarding the variable before EDFA2 (line 4 in Algorithm 1).
The particles are then back propagated through the inverse
of the SSFM of the DCM (line 5 in Algorithm 1), where
SSFM−1

1 (r(n)) implements the inverse SSFM for entire fiber
span. The particles are then back propagated through EDFA1

Algorithm 1 Pseudo-code for implementation of SDBP

1: procedure SDBP(r)
2: r(n) ← r ∀n ⊲ createNp replicas ofr
3: for i = N to 1 do ⊲ Iteration over spans
4: r(n) ← (r(n) +w

(n)
n2 )/

√
G2 ∀n ⊲ EDFA2

5: r(n) ← SSFM−1
1 (r(n)) ∀n ⊲ DCM

6: r(n) ← (r(n) +w
(n)
n1 )/

√
G1 ∀n ⊲ EDFA1

7: r(n) ← SSFM−1
2 (r(n)) ∀n ⊲ SMF

8: end for
9: s̃(n) ← MF(r(n)) ∀n ⊲ MF followed by sampling

at symbol rate
10: end procedure

(line 6 in Algorithm 1) and through the inverse of the SSFM
of the SMF (line 7 in Algorithm 1). This process is repeated
for all N spans. Note that whenNp = 1 andw(n)

n2 = w
(n)
n1 = 0

for all n, these steps are identical to DBP.

As a final step (line 9 in Algorithm 1), SDBP must compute
the message related to the transmitted datas, based on the mes-
sage describing the waveform after pulse shaping. A heuristic
approach has been used in [22], where each particle waveform
is passed through a matched filter (MF), matched to the pulse
shape, and sampled at the symbol rate1 at the optimal sampling
times leading toNp particles,{s̃(n)}Np

n=1, with s̃(n) ∈ R
4K .

The particles{s̃(n)}Np

n=1 can be viewed as samples from a
distribution qc(s) (defined for s ∈ R

4K), for which qd(s)
(defined fors ∈ ΩK) provides an approximation ofp(s|r).
It is important to note thatqd(s) is only an approximation of
p(s|r) and need not be identical top(s|r), as the use of a
MF followed by sampling at the symbol rate is a heuristic.
Hence, performing SBS decisions on the marginals ofqc(s)
as in [22] may not lead to optimal performance (in terms
of minimizing the probability of error, either symbol-wiseor
sequence-wise). In fact, alternatives to a MF were exploredin
[38], indicating performance improvements. In this paper,we
propose to exploit residual memory present due to nonoptimal
processing, by making a decision regardings based on the
entire distributionqc(s), rather than its marginals, leading to
the following detector

ŝ = arg max
s∈ΩK

qd(s), (2)

where againqd(s) ∝ qc(s). Solving (2) is hard for two reasons:
(i) the number of possible sequences,ΩK , is exponential inK,
making the optimization infeasible for large values ofK, and
(ii) for any specific sequence inΩK , qd(s) is hard to determine
since we only have particles{s̃(n)}Np

n=1, representingqc(s). In
order to address the first issue, we impose a Markov structure
onto qd(s). To solve the second issue, the set of particles
is smoothed with a distribution, which will be discussed in
Sec. IV-B. We now present two approaches that use variations
of (2) to make decisions ons.

1A matched filter maximizes the signal-to-noise ratio for a signal affected
by AWGN noise [40, Ch. 10].
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B. Viterbi Algorithm-Stochastic Digital Backpropagation

Assuming thatqd(s) follows a Markov structure with mem-
ory2 L ≥ 0, we definexk = [sk−1, sk−2, . . . , sk−L]

T and
yk = [sk xT

k ]
T. Thenqd(s) can be factorized as

qd(s) =

K
∏

k=L+1

qd(sk|sk−1, sk−2, . . . , sk−L)

=
K
∏

k=L+1

qd(sk|xk). (3)

Using Bayes’ rule,qd(sk|xk) can be written as

qd(sk|xk) =
qd(sk,xk)

qd(xk)
=
qd(yk)

qd(xk)
. (4)

Using (3) and (4), (2) can be rewritten as

ŝ = arg max
s∈ΩK

{ln qd(s)}

= arg max
s∈ΩK

{

K
∑

k=1

[ln qd(yk)− ln qd(xk)]

}

= arg min
s∈ΩK

K
∑

k=1

ψk(sk,xk), (5)

whereψk is the branch metric andxk is the state used in the
VA.

The values ofqd(yk) and qd(xk) can be computed by
marginalizingqd(s). However, we have access only toqc(s)
through the particles{s̃(n)}Np

n=1. Denoting the appropriate sub-
sequences from̃s(n) by y

(n)
k andx(n)

k , we find thatqc(yk) ≈
1/Np

∑Np

n=1 δ(yk − y
(n)
k ) and qc(xk) ≈ 1/Np

∑Np

n=1 δ(xk −
x
(n)
k ). In order to evaluateqd(yk) andqd(xk), we can impose a

parametric approximation forqc(yk) andqc(xk) for which the
logarithm is easy to compute. The Gaussian distribution is such
a parametric approximation.3 Henceqc(yk) = N (yk;µ

y
k,Σ

y
k)

andqc(xk) = N (xk;µ
x
k,Σ

x
k). The meansµy

k, µx
k and covari-

ancesΣy
k, Σx

k are estimated as

µ
y
k =

1

Np

Np
∑

n=1

y
(n)
k , µ

x
k =

1

Np

Np
∑

n=1

x
(n)
k ,

Σ
y
k =

1

Np − 1

Np
∑

n=1

(y
(n)
k − µ

y
k)(y

(n)
k − µ

y
k)

T,

Σx
k =

1

Np − 1

Np
∑

n=1

(x
(n)
k − µ

x
k)(x

(n)
k − µ

x
k)

T. (6)

The factors in (4) can be written as

qd(yk) ∝ exp

{

−1

2
(yk − µ

y
k)

T
(Σy

k)
−1 (yk − µ

y
k)

}

, (7)

qd(xk) ∝ exp

{

−1

2
(xk − µ

x
k)

T
(Σx

k)
−1 (xk − µ

x
k)

}

. (8)

2The memoryL is a tuning parameter, where largerL will lead to higher
complexity and better performance.

3A non-parametric approach with a kernel can be used as an alternative
[39], where the kernel bandwidth is a free parameter that should be tuned.

As a result,ψk can be simplified as

ψk(sk,xk) ∝ (yk − µ
y
k)

T
(Σy

k)
−1 (yk − µ

y
k)

− (xk − µ
x
k)

T (Σx
k)

−1 (xk − µ
x
k) . (9)

To find an estimatês using (5), a VA4 is used with the current
state asxk and the current symbol assk with branch metric
as in (9) for thekth symbol slot. Observe that since the search
space fors is ΩK , the search space foryk is ΩL+1 andxk ∈
ΩL. WhenL = 0, VA-SDBP reverts back to SBS-SDBP from
[22].

C. Decision Directed-Stochastic Digital Backpropagation

The second approach, DD-SDBP, combines the idea of
exploiting memory, as in VA-SDBP, with taking decisions on
a SBS basis, as in SBS-SDBP. In this approach, the previously
decoded symbols,[ŝk−1, ŝk−2, . . . , ŝk−L]

T, are used while
taking decisions for the current symbolsk and as a result
xk in (9) can be interpreted as a constant that does not affect
the optimization in (9). Thus, decisions onsk in DD-SDBP
are taken as

ŝk = arg max
sk∈Ω

qd(sk|ŝk−1, ŝk−2, . . . , ŝk−L)

= arg max
sk∈Ω

ψ(sk, x̂k), (10)

which can be solved recursively starting5 from k = L+1 using
a similar Gaussian approximation as in VA-SDBP. However, in
contrast to VA-SDBP, DD-SDBP can only account for causal
memory effects. Note that the search space foryk of (7) is
Ω instead ofΩL+1 as the decisions have to be taken only for
sk. WhenL = 0, DD-SDBP also reverts to SBS-SDBP.

V. NUMERICAL SIMULATIONS AND DISCUSSION

A. Simulation Setup and Performance Metrics

The simulation setup is shown in Fig. 1. The pulse shape
used at the transmitter is a root-raised-cosine pulse with aroll-
off factor of 0.25 and truncation length of 16 symbol periods.
The simulations are performed for a polarization-multiplexed
signal, with no polarization mode dispersion6, either with 16-
QAM or QPSK as modulation format and symbol ratesRs of
14 Gbaud, 28 Gbaud, and 56 Gbaud. In each polarization,K =
4096 symbols7 are transmitted in each block of the Monte
Carlo simulation. This signal is input to the channel withN
spans. The parameters used for the SMF areD = 16 ps/(nm
km),γ = 1.3 (W km)−1, α = 0.2 dB/km, which are according
to the ITU-T G.652. We have considered a fiber Bragg grating
(FBG) as a DCM.8 Propagation in the fibers is simulated using
the SSFM with a segment length [41] of∆ = (ǫLNL

2
D)

1/3,
whereǫ = 10−4, LN = 1/(γP ) is the nonlinear length,LD =
T 22πc/(|D|λ2) is the dispersion length,λ is the wavelength,

4We assume a uniform a priori distribution over all the stateswhich implies
the symbols at the start of trellis are unknown.

5For k = 1, . . . , L, decisions onsk are taken on an SBS basis.
6Effect of PMD on DBP and SBS-SDBP has been reported in [22].
7Except for 56 GBd NDM links, where we have simulated withK = 8192

symbols to properly account for the memory in the system.
8However, a dispersion compensating fiber (DCF), simulated according to

G.655 specifications, exhibited similar trends as the FBG.
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TABLE I
NUMBER OF SPANS,N , USED IN DM AND NDM LINKS

Rs [GBd] DM NDM

QPSK
14 50 110
28 35 110
56 35 110

16-QAM
14 50 110
28 40 110
56 40 110

c is the speed of the light, andP is the average input power
to each fiber span. We used the same segment lengths for
simulating the channel and for both DBP and SDBP.

The number of spans,N , used in each of the scenarios is
summarized in Table I. We also considered a non-DM (NDM)
system, wherein there are no DCMs. The span length used for
SMF, LSMF, is 80 km for 16-QAM and120 km for QPSK.9

FBG with an insertion loss of 3 dB and perfect dispersion
compensation for the preceding SMF is used. The launch
power into the DCM is 4 dB below that of the transmission
fiber, which is compensated for by the EDFA after DCM. The
noise figure is 5 dB for each of the amplifiers. Ideal low-pass
filters with one-sided bandwidth ofRs are used in EDFAs and
in the beginning of the receiver. The filtered signal is sent to
DBP and three different SDBP detectors:

1) SBS-SDBP from [22];
2) DD-SDBP forL ∈ {1, 2}, as proposed in Sec. IV-C;

and
3) VA-SDBP forL ∈ {1, 2}, as proposed in Sec. IV-B.

In all SDBP detectors,Np = 500 particles were used to
generate the results, but we verified that even withNp = 1500,
similar performance was obtained. The receiver is assumed to
have perfect knowledge of the polarization state, as well as
the carrier phase and the symbol timing.

We consider two performance metrics. To capture the abso-
lute performance of each detector, we determine the symbol
error rate (SER). To capture the relative performance gain of
SDBP over DBP, we introduceGX = SERDBP/SERX-SDBP,
where X ∈ {SBS,DD,VA}, and in which SERDBP and
SERX-SDBP are lowest SERs obtained for the respective al-
gorithms.

B. Results and Discussion

The SER as a function of input power is shown in Fig. 2
for the 56 Gbaud system with FBG as DCM for (a) QPSK
and (b) 16-QAM. Due to complexity reasons, VA-SDBP is
simulated only withL = 1 for 16-QAM. Comparing the SER
of SBS-SDBP with DD-SDBP/VA-SDBP, we can conclude
that by taking the residual memory into account, the SER is
significantly reduced. One can also see that for both VA-SDBP
and DD-SDBP, increasingL leads to a decrease in the SER.
We expect this gain to saturate asL increases. We also see

9The number of spans and span lengths are selected such that the symbol
error rate for DBP is around0.01.

that the optimal power (i.e., corresponding to the lowest SER)
varies for each detector: compared to DBP, the optimal power
for SDBP is up to 2 dB larger for QPSK and up to 4 dB larger
for 16-QAM.
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Fig. 2. SER as a function of input power for 56 Gbaud, FBG as
DCM, for (a) QPSK and (b) 16-QAM. Solid (resp. dashed) lines in
VA-SDBP and DD-SDBP represent cases whenL = 1 (resp.L = 2).

Similar behavior is observed for other symbol rates, al-
though we do not show all results. Instead, a summary of the
performance gains is presented in Fig. 3 for QPSK withL = 2
and for 16-QAM withL = 1. As the complexity of VA-SDBP
grows exponentially withL, the same value ofL was used
for both DD-SDBP and VA-SDBP to have a fair comparison.
From Fig. 3, irrespective of the symbol rate, DM or NDM
links, we observe a clear trend: SERVA-SDBP < SERDD-SDBP<
SERSBS-SDBP < SERDBP. The VA-SDBP can account for
both causal and non-causal effect, giving it a performance
benefit over DD-SDBP. SBS-SDBP ignores both causal and
non-causal memory and thus exhibits the worst performance
among the three selected approaches. The decreasing gains
with increasing symbol rate for SBS-SDBP can be explained
as follows. The larger the deviation of the particle clouds,
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Fig. 3. Gains in SER for the proposed algorithms compared to DBP.

given by{s̃(n)}Np

n=1, from a circular symmetric Gaussian, the
higher are the expected gains in SDBP compared to DBP. As
the symbol rate increases, the particle clouds in SBS-SDBP
tend to become more circular Gaussian and hence the gains
decrease. Also for a DM link, we have observed that the
particle clouds are less circular Gaussian and hence gains are
higher for SDBP in DM links compared to NDM links.

The gains in VA-SDBP for QPSK increase with increas-
ing symbol rate whereas for 16-QAM, the gains increase
from 14 GBd to 28 GBd and then the gains decrease. This
maybe due to the use ofL = 1 for 16-QAM, which is not
sufficient to account for the residual memory, especially at
high symbol rates. The main drawback of VA-SDBP is its
complexity, which grows exponentially with the memoryL.
So, an interesting case would be to test a low-complexity
version of VA for 16-QAM with higher memory. DD-SDBP
is a tradeoff between SBS-SDBP and VA-SDBP, in terms
of complexity and performance. Irrespective of which SDBP
approach is used, there is always an improvement in terms of
SER compared to the traditional DBP algorithm (i.e.,GX > 1).
This means that NSNI plays an important role in the systems
under consideration and one can gain significantly by taking
these interactions into account. The NSNI is more important
in the DM systems than the NDM systems, so that gains are
lower in NDM systems. An additional observation that can be
made from Fig. 3 is that the gains are in general higher for 16-
QAM than for QPSK as 16-QAM has more nonlinearities than
QPSK and hence more signal-noise interactions, and thereby
more gains of SDBP approach compared to DBP. Gains in
QPSK NDM links (not shown here) turn out to be lower than
corresponding gains of 16-QAM NDM case.

VI. CONCLUSIONS

We have extended the SDBP algorithm to account for
residual memory that may be present due to nonoptimal
processing in SDBP. Specifically, we proposed DD-SDBP and
VA-SDBP to account for this memory, at an increased cost in
terms of complexity. Extensive simulations were performedto
evaluate these methods for 16-QAM and QPSK, and for DM
and NDM links. Results suggest a significant improvement by

the proposed detectors for DM links with up to 10 times lower
SER for QPSK and up to 14 times lower SER for 16-QAM,
compared to DBP.

The VA-SDBP can provide optimal decisions on the trans-
mitted sequence, but does so at a high computational cost.
Alternatives to consider are low-complexity variations ofthe
VA, as well as algorithms that provide symbol-wise optimal
decisions, such as the Bahl-Cocke-Jelinek-Raviv (BCJR) al-
gorithm [42].

Further gains over the proposed algorithms may be possible
and remains the topic of ongoing and future research. Lower
SER can be expected by increasing the memory in VA-SDBP
until the SER gains saturate. In addition, the use of a matched
filter is not necessarily optimal. Initial results in this direction
can be found in [38]. Finally, in SBS-SDBP, DD-SDBP, and
VA-SDBP, the particles after matched filtering and sampling
are approximated with a multivariate Gaussian distribution,
which need not be a good approximation, especially at high
input powers. Other types of distributions should be consid-
ered.
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