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Characteristics of Dynamic Cervical Vertebral Kinematics for Female and Male Volunteers in
Low-speed Rear Impact, based on Quasi-static Neck Kinematics

Fusako Sato, Taichi Nakajima, Koshiro Ono, Mats Svensson, Koji Kaneoka

Abstract The purpose of this study is to clarify the dynamic characteristics of inertia-induced cervical
vertebral kinematics for both female and male volunteers in low-speed rear impact conditions by comparing
guasi-static muscle-induced neck kinematics. Two series of volunteer tests were used. One is data from a rear
impact sled test series with 2 females and 4 males. The second set of data is from a voluntary neck bending test
series with 4 females and 9 males. Cervical vertebral motions were measured by a cineradiography system. The
same volunteers in the first test series also participated in the second test series.

C4/C5 through C6/C7 showed larger extension angle in the peak S shape than maximum voluntary retraction
for females. In contrast, the peak S shape was in the maximum voluntary retraction for males. The rearward
displacements at C6/C7 in the peak S shape exceeded the maximum voluntary extension for females. The
vertebral angular displacement at C5/C6 was greatest in the peak extension and exceeded the voluntary
extension, especially for females. The vertebral normalised displacements in X-direction at C5/C6 and C6/C7
showed larger rearward displacements in the peak extension than the voluntary extension, and exceeded the
maximum voluntary extension for both genders.
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I. INTRODUCTION

Whiplash associated disorder (WAD) caused by vehicle crashes is a worldwide problem. WADs occur in
impact from all directions, and more frequently in rear impacts than in any other type of automobile impacts
[1-2]. Under such circumstances, preventive measures for WAD in rear impacts have been focused and installed
in car seats. In order to reduce the risk of WAD, several types of advanced seat with concepts for whiplash
protection have been introduced since the late 1990s [3-6]. As reported by Kullgren [7-8], those types of seat
have achieved a reduction of the risk of WAD and proved to be more effective for males than females,
according to insurance claims records. The susceptibility of females to WAD has been the focus of many
previous studies. Numerous epidemiologic studies have shown that females tend to sustain WAD with higher
frequency. Carlsson [9] summarised those studies and reported that the relative injury risk of sustaining WAD
was approximately 1.5 to 3 times higher for females compared to males in rear impacts. Harder [10] and Cassidy
[11] reported that gender is a significant factor of a longer recovery after sustaining a WAD. Therefore, further
investigations to reveal gender differences in the injury biomechanics for WAD are needed in order to prevent
WAD more effectively for females as well as males.

The gender differences of dynamic response in rear impacts have been analysed by conducting human
volunteer tests, showing females have greater forward accelerations at head and T1 and a more pronounced
rebound than males [9][12-15]. Stemper [16] conducted rear impact sled tests with post mortem human
head-neck complexes with retro-reflective targets inserted in each vertebra. The study found that the female
specimens had larger cervical intervertebral angles and a more pronounced S shape deformation of cervical
spine compared to the male specimens. Ono [17] indicated such gender differences on cervical vertebral
kinematics based on cineradiography data obtained by rear impact sled tests with female and male volunteers.

Previous studies conducting static experiments have also found gender differences. Females have a larger
total range of flexion-extension motion [18-20], with a smaller total range of retraction-protrusion motion [21].
Those studies analysed static end point positions of the cervical spine. Therefore, there is a lack of continuous
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data of cervical vertebral kinematics in quasi-static neck motion, although several studies have acquired cervical
kinematics continuously throughout the entire neck motion [22-25].

Ono [26-27] investigated dynamic characteristics of cervical vertebral rotation in rear impact sled testing
compared to voluntary muscle-induced neck extension. The study showed that vertebral angle from horizontal
plane was largest at C5 around 100 ms under rear impact condition, while vertebral angle was gradually larger
from lower to upper vertebrae under voluntary neck extension. However, the study focused on one male
volunteer and did not analyse gender differences.

The goal of this study is to clarify the dynamic characteristics of inertia-induced cervical vertebral kinematics
for both female and male volunteers in low-speed rear impact conditions by comparing quasi-static
muscle-induced cervical vertebral kinematics in voluntary neck motion in order to approach the susceptibility of
females to WAD.

Il. METHODS

Two series of volunteer tests were used. One is data from a rear impact sled test series with 2 females and 4
males at 6 km/h by Ono [17] (Test Series 1). The second set of data is from a voluntary quasi-static neck bending
test series with 4 females and 9 males, which has not been previously published (Test Series 2). The two test
series were conducted in the same period, and the same volunteers in Test Series 1 also participated in Test
Series 2. Details of the subjects are provided in Table 1. In both test series, sequential X-ray images of cervical
vertebral kinematics were acquired by a cineradiography system (Integris Allura BH-5000, Philips Medical
System) at the University of Tsukuba Hospital. The time histories of the cervical vertebral kinematics were
reanalysed with the sequential X-ray images. The complete description of Test Series 1 [17] and detailed
investigations of the overall neck and cervical vertebral kinematics [28] have been published in separate papers.

All subjects gave written informed consent after explanation of the protocol. All procedures in this study
were approved by the Institutional Review Board of the Medical Department at University of Tsukuba, and
adhered to the guidelines of the Ethics Committee.

TABLE |
DETAILS OF THE VOLUNTEERS IN TEST SERIES 1 AND 2
Age Height Weight Initial C7 angle

Age Height Weight Initial C7 angle

ID Test Sex ID Test Sex

[year] [cm]  [kg] [deg] [year] [cm]  [kg] [deg]

-1 1&2 F 23 164 50 -7 24 2 F 24 166 51 -5
1l 1&2 F 23 162 46 -4 2-1 2 F 23 158 51 -8
-l 1&2 M 23 176 67 -16 241 2 M 24 181 77 -15
1-v 1&2 M 25 166 61 -10 2-IV 2 M 22 172 69 -22
1V 1&2 M 25 171 o7 -25 2-V 2 M 25 173 70 -28
1-vIi 1&2 M 24 178 67 -19 2V 2 M 24 172 64 -37

2-Vil 2 M 25 172 67 -38

Test Procedures — Test Series 1

Figure 1 shows a schematic of the mini-sled system. The mini-sled system had a rigid seat mounted to a sled on
2 m horizontal rails. The rigid seat, with a seatback angled 20° from the vertical, was accelerated by release of a
compressed spring installed on the end of the sled, and decelerated by a hydraulic damper on the anterior part
of the rails. The sled acceleration and velocity are shown in Figure 2. The A V was 5.8 km/h and the peak
acceleration was 42 m/s’. Volunteers were seated on the rigid seat and asked to relax. The cervical vertebral
kinematics was captured at 60 fps by the cineradiography system.
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Fig. 1. Scheme of Test Series 1. Fig. 2. Time history of the sled acceleration and velocity, Test Series 1.

Test Procedures — Test Series 2

Volunteers were seated on the rigid seat used in Test Series 1 and asked to relax. Volunteers were instructed in
moving their cervical spine to three positions in their normal quasi-static physiological motion: 1) maximum
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extension (face toward ceiling); 2) maximum flexion (chin-to-chest); and 3) maximum retraction (maximal
rearward gliding or posterior translation of the head while zero sagittal rotation is maintained) [29]. Volunteers
practiced the three motions before testing. Then, sequential X-ray images of their neck motions were acquired
at 15 fps by the cineradiography system. The acquisition was conducted only one time in each neck motion to
reduce radiation dose as much as possible.

Definitions of the Lower Cervical Vertebra Coordinate Systems

The lower cervical vertebral coordinate system portrayed in Figure 3 was defined, and cervical vertebral
kinematics was analysed in the coordinate system in this study. The origin of the coordinate system was at the
most inferior and posterior point of the lower vertebral body. Its x-axis was along the inferior surface of the
vertebral body along a line posterior point to anterior point of vertebral body. The x-axis is positive forward,
and the z-axis positive downward. For the occipital condyle, the lower cervical vertebra coordinate was created
with two inferior points, represented as red dots in Figure 4. The initial C7 angle of the x-axis in the global
coordinate system was summarised in Table I. In the global and lower cervical vertebra coordinate systems, the
positive direction is extension angle and negative flexion angle.

Occipital
Condyle ,/

g« 0

Fig. 3. Definitions of the lower cervical vertebra

e
=

coordinate systems. Fig. 4. Digitised points for the Occipital condyle and C1.

Analysis of Cervical Spine Kinematics

Templates of cervical vertebrae and bottom region of the skull around the occipital condyle were prepared for
each subject with the initial X-ray image acquired by the cineradiography. The templates shown as blue and red
dots in Figure 4 were fitted to each vertebra over sequential X-ray images and four edges of vertebral body and
zygapophysial joint were digitised. Those digitised points were represented as red dots in Figure 3 and 4. Two
inferior points, represented as red dots in Figure 4, were digitised at the occipital condyle and C1. The midpoint
between the two inferior points of each vertebral body was tracked in the lower vertebral coordinate system to
obtain the translational displacement of the vertebrae. Then, the translational displacement was normalised by
the length between the two inferior points of the adjacent inferior vertebra, represented as red dots in Figure 3.
The vertebral angular displacements were calculated as the angle of a line connecting the two inferior points,
and done in the global and lower vertebral coordinate system. In order to smooth the digitised raw data, spline
interpolation was applied. Plots were extracted at every 10 ms in Test Series 1. For Test Series 2, time was
normalised by the time at maximum extension, flexion or retraction, and the duration was divided into 12
sections. Afterwards, the average and standard deviation were calculated at every 10 ms in Test Series 1 and
each section in Test Series 2. Differences between genders and between Test Series 1 and 2 were examined for
statistical significance using Student's unpaired t-test. The total number of cineradiography images for one test
was around 15-20 with 16.67 ms intervals in Test Series 1, and 15-25 with 66.67 ms intervals in Test Series 2.
The dose of exposure was 0.016 mGy per frame, and total radiation dose of a series of sequential X-ray images
was less than an abdominal computed tomographic scan for normal medical purposes. The resolution of
cineradiography images was 1280 x 1024 pixels (approximately 7.3 pixels/mm). The mean errors of the digitised
data on the inter-observer variations were 0.7 degrees in rotational angle, 0.44 mm in horizontal direction and
0.25 mm in vertical direction. In the mean error evaluation, an X-ray image was picked up from the sequential
X-ray image sets, and observers digitized the same X-ray image.

Ill. RESULTS

Dynamic inertia-induced vertebral kinematics was obtained by analysing sequential X-ray images acquired
with a cineradiography in Test Series 1. Details of dynamic inertia-induced vertebral kinematics were reported
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in our previous study [28]. The data in that study was utilised in comparison between dynamic inertia-induced
and quasi-static muscle-induced vertebral kinematics. Figure 5, Figure 6 and Figure 7 show sequential X-ray
images in Test Series 2. Quasi-static muscle-induced vertebral kinematics was tracked using these images.

Start Max. extension
Fig. 5. Sequential X-ray images of voluntary neck extension in Test Series 2. The volunteers shown in these images
were the same subjects as those reported by Sato [28].

Start Max. flexion
Fig. 6. Sequential X-ray images of voluntary neck flexion in Test Series 2. The volunteers shown in these
cineradiography images are the same subjects as those in Fig. 5.

Start Max. retraction
Fig. 7. Sequential X-ray images of voluntary neck retraction in Test Series 2. The volunteers shown in these
cineradiography images are the same subjects as those in Fig. 5.

Quasi-static Muscle-induced Vertebral Kinematics

Figure 8 shows the average time histories of the vertebral angular displacement for all participants in voluntary
neck extension, flexion and retraction, respectively. The vertebral angular displacements were described
relative to C7. The vertebral angular displacements exhibited positive values in voluntary neck extension, and
negative values in voluntary neck flexion at all vertebral levels. In voluntary neck retraction, the vertebral
angular displacement exhibited negative values at upper vertebrae and positive values at lower vertebrae.
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Figure 9, Figure 10 and Figure 11 show the average time histories of the vertebral angular and normalised
translational displacement for both genders in their voluntary neck extension, flexion and retraction,
respectively. The vertebral displacements were described in the lower cervical vertebra coordinate system.
With voluntary neck extension shown in Figure 9, all vertebral segments rotated in extension, except that C5/C6
exhibited flexion angle slightly in the early stage for female. The normalised translational displacement in
X-direction was forward at upper vertebral segments, and rearward at lower vertebral segments for both
genders. Conversely, in Figure 10, voluntary neck flexion placed all vertebral segments in flexion rotation,
except that OC/C1 rotated in extension slightly in the middle stage for female. The normalised translational
displacements in X-direction also showed opposite trends, with upper vertebral segments in rearward and
lower vertebral segments in forward for both genders. In contrast, with voluntary neck retraction in Figure 11,
OC/C1 through C5/C6 rotated in flexion and C6/C7 in extension for females. For males, OC/C1 through C4/C5
rotated in flexion, and C5/C6 and C6/C7 in extension.

Figure 12, Figure 13 and Figure 14 show gender comparisons of the vertebral angular and normalised
translational displacement at maximum voluntary neck extension, flexion and retraction, respectively. The
vertebral displacements were described in the lower cervical vertebra coordinate system. In Figure 12, OC/C1
and C4/C5 showed the largest extension angle at maximum voluntary neck extension. This result corresponded
to previous studies [29-32]. C4/C5 also exhibited the largest rearward displacement. With maximum voluntary
neck flexion in Figure 13, C1/C2 was the greatest angular displacement for females, and C5/C6 for males.
Maximum voluntary neck retraction shown in Figure 14 produced the most flexion angle at C1/C2, with greater
values for females than males. In gender comparisons of angular displacement and normalised translational
displacement in X-direction, maximum voluntary neck extension was greater for females than males, and
maximum voluntary neck flexion for males than females from C2 through C7, with correspondence to a
previous study reported by Yukawa [20].
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Fig. 8. Average time histories of the vertebral angular displacement relative to C7 for all volunteers in Test Series
2. The positive side is extension angle and negative flexion angle. Figure Al shows these average time histories
for both genders respectively in Appendix.
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Fig. 9. Average time histories of the vertebral displacement in the lower cervical vertebra coordinate system
during voluntary neck extension in Test Series 2. The x-direction is positive forward. The z-direction is positive
downward. For rotation, the positive side is extension angle and negative flexion angle.
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Fig. 10. Average time histories of the vertebral displacement in the lower cervical vertebra coordinate system
during voluntary neck flexion in Test Series 2. The x-direction is positive forward. The z-direction is positive
downward. For rotation, the positive side is extension angle and negative flexion angle.
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Fig. 11. Average time histories of the vertebral displacement in the lower cervical vertebra coordinate system
during voluntary neck retraction in Test Series 2. The x-direction is positive forward. The z-direction is positive
downward. For rotation, the positive side is extension angle and negative flexion angle.
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Fig. 12. Gender comparisons of the vertebral displacement in the lower cervical vertebra coordinate system at
maximum voluntary neck extension in Test Series 2. The average values in coloured bars, standard deviation in
black lines and p-values from t-test. The x-direction is positive forward. The z-direction is positive downward.

For rotation, the positive side is extension angle and negative flexion angle.
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Fig. 13. Gender comparisons of the vertebral displacement in the lower cervical vertebra coordinate system at
maximum voluntary neck flexion in Test Series 2. The average values in coloured bars, standard deviation in
black lines and p-values from t-test. The x-direction is positive forward. The z-direction is positive downward.
For rotation, the positive side is extension angle and negative flexion angle.
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Fig. 14. Gender comparisons of the vertebral displacement in the lower cervical vertebra coordinate system at
maximum voluntary neck retraction in Test Series 2. The average values in coloured bars, standard deviation in
black lines and p-values from t-test. The x-direction is positive forward. The z-direction is positive downward.
For rotation, the positive side is extension angle and negative flexion angle.

Dynamic Inertia-induced Vertebral Kinematics

Figure 15 shows the average time histories of the vertebral angular and normalised translational displacement
in Test Series 1 for females and males, respectively. The vertebral angular displacement at C1/C2 exhibited the
greatest peak flexion angle at time between 90 ms and 100 ms for both genders. At that point in time, OC/C1,
C1/C2 and C2/C3 rotated in flexion, while C4/C5, C5/C6 and C6/C7 in extension. Therefore, the cervical spine
was exposed to an S shape. The lower neck extension was larger for females than males, giving the female
necks a more pronounced S shape. The vertebral normalised displacement in X-direction varied between spinal
segments, with larger differences between segments for females than males around the peak S shape. The
vertebral normalised displacement in Z-direction at C1/C2 exhibited the greatest peak upward displacement
around the peak S shape for both genders.

The dynamic inertia-induced vertebral kinematics described above was compared to the quasi-static
muscle-induced vertebral kinematics obtained in Test Series 2. Figure 16 shows the average time histories of the
vertebral angular displacement relative to C7 for all participants in Test Series 1. OC and C1 rotated in flexion,
with the other vertebrae in extension until 110 ms. Afterwards, all vertebrae rotated in extension. On the other
hand, in the quasi-static muscle-induced vertebral kinematics, all vertebrae rotated in extension and no S shape
deformation was observed in voluntary neck extension (Figure 8 (a) and Figure 9). The differences of cervical
spine response observed in this study corresponded to previous studies reported by Ono [26-27] with one male
volunteer. In addition, the voluntary neck retraction showed upper vertebrae rotated in flexion and lower
vertebrae in extension, and were similar to S shape in dynamic inertia-induced vertebral kinematics (Figure 8 (c)
and Figure 11). Based on these results, the characteristics of dynamic inertia-induced vertebral kinematics was
the peak S shape before 100 ms, and then transition from the peak S shape to extension phase [33-39]. The
peak S shape was compared to the voluntary neck retraction at its maximum position. In the extension phase,
the angular displacement of head (OC) relative to C7 exhibited the greatest peak extension of approximately 35
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degrees around 200 ms in the dynamic inertia-induced vertebral kinematics. Therefore, the peak extension was
compared to the voluntary neck extension at the same angle as the peak extension angle of head (OC) relative
to C7 in dynamic condition.

Figure 17 and Figure 18 show comparisons of the vertebral displacement between the peak S shape and
maximum voluntary retraction. C4/C5 through C6/C7 showed larger extension angle in the peak S shape than
maximum voluntary retraction for females. C4/C5 and C5/C6 of females exhibited extension in the peak S shape,
but flexion in the maximum voluntary retraction. In contrast, the peak S shape was in the maximum voluntary
retraction for males. The vertebral normalised displacement in X-direction from C4/C5 through C6/C7 exhibited
rearward displacement in the peak S shape, while forward at C5/C6 and C6/C7 for females and C4/C5 through
C6/C7 for males in the maximum voluntary retraction. In voluntary neck motion, rearward displacements from
C4/C5 through C6/C7 were observed only in voluntary neck extension (Figure 9 and Figure 12). The rearward
displacements at C6/C7 in the peak S shape exceeded the maximum voluntary extension for females.

Figure 19 and Figure 20 show comparisons of the vertebral displacement between the peak extension and
voluntary extension. The vertebral angular displacements at C4/C5 and C5/C6 were remarkably larger in the
peak extension than voluntary extension for both genders. C5/C6 was greatest in the peak extension and
exceeded the voluntary extension, especially for females. The vertebral normalised displacements in X-direction
at C5/C6 and C6/C7 showed larger rearward displacements in the peak extension than the voluntary extension,
and exceeded the maximum voluntary extension for both genders.

Those comparisons described above with Figure 17— Figure 20 were conducted with the data of volunteers
who participated in both test series (Volunteer ID: |-Vl in Table 1).
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Fig. 15. Average time histories of the vertebral displacement in the lower cervical vertebra coordinate system in
Test Series 1. The x-direction is positive forward. The z-direction is positive downward. For rotation, the positive
side is extension angle and negative flexion angle.
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- 268 -



IRC-15-39

=
w

=
o
T

wn

Angular disp. [deg]
h o
=

[y
(=]

=
w

K

Sled test

WVoluntary Retraction

(a) Female.

Angular disp. [deg]
b hl—o i b
w o w (=T ¥ L B =

lags'] = L

[

Sled test

Voluntary Retraction

(b) Male.

IRCOBI Conference 2015

mOC/Cl

c1/cz
mC2/C3
C3/Ca
mCa/Cs
mC5/Ce
Ce/C7

P-values

between test 1 and 2
++ <0.05
+ <01

P-values

between genders

* % <0.05
* <01

Fig. 17. Comparison of the vertebral angular displacement in the lower vertebra coordinate system between
the peak S shape in Test Series 1 and maximum voluntary retraction in Test Series 2. Average in coloured bars
and standard deviation in black lines. The positive side is extension angle and negative flexion angle.
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system between the peak S shape in Test Series 1 and maximum voluntary retraction in Test Series 2. Average
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IV. DISCUSSION

In order to clarify the dynamic characteristics of cervical vertebral kinematics under rear impact condition for
both genders, the current study compared dynamic inertia-induced cervical vertebral kinematics obtained by
low-speed rear impact volunteer tests with quasi-static muscle-induced cervical vertebral kinematics in
voluntary neck motions. We assumed that the voluntary neck motions would be non-injurious even though the
volunteers were asked to carry out each motion to the maximum limit, but without causing serious discomfort.
These voluntary neck motions would in other words generate large intervertebral displacements between
adjacent vertebrae that still remained within the sub injurious range. The cervical vertebral motion under
inertial loading in sled tests were also sub injurious, but they were involuntary induced to the spinal joints. In
case where the range of quasi-static muscle-induced cervical vertebral motion was exceeded, it was
hypothesised that this additional vertebral displacement would be potentially harmful. In more severe and
injurious real world accidents, it is to be expected that the vertebral motions would follow the same trend as in
the sled tests but exceed the voluntary range of motion to an even greater extent and thus cause tissue damage.
In addition, tissues have viscoelastic material properties, and stiffens as the loading speed increases. In case
where intervertebral displacements under dynamic inertia-induced conditions are the same level as those
under quasi-static muscle-induced conditions, it is also to be expected that cervical spine under dynamic
inertia-induced conditions would be exposed to more severe loading.

Many previous studies [33-39] have focused on S shape deformation of cervical spine observed during rear
impact as the majority of the injury mechanism hypotheses for WAD. The current study showed that the S
shape was a main characteristic of dynamic inertia-induced cervical vertebral kinematics. In the S shape phase,
upper vertebrae rotated in flexion and lower vertebrae in extension similarly to the voluntary neck retraction.
Ordway [29] reported that the voluntary neck retraction produced greater flexion angles at the upper cervical
vertebrae than the voluntary neck flexion, and smaller extension angles at the lower cervical vertebrae than the
voluntary neck extension. Those trends correspond to results of the Test Series 2 in this study (Figure 12 (a),
Figure 13 (a) and Figure 14 (a)). In the voluntary neck retraction, the lower cervical vertebrae reached limits of
extension angle, even though those limits were smaller than maximum extension angle observed in voluntary
extension. The phenomenon could be caused by interactions between muscles and ligaments and so on around
cervical spine, and the S shape beyond the voluntary neck retraction would have a potentially harmful effect on
a neck. Therefore, in this study, the peak S shape was compared to the voluntary maximum neck retraction to
estimate potential of neck injury.

The fact that the female volunteers exhibited a more pronounced S shape could be part of the explanation
as to why females are more susceptible to WAD than men. An increased S shape indicates larger local
intervertebral displacements that in turn could cause more severe strain and loading to for instance the facet
joints. The more pronounced s-shape will likely cause greater strain on the facet joint capsules and higher
pressure magnitudes in the spinal canal during the whiplash motion. These pressure transients have been
suggested to be the cause of dorsal root ganglion injuries [40]. These differences between the genders could
potentially explain the higher injury risk in females.

Carlsson [9] investigated a rear impact volunteer test series with 11 males and 12 females [13] at the same
impact level as that of Test Series 1 in this study. Head to head-restraint contact time was 91 ms for females and
100 ms for males at a AV of 8 km/h in that study. Pramudita [41] conducted a rear impact volunteer test series
at the same impact level as this study, and reported that head to head-restraint contact time was 95 ms for
males with the maximum sled acceleration of 40 m/s’. This study showed that the peak S shape was observed
around those head to head-restraint contact timings. At the peak S shape, C4/C5 through C6/C7 rotated in
extension and exceeded maximum voluntary retraction for females. In addition, the rearward displacements at
C6/C7 at the peak S shape exceeded the maximum voluntary extension for females. Therefore, the female
volunteers in those studies had possibilities to be exposed to pronounced S shape deformation beyond
voluntary muscle-induced vertebral kinematics.

Previous studies have investigated the prevalence of neck pain at the cervical zygapophysial joint in rear-end
impacts and reported that the majority of patients experienced chronic pain at either C2/C3 [42] or at C5/C6
[42-44]. The study of a rear impact test series with cadavers [45] reported that small damages were found at
C5/C6 and C6/C7 level at autopsy. In this study, C2/C3 showed most forward displacement at the peak S shape
for females. C5/C6 and C6/C7 exhibited larger extension at the peak S shape and peak extension than voluntary
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muscle-induced vertebral kinematics, especially for females. In addition, rearward displacements at C5/C6 and
C6/C7 exceeded those in the maximum voluntary extension for both genders.

In the future, the vertebral motions obtained in these volunteer tests can be used in the evaluation of
human model neck kinematics. It is requisite that future female and male human body models exhibit the same
trends as the female and male volunteers respectively. Such human body models will be essential in detailed
real world accident reconstructions. There they can give indications of how various vertebral motion and
loading parameters correlate to real world injury risk. Once critical vertebral motion and loading parameters
have been identified, biofidelic female and male human body models will also become valuable tools in seat
and head restraint development.

Limitations

Firstly, the cineradiography data were taken with 2 female and 4 male volunteers in Test Series 1, and 4 female
and 9 male volunteers in Test Series 2. It was insufficient to generalise gender characteristics of cervical
vertebral kinematics under dynamic and quasi-static conditions. Corridors of vertebral displacements were
shown in Appendix, and variations between individual volunteers were not so small as to be negligible. Since all
volunteers were in their twenties, is was difficult to discuss gender differences through all ages based on this
study. In addition, the collection rate of the cineradiography was much lower than was generally used for
impact studies with PMHS [45] in order to conduct the sled testing within no risk from radiation exposure.
However, the cineradiography data are valuable and significant in revealing cervical vertebral kinematics.
Secondly, in some X-ray images, C1 was partially outside of the frame, such as the last frame of Figure 6. In that
case, the template was fitted with visible part in the frame and the kinematics of the vertebra was extracted by
digitising the template. Also, effects of the distortion and noise in X-ray images were minimised by
superimposing templates. However, there would be still some analytical errors. Thirdly, since the volunteers
were not at risk of being injured, the sled pulse was set at a level below causing neck injury. Furthermore, the
tests were conducted using an experimental rigid seat without head-restraint. Therefore, extrapolations would
be needed to predict the cervical kinematicsusing a commercial vehicle seat with head-restraint under real
world accident level.

V. CONCLUSIONS

This study investigated the dynamic characteristics of inertia-induced cervical vertebral kinematics in
low-speed rear impact conditions for both genders by comparing quasi-static muscle-induced vertebral
kinematics. The following most important findings were obtained.

e The dynamic inertia-induced vertebral kinematics showed the peak S shape at time between 90 ms and
100 ms, and transition from the peak S shape to extension phase for both genders.

In the quasi-static muscle-induced vertebral kinematics, all vertebrae rotated in extension and no S

shape deformation was observed in voluntary neck extension.

e (C4/C5 through C6/C7 showed larger extension angle in the peak S shape than maximum voluntary
retraction for females. In contrast, the peak S shape was in the maximum voluntary retraction for males.

e The rearward displacements at C6/C7 in the peak S shape exceeded the maximum voluntary extension
for females.

e The vertebral angular displacement at C5/C6 was greatest in the peak extension and exceeded the
voluntary extension, especially for females.

e The vertebral normalised displacements in X-direction at C5/C6 and C6/C7 showed larger rearward
displacements in the peak extension than the voluntary extension, and exceeded the maximum voluntary
extension for both genders.
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VIII. APPENDIX
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Fig. Al. Average time histories of the vertebral angular displacement relative to C7 for females and males in Test
Series 2. The positive side is extension angle and negative flexion angle.
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coordinate system during voluntary neck retraction in Test Series 2. The corridors were defined as the average *
one standard deviation from the average. The x-direction is positive forward. The z-direction is positive

C5/CE6 Norm. Diep. X C4/C5 Norm. Diep. X C8/C4 Norm. Diep. X C2/C8 Norm. Diep. X C1/C2 Norm. Diep. X OC/Cl Norm.Diep. X

C6/C7 Norm. Diep. X

03
02
01

-0.1
-02
-03

03
02
01

=01
-02
=03

03
02
0.1

-0.1
-02
-03

03
02
01

=01
-02
-03

:#
0 4 8 12
MNormalised time

0 4 8 12
Normalise time
-f“
0 4 8 12
Normalised time
e ———————————
0 4 8 12
Normalised time
-#
0 4 8 12
Normalised time
mi———
0 4 8 12
MNormalised time
-#
0 4 8 12

Normalised time

(b) Normalised displacement in X
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(c) Normalised displacement in Z

downward. For rotation, the positive side is extension angle and negative flexion angle.
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