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The transformation of kinetically unstable plasma eigenmodes into hole-clump pairs with tempo-

rally evolving carrier frequencies was recently attributed to the emergence of an intermediate stage

in the mode evolution cycle, that of an unmodulated plateau in the phase space distribution of fast

particles. The role of the plateau as the hole-clump breeding ground is further substantiated in this

article via consideration of its linear and nonlinear stability in the presence of fast particle colli-

sions and sources, which are known to affect the production rates and subsequent frequency sweep-

ing of holes and clumps. In particular, collisional relaxation, as mediated by e.g. velocity space

diffusion or even simple Krook-type collisions, is found to inhibit hole-clump generation and

detachment from the plateau, as it should. On the other hand, slowing down of the fast particles

turns out to have an asymmetrically destabilizing/stabilizing effect, which explains the well-known

result that collisional drag enhances holes and their sweeping rates but suppresses clumps. It is fur-

ther demonstrated that relaxation of the plateau edge gradients has only a minor quantitative effect

and does not change the plateau stability qualitatively, unless the edge region extends far into the

plateau shelf and the corresponding Landau pole needs to be taken into account. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931468]

I. INTRODUCTION

Signals with rapidly shifting carrier frequencies are reg-

ularly observed in laboratory1–6 and naturally occurring7

plasmas. Extensive modelling has shown that their presence

can be attributed to the formation and subsequent evolution

of phase space holes and clumps in a non-thermal distribu-

tion of fast particles. The holes and clumps are nonlinear

structures of Bernstein-Green-Kruskal (BGK) type8 that

extend in both momentum and real space, so named because

they carry a particle deficit/surplus as compared to the sur-

rounding particle distribution.9–13 Disregarding the effects of

fast particle collisions and sources, they arise symmetrically

shifted off the wave-particle resonance of a kinetically unsta-

ble bulk plasma eigenmode. Once firmly established, they

tend to balance dissipative wave damping in the background

plasma with the energy tapped by traversing fast particle

phase space as coherent entities. The resulting convective

motion is synchronized to an evolution in the carrier frequen-

cies of the corresponding signals, which gives rise to charac-

teristic temporal sweeping patterns in the Fourier

spectrograms.14 When fast particle collisions and sources are

taken into account, the nonlinear development of the eigen-

mode depends upon the type and rate thereof. Previous mod-

elling has shown that whereas velocity space diffusion (e.g.,

pitch-angle scattering, energy diffusion, and scattering in ra-

dio frequency wave fields) and Krook-type collisions essen-

tially act to inhibit hole-clump generation,15,16 slowing down

of the fast particles actually promotes, in particular, the for-

mation of holes.12,17

The actual transformation of the unstable eigenmode

into a hole-clump pair was recently attributed to the appear-

ance of an intermediate stage in the mode evolution

sequence, that of a plateau in the phase space distribution of

fast particles and dissipative destabilization of negative-

energy eigenmodes associated with that plateau.18 However,

the analysis of Ref. 18 was limited to the case of a collision-

less energetic particle distribution, governed by the Vlasov

rather than the Boltzmann equation, and moreover concerned

only an idealized plateau velocity profile with a uniform in-

terior and discontinuous jumps at the plateau edges. It is the

purpose of the present article to further substantiate the pla-

teau hypothesis for hole-clump production by extending the

theory of Ref. 18 to include fast particle collisions and sour-

ces and account for more realistic, continuous plateau veloc-

ity profiles. Both steps are indeed necessary for the

advancement of the plateau paradigm: As already mentioned,

various types of fast particle collisions play decisive roles in

the hole-clump formation process and, moreover, tend to

relax the plateau edge gradient away from that of the discon-

tinuous shelf model. However, plateaux with extended edge

regions emerge in collisionless simulations too, especially

when the unstable eigenmode is weakly driven close to its

stability threshold.

The remainder of this article is organized as follows:

Sec. II gives a brief introduction to the one-dimensional

bump-on-tail model, which provides a simple framework

for the description of hole-clump formation and will there-

fore be the consideration of this work. More detailed sur-

veys on the logic behind such a simplification can be found

elsewhere,16,19 but the essential idea is that wave-particle

interaction in an isolated resonance can be represented by aa)frida.eriksson@chalmers.se
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one-dimensional model.20 Section III accounts for the

occurrences of plateaux in various parameter regimes, far

and marginally above the instability threshold and with and

without fast particle collisions and sources. Then, in Secs.

IV and V, nonlinear and linear calculations are presented,

which attempt to explain the main features of Sec. III in

terms of plateau stability theory. The focus of these sections

is on the impact of deviations from the ideal plateau of Ref.

18 and the effects of fast particle collisions. Finally, Sec.

VI summarizes the preceding sections and concludes the

article.

II. MODEL EQUATIONS

We consider an electrostatic travelling wave with spatial

period k and wave number k¼ 2p/k in a one-dimensional,

uniform equilibrium plasma. The wave carrier frequency is

assumed to be high enough that the plasma can be separated

into a cold bulk, comprised of electrons and immobile ions,

and a population of energetic electrons that may interact res-

onantly with the wave and therefore needs to be treated sepa-

rately. Further, the perturbed electric field E(x, t) is assumed

to be small enough that the cold electron response is linear,

and so their perturbed fluid velocity V (x, t) satisfies the line-

arized fluid equation of motion

@V

@t
¼ � e

m
E� 2cdV: (1)

Here, e and m are the (magnitude of the) charge and mass of

the electron, respectively. The last term in Eq. (1) damps the

velocity perturbation linearly (at a rate set by the parameter

cd) and has been introduced in order to mock up various

types of dissipative wave damping present in more realistic

systems.21–24

The fast electrons are described kinetically in terms of a

phase space distribution F(x, v, t) that evolves according to

the kinetic equation

@F

@t
þ v

@F

@x
� e

m
E
@F

@v
¼ C F½ � þ S vð Þ: (2)

The right hand side of Eq. (2) represents fast particle colli-

sions and sources, whose combined action is to relax F
towards an equilibrium, or unperturbed, distribution F0(v)

that, for simplicity, is taken as a constant, positive slope

throughout the wave-particle resonance. They are modeled

as the following combination of three operators, commonly

known as Krook-type collisions, collisional drag, and veloc-

ity space diffusion

C F½ � þ S vð Þ ¼ �b F� F0ð Þ þ a2

k

@

@v
F� F0ð Þ

þ �
3

k2

@2

@v2
F� F0ð Þ: (3)

The system of equations is closed by means of

Amp�ere’s law, which relates the perturbed currents in the

two electron species to the electric field

@E

@t
¼ e

�0

n0V þ
ð

v F� F0ð Þdv

� �
: (4)

Here, n0 is the unperturbed density of cold electrons (and

immobile ions).

Assuming that the energetic electrons are of low density

as compared to n0, their perturbed current in Eq. (4) will be

much smaller than that of the bulk electrons. If also the dissi-

pation is assumed weak (in particular, if cd is significantly

smaller than the wave carrier frequency), the perturbed elec-

tric field may be accurately represented as a single sinusoidal

mode that oscillates at the electron plasma frequency

xpe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=m�0

p
,

Eðx; tÞ ¼ AðtÞ cos ðkx� xpetÞ; (5)

and whose amplitude A evolves slowly in time as compared

with the mode oscillations, d ln A=dt� xpe. The fast elec-

trons are then most conveniently described in a frame that

moves at the wave phase velocity xpe/k. All simulations in

the present work are performed by means of a numerical

algorithm, previously described in Ref. 12 and currently

available online,25 that, given a profile for F0 and values for

cd, b, a, and �, solves Eqs. (1)–(4) for the nonlinear evolution

of E(x, t) and F(x, v, t).

III. THE OCCURENCE OF PHASE SPACE PLATEAUX
DURING HOLE-CLUMP FORMATION

The collisionless regime, with b¼ �¼ a¼ 0, was previ-

ously described in Ref. 18, but is discussed here in more

detail. In the absence of dissipation, cd¼ 0, the inverted

slope of the unperturbed fast particle distribution F0 causes

wave growth due to phase mixing at linear rate

cL ¼ ðpx3
pe=2k2n0ÞdF0=dv. As the mode amplitude increases

and the eye-shaped, flattened trapping region, bounded by

the so called separatrix orbit, broadens its velocity width in

phase space, the energy transfer from the fast particles grad-

ually declines. It eventually ceases when the phase mixing

can extract no more energy, at which point the wave ampli-

tude has saturated at xB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekA=m

p
¼ 3:2cL.26 The satura-

tion level is modulated, however, with sideband oscillations

separated from xpe by roughly 0.4cL.12 Their presence is due

to narrow, circulating bands, remnants from imperfect phase

mixing on barely trapped orbits just inside the separatrix.

In the presence of dissipation, the linear growth rate

alters to cL� cd. Far above the instability threshold, when cd

� cL, the initial growth is then not very different from the

dissipationless case. As the amplitude increases, the similar-

ities wither, however, as shown in Fig. 1(a). Instead of satu-

rating, the amplitude now reaches an initial peak value at

which the energy transfer mediated by the phase mixing is

balanced by the power dissipated in the bulk plasma. Beyond

the maximum, the dissipation dominates and induces a decay

on the longer time scale 1/cd. The decline is oscillatory, how-

ever, again due to imperfect phase mixing on barely trapped

orbits. As the amplitude decays, trapped particles gradually

seep through the separatrix of the shrinking trapping region

and begin to stream freely, which ultimately generates an

almost completely rectangular, or unmodulated, phase space
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plateau in the fast particle distribution, as portrayed in Ref.

18. The plateau is centered at the initial resonant velocity

xpe/k and has a width slightly less than that of the separatrix

at the amplitude maximum. At this stage, the initial mode is

damped out and kinetically stable, but there are shifted

resonances situated just inside the edges of the flat plateau

region, responsible for a small modulation of the plateau

edge, which begin to grow and eventually evolve into a hole-

clump pair that detaches from the plateau.

The role of the plateau as a hole-clump breeding ground

persists near the instability threshold too, although its build-

up process is much more complex when the time scales of

drive and damping are compared. Since the linear growth

rate cL� cd is small, it takes a longer time to reach the initial

amplitude peak, but once there the high dissipation rate indu-

ces a much faster amplitude drop. As the dissipated power

scales as cdA2, the peak value is significantly lower margin-

ally above than far from the threshold, as illustrated in Fig.

1(b). As a result, the emerging plateau is too small for the

edge resonances to fully take off as holes and clumps.

Instead we observe a series of false starts: The perturbations

appear, form their separate trapping regions and attempt to

detach, but instead trigger the bulk plasma mode, which

phase mixes to a slightly larger amplitude peak than the

previous. The ensuing dissipative damping generates a some-

what wider plateau, with growing edge resonances, and the

entire process repeats until the plateau velocity width is large

enough for hole-clump detachment to proceed, approximately

2cL/k, as shown in Fig. 2(b). However, due to the complicated

sequential build-up process the plateau edges are somewhat

relaxed and its interior coarse-grained as compared to the

smooth and distinct plateau that emerges far above the thresh-

old. Unless otherwise specified, the remainder of this article

focuses on the much simpler case cd/cL¼ 0.1.

Inclusion of fast particle collisions and sources, as

described in Sec. II, has significant impact on the formation

of holes and clumps. As previously mentioned in Sec. I, the

Krook-type collision and velocity space diffusion operators

both inhibit hole-clump production. The respective collision

rates above which no holes and clumps develop are hard to

pinpoint exactly given that there is a range of values

throughout which they appear to form but then damp out.

They lie at roughly b/cL¼ 0.01 and �/cL¼ 0.1, however,

which are low enough values that the collisions do not signif-

icantly interfere with the initial stages that lead to the forma-

tion of the intermediate plateau state. Rather, the

stabilization occurs due to the effect of the collisions on the

plateau, as demonstrated in Figs. 3 and 4 in the case of

FIG. 1. (a) Temporal evolution of the

mode amplitude when cd/cL¼ 0.1 in

the collisionless limit. Note the initial

peak value of x2
B=c

2
L � 8 at around

tcL¼ 18. (b) Amplitude at the initial

peak as a function of cd/cL in the colli-

sionless limit b¼ �¼ a¼ 0.

FIG. 2. Spatially averaged fast particle

distribution in the collisionless limit

for cd/cL¼ 0.1 (a) and cd/cL¼ 0.9 (b),

taken just prior to the hole-clump for-

mation and onset of frequency

sweeping.

FIG. 3. Spatially averaged fast particle

distribution in the presence of Krook-

type collisions with rate b/cL¼ 0.005.

The figures display a hole-clump pair

that detaches from an intermediate pla-

teau state.
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Krook-type collisions. On the contrary, collisional drag turns

out to promote hole-clump formation and detachment. The

effect increases with the collision rate and is asymmetric in

that holes develop at higher rates than clumps and become

more pronounced perturbations in the fast particle distribu-

tion that take off faster with a more rapid frequency shift.

IV. STABILITY OF AN IDEAL PLATEAU

The aim of the present section is to substantiate the role

of the intermediate plateau state via stability analysis of pla-

teau distributions. We first show in Sec. IV A that large

enough plateaux with discontinuous edges, cf. Fig. 5, support

modes with phase velocities close to the shelf edges. The

modes destabilize in the presence of dissipation and evolve

nonlinearly into holes and clumps. We then demonstrate in

Sec. IV B that relaxation of the discontinuous edge, via

inclusion of a narrow transition region with a linear edge

profile, plays a minor role for the plateau stability.

A. Shelf with discontinuous edges

The dispersion relation that governs the linear stability

of the distribution in Fig. 5 was previously derived and ana-

lyzed in Ref. 18, but is discussed here in more detail and

from a different perspective. It is given by

wzþ ipc ¼ log 1þ z½ � � log 1� z½ � � 2z

1� z2
; (6)

where we have introduced the dimensionless variables

z � x� xpe

kDv
; w � p

kDv

cL

; c � cd

cL

; (7)

log denotes the complex logarithm and it has been assumed

that jRe½z�j < 1, in which case the contribution from the

Landau pole vanishes.

A numerical analysis reveals that Eq. (6) has precisely

three complex roots with jRe½z�j < 1 that depend on both w
and c. The solutions are most easily described when c¼ 0.

There is then always a root at z¼ 0, while the complemen-

tary two form a symmetric pair around z¼ 0 that is either

purely real or imaginary, as shown in Fig. 6(a). The transi-

tion occurs at the bifurcation width wc(c¼ 0)¼ 4, beyond

which the symmetric pair gradually tends towards the shelf

edges at z¼61 as w increases. The respective branches,

henceforth denoted z6, were dubbed edge modes in Ref. 18.

FIG. 4. Spatially averaged fast particle

distribution in the presence of Krook-

type collisions with rate b/cL¼ 0.02.

The figures display the intermediate

plateau stage, but no hole-clump

generation.

FIG. 5. Ideal shelf distribution with discontinuous edges.

FIG. 6. (a) The three solutions of Eq. (6) when c¼ 0. The black line is the mode at z¼ 0, while the green and red lines are the real (z6) and imaginary branches,

respectively. The dashed lines represent the shelf edges. (b) Graphical solution to Eq. (6) when c¼ 0. The green and red lines are the right hand side of Eq. (6)

for real and imaginary z, respectively. The black line is the left hand side when w¼wc(0), at which all three lines osculate at z¼ 0 to generate a triple root.

When w>wc(0), the black line intersects merely the green line (away from z¼ 0), which results in real solutions z6, satisfying �1< z–< 0< zþ< 1. On the

contrary, when w<wc(0) the black and red lines intersect, so the roots away from z¼ 0 are conjugated imaginary with diverging magnitudes as w! 0. As in

(a), the dashed lines represent the shelf edges.
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Below the bifurcation width, the pair is conjugated imagi-

nary and diverges symmetrically from z¼ 0 as w decreases.

Nevertheless, the complex mode frequency x¼xpeþ kDvz
remains finite and the instability growth rate tends to cL as w
! 0, thus matching onto the plateau-less bump-on-tail insta-

bility, as it should. A supplementary, and standalone, graphi-

cal solution to Eq. (6) when c¼ 0 is presented in Fig. 6(b)

and its caption.

As shown in Fig. 7, finite dissipation, c> 0, further

distinguishes the solutions to Eq. (6) by separating the

branches. It is found that whilst the mode at z¼ 0 remains

at Re[z]¼ 0 and is therefore dubbed the central mode
and denoted zc, it acquires a negative imaginary part

that tends asymptotically to 0 as w!1. The complemen-

tary two roots still share the branch Re[z]¼ 0 with the

central mode below the bifurcation, which now occurs

at wcðcÞ < wcðc ¼ 0Þ, as shown in Fig. 8(a), and split

into a symmetric edge mode pair that asymptotes to

Re½z6� ¼ 61 as w ! 1. However, the edge modes get

positive imaginary parts with finite c, meaning that they

are driven rather than damped by dissipation. Their

imaginary parts are actually identical beyond wc(c),

eventually approaching 0 as w !1, as seen in Fig. 7.

The branches only separate below wc(c), with one mode

tending to Im½x� ¼ cL � cd and the other to Im[x]¼ 0 as

w ! 0.

While it has been remarked that the shelf model should

be used with caution27 for damped modes, for which the dis-

persion relation can be shown to be discontinuous at the pla-

teau edges if one relaxes the assumption jRe½z�j < 1, the

plateaux observed in the simulations all have w in the range

[2p, 4p] and so their central modes reside far from the shelf

edges. All three modes of such plateaux are therefore fully

consistent with the limitations imposed in Ref. 27, as

previously noted.28 Moreover, large w allows the roots to be

accurately constructed as power series in 1/w. To Oð1=w3Þ,
one obtains

z6 ¼ 6

�
1� 1

w

�
1þ 1

w
ln 2wþ 1=2ð Þ

þ 1

w2
ln2 2wþ ln 2w� 1=2� p2c2
� ���

þ i
pc
w2

1þ 1

w
2 ln 2wþ 1ð Þ

� �
(8)

and

zc ¼ �i
pc
w

1þ 4

w
þ 16

w2
1� p2c2

6

	 
� �
; (9)

which are plotted and compared to the numerically obtained

solutions in Fig. 8(b). Equation (8) clearly demonstrates that

the edge modes are driven by dissipation, which strongly

suggests that the modulations of the plateau edge that were

found to develop into holes and clumps in Sec. III are, in

fact, destabilized edge modes.

In order to verify that unstable edge modes evolve nonli-

nearly into detaching holes and clumps, the numerical algo-

rithm of Sec. II is now set up with an initial plateau

distribution for the fast particles,

Fðx; v; t ¼ 0Þ ¼ C½v� xpe=k�½1� Rðv; Dv; aÞ�: (10)

Here, C ¼ 2k2n0cL=px3
pe is the gradient of the ambient, lin-

ear slope that surrounds the plateau shelf and R is taken to be

a smooth unit rectangle of the form

R v; Dv; að Þ ¼ 1

2

X
6

61ð Þtanh
v� xpe=k6Dv

a=k

� �
; (11)

FIG. 7. Real (left) and imaginary

(right) parts of the roots to Eq. (6)

when c¼ 0.1. The red lines are z6 and

the black lines are zc.

FIG. 8. (a) Dependence of wc on c for

the discontinuous shelf model. Note

that wc! 0 as c! 1, meaning that for

cd� cL, the modes are always separate.

(b) Numerically calculated roots

(6 Re[z6] in red, Im[z6] in green, and

Im[zc]¼�izc in blue) and their

approximations, Eqs. (8) and (9), dot-

ted when c¼ 0.1.
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meaning that a sets the extent of the edge region. In the limit

a ! 0, this choice of initialization tends to the discontinuous

distribution on display in Fig. 5, but the simulations must

always be set up with finite a in order to minimize Gibbs’s rip-

ple phenomenon. Throughout the remainder of this article,

unless otherwise specified, we take a/cL¼ 0.05 and kDv/cL¼ 4

(which corresponds to w¼ 4p). The former is high enough to

avoid ripples, but low enough that the plateau edges are approx-

imately discontinuous, and the latter was chosen in order to rep-

licate the plateaux observed in the simulations of Sec. III.

Fig. 9 indeed demonstrates how unstable edge modes

develop into holes and clumps that take off from the initial

plateau. When they do so, they peel off a portion of the pla-

teau brim, in accordance with Liouville’s theorem. The

somewhat smaller shelf left behind is however still unstable,

as shown in Fig. 9(b), where a secondary hole-clump pair

has just detached and further reduced the plateau width.

B. Shelf with continuous edges

The plateaux observed in the simulations do not quite

sport discontinuous edges, even though their edge gradients

are large, cf. Figs. 2–4, so the question arises as to how sensi-

tive the plateau hypothesis is to relaxation of the shelf edge

gradients. We therefore generalize the model distribution in

this section by including a narrow transition region that line-

arly joins the ambient distribution to the shelf level as in

Fig. 10. Following the procedure outlined in Ref. 18, the dis-

persion relation becomes

wzþ ipc ¼ r � 1

r
log 1þ z½ � � log 1� z½ �
� �

þ 1

r
log 1� r þ z½ � � log 1� r � z½ �
� �

; (12)

where r is defined in Fig. 10 and it has been assumed that

jRe½z�j < 1� r. Note that Eq. (12) reduces to Eq. (6) in the

limit r! 0, as it should.

The solutions of Eq. (12) are very similar to that of the

discontinuous shelf in Section IV A. There are once again

three roots, of which one is a central mode with a negative

imaginary part that vanishes at c¼ 0 and whose magnitude

increases with c. It is supplemented by a symmetric pair that

again bifurcates as w varies, but the bifurcation point and

precise pattern now depend on r as well as c, as shown in

Fig. 11(a). The edge modes tend asymptotically to the edges

of the flat region, at 6(1� r) rather than 61, as w!1, and

for a fixed w the modes shift with the edges towards the pla-

teau center as r increases, as shown in Fig. 11(b). Their

imaginary parts remain almost completely constant, how-

ever, meaning that relaxation of the shelf edge within a nar-

row transition layer has a negligible effect on the plateau

stability. The latter conclusion is further supported by non-

linear simulations of an initial plateau state with w¼ 4p and

a-values ranging up to 0.1cL, which corresponds to roughly

r¼ 0.1. At larger a, however, the hole-clump production

slows down and eventually terminates at a/cL¼ 0.16. The

discrepancy is due to the contribution from the Landau pole

FIG. 9. Spatially averaged fast particle

distribution as the initial shelf is

evolved in the absence of fast particle

collisions. The figure shows two

detaching hole-clump pairs.

FIG. 10. A generalized shelf model with continuous edges.

FIG. 11. (a) Dependence of wc on r
when c¼ 0. (b) Edge modes, 6 Re[zþ]

in red and 10� Im[zþ] in green, as

functions of r when c¼ 0.1 and

w¼ 4p. The black line represents the

edge of the flat region, 1� r.
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associated with a non-negligible slope in the initial distribu-

tion of Eq. (10) at the edge mode resonances, which in fact

reduces the edge mode growth rate.

V. EFFECT OF FAST PARTICLE COLLISIONS

We now proceed to further validate the plateau hypothe-

sis by reconsidering the plateau stability problem in the pres-

ence of fast particle collisions and sources. Inclusion of the

operators in Eq. (3) has essentially two effects. On the one

hand, they act on perturbations from the plateau distribution,

thereby affecting the growth rates (and possibly eigenfre-

quencies) of any instabilities. However, they also tend to

relax the plateau as a whole towards the ambient, linear

slope, which gradually changes the breeding ground for the

modes and thereby their stability. The separation can be

clearly visualized by means of Eq. (2), which after lineariz-

ing splits into two equations: An unmodulated part

@FP

@t
¼ �b FP � F0ð Þ þ a2

k

@

@v
FP � F0ð Þ þ �

3

k2

@2

@v2
FP � F0ð Þ

(13)

that governs the evolution of the spatially averaged

(“plateau”) distribution FP(v, t), and a modulated part

@d F

@t
þ v

@d F

@x
� e

m
E
@FP

@v
¼ �bd Fþ a2

k

@d F

@v
þ �

3

k2

@2d F

@v2

(14)

that determines the perturbation d Fðx; v; tÞ � Fðx; v; tÞ
�FPðv; tÞ.

The linear problem turns out to be analytically tractable

for both the Krook operator and collisional drag, in which

case the procedure is to first solve Eq. (13) and plug the solu-

tion into Eq. (14), which then provides closure for Eqs.

(1)–(4). One should note, however, that the time dependence

of FP leads to time dependent dispersion relations and mode

frequencies that are only valid for d ln x=dt� xpe. The lin-

ear analysis is performed in Subsections V A and V B and

compared with nonlinear simulations. The second order ve-

locity space diffusion operator requires a numerical treat-

ment, however, and is therefore analyzed exclusively

nonlinearly.

A. Collisional relaxation

Starting with the Krook operator, the solution to Eq.

(13) is simply an exponential decay of the initial distribution

towards the linear slope F0,

FPðv; tÞ ¼ F0ðvÞ þ e�bt½FPðv; t ¼ 0Þ � F0ðvÞ�: (15)

Taking, for simplicity, FP(v, t¼ 0) to be the discontinuous

shelf in Fig. 5, the solution in Eq. (15) eventually leads to

the dispersion relation

webtzþ ip cebt � ebt � 1ð Þ
� �

¼ log 1þ zþ ipb=cLwð Þ½ � � log 1� zþ ipb=cLwð Þ½ �

þ 1

1� zþ ipb=cLwð Þ �
1

1þ zþ ipb=cLwð Þ : (16)

The exponential functions on the left hand side are due to the

collisional relaxation of the shelf interior. The presence of

the Krook operator in Eq. (14), on the other hand, results in a

shift of z of the terms on the right hand side of Eq. (16) by

ipb/cLw.

Analyzing first the effect of the shift in the right hand

side terms by setting t¼ 0, it is found that Krook collisions

linearly damp the edge modes: For each pair of values for w
and c, there is a corresponding critical value of b, denoted

bc, above which the edge modes are initially linearly stable.

For c¼ 0.1, it ranges from bc/cL¼ 0.043 at w¼ 2p to

bc/cL¼ 0.014 at w¼ 4p, cf. Fig. 12(a). The latter shows good

agreement with the results of Sec. III, which is actually a

coincidence, as will be explained later on. In a similar fash-

ion, the shift terms reduce the dissipative damping of the

central mode, and there is another b-value above which the

central mode is initially linearly unstable.

Turning now to the effect of the exponentials, it is found

that the condition for initial linear stability is insufficient to

predict the collision rate at which collisional termination of

hole-clump generation from the plateau occurs. To begin

with, the exponential multiplying w increases indefinitely,

which gradually stabilizes the edge modes as time proceeds.

A more important contribution, however, is the square

bracket, which can be viewed as an effective dissipation rate

that evolves as t advances and the plateau relaxes. For c� 1,

it decreases with time, eventually reaching negative num-

bers, which has a stabilizing effect on the edge modes.

Consider a pair of initially linearly unstable edge modes, i.e.

the case Im½x6� > 0 at t¼ 0. The time it takes to reach mar-

ginal stability as the plateau relaxes can be approximated by

the instant at which the effective dissipation rate vanishes,

t	 ¼ �lnð1� cÞ=b. Fig. 12(b) shows a plot of Im½x6�t	 as

function of b, which demonstrates that it is only below

b/cL
 0.0015 that the edge modes increase their amplitude

by an e-folding factor in the time t* and therefore can be

FIG. 12. (a) Rate of Krook collisions,

bc, above which the edge modes are

linearly stable at t¼ 0, as a function of

w when c¼ 0.1. (b) Im[x6]t* as a

function of b/cL when w¼ 4p and

c¼ 0.1.
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considered to survive into the nonlinear phase and evolve

into holes and clumps. Accounting also for the fact that

Im[x6] actually decreases during the relaxation, a more rea-

sonable estimate is that hole-clump production ceases some-

where in the range of b/cL � 0.001.

Nonlinear simulations confirm that Krook-type colli-

sions indeed inhibit the formation of holes and clumps from

an initial plateau, as demonstrated in Fig. 13, slightly below

b/cL¼ 0.001, i.e. close to the rate predicted in Fig. 12(b)

rather than bc. The order of magnitude discrepancy with the

simulations of Sec. III, where hole-clump production was

found to cease around b/cL¼ 0.01, does, however, not

depend on plateau-specific details, such as relaxation of the

edge or non-flatness of the shelf interior. Rather, it stems

from nonlinear excitation of the edge modes due to the pres-

ence of pre-existing sidebands already as the intermediate

plateaux form.

In many aspects, the velocity space diffusion operator is

very similar to that of Krook-type collisions. It inhibits hole-

clump formation at around �/cL¼ 0.05 and it gradually

drives the initial plateau distribution towards the ambient,

linear slope. The relaxation proceeds diffusively, however,

in contrast to the exponential action of the Krook operator.

The effects are illustrated in Fig. 14, which portrays a simu-

lation where the collision rate is high enough that no hole-

clump pairs are created.

B. Slowing down of fast particles

In the presence of collisional drag, the solution to Eq.

(13) is most easily obtained via an intermediate change of

velocity variable to u¼ kvþ a2t, after which one finds that

FPðv; tÞ ¼ FPðvþ a2t=k; t ¼ 0Þ � Ca2t=k; (17)

where again C is the slope of the ambient, linear distribution.

The interpretation of Eq. (17) is that the drag operator simply

convects the plateau down along the slope from the symmet-

rically centered position v¼xpe/k at constant rate a2/k.

Inserting Eq. (17) into Eq. (14), and once more changing ve-

locity variable as above, reveals that any perturbation from

FP merely slides along with the plateau. The dispersion rela-

tion then becomes that of a uniformly shifting plateau.

Taking FP(v, t¼ 0) to be the discontinuous distribution in

Fig. 5, cf. Fig. 15, the dispersion relation becomes

wzþ ipc ¼ log 1þ s tð Þ þ z½ � � log 1� s tð Þ � z½ �

þ 1

1� s tð Þ � z
� 1

1þ s tð Þ þ z
: (18)

FIG. 13. Spatially averaged fast particle distribution as the initial shelf is evolved under the influence of Krook-type collisions acting at rate b/cL¼ 0.005. As

shown, no hole-clump production occurs. Instead, the collisions gradually increase the gradient of the plateau interior until the central mode destabilizes and

eventually establishes a secondary plateau (which is smaller than the initial one because the gradient required for excitation is less than the ambient slope, so

there is less energy to be released by phase mixing).

FIG. 14. Spatially averaged fast parti-

cle distribution as the initial shelf is

evolved under the influence of velocity

space diffusion with collision fre-

quency �/cL¼ 0.1, at which hole-

clump production is subdued. The col-

lisions smear out the plateau edges dif-

fusively, thereby relaxing the shelf

towards the ambient, linear slope.

FIG. 15. Downshifting shelf with discontinuous edges.
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Here, sðtÞ ¼ ða2=kDvÞt and it has been assumed that

�ð1þ sÞ < Re½z� < 1� s.

Inclusion of the plateau shift turns out to significantly

alter the dependence of the roots on the plateau width w, in

particular, for their real parts. First of all, even when c¼ 0,

as demonstrated in Fig. 16, all three modes are forced off

the plasma frequency Re[z]¼ 0. Below the bifurcation,

which now occurs at Re[z]> 0, the real parts of zþ and zc

share a branch that tends to Re[z]¼ 0 as w! 0. The modes

separate at the bifurcation width, after which the central

mode tends to z¼ 0 and zþ towards the upper shelf edge as

w ! 1. Re[z–], on the other hand, shifts indefinitely

towards the lower edge from �0.1 at w¼ 0. With finite c,

the bifurcation disappears altogether, cf. Fig. 17, so the

modes are then truly separate. More importantly, non-

vanishing s affects the growth rates of the edge modes

unevenly when dissipation is present, as demonstrated in

Fig. 17. This tendency can be seen analytically at order

1/w2 in the power series solution of Eq. (8) by taking s to be

Oð1=wÞ, in which case

Im z6½ � ¼
pc
w2

1þ 1

w
2 ln 2wþ 16swð Þ

� �
: (19)

As clearly demonstrated by the 6 in front of the sw-term, the

plateau model offers an explanation, in terms of linear stabil-

ity, for the asymmetry between holes and clumps seen in the

simulations. The results are further confirmed by nonlinear

simulations, cf. Fig. 18.

VI. SUMMARY

The purpose of the present article has been to further

attest the plateau hypothesis for hole-clump formation by

extending the theory of Ref. 18 to account for fast particle

collisions/sources and continuous plateau velocity profiles.

Beyond giving an alternative and supplementary treatment

of the idealized analysis in Ref. 18, two main findings are

presented that both strengthen the conception of phase space

plateaux as hole-clump breeding grounds: (1) Modest relaxa-

tion of the plateau edge gradient plays a minor role for hole-

clump production. However, edge relaxation does become

important when the gradient layer extends so far into the pla-

teau shelf that the corresponding Landau pole cannot be

neglected, in which case stabilization of the edge modes

occurs. (2) The effects of fast particle collisions and sources

conform to the results of current and previous simulations of

FIG. 16. Real (left) and imaginary

(right) parts of the roots to Eq. (18)

when s¼ 0.1 and c¼ 0.

FIG. 17. Real (left) and imaginary

(right) parts of the roots to Eq. (18)

when s¼ 0.1 and c¼ 0.1.

FIG. 18. Spatially averaged fast parti-

cle distribution as the initial shelf is

evolved under the influence of colli-

sional drag, acting at rate a/cL¼ 0.03.

Note the downward shift of the plateau

on the left, visible albeit small, and

that the hole on the right has almost

twice the velocity width of the clump.
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a kinetically unstable plasma mode. Indeed, Krook-type col-

lisions and velocity space diffusion are found to inhibit hole-

clump production by reducing the edge mode growth rates,

mainly via relaxation of the plateau rather than collisional

damping of the modes. More interestingly, collisional drag

generates an up-down asymmetry in the edge mode growth

rates by convecting the entire plateau down along the slope

in the ambient fast particle distribution, thereby explaining

the previously observed preference of holes over clumps in

the presence of fast particle drag. The presented results were

found by means of a fully nonlinear numerical algorithm and

confirmed by linear stability analysis.

The strong-drive focus of the present article, reflected in

the generic choice cd/cL¼ 0.1, was adopted largely to sepa-

rate the dissipative time scale from that of phase mixing in

the initially unstable kinetic resonance, thereby simplifying

considerably the discussion of the plateau formation stage

and its subsequent stability. The authors are aware of the cur-

rent consensus that excitation of Alfv�enic modes tends to

occur close to marginal stability. However, as already men-

tioned, one-dimensional simulations indicate that the role of

the plateau as a hole-clump breeding ground persists when

0< 1� cd/cL � 1. On the other hand, current observations

of bursting toroidal Alfv�en eigenmodes on the ASDEX

Upgrade experiment suggest that kinetic mode excitation

and hole-clump production may occur far above the instabil-

ity threshold too,29 which, in fact, lends experimental justifi-

cation to the current study.
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