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ABSTRACT

Statistical network modeling techniques are increas-
ingly important tools to analyze cancer genomics
data. However, current tools and resources are not
designed to work across multiple diagnoses and
technical platforms, thus limiting their applicability
to comprehensive pan-cancer datasets such as The
Cancer Genome Atlas (TCGA). To address this, we
describe a new data driven modeling method, based
on generalized Sparse Inverse Covariance Selection
(SICS). The method integrates genetic, epigenetic
and transcriptional data from multiple cancers, to
define links that are present in multiple cancers, a
subset of cancers, or a single cancer. It is shown to
be statistically robust and effective at detecting di-
rect pathway links in data from TCGA. To facilitate
interpretation of the results, we introduce a publicly
accessible tool (cancerlandscapes.org), in which the
derived networks are explored as interactive web
content, linked to several pathway and pharmaco-
logical databases. To evaluate the performance of
the method, we constructed a model for eight TCGA
cancers, using data from 3900 patients. The model
rediscovered known mechanisms and contained in-
teresting predictions. Possible applications include
prediction of regulatory relationships, comparison
of network modules across multiple forms of cancer
and identification of drug targets.

INTRODUCTION

Advances in molecular profiling of cancer motivate the de-
velopment of computational tools to access and interpret

the data. For instance, one important goal of cancer sys-
tems biology is to understand how genetic lesions drive the
phenotype of cancer cells and contribute to disease pro-
gression (1,2). Another increasingly important challenge is
to integrate molecular data from several different cancers
to identify common vulnerabilities that can be exploited
therapeutically (3,4). To achieve such aims, effective data-
driven modeling strategies will be important, if not essen-
tial. We have developed a novel tool for robust statistical
network analysis of multidimensional cancer genome data
across multiple diagnoses. The key components of this ap-
proach are (i) integration of data from multiple cancers and
data types, (ii) network model construction by means of sta-
tistical optimization, (iii) statistical functional assessment
of modules in the resulting network; and, (iv) visualization
of the results as interactive web content. The method re-
lies on an efficient estimation algorithm and is designed
to integrate five types of cancer genome data: DNA point
mutations, DNA methylation profiles, DNA copy number
aberration profiles, and mRNA and miRNA transcriptional
measurements.

Network models of cancer

In the context of genome-scale data analysis, statistical net-
work modeling is a broad family of methods that seek to
describe variation in the data in terms of a network of
pairwise variable couplings (1,2). Examples of such statis-
tical methods include WGCNA (5), which constructs a net-
work from Pearson correlations, and the information the-
ory based ARACNE (6). Application of network modeling
to mRNA data from cancers resulted in pioneering discov-
eries, including the identification of regulators of epithelial-
mesenchymal transitions in brain tumors (7) and the key
regulators in B-cell lymphoma (8). Current cancer genomics
studies, however, have an increasingly broad scope and tend
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Figure 1. Network modeling of multidimensional cancer data: pipeline. Our modeling pipeline takes as input data from multiple -omics techniques and
cancer diagnoses. (A) First, we compute correlations (Pearson correlation, ρ) between all variables in all cancers, both between the data types (e.g. CNA to
mRNA) and within the data types e.g. mRNA to mRNA). We subsequently apply a novel statistical method to build a concise network that accounts for the
data correlations across multiple cancers and data types. (B) Mathematically, this is done by solving the augmented SICS (aSICS) objective function with
a fast optimization technique, ADMM (Materials and Methods). Our three-part objective function serves to (i) integrate all cancers and data types into
a joint model (l term), (ii) produce a sparse network (Ps term) and (iii) incorporate a direct comparative element through a differential model penalty (Pd
term). (C) The result of the optimization is a multi-cancer and multi-data type model, composed of cancer-specific networks, that depicts the statistically
inferred links between the variables and relates this connectivity to the type cancer.

to contain both several types of cancer and multidimen-
sional information for each sample and data type (plat-
form), such as DNA copy number data, DNA methylation
and miRNA transcript levels. To integrate such data, ex-
tended network modeling methods have been proposed to
incorporate CNAs (2,9–11), miRNAs (12), DNA methy-
lation (13) or clinical parameters (14). Still, the construc-
tion of comprehensive and interpretable statistical network
models of both multiple cancers and multiple data types re-
mains a challenging problem. The rapidly growing cancer
databanks, such as TCGA, emphasize the need for refined
modeling methods that work across several data modalities
and diagnoses (pan-cancer analysis) (3).

Accessible network modeling of multiple cancers

Here, we introduce a new method for large-scale integrative
modeling of cancer, based on necessary extensions of a sta-
tistical method termed Sparse Inverse Covariance Selection
(SICS). In its original form, SICS is a data mining method
that takes a matrix of raw correlations (covariances) as in-
put, and selects the correlations that most likely correspond
to statistically direct interactions in the data. To augment
this, we first introduce a novel generalization to accommo-
date both multidimensional cancer data and prior informa-
tion, and show that the resulting optimization problem can
be effectively solved for large data sets. Second, we apply
the proposed method to data from several cancers obtained
from The Cancer Genome Atlas (TCGA) (3). We demon-
strate that networks are robustly estimated and overlap well
with known pathway interactions and that the SICS model
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enriches for direct interactions. Third, we introduce a new
tool to interpret such networks as interactive web content
(cancerlandscapes.org) that enables users to explore an in-
teractive map of multiple cancers, and that contains sev-
eral functions for analyzing the structure of the network.
Finally, we provide three concrete analysis examples that in-
volve diagnosis-specific network modules, in relation to mu-
tation data and pharmacological databases. The methodol-
ogy, including models, analysis tools and software, is avail-
able through the cancerlandscapes.org site.

MATERIALS AND METHODS

Data sources

Data were downloaded from the TCGA http area
(cancergenome.nih.gov) as TCGA level 3 data, except for
mutation calls from DNA sequencing, which were down-
loaded as level 2 data and were standardized as described
in Supplement (Pseudo-code included). URLs to all used
TCGA data files are available as Supplementary Data. The
TCGA data is organized into technical platforms, and we
therefore chose the platform for each data type and cancer
that maximized the number of patients in that dataset
(Supplementary Table S2). Other sources of data integrated
into downstream analyses were PathwayCommons, Gene
Ontology, DrugBank, PubMed, NCBI Gene and OMIM.
See Supplement for details.

Network modeling of multiple human cancers: key principles

Sparse Inverse Covariance Selection. We first describe a
novel integrative network modeling technique that is based
on and represents a generalization of SICS. SICS is a family
of statistical methods in which correlations in multivariate
data are modeled as the outcome of a network of pairwise
variable couplings (15). Mathematically, the network con-
struction by SICS is formulated as the solution to a likeli-
hood maximization problem:

argmax:
�

l(� | S) − penalty(�)

where l(�|S) is the multivariate Gaussian log-likelihood of
the network �, given the matrix S of empirical correlations
between the observed variables in the data. The penalty
term, usually the L1 penalty

∑
i, j|�i, j|, controls the size of

the network (i.e. number of network links). The solution
to the SICS optimization problem, �, is a sparse matrix
corresponding to an undirected network. Each nonzero el-
ement of � represents a direct network connection (edge,
link) between a pair of variables. Mathematically, we de-
fine a direct connection as the partial correlation between
a pair of variables, i.e. the correlation that remains between
the pair after accounting for all other variables. That is, the
residual correlation between pairs i and j after regressing i
and j on all other variables (not i, j). The benefit of SICS
over correlation networks (where links correspond to cor-
relations exceeding a threshold) is that a partial correlation
structure can be described by a smaller number of links,
and that such links will be more likely to reflect direct inter-
actions. This counteracts the main flaw of correlation net-
works; that they contain many links that are biologically

irrelevant since they are redundant (16–18). Although de-
rived for Gaussian variables, recent works by e.g. (19) and
(20) have shown that SICS can in fact provide robust and ef-
ficient estimates of sparse partial correlation for both binary
and mixed variable types (Gaussian and non-Gaussian vari-
ables). Theoretical and simulation-based results in (20) mo-
tivate the following simple strategy: to include mixed vari-
ables in SICS, rank correlations are used to summarize as-
sociations for non-Gaussian variables or between Gaussian
and non-Gaussian variables. Here, we therefore integrate
different data types into the SICS framework by utilizing
correlation and rank correlation statistics collected in large-
scale correlation matrices.

Augmented SICS for multiple cancers and data types.
Whereas SICS was proposed as an improvement over cor-
relation based analysis for biological data, including FACS
(16), metabolite (17), and transcript profiles (18), its stan-
dard formulation is not suited for integrating multiple types
of data across multiple cancers. Firstly, the model restricted
to a single correlation matrix S reflecting correlations within
one particular data set. Secondly, the strength of correla-
tions between variables in heterogeneous data, such as the
TCGA, is highly dependent on factors such as sample size,
technical platform and the underlying biology. To address
this, we propose a methodology based on the following steps
(Figure 1). First, we compute raw correlations between all
variables for each cancer (e.g. from TCGA datasets), result-
ing in a set of correlation matrices S = {S1, S2, . . . , SC}
for each of the C cancer classes. The obtained raw correla-
tions reflect both correlations within one type of data (e.g.
correlations between two transcripts) as well as correlations
between two types of data (e.g. correlations between a copy
number alteration and a transcript, Figure 1a). In the sec-
ond step, using the set of cancer-specific correlation matri-
ces as input, we proceed to solve an extended SICS problem
to obtain a corresponding set of diagnosis specific networks
� = {�1, �2, . . . , �C} (Figure 1b). In descriptive notation,
this is done by maximizing a generalized objective function:

argmax:
�

l(�|S)︸ ︷︷ ︸
likelihood

− Ps(�, Prior, Sample size correction)︸ ︷︷ ︸
network sparsity penalty

− Pd(�, Modularity, Sample size correction)︸ ︷︷ ︸
network differential penalty

where l(�|S) is the Gaussian log-likelihood for the networks
in � given the correlations in S, Ps is a penalty on network
size and Pd is a penalty on network differences between can-
cer classes (described in detail in Materials and Methods).

The proposed formulation contains a number of neces-
sary extensions that enable integrative analysis for multi-
ple cancers (Figure 1b). Firstly, to account for differences
in the number of patients for each cancer, we modified the
likelihood to include a sample size correction. This correc-
tion (below) is crucial for unbalanced data sets, such as the
TCGA, as estimated network models are otherwise domi-
nated by large cancer classes. Secondly, to accommodate the
different types of data, we introduce a data type dependent
prior, by which the Ps term is adjusted to promote partic-
ular links that are supported by external data. Our choice

http://cancerlandscapes.org/
http://cancerlandscapes.org/
http://cancergenome.nih.gov/


e98 Nucleic Acids Research, 2015, Vol. 43, No. 15 PAGE 4 OF 15

of prior is to reduce the penalty specifically for miRNA–
mRNA links with supporting data from miRanda target
prediction and links between mRNAs and the correspond-
ing cis-located DNA methylation (below). Finally, to enable
comparison of networks from different cancers, we apply a
new modular constraint, introduced in the term Pd.

The modular constraint stabilizes the estimated network
structure across the cancers, but is also adaptive such that
isolated cancer specific links can still appear in the model
if strongly supported by data. Below, we present these aug-
mentations and the exact objective function together with
the parameters of the method (Table 1). To solve the pro-
posed problem we describe an efficient gradient based algo-
rithm that uses bootstrapping to obtain a robust network
solution (Figure 1c).

Model construction for TCGA pan-cancer data

The model, and estimation procedure are introduced in the
results section. From the TCGA data we computed corre-
lation matrices for the joint set of mRNA, miRNA, CNA,
DNA methylation and point mutation variables in each can-
cer. For different values of sparse penalty (λ1) and differen-
tial connectivity penalty (λ2), we run 500 bootstrap simu-
lations, each time solving the augmented SICS global ob-
jective function (below). Pseudo-code for the construction
of a correlation matrix from bootstrapped data is avail-
able in the Supplement. We construct bootstrap summary
statistics as follows: for each link, we compute (i) the de-
tection frequency (proportion of bootstraps where it is in-
cluded in the network) and (ii) for each pair of cancers, the
frequency of differential connectivity (proportion of boot-
straps where the link attains a different value for the two
cancers). Examples of histograms of bootstrap frequencies
for all links are shown in Figure 2a and Supplementary
Figure S7. A robust, final network estimate is produced
by thresholding the bootstrap frequencies, retaining links
that appear frequently across bootstraps and defining such
links as differential between pairs of cancers if they ex-
hibit a high bootstrap frequency of being differential. The
networks analyzed here and presented through cancerland-
scapes.org were obtained using frequency thresholds 80%
(for retaining links) and 60% (for differential links), respec-
tively. In the Supplement we also show that the false discov-
ery rate (FDR) for detection of differential links is highly
robust with respect to the choice of threshold. The model
construction was done using parameter values set accord-
ing to Table 1. Key parameters controlling sparsity and dif-
ferential connectivity were varied across a wide range of
values: λ1 between 0.7 and 0.95 (sparse penalty) and λ2
between 0 and 0.02 (differential connectivity penalty); we
thus obtained one network for each combination of λ1 and
λ2. When choosing values for these parameters, the user
should consider that higher values of λ1 produce networks
that are more enriched for known interactions (cf. Figure 2)
but that also are smaller. The user should therefore consider
the tradeoff between coverage of many genes and mutations
and accuracy/interpretability of the network. For the pa-
rameter λ2 the validation against known pathway links sug-
gests that a small, non-zero value produces better results.
Setting the λ2 parameter to a very high value leads to a

network that almost exclusively contains common links be-
tween the cancers. In the Supplement we show that FDR
for detecting differential links, including cancer specific con-
nections, is minimized for λ1 in the range 0.7–0.8 and λ2 in
the range 0.0025–0.005. These and other tuning parameters
are discussed below, in Table 1, and further analyzed in the
supplement.

Modeling: optimization problem and parameter settings

Network modeling by augmented SICS. The network es-
timation takes a set of correlation matrices Sc, for cancer
diagnoses c = 1, 2, . . . , 8, each based on nc patient sam-
ples. Given this input, we maximize the penalized likelihood
function

max
�c,c=1,··· ,C

C∑

c=1

nc(log det �c − tr(Sc�c))︸ ︷︷ ︸
negative log−likelihood

−
C∑

c=1

∑

i �= j

λc
1νi j (α | θ c

i j | +(1 − α)(θ c
i j )

2)

︸ ︷︷ ︸
sparsi ty constraint

−
∑

c<c′

∑

i �= j

λcc′
2 ωcc′

i j | θ c
i j − θ c′

i j |
︸ ︷︷ ︸

di f f erential connectivi ty constraint

,

(1)

in which the inverse covariance matrices �c denote cancer
specific networks for each cancer class c. Matrix element θ c

i j
represents the link strength between nodes (variables) i and
j in cancer class c, with θ c

i j = 0 if and only if nodes i and j are
conditionally independent given all other nodes. Important
augmentations in our methodology compared to standard
SICS and multi-sample generalizations (16,21) are:

� Correction for the different sample sizes is defined by
λc

1 = λ1ne
c and λcc′

2 = λ2
2ne

cne
c′

ne
c+ne

c′
, where ne

c = n̄δn(1−δ)
c and

n̄ = 1
C

∑c
c=1 nc. nc is the mean sample size over data types

for cancer c. The tuning factor δ controls the degree of
sample size correction and is chosen to produce similar
sparsity levels across all cancer classes, which by simu-
lation was found to also maximize the TPR (true posi-
tive rate) for different fixed levels of FPR (false positive
rate) (Supplement). If sample size correction is not uti-
lized, large cancer classes dominate the network.

� Prior to facilitate detection of miRNA targets, cis methy-
lation effects and impact of mutations.
The global objective function includes a link specific
prior, ν ij, which is designed to tune the sparsity penalty
for forming a link between network nodes i and j. The
sparsity penalty for link element (i, j) is defined as λ1,ij
= λ1 × ν ij, where λ1 is a common factor that controls
the overall sparsity of the network, and ν ij take on three
possible values: 1, u (<1), or ∞. The motivation for this
choice of prior is that it can serve to emphasize features
of the model that are either more likely, based on prior in-
formation, or are of higher biological interest to the end
user. In such cases ν ij is set to the value u < 1. This re-
duced penalty is applied in the following situations:
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Figure 2. Characterization of cancer-comparative SICS. (A) Bootstrap analysis of network stability. The presented network models are created as a sum-
mary of 500 networks made from pseudo-bootstrapped TCGA patient data. The histograms display the frequency of the presence of specific links over the
bootstrapped networks for each cancer. The final network is made by selection of links present in >80% of the bootstrap networks (red threshold line). (B)
Characterisation of Cancer comparative SICS by pathway overlap, measured as fold enrichment of known links from the database PathwayCommons (Ma-
terials and Methods). For a range of network sizes (50–3400 links), augmented SICS achieved 30-fold to 160-fold enrichment. The enrichment of known
links depended on both network size (x-axis) and on the cancer differential penalty (Pd, tuned by λ2, see Materials and Methods). (Figure 2b, signed rank
test P < 0.01). As a point of reference, the corresponding enrichment was not as high for a standard correlation network (WGCNA, signed rank test,
P ≤ 0.0078). A nonparametric reference method (ARACNE) produced considerably denser networks, also at the highest stringency setting, making the
comparison difficult. (C) Analysis of direct vs indirect links. We stratified the analysis of pathway overlaps (B, above) into short-range interactions (direct
links in PathwayCommons) and long range interactions (second and third order indirect links in PathwayCommons). This showed a marked difference in
performance between SICS and WGCNA for direct links (P < 0.0001 for all eight cancers), and a less pronounced but still significant, when comparing
indirect (two or three steps) interactions (Figure 2c, P < 0.0001 except for breast cancer). Error bars = 99% CI. (D) Link signs of the SICS model are
broadly consistent with biological mechanism. Bar charts display the mean proportion over cancers of negative (blue) and positive (red) links within and
between different data types. Eighty percent of methylation-DNA links are negative (plausibly reflecting cis-acting methylation-mediated suppression of
transcription) and CNA-mRNA links are positive, plausibly reflecting elevated transcriptional rates of genes with multiple chromosomal copies.
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Table 1. Description of model parameters for modeling the TCGA data

Parameter Description Purpose Recommended values and comments

λ1 Sparsity parameter Controls network size, higher
values produce sparse (small)
networks (Figure 2b).

User-adjustable tuning parameter in Cancer Landscapes. Applied
in the range 0.7 (dense) to 0.95 (sparse).

λ2 Differential
connectivity
parameter

Stabilizes the network
structure between cancers; an
intermediate value produces
higher pathway overlap
(Figure 2b).

User-adjustable tuning parameter in Cancer Landscapes. λ2 in
range 0.0001–0.005 gave an FDR below 10% (cf. Supplementary
Figure S7b).

δ Sample size
correction

Balances the network size for
different cancers; without
correction, large classes
dominate network models.

Chosen to minimize maximum size difference between any two
cancer networks (Supplementary Figure S2).

α Elastic net
parameter

Improved performance for
collinear data α = 1
corresponds to lasso, 0 to
ridge regression.

Typical choices for α are 0.95 or 0.90, i.e. setting the method close
to a lasso penalty). Here we use 0.95, and sensitivity analysis
showed <4% effect on network composition in range 0.9–1.0
(Supplementary Figure S1).

ω Structural stability
parameter

Balances the network
structure between cancers.

Set by the adaptive lasso algorithm (cf. Supplementary Figure S5).

ν Strength of link
specific prior

Reflects biological
considerations, removes
uninteresting links.

Recommended range for ν is in the between 1 (flat prior) and 0.75
(strong prior for miRNA–mRNA, CNA–mRNA and DNA
methylation–mRNA links, Supplementary Figure S3,
Supplementary Table S1). For sensitivity analysis in range
0.50–1.00, see (Supplementary Figure S4).

(i) between miRNAs with their predicted mRNA tar-
gets, as defined by miRanda (22) prediction (Mi-
croCosm Targets Version 5 (23), http://www.ebi.
ac.uk/enright-srv/microcosm/htdocs/targets/v5/). A
strong rationale for using such a prior is the obser-
vation that miRanda and other target predictions
are enriched among miRNA–mRNA correlations
with strong negative values (24). We further analyze
the information content of the prior in Supplemen-
tary Table S1 and its effect on network structure in
Supplementary Figure S3 and S4.

(ii) between cis localized methylations probes with their
corresponding mRNA, as defined by associations
between genes and methylation probes provided in
the level 3 data by TCGA. This choice is motivated
by the belief that such cis-localized probes are likely
to be involved in transcriptional suppression. Many
of the detected links between promoter methyla-
tions and mRNAs do indeed have a negative sign,
consistent with this expectation (Figure 2).

(iii) between all interactions involving a point muta-
tion. This choice is motivated by the assumption
that point mutations are key determinants of down-
stream epigenetic and transcriptional events; and,
(iv) to model the assumption that the effect of
CNAs on transcription is only via cis-effects, i.e.
mRNAs can only be linked to CNAs at their coding
locus, which is done by setting �ij = ∞ for all trans-
interactions that involved CNA and an mRNA, and
�ij = 1 for all cis interactions. We chose the value
u = 0.75 in our analyses, and found upon inspec-
tion that this prior ensures a balanced model, with
involvement of the different data types. Using no
prior at all produced results with an extensive num-
ber of links between CNAs in close genetic proxim-
ity and methylation probes in close genetic proxim-

ity, which we regard as a less informative network.
We therefore also set �ij = ∞ for such connections.
We performed a simulation study to investigate the
impact of this last restriction and found that while
the network weights for other network connections
were altered, the network structure itself was not
much affected. While a prior formally does not re-
quire validation (because it reflects a belief), chang-
ing the prior structure will likely be useful to bring
forward different aspects of the data.

In addition, the prior is used to model the assumption
that the effect of CNAs on transcription is only via cis-
effects, i.e. mRNAs can only be linked to CNAs at their
coding locus, which is done by setting ν ij = ∞ for all trans-
interactions that involved CNA and an mRNA, and ν ij = 1
for all cis interactions. We chose the value u = 0.75 in our
analyses, and found upon inspection that this prior ensures
a balanced model, with involvement of the different data
types. Using no prior at all produced results with an exten-
sive number of links between CNAs in close genetic proxim-
ity and methylation probes in close genetic proximity, which
we regard as a less informative network. We therefore also
set ν ij = ∞ for such connections. We performed a simula-
tion study to investigate the impact of this last restriction
and found that while the network weights for other network
connections were altered, the network structure itself was
not much affected. While a prior formally does not require
validation (because it reflects a belief), changing the prior
structure will likely be useful to bring forward different as-
pects of the data.

� Modularity constraints on the similarities across can-
cers are designed to generate more biologically plausi-
ble networks. This is achieved by encouraging neighbor-
ing links to be equal for cancer pairs c and c′ through

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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the term ωcc′
i j , thus limiting isolated, spurious differen-

tial links. The adaptive factor ωcc′
i j is designed to improve

the stability of the network estimates and generate inter-
pretable networks. This is done by a two-step adaptive
lasso ((25)) method, in which preliminary network esti-
mates (obtained using ωcc′

i j = 1) are used to update ωcc′
i j to

a new value obtained from the initial network estimate �̃.
The purpose of the update is to encourage all links within
a module, or local sub-network, to exhibit the same link
commonality or link differential connectivity properties
across cancers. Since the penalty is adaptive, strong dif-
ferential signals in the data sets will still produce differen-
tial connectivity and the modularity is only encouraged
when it is supported by data.

Optimization and method parameters. We solve the above
optimization problem, by a new algorithm based on nested
ADMM (Alternating Directions Method of Multipliers
(26)). ADMM is a robust gradient-based method suitable
for constrained convex optimization (here, log-likelihood
and two penalty functions) and converges to a global opti-
mum under weak conditions. Source code in Matlab is avail-
able as Supplementary files. To produce stable and robust
network models, we resample patients and re-estimate the
networks. This is repeated 500 times and the network esti-
mates are aggregated as follows; (a) links that appear with
high frequency (at least 80% of models) across bootstraps
are retained, and, similarly, (b) frequency statistics on links
differing or coinciding across subsets of cancers are used to
form the final comparative network (Supplement). An in-
vestigation of the stability of networks based on different
number of bootstraps, which showed that stability does not
increase notably after around 200 bootstraps, indicated that
500 bootstraps is more than sufficient. (Supplementary Fig-
ure S6).

The optimization is governed by a set of tuning param-
eters, each with a distinct purpose/function (Table 1). The
two key parameters are λ1 (sparsity parameter) and λ2 (dif-
ferential connectivity parameter). These two parameters
control the network size and emphasis on shared mecha-
nisms between cancers, respectively. λ1 and λ2 are not set
to a single optimal value, but the model is instead con-
structed for a broad range of such values, which are avail-
able in Cancer Landscapes. Overall, a higher λ1 gives a
smaller network, which is more enriched for true pathway
links, as shown in Figure 2b, cf. (2). The analysis of net-
work modules in the main paper was performed using λ1 =
0.7 and λ2 = 0.005, except Figure 2a, in which we use �2 =
0 to keep the models independent (the motivation for this
setting is that an optimum was reached in terms of Path-
wayCommons overlap, Figure 2b). In addition, estimated
FDR for differential connectivity was shown to be con-
trolled well <5% for these parameter values (Supplement).
Figure 2a clearly illustrates the stability of the network es-
timation. The ”U-shape” frequency histograms show that
links are persistently present or absent across bootstraps.
Similar results are also observed for frequency of differen-
tial connectivity (Supplementary Figure S7). Small changes
in parameter values did not substantially change the net-
works (i.e. cluster structures are largely preserved). Re-

sults for other settings are available through the web sys-
tem. In addition to λ1 and λ2 , an important parameter
is the sample size correction δ, which is set by an empir-
ical method that aims to maximize the global true posi-
tive rate by choosing a δ for which the networks of dif-
ferent cancers have the most similar size (Supplementary
Figure S2). The parameter α is the standard elastic net pa-
rameter, set to 0.95 (Supplement). The parameter ω is set
by an empirical method (Supplement) and tests on TCGA
data support that ω > 0 improves stability and pathway
overlap (Supplementary Figure S5). Some of the values are
data set specific, and will require some adaptation for other
* = (R package glmnet vignette http://web.stanford.edu/∼
hastie/Papers/Glmnet Vignette.pdf, and (27,28)).

Pathway enrichment scoring. For analyses in Figure
2b, estimated networks were compared against path-
way databases HPRD (hprd.org), NCI (pid.nci.nih.gov),
REACTOME (reactome.org) and IntAct (www.ebi.ac.
uk/intact) downloaded from Pathwaycommons.org. We
mapped gene identifiers in the databases to our set of vari-
ables. We then computed the length of the shortest path dij
between nodes i and j using Johnson’s algorithm (29). We
define the pathway enrichment of a network � as the ratio
between the observed overlap and the expected overlap for
a permuted network, calculated over 100 simulations (Sup-
plement). In our comparison to correlation networks, we
compare the enrichment of direct (step length 1) and in-
direct (step length 2, 3) PathwayCommons links for aug-
mented SICS (sparsity parameter λ1 = 0.7, differential con-
nectivity parameter λ2 = 0.005, mRNA–mRNA links only)
and WGCNA networks of similar size for each cancer.

Cancer Landscapes tool

The Cancer Landscapes web application (cancerlandscapes.
org) uses HTML5 technologies and Javascript to give a
rich user experience and is compatible with all modern
web browsers (Chrome, Firefox, Safari, Opera, IE 9+).
Some of the benefits of these technologies include: high
performance visualization using the HTML5 canvas ele-
ment, asynchronous server requests to load data seamlessly
in the background and cross-platform compatibility. Al-
though the system works well in all modern web browsers,
we recommend the use of Google Chrome, since it shows
better performance across core technologies. The network
drawing in the application is built on the free sigma.js pack-
age (http://www.sigmajs.org) but modified to suit the par-
ticular needs of visualizing multi-cancer networks. Other
software packages used include jQuery (http://www.jquery.
com) for extended JavaScript functionality and d3js (http:
//www.d3js.org) for comprehensive plotting capabilities.

Analysis of network modules and survival associations

We applied hierarchical clustering of the network, using
topological overlap as the distance measure between nodes
and choosing number of clusters by silhouette width anal-
ysis (Supplement). Pathway annotations were computed by
Fisher’s exact test. P-values were adjusted by Benjamini-
Hochberg correction and considered significant if <0.05.

http://web.stanford.edu/%E2%88%BChastie/Papers/Glmnet_Vignette.pdf
http://hprd.org/
http://pathwaycommons.org/
http://cancerlandscapes.org/
http://www.sigmajs.org
http://www.jquery.com
http://www.d3js.org
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For enrichment of survival associated nodes the same test
was used. To label nodes as survival associated in the enrich-
ment analyses, we used a Kaplan–Meier log-rank P-value
cutoff of 0.05 (this is a deliberately inclusive threshold to
avoid very low counts in enrichment testing).

RESULTS

Sparse Inverse Covariance Selection for multiple cancers and
datatypes

We first developed a novel integrative network modeling
technique that is based on and represents a generalization of
SICS. The methodology is described in detail in Materials
and Methods section, whereas this section emphasises the
key principles. Before network construction, we compute
correlations for all variables in the dataset, both within each
data type (e.g. mRNA–mRNA correlations) and between
data types (e.g. CNA–mRNA correlations) (Figure 1a). The
full set of correlations for each cancer (cancers are given in-
dex 1, 2, ..., k) are subsequently organised into a correlation
matrix S1, S2, ..., Sk. The computational task that we seek
to solve is to identify which correlations in these matrices
correspond to direct variable dependencies. We do this by
a new generalisation of the SICS methodology; in essence,
given the correlation data, we solve a statistical optimisation
problem to obtain a set of diagnosis specific networks �1,
�2, ..., �k (Figure 1b). In these networks, nodes represent
different types of variables (e.g. particular mRNAs, CNAs
and miRNAs) and connections represent identified links in
different cancers (Figure 1c). The benefit of SICS over cor-
relation networks (where links correspond to correlations
exceeding a threshold) is that a partial correlation struc-
ture can be described by a smaller number of links, and that
such links will be more likely to reflect direct interactions.
This counteracts the main flaw of correlation networks; that
they contain many links that are biologically irrelevant since
they are redundant (16–18). Furthermore, unlike standard
correlation networks, estimation is done jointly (for all the
cancers and data types simultaneously) to produce a more
stable result (see Materials and Methods). For the method
to be applicable to cancer data across several diagnoses and
data types, we have introduced a number of necessary gen-
eralisations. These include a new modification of the SICS
equations to achieve a sample size correction, which en-
sures that the estimated network models are not dominated
by large cancer classes (Materials and Methods and Sup-
plement). Secondly, to accommodate the different types of
data in a biologically meaningful way, we introduce a data
type dependent prior, to promote particular links that are
supported by external data. Our choice of prior is to re-
duce the penalty specifically for miRNA–mRNA links with
supporting data from miRanda target prediction and links
between mRNAs and the corresponding cis-located DNA
methylation. In support of this particular prior, we note that
miRanda predictions are enriched among miRNA–mRNA
pairs with negative correlations (Supplementary Table S1),
and that constructing the network with a flat prior tends
to enrich for prior links by up to 100-fold (Supplementary
Figure S4). In Methods, we present the details of these aug-
mentations, as well as the exact objective function that is
solved in the SICS problem, together with the parameters

of the method (Table 1). To solve the proposed problem
we describe an efficient gradient based algorithm that uses
bootstrapping to obtain a robust network solution (Figure
1c). The proposed method is a generalised framework for
integrative modeling; depending on signals in the data, the
method will detect links as present in multiple cancers, a
subset of cancers, or a single cancer (Figure 1c). In the sup-
plement, we show that the method’s performance in assign-
ing each link to a distinct pattern of cancers (e.g. ‘connected
in all cancers’, or ‘breast cancer specific’) can be estimated
as a FDR from the bootstrap simulations. As illustrated be-
low, it serves as a tool to study both particular and general
aspects of cancer.

Application to TCGA data enriches for direct interactions

To characterize this framework, we applied it to TCGA for
eight cancers: glioblastoma multiforme (GBM), breast can-
cer (BRCA), ovarian carcinoma (OV), lung squamous cell
carcinoma (LUSC), colon adenocarcinoma (COAD), uter-
ine carcinoma (UCEC), kidney clear cell carcinoma (KIRC)
and head and neck squamous cell carcinoma (HNSC).
This set of diagnoses represents the cancers for which data
for at least 200 patients was available at the time of data
download. Together, the selected diagnoses cover many
anatomical locations and represent a substantial fraction
of both cancer incidence and mortality in humans (http://
cancergenome.nih.gov/cancersselected). We first solved the
generalized SICS problem for the eight cancer data set, us-
ing 500 bootstrap runs and a biologically informative link-
specific prior (Supplementary Figures S4 and S6). In all
eight cancers, we detected network links that were robustly
present in a high proportion (at least 80%) of the 500 boot-
strap runs (Figure 2a). Network links were declared differ-
ential between subsets of cancers if differential values were
observed in a high proportion (at least 60%) of the boot-
straps (Supplementary Figure S7). Retaining such links re-
sulted in an eight-cancer network that connected 110 point
mutations, over 600 connected DNA copy number aber-
rant gene loci, over 3200 mRNAs, 200 miRNAs and over
1600 methylation sites. Using network quality measures de-
scribed in (2), we detected a good overlap with known links
from PathwayCommons (Figure 2b and c) and robust es-
timation properties (Supplement). Specifically, the general-
ized SICS procedure achieved 30-fold to 160-fold enrich-
ment of known PathwayCommons links (Figure 2b). As a
point of reference, we calculated the same level of pathway
overlap for a TCGA-derived correlation network (here cal-
culated by the WGCNA method). The correlation network
showed a lower level of pathway overlap of 10–20-fold (Fig-
ure 2b, P = 0.008, signed rank test). A key statistical distinc-
tion between the SICS-derived and correlation-based net-
works is that the former should be more prone to enrich
for direct interactions. For the TCGA data, this effect could
be observed by stratifying the pathway overlaps into short-
range interactions (direct links in PathwayCommons) and
long range interactions (2nd and 3rd order indirect links
in PathwayCommons). This showed a marked difference in
performance between SICS and WGCNA for direct links
(P < 0.0001 for all eight cancers), and a less pronounced
but still significant, when comparing indirect (two or three

http://cancergenome.nih.gov/cancersselected
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steps) interactions (Figure 2c). Analysis of network robust-
ness indicated that the estimation of SICS networks is as
stable as estimation of networks using correlation networks
and other approaches (Supplement).

In summary, the proposed method enables the integra-
tion of several TCGA datasets into a statistically robust
multi-cancer SICS-based network. The method addresses
some of the shortcomings of existing correlation-based and
naive SICS-based methods and performs well in tests on
TCGA data in terms of robustness and pathway overlap. It
is important to be mindful of the fact that all statistically de-
rived networks are fundamentally a statistical summary of
the data. Thus, while we can empirically demonstrate a ten-
dency to overlap with known pathway links (e.g. Figure 2b),
the detected links are not necessarily evidence of mechanis-
tic or physical interaction. It is therefore crucial that the user
of Cancer Landscapes interprets links in a biological con-
text. For instance, 80% of methylation-DNA links are neg-
ative (plausibly reflecting cis-acting methylation-mediated
suppression of transcription) and CNA–mRNA links are
positive, plausibly reflecting elevated transcriptional rates of
genes with multiple chromosomal copies (Figure 2d). As is
detailed in the Materials and Methods and Supplement, a
key feature of the method is that different settings of the op-
timization parameters will bring forward different aspects
of the data, and an important area for future study will be
to further develop the network prior. Another aspect to con-
sider in the interpretation of the models is that technical
variation in the data can affect the results. For instance, the
current version of TCGA exhibits technical heterogeneity in
the sense that different methods were used to collect mRNA
profiling data and DNA copy number data, and future stan-
dardization of TCGA data will likely improve results fur-
ther. The source code in Matlab is available as Supplemen-
tary files, and we foresee that our method could have inter-
esting applications beyond cancer studies, e.g. integration
of multiple GWAS studies or modeling of multiple metage-
nomic datasets.

Interpretation of multi-cancer network models using Cancer
Landscapes

Next, we describe a new visualization technique, in which
the multi-cancer network is made available as interactive
web content for analysis through an interface available at
cancerlandscapes.org. Combining features of a data access
portal and a network analysis tool, this resource is designed
to (i) enable easy access to cancer comparative models, (ii)
provide a clear and intuitive visualization of the networks
and (iii) enable analysis of the network in terms of path-
way information, clinical data in TCGA and the underly-
ing molecular measurements. Thus, the tool has a differ-
ent spectrum of functions compared to existing tools for
TCGA data access such as the cBio portal (30,31), Can-
cer Genome Browser (32)) or user-installed programs for
data analysis such as Cytoscape (33,34) and Integrative Ge-
nomics Viewer (35) (comparison table in Supplement). In
the next sections, we describe how the multi-cancer models
can be accessed through cancerlandscapes.org, and exem-
plify its use for cancer research, with examples relevant for
functional interpretation, discovery of subtypes defined by

joint mutational events and identification of candidate of
drug targets.

Accessing the system. A user (cancerlandscapes.org) starts
by selecting one of the multi-cancer models for further anal-
ysis. The system subsequently loads the model and starts
the network browser (Figure 3a), in which the different data
types and cancers are encoded as specific shapes and col-
ors (cf. Figure 1). In this exploration view, the user can
bring forward parts of the networks by toggling the differ-
ent data types, adjusting the optimization parameters, orga-
nizing the network, and zooming in to access primary data
(Figure 3a). Next, we give three examples of how the system
can be used to explore network modules, new co-occurring
mutations, and drug targets, respectively.

Example 1: network modules with general versus cancer spe-
cific connectivity. From the analysis menu, two categories
of analysis are available: modules and tracks (Figure 3).
The former is a set of functions to analyze and visualize
structures in the network. This is done by clustering of the
network into modules (Materials and Methods), which are
subsequently visualized as concise bar charts that summa-
rize (i) the cancer diagnoses connected in that module, (ii)
the functions of the involved genes, and; (iii) to what de-
gree the module is enriched for survival associated (Kaplan–
Meier log-rank test, Materials and Methods) nodes (Fig-
ure 4).

Multiple cancer network modules. Exploring such patterns
in the TCGA-derived network, the system detected two
broad classes of modules. One set of modules comprise
nodes that were connected in multiple cancers and tend
to contain genes involved in characteristic (hallmark) pro-
cesses of human cancer (36,37). Examples (roman numerals
indicate charts in Figure 4) include mitosis (i), tumor vas-
culature (ii and iii), and immune responses (iv and v). Al-
though they were connected in multiple cancers, the mod-
ules differed in terms of their survival association. For in-
stance, an association between cell cycle genes and survival
was found in kidney cancer (i), whereas immune response
was associated to survival in glioblastoma, head and neck,
ovarian and uterine cancers (iv, v). Angiogenesis (ii, iii), in
turn, was associated with survival in kidney and lung can-
cer. These differences may reflect lineage or tissue depen-
dent differences in growth dynamics and disease etiology,
c.f. (38,39).

Cancer specific network modules. In addition to modules
that were connected in several cancers, the multi-cancer net-
work contained modules that were predominantly or ex-
clusively connected in a single cancer. Examples of such
cancer-selective modules were found in glioblastoma (Fig-
ure 4, vii), uterine cancer (vi) and kidney cancer (viii). Inter-
estingly, the cancer selective modules often contained sur-
vival associated nodes in the most frequently connected
cancer. Examples include a glioblastoma (GBM)-selective
module in which IDH1 mutation was directly linked to over
600 cis-located promoter methylations (Figure 4, vii). This
possibly reflects the CpG island hypermethylator subclass
of glioblastomas (40), which is positively correlated with

http://cancerlandscapes.org/
http://cancerlandscapes.org/
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Figure 3. The Cancer Landscapes system is available at cancerlandscapes.org and enables users to access and explore pan-cancer network models built
from TCGA data and other sources. The system provides a wide range of functions tailor made for analyzing these models, allowing the user to: (A)
View a cluster summary of the network showing regions that contain an overrepresentation of survival biomarkers or pathway annotations. (B) Highlight
nodes based on available annotations (PathwayCommons (54), KEGG (55)), GOslim (56) and DrugBank (52,53)) or user supplied lists. (C) Rank nodes
according to network centrality measures, survival P-values or user supplied lists, to view the distribution of these rankings across the network. (D) Import
node lists or small networks for comparison with the provided models, and exporting the full models or target lists for further analysis in other software.

survival and for which IDH1 is an important regulator (41).
Additional cancer specific network modules (Figure 4 and
Supplement) reflect TP53 point mutation linked to a num-
ber of TP53 targets in uterine cancer (Figure 4, vi), and en-
richment of solute carrier encoding genes in kidney cancer
(Figure 4, viii).

Thus, the module summaries generated by the system
helps the user get an overview of the complex network

model, and should serve as a starting point to explore parts
of the network with broad or selective representation, re-
spectively.

Example 2: co-occurrence of IDH1 mutations and 11p15.3-
5 deletions in glioma. To illustrate how a module can
be analyzed in greater detail, we next focus on the
the glioblastoma-specific module defined by IDH1 muta-
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Figure 4. Functional annotation of network modules. Cancer Landscapes identifies and characterizes network modules across multiple cancers. Here, we
display a selection of 8 clusters, organized in rows, displaying a number of properties. The pie charts (left) display the distribution of the data types of
the nodes included in the cluster. The middle panel displays two properties: the bars above the middle line represent the proportion of links present in
the cluster for the different cancers, and the bars below the middle line represent the proportion of significantly associated survival nodes (Materials and
Methods) in each cancer. The right panel lists significantly (P– < 0.05, BH corrected) associated pathways from PathwayCommons and GOslim.

tion (Figure 4, module vii). The model detected a link
between the presence of a mutation in IDH1 and a
CNA in 14 genes on chromosome 11: AP2A2, APBB1,
CD81, FXC1/TIMM10B, HBE1, LSP1, MRPL23, PN-
PLA2, POLR2L, RHOG, TOLLIP, TRIM3, TRIM5 and
TRIM68. These genes map within 5.7 Mb of each other at
the end of the short arm of chromosome 11, within cyto-
bands 11p15.3–11p15.5. Deletions of chromosome 11p loci
are frequent in different cancers, and loss of heterozygosity
(LOH) in a 7 Mb region spanning cytobands 11p15.4-5 was
previously associated with malignant glioma (42,43). LOH
within a common minimal 130 kb interval in this region
identified the tripartite motif protein 3 (TRIM3) as a can-
didate tumor suppressor gene involved in glioma progres-
sion (44). While co-occurrence of 19q loss and IDH1 mu-
tations has been found to diminish the survival advantage

conferred by the IDH1 mutation in low-grade glioma (45),
nothing has been reported so far about IDH1 and 11p15
loss co-occurrence.

To assess this finding in more detail we investigated the
co-occurrence of IDH1 mutations and LOH in the 14 genes
selected by the model in several cancers using the oncoprint
representation made available by the cBio Portal (31). Ho-
mozygous deletions in these genes co-occur with IDH1 mu-
tations in glioblastoma patients (Figure 5, Fisher test P-
value < 0.0001 for the 14 different CNAs, co-occurrence
odds ratio > 10), and to a lesser extent in lower grade glioma
(co-occurrence odds ratios 2–10 for 10 CNAs, but not sig-
nificant), but not in uterine, breast, ovarian, head and neck,
lung, colon or kidney cancer patients (Supplementary Fig-
ure S9). In spite of the limited number of cases with com-
bined IDH1 mutation and 11p deletion, it would be interest-
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Figure 5. 11p15 deletion co-occurs with IDH1 mutation. Oncoprint plot (31) illustrating co-occurrence of IDH1 mutations and homozygous deletions in
14 genes located in the 11p15 region found to be correlated by our model. The percentages indicate the proportion of samples with an alteration. The
samples with any alteration correspond to one row in the table. All high-grade glioma patients carrying homozygous deletions in these genes have IDH1
mutations. While the co-occurrence is present in the majority of low-grade glioma patients with both types of mutations, it is not observed in the other
types of cancers (Supplementary Figure S9).

ing to explore this finding in larger cohorts given the impor-
tance of IDH1 mutations in some of the emerging subtype
classification systems developed for glioma (40,46–49).

In addition to the example discussed, the model con-
tains additional linked CNA regions, making it possible
to associate chromosomal regions to general cellular pro-
cesses in particular cancers. For instance, we found a high
number of associations between the mitosis-associated net-
work module (Figure 4i), CNAs located on chromosome
8 (FNTA, GOLGA7, WHSC1L1, DDHD2, BAG4, LSM1,
ASH2L, BRF2, PROSC, PPP2CB, PPP2R2A, CHMP7,
XPO7, CNOT7), previously found in breast cancer (50),
and an amplicon on chromosome 3 (DVL3, SENP2 and
ABCF3), previously found in lung cancer (51).

Example 3: overlaying survival, drug target and other infor-
mation onto the multi-cancer network. In addition to the
module-oriented analysis, Cancer Landscapes uses a group
of functions termed Tracks to superimpose relevant gene-
specific information onto the network. Tracks can be exter-
nally uploaded (e.g. lists of differentially expressed genes or
lists of siRNA screening hits). Several sources of informa-
tion are also available by default, including the drug target
database DrugBank (52,53), and pathway and annotation
databases such as PathwayCommons (54), KEGG (55) and
Gene Ontology (56). To illustrate this, we used the Cancer
Landscapes tool to simultaneously mark both the known
drug targets in the network (marked by colors) and strength
of survival associations (marked by node sizes, proportional

to the negative logarithm of the Kaplan-Meier p-value). Ap-
plying this view to the ovarian and breast cancer portions of
the network brought forward several marked nodes, one of
which is the estrogen receptor ESR1 (Figure 6). In this par-
ticular example, ESR1 was linked to both known modula-
tors of estrogen receptor signaling (GATA3, EYA2) (57,58),
as well as a third gene, GPR77, that is not previously impli-
cated in estrogen receptor function and could be explored
by directed studies. In addition to using the system to ex-
plore drug targets, the tracks function can be used to score
genes or to map externally defined gene sets onto the net-
works (e.g. hits from siRNA screens, or lists of differentially
expressed genes).

DISCUSSION

As public repositories of cancer -omics data continue to
grow, accurate and accessible integrative analysis will be one
of the key challenges in cancer research. The strategy pro-
posed here combines principled data-driven modeling with
user-friendly public access of results, and is a novel way
of making TCGA and similar data available to the com-
munity. As we have pointed out, data integrative models
are best seen as useful summaries of data that aim to pro-
vide a global perspective on the biological mechanisms in-
volved, and enables formulation of mechanistic hypotheses,
but should not be assumed as direct mechanistic models of
the underlying cell biology.
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Figure 6. Using Tracks to highlight survival associated drug targets. The Cancer Landscapes system was used to highlight known drug targets (from
DrugBank) and survival associations (from TCGA). In the resulting graph, the size of each node is made proportional to the negative logarithm of the
Kaplan–Meier P-value estimated from the TCGA cohort. In this example, the estrogen receptor (ESR1) is connected to two recently described modulators
of estrogen receptor signaling (EYA2 and GATA3) (57,58), but also the orphan G-protein coupled receptor GPR77.

As was illustrated by the examples of TCGA-derived net-
work modules, the modeling strategy presented detects both
common links that appear in multiple cancers, and links
that appear in a subset of cancers, or a single cancer. Inter-
estingly, at a controlled FDR of <10% (Supplement), the
TCGA data seems to favor a model in which links have
either a very broad representation across cancers, or are
present in only a single cancer (Figure 4). This can be due
to the fact that the spectrum of cancers analyzed still is rela-
tively small (eight diagnoses), and application to data from
more diagnoses will likely detect modules in subsets of the
cancers. To further understand the impact of diverse muta-
tions across cancer types (59) it would thus be interesting
to generalize the proposed model to represent both differ-
ent cancer diagnoses and molecular subtypes within each
cancer, reserved for future work.

In an ongoing effort, the size and scope of cancerland-
scapes.org is being expanded, as TCGA and other data
sources grow. An important future extension will be to en-
able users to model their own data in relation to TCGA data
and other data sources. We anticipate that Cancer Land-
scapes will become a useful data mining portal for cancer
research that combines statistically rigorous network mod-
eling with user-friendly model accessibility and interpreta-
tion.
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Anwar,N., Schultz,N., Bader,G.D. and Sander,C. (2011) Pathway
Commons, a web resource for biological pathway data. Nucleic Acids
Res., 39, D685–D690.

55. Kanehisa,M., Goto,S., Sato,Y., Kawashima,M., Furumichi,M. and
Tanabe,M. (2014) Data, information, knowledge and principle: back
to metabolism in KEGG. Nucleic acids Res., 42, D199–D205.

56. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene Ontology: tool for the unification of biology. Nature
Genet., 25, 25–29.

57. Yuan,B., Cheng,L., Chiang,H.C., Xu,X., Han,Y., Su,H., Wang,L.,
Zhang,B., Lin,J., Li,X. et al. (2014) A phosphotyrosine switch
determines the antitumor activity of ER�. J. Clin. Invest., 124, 3378.

58. Theodorou,V., Stark,R., Menon,S. and Carroll,J.S. (2013) GATA3
acts upstream of FOXA1 in mediating ESR1 binding by shaping
enhancer accessibility. Genome Res., 23, 12–22.

59. Kandoth,C., McLellan,M.D., Vandin,F., Ye,K., Niu,B., Lu,C.,
Xie,M., Zhang,Q., McMichael,J.F., Wyczalkowski,M.A. et al. (2013)
Mutational landscape and significance across 12 major cancer types.
Nature, 502, 333–339.


