
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Formalising Privacy Policies
for Social Networks

RAÚL PARDO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND GÖTEBORG

UNIVERSITY

Göteborg, Sweden 2015

Formalising Privacy Policies for Social Networks
RAÚL PARDO

c© 2015 Raúl Pardo

Technical Report 135L
ISSN 1652-876X
Department of Computer Science and Engineering
Research group: Formal Methods & Language-based Security

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY and GÖTEBORG UNI-
VERSITY

SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2015

iii

ABSTRACT

Social Network Services (SNSs) have changed the way people
communicate, bringing many benefits but also the possibility of
new threats. Privacy is one of them. We present here a framework
to write privacy policies for SNSs and to reason about such poli-
cies in the presence of events making the network to evolve. The
framework includes a model of SNSs, a logic to specify properties
and reasoning about the knowledge of the users (agents) of the
SNS, and a formal language to write privacy policies. Agents are
enhanced with a reasoning engine allowing to infer knowledge
from previously acquired one. To describe the way SNSs may
evolve, we provide operational semantics rules which are classi-
fied into four categories: epistemic, topological, policy, and hybrid,
depending on whether the events under consideration change the
knowledge of the SNS’ users, the structure of the social graph,
the privacy policies, or a combination of the above, respectively.
We provide specific rules for describing Twitter’s behaviour, and
prove that it is privacy-preserving (i.e., that privacy is preserved
under any possible event of the system). We also show how Twit-
ter and Facebook are not privacy-preserving in the presence of
additional natural privacy policies.

iv

ACKNOWLEDGMENTS

The work in this thesis would not have been possible without
the help of many people.

First of all, I would like to thank my advisor Gerardo Schneider
for his guidance and insightful discussions, which normally lead
to new and more challenging research questions. I am surprised
how much I have learnt in such a short period of time, and this
is mainly because of you. I am looking forward to continuing
working with you during the upcoming years towards my PhD.
Most importantly, I am very grateful for our friendship, it is great
when your advisor is also a good friend.

Thanks to Musard Balliu, who has had a strong influence in
this work and for his comments on earlier drafts of this thesis. I am
also grateful to Andrei Sabelfeld for his insights about my research
and for the comments on a previous version of this thesis. I would
also like to thank the all members of the Formal Methods and
ProSec groups, especially to Dave Sands and Wolfgang Ahrendt,
for sharing with me new viewpoints and interesting ideas after
presenting my research in the groups’ semaniars.

I would also like to thank Fernando L. Pelayo, who introduced
me to the research world and he has been a constant help ever
since. Thank you very much.

I am very grateful to all the new friends I have made in Swe-
den. Thanks to Pablo, Bart, Evgeny, Mauricio, Danielito, Daniel,
Hamid, Luciano, Anders, Steven, Elena, John, Simon, Willard,
Michał, Nick,. . .1 for being there to hang out, go climbing, go danc-
ing, barbecues, afterworks, etcetera. Thanks you guys also for all
the experiences you share with me, which are not only fun but also
making me to grow as a person.

Quiero agradecer a toda mi familia su apoyo incondicional,
especialmente a mis padres Diego y Paqui, ya que gracias a su
esfuerzo he podido llegar hasta aquí. Muchas gracias también a
mis hermanas Carmen y Llanos, que siempre están ahí y hacen
que la distancia casi no se note.

Por supuesto no me olvido de amigos Rafa, Callejas, Juanma,
Kike, Lucio, Andrés, Isra, Villa, Bea, Pedro, Laura, Juanma Soler,
Rubén, Pedro García y Javi. Gracias por hacer que cada vez que os
vuelvo a ver parezca que el tiempo no ha pasado.

1I apoligise beforehand to those I forgot to mention.

Contents

1 Introduction 1
1.1 Do We Need Privacy? 1
1.2 The Problem of Privacy in Social Networks 2

1.2.1 Structure of SNSs 4
1.2.2 Privacy Protection in SNSs 4

1.3 Thesis overview . 7

2 Privacy Policy Framework 13
2.1 The First-Order Privacy Policy Framework 13

2.1.1 Social Network Models 14
2.1.2 The Knowledge-based Logic 18
2.1.3 The Privacy Policy Language 23

2.2 Instantiation of the framework 26
2.2.1 Instantiation of Twitter 27

3 Privacy Policies in Evolving SNS 33
3.1 Labelled Transition System 33
3.2 Dynamic FPPFS . 36

3.2.1 Operational Semantics Rules for SNS 37
3.3 Dynamic Instantiation of Twitter 41

4 Proving Privacy in Social Networks 47
4.1 Does an SNS preserve privacy? 47
4.2 Privacy in Twitter . 48
4.3 What about Facebook? 50

5 Relation of FPPF to Epistemic Logic 57
5.1 Epistemic Logic . 57
5.2 FPPF vs Epistemic Logic 59

v

vi CONTENTS

6 Concluding Discussion 63
6.1 Related Work . 63

6.1.1 Epistemic Logic and SNSs 63
6.1.2 Relationship-based Access Control 65

6.2 Conclusions and Future Work 66

Appendices

Appendix A Dynamic Instantiation of Twitter 75
A.1 Set of events of Twitter 75
A.2 Operational Semantics Rules of Twitter 76

A.2.1 Epistemic . 77
A.2.2 Topological 79
A.2.3 Policy . 80
A.2.4 Hybrid . 81

Appendix B Proofs 83
B.1 Theorem 1 - Twitter is privacy-preserving 83
B.2 Lemma 1 - Twitter is not privacy-preserving 91
B.3 Lemma 2 - Facebook is not privacy-preserving . . . 93
B.4 Lemma 3 - Facebook is privacy-preserving 94

Chapter 1

Introduction

1.1 Do We Need Privacy?

The concept of privacy has historical origins already in Ancient
Greece. The philosopher Aristotle described the distinction be-
tween the public sphere and political activity, the polis, and the
privacy or domestic sphere of the family, the oikos. How privacy
should be valued and preserved has extensively been discussed
in various cultures. Unfortunately, privacy is not a static notion,
since it varies over time making its definition a controversial and
cumbersome issue. Even today we are looking for an appropriate
definition of privacy. Warren & Brandeis provided one of the first
“formal” definitions of privacy as the right to be alone [34]. However,
the complex and ambiguous nature of privacy has turned it into an
umbrella term for a variety of loosely related issues and problems
[33]. Despite of not having a precise notion, privacy is understood
as a necessary condition for individual autonomy, identity, and
integrity [8, 35].

Furthermore, privacy is accepted as a basic human need. It is
also stated as the 12th article of The Universal Declaration of Human
Rights [6], which is a list of moral principles and norms inherent in
all human beings. Privacy is closely linked to more basic human
values such as autonomy, freedom or self-fulfilment of an individ-
ual. Think for a minute whether your behaviour would be altered
if you knew that you are being recorded 24/7. Controlling peo-
ple’s privacy is a synonym of power, e.g. companies often warn
their employees that their network traffic will be constantly moni-

1

2 CHAPTER 1. INTRODUCTION

tored with the objective of avoiding their going to leisure websites
during working hours. Later the network traffic can be monitor
or not, but the behaviour of most of the employees will be condi-
tioned by the fact that they think that they are being monitored.

In particular, privacy is related to the right of self-determination
defined as “the right to freely determine what is necessary and
desirable for a fulfilling and meaningful life and to freely pur-
sue one’s social, cultural, political, and economic development”
[13]. Self-determination can also be expressed in terms of data
protection. In this case, it is called informational self-determination.
Similarly to self-determination, in the informational variant it is
expressed that an individual should be in full control of her in-
formation. Informational self-determination is not only related to
basic human needs, but also is explicitly expressed in Data Protec-
tion directive of the European Union [2].

Online services, such as social networks, have created lots of
unforeseen breaches of privacy (we describe some of them in the
following section), since many of them were not designed with
privacy mechanisms in mind. Do you think that Mark Zuckerberg
could have anticipated all the privacy issues that Facebook is deal-
ing with today? Social networks handle an enormous amount of
personal information, but the privacy protections that the users
are offered with do not give people enough control over their data.
We believe that people should be in full control over their private
information. In this thesis, we focus on providing a framework for
developers to cope with all the functionalities of a social network,
while always having present privacy implications, so that people
are offered with tools that will enhance the control they have over
the information they share in social networks.

1.2 The Problem of Privacy in Social Networks

Over the past decade, the use of the social networks like Facebook
and Twitter, just to mention two of the most popular ones, has
increased at the point of becoming ubiquitous. Many people access
Social Networks Services (SNSs) on a daily basis; e.g. to read the
news, share pictures with their friends or check upcoming events.
Nearly 70% of the Internet users are active on SNSs, as shown by
a recent survey [21].

1.2. THE PROBLEM OF PRIVACY IN SOCIAL NETWORKS 3

At the same time, privacy in SNSs has become a global concern.
Influential newspapers all over the world, such as The Guardian,
The New York Times or Wired, publish articles which show how
the privacy of SNSs users is compromised. For instance, a few
months ago The Guardian published an article related to a pri-
vacy flaw in the Facebook’s application programming interface
(API), which allows any developer to get personal information
from Facebook users [3]. The problem lies on the privacy settings
of the system. In Facebook there is a privacy setting called “Who
can find me?”, which determines who can find a user by her phone
number. By default, it is set to “Everyone/Public”, meaning that
anyone can find another user by their mobile phone number. This
default setting already has privacy implications, because just by
registering a user mobile phone number that user’s private infor-
mation is accessible by any other user. If the user is not happy
with this disclosure of information, then she has to change the pri-
vacy setting explicitly. This type of choice is called opt-out choice,
meaning that users are in by default, but they have the possibility
to opt-out. The main problem here is that normally users are not
informed about which privacy settings they have activated by de-
fault, which leads to a violation of their privacy, since they are not
aware with whom they are sharing their personal data. Despite
of the repercussion it had on the media, Facebook developers an-
swer to this problem by saying that they have monitoring tools
that prevent an abusive used of their API.

Managing privacy settings is not an easy task. There exist
many tutorials explaining how to handle privacy settings and de-
scribing the consequences of each choice, e.g. Facebook [4] or Insta-
gram [7]. Why are privacy settings so complicated? For instance,
in our previous example, is it reasonable to have a specific privacy
setting which defines who can access your information using your
mobile phone number? It requires a lot of knowledge from the
user perspective. Most of the time, users are not aware of all the
features and details of the SNS, therefore it is not very convenient
for the privacy protection mechanism to rely on the users’ knowl-
edge about the behaviour of the SNS. Moreover, SNSs follow the so
called perpetual development, which means that the system is never
finished. Developers add new features almost on a daily basis,
which makes a very difficult task to control all the consequences

4 CHAPTER 1. INTRODUCTION

of modifying the SNS’ code.

1.2.1 Structure of SNSs

According to Boyd and Ellison [12] SNSs have three distinguishing
characteristics that differentiate them from other online services:

• A public or semi-public profile defined by users;

• A set of connections or relationships between users of the
system;

• The ability for users to see certain information about oth-
ers they are connected to, including meta-information as for
instance others’ connections.

The underlying structure of an SNS is the so called social graph,
where users are represented by nodes and the edges are used to
model the type of connection by which they are linked. Fig. 1.1
depicts an example of such a graph. In this social graph there are
three users: Alice, Bob and Charlie. The straight line connecting
Alice and Bob means that Alice and Bob are friends and the dot-
ted line between Bob and Charlie shows that they are colleagues.
Users are a common element in all SNSs, but connections may
vary depending on the SNS. For instance, in Facebook the main
connection between users is the friendship connection. In order for
two Facebook users to become friends, it is required that one of
them sends a friend request and the other accepts it. As a conse-
quence, the friendship connection is symmetric, i.e. if Alice and
Bob are friends in Facebook, then Alice is friend with Bob and vice
versa. Not all connections are symmetric, a frequent connection
between users is follower. It is present in several SNSs, e.g. Twitter,
Instagram, Facebook and others. This connection is not required
to be symmetric, meaning that Alice can follow Bob, but it is not
necessary that Bob follows Alice.

1.2.2 Privacy Protection in SNSs

Normally, each SNSs offers a large variety of connections that
users use to group other users, e.g. friends, family, co-workers,
acquaintances, research, university and so forth. Users are closer

1.2. THE PROBLEM OF PRIVACY IN SOCIAL NETWORKS 5

Figure 1.1: Social Graph Example

to people in some connections, like family, than to others, like ac-
quaintances. Therefore, it makes sense for the privacy protection
mechanism to depend on these connections. The current protec-
tion model for SNSs is based on the connections in the social graph.
It allows users to decide which group of people has access to their
private information. For example, a user can share the pictures of
their child birthday with her family, and similarly, she can share
the results of her last experiment with the users who belong to the
research connection.

Intuitively, this protection model offers the control that users
need for their personal information. However, it is susceptible to
privacy breaches at different levels. Empirical studies have shown
that the current privacy protections offered by SNSs are very far
from the users’ expectations [24, 20, 22, 25]. The main problems
that users report regarding the current protection model in SNSs
are related to privacy settings, which hereafter we will refer to
as privacy policies. In particular, the main two problems that SNS
users pointed out in the aforementioned studies are:

i) Privacy policies that SNSs offer are too coarse-grained.

ii) It is not easy to understand the result of activating a privacy
policy.

Coarse-grained privacy policies

One of SNSs weaknesses is the inability for users to express desir-
able privacy policies. This is due to the lack of flexibility of the

6 CHAPTER 1. INTRODUCTION

privacy policies SNSs provide to their users. Many desirable pri-
vacy policies are already offered by SNSs; for instance, in Facebook
users can state polices like “Only my friends can see a post on my
timeline” or “Whenever I am tagged, the picture should not be
shown on my timeline unless I approve it”. Many other policies,
however, are not; although they might be important from a user’s
perspective. Again, using Facebook as an example, users cannot
specify privacy policies like “I do not want be tagged in pictures
by anyone other than myself” (P1) or “Nobody apart from myself
can know my child’s location” (P2). Sometimes privacy policies
are limited by protection mechanisms similar to the one we pre-
viously mentioned. Yet there would be no problem to implement
P1 and P2 in such a mechanisms, the former simply restricts the
audience of some piece of information, the latter defines the set of
users which are allowed to perform an action. However, too re-
strictive privacy policies reduce the amount of information which
is shared in the SNS. It makes the SNS less attractive, which can
reduce the amount of users or decrease its growth. For this reason
SNSs try to provide privacy protection mechanisms, which do not
excessively limit users interaction.

Consequences of activating a privacy policy

Many users are not fully aware of the result of activating a pri-
vacy policy or if the policy protects their resources as they expect.
Privacy concerns users often take the so called “friend-only” ap-
proach, by which they expect their resources to be shared only
with their friends. Most SNSs require the friendship connection to
be a consensus between the two users involved. Due to this, users
tend to feel comfortable sharing with their friends, since they are
more or less aware of who they are. Unfortunately, the friend-
only approach can be easily bypassed. Consider a Facebook user
who sets the default audience of her pictures to only her friends.
In Facebook when a user is tagged on a picture, the audience of
this picture is always extended with the friends of the tagged user,
which shows that the friend-only strategy can be easily infringed
simply by tagging. This is just one example, but there are many
actions which have implicit consequences; e.g. when users join
an event they disclose their potential location during the event
to all the guests, or when commenting on a post the audience of

1.3. THESIS OVERVIEW 7

this comment is the same than the post’s audience. According
to the aforementioned studies, users are not fully aware of these
implicit consequences. Nevertheless they cannot be blamed for
not understanding all possible results of an action. Instead the
privacy mechanism should be responsible for blocking any event
which discloses the resources of a user. For instance, if the user
defines the audience of a picture to be her friends, tagging should
not automatically extend the audience of the picture, or maybe the
tagging action should be forbidden.

All in all, these two privacy issues show that privacy policies
should be more expressive and their effects must be easy to under-
stand. Users should immediately know the outcome of activating
any privacy policy. SNSs put more and more effort in improving
their privacy mechanisms and offering users better control over
their information, yet, the increasing amount of personal data that
SNSs have to deal with and the continuous changes in the privacy
policies make this task cumbersome and hard to accomplish.

1.3 Thesis overview

Our aim in this thesis is to provide a suitable formalism for writ-
ing and reasoning about privacy policies in SNSs, and to enable
a formal assessment on whether these policies are preserved as
the SNS evolves. Our starting point is the definition of a formal
framework for privacy policies consisting of:

i) a generic model for social networks;

ii) a knowledge-based logic to reason about the social network
and privacy policies;

iii) a formal language to describe privacy policies (based on the
logic above), together with a conformance relation to be able
to state whether a certain social network satisfies a given pol-
icy.

Epistemic logic has been successfully used as a formal specifica-
tion language to reason about security protocols [30], information
security [19] and more generally about properties of distributed
systems [15]. Here we propose to use an epistemic framework

8 CHAPTER 1. INTRODUCTION

for privacy in SNSs. We start with first-order logic to represent
connections and relationships between users and enrich it with
epistemic (K) and deontic (P) operators to express knowledge
and permissions, respectively. For instance, the logical formula
PAliceBob tag means that “Bob is permitted to tag Alice in any picture”,
hence we can write J¬PmeothertagKme to model the policy P1 we
wrote above, that said “I do not want be tagged in pictures by any-
one other than myself”. The wrapper J Kme is used to specify the
owner of the privacy policy, in this caseme. Similarly we can write
SAll location(me), which stands for “Someone among all users in
the SNS knows my location”. Now we can formalise the privacy
policy “Nobody apart from myself can know my child’s location”,
which corresponds to P2, as J¬SAll\{me}location(myChild)Kme, and
disallow any user apart from the owner of the privacy policy to
know the child’s location. In the logic it is possible to nest knowl-
edge operators in order to express more precise privacy polices.
SupposeCharlie is organising an event ev and he wants bothAlice
and Bob to participate, however, Alice will not participate if she
knows that Bob is going. Then, Charlie, who definitively wants
Alice to participate, can write the formula J¬KAliceKBobevKCharlie
to express the policy: “Alice does not know that Bob knows about
the event ev”.

We use the reasoning machinery and the logical formalisation
to cope with dynamic evolution of SNSs. As we mentioned before,
some actions can implicitly extend the audience of a resource. In
our formalism we capture the behaviour of all possible actions
that users can execute in the SNS. Because of this, we are able to
detect any violation of any privacy policy activated by the user.
This is done by introducing generic operational semantics rules
which capture the dynamic features of the SNS. In this way, if
tagging extends the audience of a picture, the operational seman-
tics rules would describe it and if the user defined the audience
of her pictures to be her friends, the execution of the tagging ac-
tion would lead to a violation of the privacy policy. It provides
a more effective privacy protection, since users do not have to be
aware of all events which could violate their privacy policies. They
only need to specify who is able to access the information and it
is protected against any action which violates the policy. When
the privacy breach is triggered the SNS could react in different

1.3. THESIS OVERVIEW 9

ways, e.g. blocking the tagging, or allowing it but not extending
the audience. The rules are divided in four categories depending
on how the knowledge, the permissions, the social graph topol-
ogy, the policies or a combination of them is updated as the agents
perform actions.

We use our framework to study the privacy policies of Twit-
ter and Facebook and to asset the impact of adding new desir-
able ones. We start off by providing instantiations of the frame-
work for Twitter and Facebook. Then we prove that Twitter is
privacy preserving, according to our formal definition of privacy-
preservation, which in short, guarantees that none of the actions
that users can execute would violate any privacy policy. Addi-
tionally we consider privacy policies that are not present neither
in Facebook nor in Twitter, and show that they are not privacy
preserving under these desirable privacy policies.

Contributions

Concretely, the contributions in this thesis are:
1. A first-order framework for defining and reasoning about

privacy policies, having the following features: i) A so-
cial network model (SNM) which encapsulates the knowl-
edge, permission and connections present in SNSs; ii) A
knowledge-based logic is defined with the usual epistemic
modalities plus a special permission operator; iii) A formal
language for defining privacy policies which is very expres-
sive, having among its capabilities the possibility to write
policies containing nested knowledge.

2. Operational semantics rules describing the different ways
SNSs may evolve. We consider four different types of such
rules depending on what is changed : i) Epistemic, concerned
with changes on the knowledge of (some) users; ii) Topologi-
cal, concerned with changes in the structure of the network
(graph); iii) Policy, where what is affected are the privacy
policies themselves; iv) Hybrid, when what is changed is a
combination of some of the above 3 types of rules. We pro-
vide specific rules for describing how Twitter works.

3. A proof that Twitter is privacy-preserving with respect to
all its possible events, and the set of privacy polices offered

10 CHAPTER 1. INTRODUCTION

today by the SNS .
4. A proof that Twitter and Facebook are not privacy-preserving

after extending their privacy polices with some additional
policies. Also, a proof that Facebook is privacy-preserving
after modifying its operational semantics rules accordingly.

Outline

We start by introducing the static part of the first-order privacy
policy framework in Chapter 2, where we also define the (static)
instantiations of Twitter. In Chapter 3, we extend the framework
with generic operational semantics rules which are used to de-
scribe the dynamic behaviour of SNSs. We also extend the men-
tioned instantiation with its dynamics. We formally define what a
privacy-preserving SNS is in Chapter 4. Moreover we prove that
Twitter is privacy-preserving and also that Twitter and Facebook
would not preserve privacy after adding new policies to the ones
they already support. The relation of our formalism to traditional
epistemic logic is also discussed in Chapter 5. We conclude by dis-
cussing models for knowledge evolution and another protection
mechanism for SNSs, and presenting our conclusions and future
work in Chapter 6.

Statement of Contributions

This thesis comprises two papers:

• A Formal Privacy Policy Framework for Social Networks [28].
In this paper the static part of FPPF (called PPF) is pre-
sented (Chapter 2), but everything was built using proposi-
tional logic. This paper was co-authored by Gerardo Schnei-
der. Together we came up with social network models which
keep the original structure of the social network and explic-
itly represent the knowledge and permission of the users.
I developed the theory about social networks models, the
knowledge-based language KBLSN and the privacy policy
language PPLSN . Moreover, I wrote the instantiation of
Facebook and Twitter and all their privacy policies in PPF .
This paper was published in the proceedings of the 12th edi-
tion of the International Conference on Software Engineering and

1.3. THESIS OVERVIEW 11

Formal Methods (SEFM’14).

• A Formal Approach to Preserving Privacy in Social Networks
[27]. This technical report was co-authored by Musard Balliu
and Gerardo Schneider. I developed all the theory regard-
ing the dynamics of FPPF (Chapter 3) and the concept of
privacy-preserving SNS. I instantiated Twitter and Facebook
and wrote the proofs of privacy-preservation in both SNSs.
Concretely, Theorem 1 and Lemmas 1, 2 (Chapter 4).

This thesis is an extended version of [27]. In particular, I have
included more examples for some definitions; the proof of Lemma
3 and the new Facebook’s operational semantics rules which made
our model of the SNS privacy-preserving (Chapter 4); and an ex-
tended discussion which states the differences between traditional
epistemic logic and our formalism (Chapter 5) where I informally
describe part of the results we are currently investigating about
this issue.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Privacy Policy Framework

In this Chapter we present a novel Privacy Policy Framework
for social networks. As we will see, the framework is powerful
enough to capture the features of today’s social networks and at
the same time it allows to reason about privacy policy require-
ments of the users in a precise and formal manner. The framework
is initially defined for generic social networks, but not all SNSs
have the same particularities. Due to this, we also introduce the
concept of instantiations, and we show how to instantiate Twitter.

2.1 The First-Order Privacy Policy Framework

The first-order privacy policy framework is equipped with sev-
eral components. Firstly, we define models which leverage the
well-known model for SNSs, social graph [14]. These models are
enriched with the knowledge and the permission that users have
in the SNSs. The knowledge is represented using a first-order
epistemic (knowledge-based) structure, very much in the style of
interpreted systems [15], and the permissions are represented as
links between users in the graph, similarly to connections. Sec-
ondly, a knowledge-based logic is introduced to reason about all
the properties that the models contain. Finally, the framework has
an expressive language to write privacy policies, which is based
on the aforementioned logic. Formally the framework is defined
as follows:

Definition 1 (First-Order Privacy Policy Framework). The tuple

13

14 CHAPTER 2. PRIVACY POLICY FRAMEWORK

〈SN ,KBLSN , |=,PPLSN , |=C〉 is a first-order privacy policy frame-
work (denoted by FPPF), where

• SN is the set of all possible social network models;

• KBLSN is a knowledge-based logic;

• |= is a satisfaction relation defined for KBLSN ;

• PPLSN is a formal language for writing privacy policies;

• |=C is a conformance relation defined for PPLSN .

In what follows we provide a more detailed description of each
of the components in Def. 1.

2.1.1 Social Network Models

As we mentioned in the Chapter 1, social networks are usually
modelled as graphs, where nodes represent the users of the SNS,
and edges represent different kinds of relationships among agents,
for instance information about their sentiments or any other so-
cial network specific information. These graphs are traditionally
denoted as social graphs [14]. Users in social graphs, will be
called agents in our models, and in the rest of the paper we will
indistinguishably refer to them using either of the previous terms.
Therefore, the agents in our models will also be represented as
nodes. We store the knowledge that the agents have, which is
represented as a collection of formulae in the knowledge-based
language. Moreover, we model possible inferences of knowledge
that the agents can perform from the knowledge that they already
possess. Since we preserve the social graph structure, the edges of
our models have the information about the relationships among
users. Additionally, we use new types of edges to represent the
permission that the agents have. Formally,

Definition 2. Given a set of formulae F , a set of privacy policies Π,
and a finite set of agents Ag ⊆ AU from a universe AU , then a social
network model (SNM) is a social graph of the form 〈Ag,A,KB, π〉,
where

• Ag is a nonempty finite set of nodes representing the agents in
the SNS.

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 15

• A is a first-order (relational) structure over the social network
model. As usual it consists of a set of domains {Di}i∈D, a set
of relations Ri, functions fi and constants c interpreted over the
domain.

• KB : Ag → 2F is a function giving the set of accumulated knowl-
edge for each agent, stored in what we call the knowledge base of
the agent. We write KBi to denote KB(i).

• π : Ag → 2Π is a function returning the set of privacy policies of
each agent. We write πi for π(i).

In the previous definition the shape of the relational structure
A depends on the type of the social network under considera-
tion. We represent the connections and the permission actions
between social network agents, i.e. edges of the social graph, as
families of binary relations, respectively {Ci}i∈C ⊆ Ag × Ag and
{Ai}i∈Σ ⊆ Ag × Ag over the domain of agents. Hereafter we use
C,Σ and D to denote sets of indexes for connections, permissions
and domains, respectively. Sometimes, we write an atomic pred-
icate, e.g. friends(A,B) to denote that the elements A,B ∈ Ag
belong to a binary relation, friends, defined over pairs of agents
as expected.

As we mentioned, we want to provide agents with a reason-
ing capabilities which allow them to infer new knowledge. For
instance, we would like Alice to be able to infer Bob’s location,
given that she knows that Bob is going to an event. In other words,
if Alice knows that Bob is going to an event, then Alice can infer
Bob’s location. Since the knowledge of the agents is represented
using formulae written in a formal language similar to that of epis-
temic logic, we will use the properties of knowledge that have
extensively been studied in such a logic.

Specifically, here we formally introduce the minimum set of
axioms and rules with which an agent can infer new knowledge
from the one present in her KB. We will use as a minimal knowl-
edge axiomatisation the set of axioms K from first-order epistemic
logic [15, 26]. The language for first-order epistemic logic, Ln, is
recursively defined as follows:

ϕ ::= p(
#»
t) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kiϕ.

16 CHAPTER 2. PRIVACY POLICY FRAMEWORK

where i is an agent from a set of agents AGT and p(#»
t) denote an

atomic predicate over terms #»
t , for now it is enough to assume that

terms can be either a constant symbol or function symbol (with
implicit arity) or a variable. We refer the reader to Chapter 5 for
a formal definition of the syntax of Ln and its semantics. The in-
tuitive reading for the formula Kiϕ is “agent i knows ϕ”. Hence
we can use atomic predicates to denote concrete pieces of infor-
mation, e.g. Bob’s location can be represented as location(Bob)
and the statement “Alice knows Bob’s location” can be written as
KAlicelocation(Bob).

Now we introduce the most simplistic set of properties of
knowledge defined in epistemic logic, which is called K axiomati-
sation and it is formally defined as follows:

Definition 3 (First-Order K [15, 26]). Given the formulae ϕ and ψ
written in Ln and some agent i, the axiom system K consists of the
following axioms and derivation rules:

Axioms

(A1) All (instances of) first-order tautologies

(A2) (Kiϕ ∧Ki(ϕ =⇒ ψ)) =⇒ Kiψ

(A12) ∀x1, · · · , xk.Kiϕ =⇒ Ki∀x1, · · · , xk.ϕ

Derivation rules

(Modus Ponens)
ϕ ϕ =⇒ ψ

ψ

(Necessitation)
ϕ

Kiϕ

(Generalisation)
ϕ

∀x.ϕ

We also introduce the notion of derivation in the axiom system
K as follows:

Definition 4 ([26]). A derivation of a formula ϕ ∈ Ln is a finite
sequence of formulae ϕ1, ϕ2, . . . , ϕn = ϕ, where each ϕi, for 1 ≤ i ≤ n,
is either an instance of the axioms (A1, A2 or A12) or the conclusion of
one of the derivation rules of which premises have already been derived,
i.e. appear as ϕj with j < i. Moreover when we can derive ϕ from a set

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 17

of formulae {ψ1, ψ2, . . . ψn}, if we take the set Γ as the conjunction of
all the formulae from the previous set, Γ = ψ1 ∧ ψ2 ∧ . . . ∧ ψn we write
Γ ` ϕ.

Consider again the previous example regarding Alice and Bob.
Now we formalise the statement “Alice knows that if a user is
going to an event, then she can the location of the user during the
event” as

KAlice(going(u, η) =⇒ location(u, η)) (2.1)

for any u ∈ AGT and η ∈ N, hence if Alice knows that Bob is going
to the event η,

KAlicegoing(Bob, η) (2.2)

she can apply the axiom (A2) together with (2.1) and (2.2) to infer
Bob’s location during the event, i.e. KAlicelocation(Bob, η).

Finally, we introduce the closure function Cl for the axiom
system K, which generates all the knowledge that an agent can
infer given the set formulae representing the explicit knowledge
that she already has, KB. It is formally defined as follows:

Definition 5. Given a set of formulae Φ ⊆ Ln the knowledge base
closure function is Cl(Φ) = {ϕ | Φ ` ϕ}

Cl is the closure of an input set of formulae under the axiom
system K. Different axioms may hold when FPPF is instantiated
with a concrete social network model. To this end we defined the
minimal Cl using the axioms and derivation rules from K and, in
order to provide the agents with more targeted deductive engines,
we keep open to extension this set of axioms. We ensure that the
local knowledge of each agent is always consistent by checking
that false is never derived. In Section 2.2 we will show how Cl can
be extended to meet the requirements of a given SNS.

Example 1. Consider a SN ∈ SN which consists of three agents Alice,
Bob and Charlie, Ag = {Alice,Bob, Charlie}; two connections Friend-
ship and Block, C = {Friendship, Charlie}; and the friend request
action, Σ = {friendRequest}.

Fig. 2.1 shows a graphical representation of the aforementioned SN .
In this model the dashed arrows represent connections. Note that the
Friendship connection is bidirectional, i.e. Alice is friend with Bob and

18 CHAPTER 2. PRIVACY POLICY FRAMEWORK

Friendship

Blocked

friendRequest

Alice

Bob

Charlie

Figure 2.1: Example of Social Network Model

vice versa. On the other hand, it is also possible to represent unidirec-
tional connections, as Blocked; in SN Bob has blocked Charlie. Permis-
sions are represented using a dotted and dashed arrow. In this example,
Charlie is able to send a friend request to Alice.

The predicates inside each node represent the agents’ knowledge. In
this SNM, Charlie and Bob have the predicate loc(Bob, 1) inside the
node, meaning that both know location number 1 of Bob. However, note
that there are, not only atomic predicates, but also formulae inside the
agents’ nodes. These formulae may increase the knowledge of the agents.
For instance, Alice knows loc(Bob, 1) implicitly. Since the deductive
engine includes (among others) the rule Modus Ponens, Alice can de-
rive that, if she has access to a post of Bob, she can infer his location, i.e.
∀η.post(Bob, η) =⇒ loc(Bob, η). Alice has access to post(Bob, 1),
therefore she can infer that loc(Bob, 1).

2.1.2 The Knowledge-based Logic

We use the logic KBLSN to reason about the knowledge and the
permissions of agents over social network models. The logic al-
lows us to leverage all the expressive power of first-order epis-
temic reasoning to formally express and verify privacy policies.
As usual in first-order logic, we start with a vocabulary consisting
of a set of constant symbols, variables, function symbols and pred-
icate symbols, which are used to define terms as follows:

Definition 6 (Terms). Let x be a variable and c a constant and {fi}
for i ∈ I a family of functions with implicit arity. Then the terms are
inductively defined as:

t ::= c | x | fi(
#»
t)

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 19

where I is a set of indexes and #»
t denotes a tuple of terms respecting the

arity of fi.

We use terms to define predicates. For instance, the predicate
friends(Alice,Bob) can be used to express that Alice and Bob are
friends. The syntax of the logic is then defined as follows:

Definition 7 (Syntax). Given i, j ∈ Ag, the relation symbols an(i, j),
cm(i, j), p(#»

t) ∈ A where m ∈ C and n ∈ Σ, G ⊆ Ag and n ∈ N, the
syntax of the knowledge-based logic KBLSN is inductively defined
as:

ϕ ::= p(
#»
t) | cm(i, j) | an(i, j) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ |

Kiϕ | EGϕ | SGϕ | DGϕ| CnGϕ

We choose to discriminate between predicates encoding per-
missions between agents, i.e. an(i, j), predicates encoding connec-
tions between agents, i.e. cm(i, j), and other types of predicates.
e.g. p(#»

t), in order to stay as close as possible to the social network
models. FKBL will represent the set of all well-formed formulae of
KBLSN according to the category ϕ above. The epistemic modali-
ties stand for: Kiϕ, agent i knows ϕ; EGϕ, everyone in the group
G knows ϕ; SGϕ, someone in the group G knows ϕ; DGϕ, ϕ is dis-
tributed knowledge in the group G. CnGϕ, ϕ is the n-bounded com-
mon knowledge in the group G. We use the following operator as
syntactic sugar in the logicKBLSN : P ji an := an(i, j) , agent i is per-
mitted to execute action an to agent j; SP jGan :=

∨
i∈G an(i, j), at

least one agent in G is permitted to execute action a to agent j;
GP jGan :=

∧
i∈G an(i, j), all agents in G are permitted to execute

action a to agent j. When we write “agent i is permitted to execute
action an to agent j”, it means that agent i is allowing j to perform
an action an which directly involves i, e.g. PAliceBob friendRequest
would mean that Bob is allowed to send a friend request to Alice.
We define Ek+1

G as EGEkGϕ, where E0
Gϕ is equal to ϕ.

In what follows we define the satisfaction relation forKBLSN for-
mulae, interpreted over social network models and agents. In
particular, predicates are interpreted as relations over the respec-
tive domains in the model. Moreover, ϕ[v/x] denotes the usual
capture-free substitution in first-order logic and we tacitly assume
that each variable v is mapped to its own domain.

20 CHAPTER 2. PRIVACY POLICY FRAMEWORK

SN, u |= p(
#»
t) iff p(

#»
t) ∈ Cl(KBu)

SN, u |= ¬ϕ iff SN, u 6|= ϕ
SN, u |= ϕ ∧ ψ iff SN, u |= ϕ and SN, u |= ψ
SN, u |= ∀x.ϕ iff for all v ∈ Do, SN, u |= ϕ[v/x]

SN, u |= Kiϕ iff ϕ ∈ Cl(KBi)

SN, u |= cm(i, j) iff (i, j) ∈ Cm
SN, u |= an(i, j) iff (i, j) ∈ An

SN, u |= SGϕ iff there exits i ∈ G such that SN, u |= Kiϕ
SN, u |= EGϕ iff SN, u |= Kiϕ for all i ∈ G
SN, u |= CkGϕ iff SN, u |= EnGϕ for n = 1, 2, . . . , k

SN, u |= DGϕ iff ϕ ∈ Cl(
⋃
i∈GKBi)

Table 2.1: KBLSN satisfiability relation

Definition 8. Given a social network model SN = 〈Ag,A,KB, π〉,
the agents i, j, u ∈ Ag, ϕ,ψ ∈ FKBL, a finite set of agents G ⊆ Ag,
m ∈ C, n ∈ Σ, o ∈ D and k ∈ N, the satisfiability relation |= ⊆
SN ×Ag ×KBLSN is defined as shown in Table 5.1.

The intuition behind the semantic definition of the knowledge
modality Ki is as follows, a user i knows ϕ (denoted as Kiϕ) iff
the agent explicitly knows ϕ, i.e. ϕ is in her knowledge base, KBi,
or it can be derived (using the axiomatisation K) from the already
existing formulae in her knowledge base (ϕ ∈ Cl(KBi)). This
definition is better illustrated by an example.

Example 2. Let SN be the SNM in Fig. 2.1. As we described in Exam-
ple 1, Alice knows post 1 of Bob, meaning that

SN,Alice |= KAlicepost(Bob, 1)

holds, since post(Bob, 1) is explicitly in the knowledge base of Alice, i.e.

post(Bob, 1) ∈ KBAlice. (2.3)

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 21

We also mentioned that Alice knows implicitly location 1 of Bob, which
means that

SN,Alice |= KAliceloc(Bob, 1) (2.4)

should hold. According to the semantics we have provided for Ki, the
previous statement is true iff loc(Bob, 1) ∈ Cl(KBAlice). Fig. 2.1 shows
that, in SN , the following formula is in KBAlice

∀η.post(Bob, η) =⇒ loc(Bob, η) (2.5)

where η ∈ N1, hence

post(Bob, 1) =⇒ loc(Bob, 1) (2.6)

is also in KBAlice. From (2.3) and (2.6) we know that the knowledge
base of Alice contains at least the following elements,

KBAlice = {post(Bob, 1), post(Bob, 1) =⇒ loc(Bob, 1), . . .}.

Finally, by the definition of Cl (Def. 5), modus ponens can by applied
for (2.6) and (2.3) to derive loc(Bob, 1), i.e. loc(Bob, 1) ∈ Cl(KBAlice)
and therefore (2.4) holds.

Note that the interpretation of atomic predicates p(#»
t) is similar

to that of Kiϕ. There are cases when the evaluation of a predicate
in a node is equivalent to a formula containing the knowledge
modality. For instance,

SN, i |= p(
#»
t) ≡ SN, i |= Kip(

#»
i)

by definition of |=, both statements are true iff p(#»
t) ∈ Cl(KBi).

However, it does not hold in general for a formula ϕ. Consider
ϕ := ¬p(#»

t), then

SN, i |= ¬p(#»
t) 6≡ SN, i |= Ki¬p(

#»
i)

since the left hand side is true iff p(#»
t) 6∈ Cl(KBi) and the right

hand side holds iff ¬p(#»
t) ∈ Cl(KBi).

The interpretation of distributed knowledge, DG, is also simi-
lar to the one for Ki, but considering the knowledge of all agents
in G instead of taking into account only the knowledge of agent i.

1We tacitly assume that variables are mapped to their respective domains.

22 CHAPTER 2. PRIVACY POLICY FRAMEWORK

In the next section, Example 6 shows the evaluation of a formula
involving distributed knowledge.

We can use the logic KBLSN to reason about combinations
of what the agents know, and what actions they are allowed to
perform in any SNM.

Example 3. Consider again the SNM in Fig. 2.1, denoted as SN . We
can now check whether or not the following expression

SN, i |= E{Bob,Charlie}loc(Bob, 1) =⇒ PAliceCharliefriendRequest

holds for i ∈ {Alice,Bob, Charlie}. As we mentioned in Example 1,
Bob and Charlie both know location 1 of Bob, therefore it holds that
loc(Bob, 1) ∈ Cl(KBBob) and loc(Bob, 1) ∈ Cl(KBCharlie). Hence

SN, i |= KBobloc(Bob, 1) ∧KCharlieloc(Bob, 1),

it implies that

SN, i |= E{Bob,Charlie}loc(Bob, 1).

Also (Charlie, Alice) ∈ AfriendRequest, meaning that Charlie is per-
mitted to send a friend request to Alice, therefore it holds

SN, i |= PAliceCharliefriendRequest.

Finally we can conclude that our original implication holds for SN .

Not all SNSs are characterised by the same knowledge and per-
mission properties. Different properties hold in different SNSs. As
we have seen, using the satisfiability relation |=, we can whether
a KBLSN formula holds in a SNM. These knowledge and permis-
sion properties can be also expressed inKBLSN , and consequently,
we can check whether they hold in specific SNM as we show in
the following example.

Example 4. In Facebook, as soon as a user has access to a post, she can
see all the users who liked the post. This means that when any member
clicks the “like” button, all the users with access to the post will know
about it. Let o be some agent and η some post, the predicate post(o, η)
representing the post η by agent o and the predicate like(i, o, η) repre-
senting the fact that agent i liked the post η by o, we can check whether
the property holds in a given SN ∈ SN using the satisfaction relation:

SN, o |= ∀j.∀i.∀η.Kjpost(o, η) ∧Kilike(i, o, η) =⇒ Kjlike(i, o, η)

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 23

Relation to Classical Epistemic Logic. The deductive engine al-
lows the agents to apply the axioms and derivation rules in K to
derive new knowledge. The same axiomatisation cannot be used
for KBLSN , since connection and permission predicates are inter-
preted differently depending on whether they are inside a knowl-
edge modality. For instance, satisfiability of the connection pred-
icate friendship(Alice,Bob), will only depend on the condition
(Alice,Bob) ∈ AFriendship. Nonetheless, checking the formula
KAlicefriendship(Alice,Bob) requires that friendship(Alice,Bob)
∈ Cl(KBAlice). This unconventional interpretation of some predi-
cates prevents us from using axiomatisations defined for classical
epistemic logic. However, when checking if a formula is in the
KB of an agent all predicates are treated equally, even when they
are connection or permission predicates. Hence the individual
knowledge of each agent in SNMs can be modelled using a classi-
cal Kripke model, meaning that it can be seen as a set of formulae
in Ln and, because of this, we assume that they can infer new
knowledge using the axiomatisation K.

To sump up, we can think of SNMs as models that combine two
logics. On one hand, KBLSN is used to reason about the global
knowledge and permission of the SNS. On the other hand, agents
have their knowledge represented usingLn and they use K to infer
new knowledge. The relation of KBLSN to the traditional Kripke
models in discussed in deeper detail in Chapter 5.

2.1.3 The Privacy Policy Language

One of the objectives of FPPF is to provide a way to express com-
plex and fine-grained privacy policies. We introduce PPLSN as a
formal language for writing privacy policies based on KBLSN .

Definition 9. Given the agents i, j ∈ Ag, the relation symbols an(i, j),
cm(i, j), p(#»

t) ∈ A where m ∈ C and n ∈ Σ, a nonempty set G ⊆ Ag,
k ∈ N, a variable x and ϕ ∈ FKBL, the syntax of the privacy policy
language PPLSN is inductively defined as follows:

δ ::= δ ∧ δ | ∀x.δ | Jϕ =⇒ ¬αKi | J¬αKi
α ::= α ∧ α | ψ | γ′ | ∀x.α
γ′ ::= Kiγ | EGγ | SGγ | DGγ| CkGγ
γ ::= γ ∧ γ | ¬γ | p(#»

t) | γ′ | ψ | ∀x.γ
ψ ::= cm(i, j) | an(i, j)

24 CHAPTER 2. PRIVACY POLICY FRAMEWORK

In PPLSN privacy policies are written in a negative way in or-
der to specify who is not allowed to know a fact or who is not per-
mitted to perform an action. Note that in δ, α is always preceded
by negation. The category α represents the restrictions which must
be enforced in the social network; the set of well-formed formulae
of this category is denoted as FRPPL. The category γ′ corresponds
to a restricted version of FKBL where the first element is a pos-
itive knowledge modality. This forces policies to be written in
a negative way, since no double negation is possible in the first
knowledge modality. Also, we always refer to the agents’ knowl-
edge, since γ′ starts with a knowledge modality. The category ψ
gives a special treatment of predicates for actions and connections
to express restrictions over the connections and the actions that
agents are involved in. In δ we wrap the privacy policies using
J Ki, where i ∈ Ag, to denote the owner of the privacy policy. We
write FPPL for the set of well-formed PPLSN formulae given by
δ. As a result, there are two main types of privacy policies that
users can write:

• Direct restrictions - J¬αKi These are restrictions which allow
users to explicitly specify the audience which has no access
to some piece of information or who is permitted to exe-
cute an action. For instance, in PPLSN agent i can write
J¬S{m,n,o}p(

#»
t)Ki, meaning that none of the agents m,n, o ∈

Ag can know p(
#»
t).

• Conditional restrictions - Jϕ =⇒ ¬αKi A restriction α is en-
forced depending on some knowledge or permission state.

Example 5. As an example consider the following policy:

∀j.J¬P ij joinevent(i) =⇒ ¬Kjevent(i, descp)Ki (2.7)

The intuitive meaning of this policy is that if a user i ∈ Ag creates
an event event(i, descp) (where descp is the description of the event)
and she gives permission to join it to a certain group of people, then the
event cannot be accessed by people other than the ones who are allowed
to join it. Similarly, a user can choose to limit the event’s audience to her
friends only. This can be expressed in PPLSN as

J¬SAg\friends(i)event(i, descp)Ki (2.8)

2.1. THE FIRST-ORDER PRIVACY POLICY FRAMEWORK 25

Unlike (2.7), this policy is enforced in most SNSs. However (2.8) is much
more coarse-grained than (2.7) and, as a result, it will not allow some
users to access the event if they are able to join it. Consequently, (2.8)
unnecessarily reduces the audience of the event.

Example 6. The distributed knowledge operator DG allows to protect
users’ against intricate leaks of information in groups of agents. Con-
sider the social network model presented in Fig. 2.1, where Bob knows
the day and the month of Alice’s birthday, denoted by bDay(Alice) and
bMonth(Alice), respectively and he can also infer the age of a user when-
ever he knows the user’s full date of birth, i.e.,

∀x.bDay(x) ∧ bMonth(x) ∧ bY ear(x) =⇒ age(x).

Moreover, Charlie knows the year of Alice’s birth, represented by the
predicate bY ear(Alice). Therefore, if Bob and Charlie combine their
knowledge, Alice’s age, age(Alice), will become distributed knowledge
between the two. This is because the distributed knowledge operator
considers the combination of the knowledge of the group of agents and
applies the deductive engine to infer new knowledge. Fortunately, in
PPLSN Alice can write the privacy policy

J¬D{Bob,Charlie}age(a)KAlice

to prevent this leak. Note that the social network model considered in this
example violates the policy.

The previous examples show that the privacy policies that we
can express in PPLSN give users a more fine-grained control over
what information they share and with whom they share it. In order
to ensure that users’ privacy is not compromised, all their privacy
policies must be in conformance with the SNS.

Definition 10. Given a SN = 〈Ag,A,KB, π〉, an agent i ∈ Ag,
ϕ ∈ FKBL, α ∈ FRPPL, o ∈ D and δ, δ1, δ2 ∈ FPPL, the conformance
relation |=C is defined as shown in Table 2.2.

Note that |=C , is defined using the satisfiability relation |=. Due
to this, privacy policies can be seen as specific knowledge and
permission conditions that must hold in the SNM. Let us take as
an example the policy (2.7) from Example 5 and a random SNM
SN

SN |=C ∀j.J¬P ij joinevent(i) =⇒ ¬Kjevent(i, descp)Ki.

26 CHAPTER 2. PRIVACY POLICY FRAMEWORK

SN |=C δ1 ∧ δ2 iff SN |=C δ1 ∧ SN |=C δ2

SN |=C ∀x.δ iff for all x ∈ Do, SN |=C δ[v/x]
SN |=C J¬αKi iff SN, i |= ¬α
SN |=C Jϕ =⇒ ¬αKi iff SN, i |= ϕ then SN |=C J¬αKi

Table 2.2: PPLSN conformance relation

By applying the semantics defined in Table 2.2, checking whether
SN is in conformance with the policy is equivalent to check that
for all u ∈ Ag

SN |=C J¬P iujoinevent(i) =⇒ ¬Kuevent(i, descp)Ki

which is also equivalent to

If SN, i |= ¬P iucoinevent(i) then SN, i |= ¬Kuevent(i, descp)

As you can see in Table 2.2, checking conformance of any formula
in PPLSN boils down to checking satisfiability of the correspond-
ing formula in KBLSN .

2.2 Instantiation of the framework

So far we have described a generic framework applicable to gen-
eral SNSs. However, each SNS has its own features. For example,
Foursquare has the follower connection and users can write tips
related to places where the users has been. In Google+ users are
group in circles and they share information depending on those
circles. Moreover, Google+ offers users the possibility of creating
events that other users can join, whereas this not present in other
SNSs Foursquare, Twitter or Instagram.

Here we introduce the concept of FPPF instantiation, which
will be used to model all the specific characteristics of each SNSs.
We formally define an instantiation for an SNS as follows:

Definition 11 (FPPF instantiation). A FPPF instantiation for an
SNS S is a tuple of the form

FPPFS = 〈SNS ,KBLSN , |=,PPLSN , |=C〉

where SNS = 〈AgS ,AS ,KBS , πS〉 and

2.2. INSTANTIATION OF THE FRAMEWORK 27

• AgS is the set of agents in the SNS;

• the structure AS contains a set of atomic predicates PS , a set of
possible connection relations CS , a set of permission relations ΣS ,
and a family of auxiliary functions {fi}i∈I ;

• the knowledge base contains a set of properties AS of the SNS,
written in KBLSN (these properties are assumptions for the in-
stantiated SNS);

• πS returns the set of privacy policies of an agent in S . We assume
that the set of privacy policies ΠS is consistent. We also assume
that all privacy policies in ΠS satisfy the admissibility condition
ACS .

The admissibility condition ACS specifies the generic structure
of privacy policies of a particular instantiation (see Def. 12 for
an example). Formally, ACS is a predicate over the elements of
FPPFS defining the well-formed policies for the instantiation.
We write π′ ∈ ACS if π′ satisfies ACS . For simplicity, when no
confusion arises, we will not specify the subindex S in the instan-
tiation. Also, as mentioned before, the deductive engine of the
knowledge base KB is extended with the assumptions AS in the
instantiations.

2.2.1 Instantiation of Twitter

Twitter is an SNS in which the interaction among users is carried
out by means of posting (or tweeting) 140 characters messages
called tweets. Apart from text, tweets can also include pictures
and locations. If a user wants to re-share a tweet, she can use
the retweet functionality which shares an already published tweet
from another user. Users can also favourite tweets, which is similar
to star emails, i.e. it marks the tweet with a start. It has recently
become quite trendy to use the favourite feature as a way to ex-
press that you like the content of the tweet. The main relationship
between users is called follower. It is a unidirectional relation be-
tween users. When a user follows another user, she gets updates
with all the tweets of the users she follows.

Here we formally present the Twitter instantiation, denoted by
FPPFTwitter.

28 CHAPTER 2. PRIVACY POLICY FRAMEWORK

Atomic predicates. Given o, u ∈ Ag and µ, η ∈ N, the set of
atomic predicates PTwitter ∈ FPPFTwitter is:

• tweet(o, η) - Tweet η tweeted by o.

• mention(u, o, η) - Mention of u in tweet(o, η).

• favourite(u, o, η) - u favourited tweet(o, η).

• retweet(u, o, η) - Retweet of tweet(o, η) by u.

• location(o, η) - Location of tweet(o, η)

• picture(o, η, µ) - A picture included in tweet(o, η).

• username(u), email(u), phone(u) - Username, email address
and phone number of user u.

The constants η and µ are indexes for tweets and pictures of a
user, respectively.

Connections. The set of connections include the follower and
the block relationships, CTwitter = {CFollower, CBlock}.

Actions. The actions are defined as:

ΣTwitter = {AaccessProf , AaccessProfRec, AsendAd}

where accessProf is the action of a user accessing other user’s
profile; accessProfRec represents the fact a user’s profile can be
accessed as a recommendation, for example when a user installs
the Twitter mobile app, the SNS recommends other users which
may be in the user’s contact list; sendAd is the action of an adver-
tisement company sending advertisements to a user.

Constraints over privacy policies. In FPPFTwitter we do not de-
fine constraints for the privacy policies per se. Instead we describe
a schema composed by the generic structure of the privacy poli-
cies that users in Twitter can write. The schema is based on the set
of Twitter privacy policies presented in [28], which was shown to
express all possible policies of Twitter nowadays.

2.2. INSTANTIATION OF THE FRAMEWORK 29

Definition 12. Given u ∈ Ag and η ∈ N; the generic structure of the
privacy policies for Twitter is as follows:
P1(u) = J¬S{Ag\followers(u)\{u}} tweet(u, η)Ku - Only u’s followers

can access her tweets.
P2(u) = J¬S{Ag\followers(u)\{u}}retweet(u, tu, η)Ku - Only u’s follow-

ers can access her retweets.
P3(u) = J¬S{Ag\{u}} location(u, η)Ku - No tweet by u contains her

location.
P4(u) = ∀i.J¬Ki (email(u) ∨ phone(u)) =⇒ ¬P ui accessProfRecKu

- No user i can receive a recommendation to follow u, unless i
knows u’s email or phone number.

P5(u) = J¬SP uAdvertisers sendAdKu - No advertisement companies can
send ads to user u.

In addition, users in Twitter are not allowed to have more than
one instance of each type of privacy policy at the same time.

Auxiliary functions. The set of auxiliary functions consists of:

• followers : AgTwitter → 2AgTwitter - This function returns all the
followers of a given user, i.e. for u ∈ AgTwitter, followers(u) =
{ i | iCFolloweru }.

• state : AgTwitter → St - This function returns the state of
a user’s account, which can be public or private. For u ∈
AgTwitter, it returns private if the policies P1, P2 ∈ πu and
public otherwise.

• inclocation : AgTwitter → Bool - This function returns the
user preference for revealing the location with the tweet. For
u ∈ AgTwitter it returns false if the policy P3 ∈ πu and true
otherwise.

• beingReco : AgTwitter → Bool - This function returns the
user’s preference about being recommended to be followed
by other users who have access her email or phone number.
For u ∈ AgTwitter it returns false if the policy P4 ∈ πu and
true otherwise.

• getTweetInfo : AgTwitter × N → 2PTwitter - This function ex-
tracts information from a given tweet, for instance, the loca-
tion (location(o, η)), the users mentioned in the tweet (mention(u1, o, η)

30 CHAPTER 2. PRIVACY POLICY FRAMEWORK

. . . mention(um, o, η)), and the attached pictures (picture(o, η, 1)

. . . picture(o, η, j)), where m, j ∈ N are indexes. This infor-
mation is returned as a set of atomic predicates.

• audience : PTwitter → 2AgTwitter - This function returns the audi-
ence of some piece of information, i.e. the agents who know
that information. Given p(

#»
t) ∈ PTwitter, audience(p(

#»
t)) =

{ i | SN, i |= Kip(
#»
t)}

• info : AgTwitter → 2PTwitter - This function returns all the in-
formation of a given agent. Given an agent u ∈ AgTwitter,
info(u) = {p(u, #»

t)|p(u, #»
t) ∈ KBu}.

Properties ofFPPFTwitter. The role of the assumptions is twofold.
Firstly, they are used to encode some of the properties of the SNS
and, secondly, some of these assumptions are added to the knowl-
edge base KB of the agents. Note that in the following set of
properties, we write that an agent has access to a predicate p(#»

t)
when she knows it, i.e. Kip(

#»
t). The intuition behind this choice is

that if the agent “learnt” the predicate, it is because she had access
to it. ATwitter consists of the following properties:

• Property 1. If a user has access to a tweet, tweet(o, η), then she
can access all the information of that tweet. For all p(#»

t) ∈
oracle(o, η),

∀i.∀o.∀η.(Kitweet(o, η) =⇒ Kip(
#»
t))

• Property 2. If a user has access to another user’s tweet, tweet(o, η),
she can also access that user’s profile.

∀i.∀o.∀η.(Kitweet(o, η) =⇒ P oi accessProf)

It models the fact that there is a link to the profile of the user
who tweeted the tweet.

• Property 3. If a user has access to another user’s retweet,
retweet(u, o, η), she can also access that user’s profile and
the owner of the tweet profile.

∀i.∀u.∀o.∀η.(Kiretweet(u, o, η) =⇒
P ui accessProf ∧ P oi accessProf)

2.2. INSTANTIATION OF THE FRAMEWORK 31

• Property 4. If a user has access to another user’s favourite,
favourite(u, o, η), she can also access that user’s profile and
the owner of the tweet profile.

∀i.∀u.∀o.∀η.(Kifavourite(u, o, η) =⇒
P ui accessProf ∧ P oi accessProf)

Properties 2-4 may not seem very intuitive. They come from
a design choice we make when implementing the behaviour of
the SNS. In Twitter, when someone accesses another user’s tweet,
retweet or favourite, the user gets the possibility of accessing the
profiles of the owner of the tweet, retweet and favourite, respec-
tively. The user only gets a chance to access the profile, because if
that profile is not public only followers can access it, and this will
be checked when the user is actually trying to access the profile.
In our instantiation, we chose to model this using the permission
operator and this is the reason why the mentioned properties give
the permission to access the profile. A different approach could
have been creating an attribute called profile(u), which as soon as
it is learnt by a user, it permits her to access u’s profile. Moreover,
the designer of the SNS can define as many properties as she con-
siders necessary for the SNS, beyond the 4 properties introduced
here.

Summary of the Chapter

In this chapter we have presented the first-order privacy policy
framework FPPF . We have also introduced the notion of instan-
tiation of the framework and we have shown how Twitter, one
of the most popular SNSs nowadays, can be instantiated. So far,
we are only able to represent a static picture of the SNS. We are
not considering how SNMs change as events occur. In the next
chapter, we describe the dynamics of FPPF and we show how to
extend the Twitter instantiation with its dynamic behaviour.

32 CHAPTER 2. PRIVACY POLICY FRAMEWORK

Chapter 3

Privacy Policies in
Evolving SNS

Social network users are able to execute events. For example, they
can post messages on a timeline, they can like a given post, share
pictures and so forth. Different events will change the knowledge
and the permission of the SNS in different ways. In this chap-
ter, we formally incorporate the events that can be executed in
the SNS and the operational semantics rules modelling the events’
behaviour in FPPF . These rules formally describe how SNMs
change when a particular event occur. It leads to having sets of
SNMs, which represent the state of the SNS at a given moment
in time. We also include a labelled transition system in FPPF ,
which contains all the information about the evolution of the SNS.
Similarly to in the previous chapter, we describe how these ele-
ments are instantiated for particular social networks and we con-
clude the chapter by extending the Twitter instantiation that we
provided in Chapter 2.

3.1 Labelled Transition System

Labelled Transition Systems (LTSs) have extensively been used in
computer science to describe the behaviour of systems. In short,
they are directed graphs where nodes represent states and edges
the transitions between states. The edges are labelled with the
name of the event which originates the change of state.

33

34 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

In order to represent the behaviour induced by the events of
the SNS, we define an LTS, which is used to keep track of the epis-
temic and deontic states as the SNS evolves. Nodes in the LTS
represent configurations, which are SNMs. The set of all configura-
tions in the LTS is a subset of all possible SNMs, SN , since the LTS
only contains the SNMs resulting from the execution of an event.
Edges indicate, which is the resulting configuration (or SNM) after
executing an event in a given configuration. In what follows we
formally introduce the SNS LTS.

Definition 13. An SNS Labelled Transition System (SNSLTS) is a
tuple 〈Conf,EV T,→, c0〉, where

• Conf is a (finite) set of all possible social network models,Conf ⊆
SN ;

• EV T is the set of all possible events which can be executed in the
SNS;

• → ⊆ Conf × 2EV T × Conf is a transition relation;

• c0 ∈ Conf is the initial configuration of the social network.

Given a set of events E ⊆ EV T and the configurations c0, c1 ∈
Conf , we write c0

E−→ c1 to denote that the SNS evolves from c0

to c1 by the execution (in parallel) of the events in E. If E only
contains one event, the transition represents a regular sequential
execution. Note that the type of → allows for true parallelism
in the execution of events. However we do not study possible
side effects of the interleavings in the execution of parallel events,
instead we will assume that the result of the execution in parallel is
independent of the interleaving, leaving this issue as future work.

For all configurations c it holds that c ∅−→ c.
Now we can formally define in FPPF evolving SNSs as de-

scribed by the Labelled Transition System.

Definition 14 (Dynamic First-Order Privacy Policy Framework).
The tuple 〈LT SSN ,KBLSN , |=,PPLSN , |=C〉 is a dynamic privacy
policy framework (denoted by FPPFD), where

• LT SSN is the set of all possible SNS labelled transition systems;

• KBLSN is a knowledge-based logic;

3.1. LABELLED TRANSITION SYSTEM 35

{follow(Alice,Bob)}

{post(Bob, 1, Public),
 friendRequest(Charlie,Alice)}

p(Bob,1)

p(Bob,1)
fr(Charlie)

p(Bob,1)
sfr(Alice)

SN1

Alice

Charlie Bob

SN2

Alice

Charlie Bob

SN0

Alice

Charlie Bob

follow

friendRequest

Figure 3.1: Example of SNS Labelled Transition System

• |= is a satisfaction relation defined for KBLSN ;

• PPLSN is a formal language for writing privacy policies;

• |=C is a conformance relation defined for PPLSN .

Example 7. In Fig. 3.1 we show an example of an SNSLTS. The rectan-
gles represent 3 configurations SN0, SN1, SN2 ∈ Conf . This SNSLTS
shows one possible sequence of events that can be executed. Each config-
uration constitutes the SNM at different points in the execution. Since
there are no events that involve the addition or removal of any users, all
configurations have the same set of agentsAg = {Alice,Bob, Charlie}.
SN0 is the initial configuration. In this configuration, Bob follows Char-
lie, which is represented by a unidirectional arrow between them. The
dashed arrow from Charlie to Alice expresses that Charlie is able to send
a friend request to Alice.

There is a transition from SN0 to SN1, representing that the SNS
can evolve from its configuration SN0 to SN1 by the execution of the

event follow(Alice,Bob), i.e. SN0
{follow(Alice,Bob)}−−−−−−−−−−−−→ SN1. This

event creates a new relation between Alice and Bob, which is modelled, as

36 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

expected, with a directed arrow between them in the resulting SNM, SN1.
This transition is composed by only one event, which means that no other
event was executed in parallel to it. As we mentioned before, transitions
in SNSLTSs are labelled with sets of events representing the actions ex-

ecuted in parallel. In SN1
{post(Bob,1,Public),friendRequest(Charlie,Bob)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SN2 two events are executed in parallel. On one hand, Bob posts his
first post publicly in the SNS, post(Bob, 1, Public). As a consequence,
all users in SN2 have learnt p(Bob, 1), which is an atomic predicate
representing Bob’s post. Formally, p(Bob, 1) ∈ KBi for all i ∈ Ag. In
parallel, Charlie sends a friend request to Alice. Let us assume, for the
sake of this example, that it is needed to check whether a friend request
can be sent. Charlie is allowed to perform this event since

SN1, Charlie |= PAliceCharliefriendRequest

holds. Finally, the result of executing this event is that, in SN2, Alice
knows that Charlie sent her the friend request, fr(Charlie) ∈ KBAlice;
and Charlie knows that he has sent the friend to Alice, sfr(Alice) ∈
KBCharlie.

Note that in the LTS of the previous example we can only ob-
serve the consequences of executing the events. It is not possible
to formally describe the behaviour of each of the events. In the
following sections we will introduce dynamic instantiation of our
framework and the operational semantics rules which formally
define the behaviour of each event.

3.2 Dynamic FPPFS
As in the static case, the dynamic instantiation of an SNS requires
to specify each of the components of the FPPF tuple. In particu-
lar, different SNSs will have different sets of events, EV T , which
they can execute. Hence we extend the definition of FPPF as
follows:

Definition 15. A dynamicFPPF instantiation, denoted asFPPFDS ,
for a social network service S is an FPPFS , in which the elements of
the LT SSN are instantiated:

FPPFDS = 〈LT SSSN ,KBLSN , |=,PPLSN , |=C〉

where LT SSSN = 〈ConfS , EV TS ,→S , c0〉 and

3.2. DYNAMIC FPPFS 37

• ConfS ⊆ SNS is the set of all social network models forFPPFDS ;

• EV TS is the set of all possible events in FPPFDS ;

• →S is the transition relation determined by the operational seman-
tics rules for EV TS ;

• c0 ∈ ConfS is the initial model FPPFDS .

3.2.1 Operational Semantics Rules for SNS

The dynamic behaviour of an SNS is described in terms of the
small step operational semantics. For every event in EV TS , there
will be one or more operational semantics rules which describe its
behaviour. The generic form of the rules is as follows:

Q1 . . . Qn

SN
e−→ SN ′

The premisesQ1 . . . Qn may be predicates, side conditions or other
auxiliary information which are used to describe the rule. They
are defined by leveraging all the elements of PPF and the instan-
tiation FPPFS in which the rules are defined. The operational
semantics rules are divided in 4 types, as reported in Table 3.1. We
use the superindex e whenever an update of the SN depends on
event e. In what follows we first describe the intuition for each
type of rules and then we provide a detailed description of the
epistemic rule.

Epistemic: These rules are used to specify events which change
the knowledge and/or the permissions of an SNM. As a result,
the premises appearing in epistemic rules will only update the
elementsKB andAi of the social network model involved in those
rules. Agents’ knowledge increases monotonically, for this reason,
KB will only grow after the execution of an epistemic rule (cf. the
first premise of the epistemic rule in Table 3.1). Unlike knowledge,
permissions can be granted or denied, which makes it possible for
the pairs in the binary relations Ai to be added or removed.

38 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

Epistemic
∀j ∈ Ag KB′j = KBj ∪ Γej where Γej ⊆ FKBL

A′i = (Ai \ PerToRmve) ∪NewPere where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai

P1 . . . Pm ∈ P where m ∈ N
〈_, {{Ai}i∈Σ,P, _},KB, _〉

e−→ 〈_, {{A′i}i∈Σ,P, _},KB′, _〉

Topological
Ag′ = (Ag \AgtToRmve) ∪NewAgte where NewAgte ∈ 2AU and AgtToRmve ∈ 2Ag

C ′i = (Ci \ ConToRmve) ∪NewCone where NewCone ∈ 2Ag×Ag and ConToRmve ∈ 2Ci

P1 . . . Pm ∈ P where m ∈ N
〈Ag, {{Ci}i∈C ,P, _}, _, _〉

e−→ 〈Ag′, {{C ′i}i∈C ,P, _}, _, _〉

Policy
∀j ∈ Ag π′j = (πj \ PolToRmvej) ∪NewPolej where NewPolej ∈ 2πj and PolToRmvej ⊆ FPPL

P1 . . . Pm ∈ P where m ∈ N
〈Ag, {P, _}, _, π〉 e−→ 〈Ag, {P, _}, _, π′〉

Hybrid
∀j ∈ Ag KB′j = KBj ∪ Γej where Γej ⊆ FKBL

A′i = (Ai \ PerToRmve) ∪NewPere where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai

Ag′ = (Ag \AgtToRmve) ∪NewAgte where NewAgte ∈ 2AU and AgtToRmve ∈ 2Ag

C ′i = (Ci \ ConToRmve) ∪NewCone where NewCone ∈ 2Ag×Ag and ConToRmve ∈ 2Ci

∀j ∈ Ag π′j = (πj \ PolToRmvej) ∪NewPolej where NewPolej ∈ 2πj and PolToRmvej ⊆ FPPL
P1 . . . Pm ∈ P where m ∈ N

〈Ag, {{Ci}i∈C , {Ai}i∈Σ,P, _},KB, π〉
e−→ 〈Ag′, {{C ′i}i∈C , {A′i}i∈Σ,P, _},KB′, π′〉

Table 3.1: Generic structure of the operational semantics rules

Topological: These rules only affect the social topology of SNMs.
The social topology represents the elements of an SNM which
come from the social graph. Therefore these rules update the ele-
mentsAg andCi of an SNM. Using topological rules we can model
the addition or removal of users and relationships among them.

Policy: Policy rules allow to express changes in the privacy poli-
cies of the agents. Therefore the only element of the SNM that will
be modified is π. As in the previous case, π may be updated by
adding or removing privacy policies.

Hybrid: As the name suggests, these rules can be used in case
the SNS requires a mix of any of the previous types of rules. Con-
sequently, hybrid rules will combine premises of the three types
and possibly update the SNM.

In order to clarify the specific meaning of the rules in Table 3.1,

3.2. DYNAMIC FPPFS 39

here we provide a detailed explanation of the generic epistemic
rule. Consider the first premise in the rule,

∀j ∈ Ag KB′j = KBj ∪ Γej where Γej ⊆ FKBL

it represents the update of the knowledge bases of the agents. KBj
is the knowledge base of agent j before the execution of the event
e and KB′j is the resulting knowledge base after the execution of e.
The new knowledge is given by Γej , which is defined to be a set of
formulae FKBL. Note that Γ is parametrised by the event e and the
agent j, meaning that not all agents will have the same update of
knowledge. Let Ag = {Alice,Bob}, then for an event e1 that only
updates Bob’s knowledge with the predicate p(#»

t) we would have
Γe1Alice = ∅ and Γe1Bob = {p(#»

t)}.
The second premise in the generic epistemic rule expresses the

update of permission in the SNM,

A′i = (Ai \ PerToRmve) ∪NewPere

where NewPere ∈ 2Ag×Ag and PerToRmve ∈ 2Ai . Ai is the set
of agents’ pairs representing the set of permissions of type i ∈
Σ1 before executing the event e, and after its execution A′i will
contain the resulting pairs. PerToRmve represents the pairs to be
removed in the SNM, its type is 2Ai meaning that only existing
pairs can be removed. NewPere is the set with the new pairs
of agents representing new permission, since its type is 2Ag×Ag

permission between any two agents can be created. When the
event e only removes permission, then NewPere = ∅ (i.e. A′i =
(Ai \ PerToRmve) ∪ ∅), on the other hand, if e only adds new
permission PerToRmve = ∅. In general, any kind of update can be
expressed. The same applies for updates of agents and connections
in topological rules and policies in policy rules. The last premise

P1 . . . Pm ∈ P where m ∈ N

is used to express any other auxiliary predicate involving any el-
ement of FPPF that might be required for the execution of the
rule.

1Remember that in SNMs we use binary relations between agents to represent
permission (cf. Section 2.1.1)

40 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

How does knowledge spread out in an SNS?

The usual way of releasing information in SNSs is making avail-
able a message to a group of users, e.g. posts on Facebook, tweets
on Twitter, pictures on Pinterest, tips on Foursquare, etc. In dy-
namic epistemic logic this type of event is known as public an-
nouncement [10]. The result of performing a public announcement
is that the disclosed information becomes common knowledge in the
group of agents which are the audience of the announcement. In
the traditional epistemic logic semantics [15], common knowledge
is modelled as an infinite chain of nested knowledge over a model
M and a state s,

(M, s) |= CGϕ iff (M, s) |= EnGϕ for n = 0, 1, 2, . . .

This representation of common knowledge accurately models the
intuitive notion of what is known for everyone in a group. The ex-
plicit representation of knowledge is not suitable for the classical
semantics of the common knowledge operator. In Chapter 2 we
introduced the k-bounded common knowledge modality, which is a
restricted representation of the same concept. k-bounded common
knowledge not only enables the possibility of representing and rea-
soning about common knowledge in FPPF , but it also provides
flexibility when modelling the amount of knowledge the agents
gain after being part of a public announcement. The bounded
common knowledge does not reduce the power of FPPF to de-
tect privacy leaks. The amount of nested knowledge which the
agents can have will be bounded by the deductive engine they are
provided with. Therefore one can define which will be maximum
nested knowledge that will appear in a social network model and
choose a precise boundary k.

For instance, inFPPFTwitter (Section 3.2.1), we chose 3-bounded
common knowledge. This is because, firstly, the minimum set of ax-
ioms in the deductive engine does not increment the nested knowl-
edge of the agents; secondly, the new axioms defined in ATwitter
do not increment the agents’ nested knowledge either; and thirdly,
because the set of privacy policies that the agents can write in
πTwitter do not contain nested knowledge. Consequently, a value
greater than 3 would not change the result of the privacy analy-
sis we carry out in the dynamic instantiation of Twitter. A bound

3.3. DYNAMIC INSTANTIATION OF TWITTER 41

less than 3 would not capture precisely what happens when tweet-
ing, since after this events occurs, the tweet’s audience knows
that the owner of the tweet knows that they know the tweet, i.e.
EAudienceKownerEAudiencetweet(owner).

In what follows we show how to make use of the operational
semantics rules to model the behaviour of a concrete SNS. Specif-
ically, we will provide the set of rules for the events defined in a
dynamic instantiation of Twitter.

3.3 Dynamic Instantiation of Twitter

In this section we present the dynamic instantiation of Twitter,
FPPFDTwitter, by extending the instantiation FPPFTwitter, which
was introduced in Section 2.2. EV TTwitter is the set containing all
relevant events for the privacy analysis of Twitter. Specifically,
EV TTwitter consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post
some piece information.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s
profile.

• createProf - It is the first event a user executes for joining
Twitter. The user is required to provide a set of basic infor-
mation which determines her profile.

• follow - Users can connect with other users by means of the
follower relationship.

• acceptFollowReq - When a user’s profile is not public the
follow event enables a request to the user. In order for the
connection to be established the request must be accepted.
This event represents the action of accepting the request.

• block, unblock - In Twitter users can block other users. This
pair represents the events of blocking and unblocking a user,
respectively.

42 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

• showReco - Twitter shows a selection of recommended-to-
follow user recommendations to other users, when the email
or the phone number of the recommended user is known by
the one to whom the recommendation is shown.

• showAdv - This event models the action of a company send-
ing an advertisement to a concrete user.

• allowAdv, disallowAdv - A user can (dis)allow a company
from sending advertisement. These events model the activa-
tion and deactivation of this permission.

• changeStPriv, changeStPub - These events model the switch-
ing between ’Private’ or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the
location is included or not in the tweet, respectively.

We instantiate the rules in Table 3.1 for each of the events de-
scribed above. As a result, we obtain the operational semantics
rules for a given social network. Here we describe the Twitter
rules for the events createProf and tweet modelled in Table 3.2.
For the full set of rules modelling Twitter semantics please refer to
Sections A.2.1, A.2.2, A.2.3 and A.2.4 in the Appendix.

The event createProf describes how the social network model

changes when a new user joins the SNS, i.e. SN
createProf(u,InitInfo)−−−−−−−−−−−−−−−→

SN ′ for SN, SN ′ ∈ SNTwitter, u ∈ Ag and InitInfo ⊆ FKBL (rep-
resenting the initial set of information that users provide in Twit-
ter). Rule R5 consists of one condition, which if satisfied, leads to
four consequences. The condition u 6∈ Ag requires that the new
user is not already registered, i.e. her node does not exist in the
SNM before executing the event. The remaining premises repre-
sent the effects of executing the event. Firstly, Ag′ = Ag ∪ {u}
(where Ag′ ∈ SN ′), specifies that the new user is added to the
SNM. Secondly, KB′i = InitialInfo, represents that in the new
SNM SN ′, the user knows all the information she provided when
signing up. Moreover the user is able to access her own profile
as represented by A′accessProf = AaccessProf ∪ {(u, u)}. Finally,
∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)}, models the set
of advertisers, Advertisers ⊆ Ag, who can send advertisements to
the user.

3.3. DYNAMIC INSTANTIATION OF TWITTER 43

Tweet
Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}

state(tu) == ’Public’ Inclocation(u) == true

∀ϕ ∈ TweetInfo, ∀i ∈ Au KB′i = KBi ∪ {C3
Auϕ}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

Au = followers(tu) ∪ {u} state(tu) == ’Private’
Inclocation(u) == false location(tu, η) 6∈ TweetInfo
∀ϕ ∈ TweetInfo,∀i ∈ Au KB′i = KBi ∪ {C3

Auϕ}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}
state(tu) == ’Public’

Inclocation(u) == false location(tu, η) 6∈ TweetInfo
∀ϕ ∈ TweetInfo,∀i ∈ Au KB′i = KBi ∪ {C3

Auϕ}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

Au = followers(tu) ∪ {u}
state(tu) == ’Private’ Inclocation(u) == true

∀ϕ ∈ TweetInfo,∀i ∈ Au KB′i = KBi ∪ {C3
Auϕ}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

Create Profile
u 6∈ Ag Ag′ = Ag ∪ {u} KB′i = InitialInfo
∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)}

A′accessProf = AaccessProf ∪ {(u, u)}

〈Ag, {{Ai}i∈I2 , _},KB, _〉
createProf(u,InitialInfo)−−−−−−−−−−−−−−−−→ 〈Ag′, {{A′i}i∈I2 , _},KB′, _〉

Table 3.2: Create and Tweet rules for FPPFDTwitter

In general, an event may give rise to more than one operational
semantics rules. tweet is an example of such event. tweet’s be-
haviour is modelled in Table 3.2. It is composed by 4 rules, which
determine its behaviour depending on certain conditions. These
conditions consider whether a user has protected her tweets and
whether she allows her location to be included in her tweets. Since
the policies can be either activated or deactivated, this leads to
four different social network models after its execution. Suppose

that SN
tweet(u,TweetInfo)−−−−−−−−−−−−→ SN ′ for SN, SN ′ ∈ SNTwitter, u ∈ Ag

44 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

and TweetInfo ∈ 2PTwitter (representing the information disclosed
in the tweet, i.e. location of the tweet, mentions, pictures, etc). In
the first line of tweet we specify which will be the audience of the
tweet. This depends on the type of the account of the user who
is tweeting. If the state of the user’s account is ’Public’, then the
tweet will be disclosed to her followers and to the people men-
tioned in the tweet, followers(u) ∪ {u} ∪ {v|mention(v, u, η) ∈
TweetInfo}. Otherwise, the audience is restricted to only her fol-
lowers followers(u) ∪ {u}. If the tweet location is deactivated,
inclLoc(u) == false, then the rules contain one extra condition
which explicitly requires that the location should not be part of the
information disclosed in the tweet, location(u, η) 6∈ TweetInfo.
As a result, all the formulae describing the tweet information
become common knowledge among the agents of the audience,
∀ϕ ∈ TweetInfo,∀i ∈ Au K ′i = Ki ∪ {C3

Auϕ}.
The reader may wonder why the audience of a tweet is not any

Twitter user when the profile of the tweet’s owner is public. The
reason is because we want to model the exact behaviour of the SNS.
In Twitter when the user (with a public profile) tweets a message,
this message is shown in her followers’ timeline. Additionally,
since the profile is public, any other user (which is not following
her) can check all her tweets. This is modelled with the event
accessProf . The rule modelling the event’s behaviour consists
of 2 cases, which distinguish if the user has a public or a private
profile. If the profile is public any user which executes the events
will get access to all the tweets. For the formal definition of this
rule see Table A.2.1 in the Appendix.

Summary of the Chapter

In this chapter we have presented the dynamics of the first-order
privacy policy framework FPPF . It has been done by introduc-
ing an LTS which captures the dynamic behaviour of the SNS.
Concretely, each event that can be executed in the SNS is mod-
elled by operational semantics rules, which define how the SNM
evolves. We have also defined how to instantiate the dynamics
of an SNS and we have extended the instantiation of Twitter that
we provided in the previous chapter with its dynamic behaviour.
However, we have not discussed the consequences, regarding to

3.3. DYNAMIC INSTANTIATION OF TWITTER 45

privacy, of executing an event. In the next chapter, we will de-
fine what means for an SNS (modelled in FPPF) to be privacy-
preserving and we will analyse this property in instantiations of
Twitter and Facebook.

46 CHAPTER 3. PRIVACY POLICIES IN EVOLVING SNS

Chapter 4

Proving Privacy in Social
Networks

The dynamic part of FPPF raises new questions about the pri-
vacy of the SNS. The execution of an event can lead to a state of the
social network in which some privacy policies are violated. As a
designer, one may want to be sure that all the events implemented
in the SNS preserve the set of privacy policies that users have de-
fined. In this chapter, we define the notion of privacy-preserving
SNS, which, in short, expresses that all privacy policies must be in
conformance with the SNS at any point in the execution. This con-
cept allows us to formally analyse the privacy of SNSs modelled
in FPPF . As an example, we describe how to carry out a privacy
analysis of Twitter and Facebook.

4.1 Does an SNS preserve privacy?

In SNSs privacy policies can be violated because of the execution of
many events. Therefore, in order to make sure that all privacy poli-
cies will be preserve in the SNS, we have to ensure that none of the
events can violate any of the privacy policies. Since inFPPFD we
model the evolution of the SNS, we can formally prove whether
the execution of the events defined in a SNS will preserve a set of
privacy policies. We formalise this privacy condition as follows.

Definition 16. An SNS S is privacy-preserving iff given a dynamic
instantiation FPPFDS of S, for any SN, SN ′ ∈ SNS , e ∈ EV TS and

47

48 CHAPTER 4. PROVING PRIVACY IN SOCIAL NETWORKS

π′ ∈ ΠS the following holds:

If SN |=C π
′ and SN e−→ SN ′ then SN ′ |=C π

′

In the following sections we show whether this property holds
for different sets of privacy policies in Twitter and Facebook.

4.2 Privacy in Twitter

Using the dynamic instantiation of Twitter that we defined in the
previous chapter, FPPFDTwitter, we show that the described events
in EV TTwitter and the proposed specification using the operational
semantics rules are privacy-preserving (as defined in Def. 16) with
respect to the set of privacy policies of Twitter.

Theorem 1. Twitter is privacy-preserving.

Proof sketch: We check that the execution of none of the events
in EV TTwitter can violate any of the privacy policies in ΠTwitter by
considering all possible combination of events and privacy policies
(i.e. ensuring that Def. 16 holds). Here we only show the case
when tweet is executed and P1 is activated. We follow the same
strategy for the remaining cases (See Appendix B.1 for the full
detailed proof).
1. Given
1.1. u ∈ Ag (owner of the privacy policy P1(u))
1.2. Predicates to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈
TweetInfo
1.3. e = tweet(u, TweetInfo)
1.4. We want to prove:

SN |=C P1(u) and SN e−→ SN ′ then SN ′ |=C P1(u)

2. By contradiction, let us assume
2.1. SN |=C P1(u) and SN e−→ SN ′

2.2. SN ′ 6|=C P1(u)

3. By 2.2.
3.1. SN ′ 6|=C P1(u) [Def. |=C]
3.2. SN ′, u |= ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]

4.2. PRIVACY IN TWITTER 49

3.3. SN ′, u |= SAg\followers(u)\{u}tweet(u, η)

4. By 3.3. and the definition of |= we have
4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′, i |= Kitweet(u, η)

5. By Def. of tweet, we have that
5.1. ∀p(#»

t) ∈ TweetInfo SN ′, u |= C3
followers(u)∪{u}p(

#»
t) [By 1.2.]

5.2. SN ′, u |= C3
followers(u)∪{u}tweet(u, η) [By |=]

5.3. SN ′, u |= E0
followers(u)∪{u}tweet(u, η)∧

E1
followers(u)∪{u}tweet(u, η)∧

E2
followers(u)∪{u}tweet(u, η)∧

E3
followers(u)∪{u}tweet(u, η) [By |=]

5.4. SN ′, u |= E1
followers(u)∪{u}tweet(u, η) [By |=]

5.5. ∀j ∈ followers(u) ∪ {u} SN ′, j |= Kjtweet(u, η)

6. By 2.1. we have
6.1. SN |=C P1(u) [By |=C]
6.2. SN, u |= ¬SAg\followers(u)\{u}tweet(u, η) [By Def. SG]
6.3. SN, u |= ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

6.4. SN, u |=
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

7. By 6.4. and 5.5. we have
7.1. SN ′ |=C P1(u)

8. By 2.2. and 7.1. we derive a contradiction.
The proof of Theorem 1 is carried out over the instantiation

we constructed from the observable behaviour of Twitter. Having
access to the source code would make possible to define a more ac-
curate instantiation of Twitter. Nevertheless it formally guarantees
that an implementation which precisely behaves as described by
the operational semantics rules will preserve all privacy policies
defined for Twitter.

As we mentioned in Chapter 1, developers add new function-
alities every day. Sometimes new privacy policies are added as
well. Making sure that all privacy policies are effectively enforced
in such a dynamic environment is a very difficult task.

Suppose Twitter developers decide to offer the following new
privacy policy to their users:

50 CHAPTER 4. PROVING PRIVACY IN SOCIAL NETWORKS

“It is not permitted that I am mentioned in a tweet which contains a
location”.

This privacy policy can be expressed in PPLSN as follows:

P6(u) = ∀i.∀o.∀η.J¬(Kilocation(o, η) ∧Kimention(u, o, η))Ku.

Here we use FPPFDTwitter to formally show that this privacy policy
would not be enforced under the current operational semantics.

Lemma 1. Twitter is not privacy-preserving if P6(i) ∈ ACTwitter where
i ∈ AgTwitter.

Proof Sketch: Assume a user u ∈ Ag who has never been mentioned
and has one instance of P6(u) in her set of policies, and another
user o ∈ Ag who executes the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

If the result of executing the event in SN is SN ′, SN e−→ SN ′, then
by assumption we know that SN |=C P6(u), but according to the
operational semantics of tweet, all users in the audience of the
tweet will learn mention(u, o, η) and location(o, η) and therefore
SN ′ 6|=C P6(u). See Appendix B.2 for the detailed proof.

Lemma 1 is an expected result. Twitter was not developed with
P6 in mind. Yet the proof directly points to the event violating it. It
also provides useful information of how the behaviour of Twitter
should be modified to support P6.

4.3 What about Facebook?

Together with Twitter, Facebook is one of the giants of social me-
dia. Facebook connects millions of users who share information
through events similar to the ones presented for Twitter. In this
section, we use Facebook as target SNS to show yet another exam-
ple of how FPPF can be used to analyse the privacy implications
of adding new privacy policies.

In Facebook, when someone tags a user in a picture only the
owner of the picture is required confirm the tag. No confirmation
from the tagged user is required. The only control the tagged user
has over the tag is to hide the picture from her timeline or remove

4.3. WHAT ABOUT FACEBOOK? 51

it after the tagging has been carried out. We model this behaviour
in a reduced instantiation of Facebook, denoted as FPPFFacebook,
which exclusively contains the required elements to model the
tagging process.

Given o, tge, tgr ∈ AgFacebook and η ∈ N, the set of atomic pred-
icates, PFacebook, is composed by:

• picture(o, η) - Picture η published by user o.

• tagRequest(tgr, tge, o, η) - Tag request from the tagger (tgr)
of the tagged user, taggee (tge), in picture picture(o, η).

• tag(tge, tgr, o, η) - Tag created by the tagger (tgr) of the tagged
user, taggee (tge), in picture picture(o, η).

The connections set only contains the friendship relationship,
i.e. CFacebook = {CFriendship}. The actions set ΣFacebook only con-
tains the action removeTagtag(tge,tgr,accepter,η), which defines which
users have permission to remove the tag tag(tge, tgr, accepter, η).
Regarding to auxiliary functions we only include:

• audience : PFacebook → 2AgFacebook - Similarly to in Twitter, this
function returns the audience of some piece of information.
Given p(

#»
t) ∈ PFacebook, audience(p(#»

t)) = { i | SN, i |=
Kip(

#»
t)}.

• friends : AgFacebook → 2AgFacebook - This function returns all
the friends of a given user. Given u ∈ AgFacebook, friends(u) =
{i|(u, i) ∈ CFriendship}.

The previous elements constitute the static instantiation of
Facebook, FPPFFacebook. In order to model the behaviour of the
tagging event, we extend FPPFFacebook with the operational se-
mantics rules for the events {tag, acceptTagRequest} ⊆ EV TFacebook
as specified in Table 4.1, which defines FPPFDFacebook. The intu-
ition behind the operational semantics rules is as follows.

The event tag(tgr, tge, picture(o, η)) represents what happens
when a (tagger), tgr, tags another user (taggee), tge, in a picture
picture(o, η). The tagger tgr must have access to the picture. We
represent this by imposing the condition picture(o, η) ∈ KB(tgr)
in FR1.1. If the condition is satisfied, a tag request, informing
that tgr wants to tag tge in picture(o, η), is sent to the owner of

52 CHAPTER 4. PROVING PRIVACY IN SOCIAL NETWORKS

Tag - FR1

FR1.1

picture(o, η) ∈ KB(tgr)
KB′(o) = KB(o) ∪ {C3

{o,tgr}tagRequest(tgr, tge, o, η)}
KB′(tgr) = KB(tgr) ∪ {C3

{o,tgr}tagRequest(tgr, tge, o, η)}

SN
tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN ′

Accept tag request - FR2

FR2.1

Au = audience(picture(o, η)) ∪ friends(tge)
a = removeTagtag(tge,tgr,o,η)

acptr == o tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′a = Aa ∪ {(o, o), (o, tge)}

∀i ∈ Au KB′(i) = KB(i) ∪ {C3
Autag(tge, tgr, o, η)}

SN
acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

Table 4.1: Tagging - Operational Semantics of Facebook

the picture and it becomes common knowledge for both of them,
∀i ∈ {o, tgr}

KB′(i) = KB(i) ∪ {C3
{o,tgr}tagRequest(tgr, tge, o, η)}

Note that the approval from the tagged user is not required.
The event acceptTagRequest(acptr tge, tgr, picture(o, η)) de-

scribes the result of accepting a tag request. The tag request must
have been sent beforehand. The owner of the picture is the only
user able to accept the tag, i.e. acptr == o, therefore it is required
to check that the user accepting the tag has access to the tag re-
quest,

tagRequest(tge, tgr, o, η) ∈ KB(acptr).

The owner of the picture and the taggee will be permitted to re-
move the tag, which is specified as follows

(o, o), (o, tge) ∈ A′removeTagtag(tge,tgr,accepter,η) .

Also the tag is disclosed to the users part of the audience of the
picture, thus becoming common knowledge among them. ∀i ∈

4.3. WHAT ABOUT FACEBOOK? 53

audience(picture(o, η))

KB′(i) = KB(i) ∪ {C3
Autag(tge, tgr, o, η)}.

Consider now that Facebook developers decide to offer to their
users a better control over their tags by adding the following pri-
vacy policy:

I can only be tagged in a picture if I have approved it.

We denote this privacy policy as FP1(u) where u ∈ AgFacebook and
it is expressed in PPLSN as follows:

∀o.∀t.∀η.J¬KutagRequest(t, u, o, η) =⇒ ¬SAgtag(u, t, o, η)Ku

meaning that for all u, t, o ∈ AgFacebook and picture picture(o, η)
where η ∈ N, if the user u (the one who is going to be tagged) did
not receive the tag request, then the tagging will not be carried out.
By forcing u to be the one receiving the tag request, we ensure that
it is u the one approving the tag.

As in Twitter, the following holds:

Lemma 2. Facebook is not privacy-preserving if FP1(u) ∈ ACFacebook
where u ∈ AgFacebook.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged and
let tgr ∈ Ag be a user who has executed the event tag(tgr, tge, o, η)
in order to tag tge in picture(o, η) where o ∈ Ag and η ∈ N. The
owner of picture(o, η) is o. Therefore, in the current social network
model SN , it holds that tagRequest(tge, tgr, o, η) ∈ KB(o). In
order for FPPFDFacebook to preserve privacy it must hold that if

SN |=C FP1(tge) and SN
acceptTagRequest(o,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

where SN, SN ′ ∈ SNFacebook then SN ′ |=C FP1(tge).
Since tgewas not tagged before the execution of FR2 we know

that SN |=C FP1(tge). Also since tagRequest(tge, tgr, o, η) ∈
KB(o) and acptr == o we know that FR2 can be executed. By
the definition of FR2, we know that SN ′, o |= EAutag(tge, o, o, η),
hence SN ′ 6|=C FP1(tge), which contradicts our claim SN ′ |=C

FP1(tge) and therefore FPPFDFacebook is not privacy-preserving.
See Appendix B.3 for the detailed proof.

54 CHAPTER 4. PROVING PRIVACY IN SOCIAL NETWORKS

In short, the proof shows that the policy is not enforced because
the owner of the picture can accept tags (FR2.1) of any users with-
out their approval in any of her pictures. In this instantiation, since
there are only two operational semantic rules, it is easy to discuss
a possible modification in the rules so that FP1 is supported.

First of all, FR2.1 must guarantee that the taggee is accepting
the tag if the policy is activated. In order to preserve this condition,
we would need to replace acptr == o with acptr == tge, which
forces the taggee to be the one accepting the tag. Finally, FR1.1
must be slightly modified, since now the tag request will be sent

Tag - FR1

FR1.1

FP1(tge) 6∈ πtge picture(o, η) ∈ KB(tgr)
KB′(o) = KB(o) ∪ {C3

{o,tgr}tagRequest(tgr, tge, o, η)}
KB′(tgr) = KB(tgr) ∪ {C3

{o,tgr}tagRequest(tgr, tge, o, η)}

SN
tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN ′

FR1.2

FP1(tge) ∈ πtge picture(o, η) ∈ KB(tgr)
KB′(tge) = KB(tge) ∪ {C3

{tge,tgr}tagRequest(tgr, tge, o, η)}
KB′(tgr) = KB(tgr) ∪ {C3

{tge,tgr}tagRequest(tgr, tge, o, η)}

SN
tag(tgr,tge,picture(o,η))−−−−−−−−−−−−−−−→ SN ′

Accept tag request - FR2

FR2.1

Au = audience(picture(o, η)) ∪ friends(tge)
FP1(tge) 6∈ πtge a = removeTagtag(tge,tgr,o,η)

acptr == o tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′a = Aa ∪ {(o, o), (o, tge)}

∀i ∈ Au KB′(i) = KB(i) ∪ {C3
Autag(tge, tgr, o, η)}

SN
acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

FR2.2

Au = audience(picture(o, η)) ∪ friends(tge)
FP1(tge) ∈ πtge a = removeTagtag(tge,tgr,o,η)

acptr == tge tagRequest(tge, tgr, o, η) ∈ KB(acptr)
A′a = Aa ∪ {(o, o), (o, tge)}

∀i ∈ Au KB′(i) = KB(i) ∪ {C3
Autag(tge, tgr, o, η)}

SN
acceptTagRequest(acptr,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

Table 4.2: New Tagging rules supporting FP1

4.3. WHAT ABOUT FACEBOOK? 55

to the taggee instead of the owner of the picture. Therefore

KB′(o) = KB(o) ∪ {C3
{o,tgr}tagRequest(tgr, tge, o, η)}

is replaced with

KB′(tge) = KB(tge) ∪ {C3
{tge,tgr}tagRequest(tgr, tge, o, η)}.

The resulting operational semantics rules are presented in table
4.2.

Finally if we include the new two rules in FPPFDFacebook and
we consider that the only privacy policy in the instantiation is
FP1, the following lemma holds:

Lemma 3. Facebook is privacy-preserving.

Proof sketch: We consider all possible rules that can be executed
and show that none of them will violate FPU , which is the only
policy available in the instantiation FPPFDFacebook. The only rule
that can violate FPU is FR2 (specifically the case FR2.2). Due to
the similarity to the proof for Theorem 1 we omit the details here,
but we follow the same strategy, i.e. we show by contradiction
that FPU cannot be violated. We refer the reader to Appendix B.4
for the complete proof.

Summary of the Chapter

In this chapter we have introduced a formal notion of privacy-
preserving SNS for FPPF . Moreover, we have analysed the pri-
vacy of Twitter and Facebook by proving whether they preserve
privacy under the presence of certain policies. We have also shown
that the proofs give us useful information that can be used to up-
date the instantiations we had for the SNSs, so that they support
the new privacy policies.

As we have mentioned in previous chapters, in FPPF we do
not use the traditional epistemic logic semantics. However, there
exist similarities between classical epistemic logic and FPPF . In
the next chapter, we describe the semantics of first-order epistemic
logic and we show some of the similarities of this logic to our
approach.

56 CHAPTER 4. PROVING PRIVACY IN SOCIAL NETWORKS

Chapter 5

Relation of FPPF to
Epistemic Logic

The way knowledge is interpredted in FPPF is not exactly as
in classical epistemic logic. In this chapter, we first describe the
conventional definition of first-order epistemic logic and later we
discuss how it relates with FPPF , in particular, social network
models.

5.1 Epistemic Logic

Here we introduce background on First-Order Epistemic Logic
(FOEL) very much as defined in [15]. As we showed in Chapter 2,
the syntax of FOEL is that of First-Order Logic, but extended with
the knowledge modality Ki. Let T be a set of functions symbols,
predicate symbols and constants symbols. Function and predicate
symbols have some implicit arity. Constant symbols can be seen as
functions of arity 0. We refer to T as the vocabulary. Assume also
an infinite supply of variables x1, . . . , xn (n > 0). Given a constant
symbol c, function symbol fi and variable x we define terms as
t ::= c | x | fi(

#»
t).

Given the above and a set of agentsAGT the language of FOEL,
denoted as Ln, is inductively defined as follows:

ϕ ::= p(
#»
t) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | Kiϕ.

where i ∈ AGT .

57

58 CHAPTER 5. RELATION OF FPPF TO EPISTEMIC LOGIC

P(a)P(a)
a b

s0 s1 s2

Figure 5.1: Relational Kripke structure

The semantics of FOEL is given by means of relational Kripke
structures. However, in order to define relational Kripke structures
we first need to introduce relational structures. A relational struc-
ture T -structure,A, consists of a nonempty set, denoted as dom(A),
called the domain, assignments of a k-ary relations PA ⊆ dom(A)k

to the relation symbols in T , an assignment of a k-ary function
fAi : dom(A)k → dom(A) to each function symbol fi of T and
an assignment of a member cA of the domain to each constant
symbol c. Finally, we define a valuation function V on a struc-
ture A, denoted V A, which maps each variable to an element in
dom(A), V A(c) = cA for each c in A and we extend the defini-
tion by induction on the structure of terms V A(f(t1, . . . , tk)) =
fA(V A(t1), . . . , V A(tn)).

Given the above, relational Kripke structures will consist of
a set of states S, binary relations on them, denoted by Ki, and
a function π, which associates a T -structure to each state s ∈ S.
Formally, a relational Kripke structure for a vocabulary T and n
agents is a tuple of the form 〈S, π,K1, . . . ,Kn〉.

Example 8. Let us consider a Kripke structure consisting of the agents
a and b, the states s0, s1 and s2, the predicate P with arity 1 and the
relationsKa = {(s0, s1), (s1, s0)} andKb = {(s1, s2), (s1, s2)}. For the
purpose of this example we assume that all relational structures π(sn)
have a common domain dom(A) = {a, b}. Moreover, a ∈ P π(s0) and
a ∈ P π(s1). Fig. 5.1 shows a graphical representation of the described
model.

The semantics of fomulae written in Ln, are defined as follows:

Definition 17. Given a non-empty set of agents AGT , a Kripke struc-
ture M = 〈S, π, {Ki}i∈AGT 〉, the agents i ∈ AGT , a finite set of agents
G ⊆ AGT and the valuation V , we define what it means for ϕ ∈ Ln
under valuation V to be true, written (M, s, V) |= ϕ, as shown in Table
5.1.

5.2. FPPF VS EPISTEMIC LOGIC 59

(M, s, V) |= P (t1, . . . , tk) iff (V πc(s)(t1), . . . , V πc(s)(tk)) ∈ P π
c(s)

(M, s, V) |= ¬ϕ iff (M, s, V) 6|= ϕ
(M, s, V) |= ϕ1 ∧ ϕ2 iff (M, s, V) |= ϕ1 and (M, s, V) |= ϕ2

(M, s, V) |= ∀x.ϕ iff for all v ∈ dom(A), (M, s, V) |= ϕ[v/x]
(M, s, V) |= Kiϕ iff (M, t, V) |= ϕ for all t such that (s, t) ∈ Ki

Table 5.1: KBLSN satisfiability relation over Kripke structures

As we showed in Table 5.1, in order for agents to know some
formula ϕ, it must be true in all states that are accessible for her.
Intuitively, relational Kripke structures model the uncertainty of
the agents.

Example 9. Let M be the model presented in Fig. 5.1. It holds that
(M, s0, V) |= KaP (a). Indeed, since P (a) holds in all states accessible
for a from s0, which in M , is only s0. Therefore (M, s0, V) |= P (a).

It also holds that (M, s0, V) |= ¬KbP (a), since in one of the states
that b considers possible P (a) is not true. In particular, (M, s2, V) |=
¬P (a).

This semantics for knowledge has been given several axiomati-
sations. These axiomatisations are based on properties of knowledge
(or axioms) that hold depending on the type of binary relations in
the Kripke structure. For instance, if we define the binary relation
to be reflexive the following axiom holds.

Kiϕ =⇒ ϕ

A list of the most common axiomatisations for knowledge and
their proofs of soundness and completeness with respect to their
respective Kripke structures can be found in [15].

5.2 FPPF vs Epistemic Logic

The most notorious difference between the semantics ofFPPF and
FOEL is the way knowledge is interpreted. SNMs “store” in each
node the FKBL formulae that the agents know. On the contrary, in
relational Kripke structures, the uncertainty of the agents is mod-
elled by means of the binary relation Ki.

Nevertheless, it does not mean that the two models are com-
plementary. In [15] Fagin et al. show how to construct knowledge

60 CHAPTER 5. RELATION OF FPPF TO EPISTEMIC LOGIC

bases for systems consisting of several agents by using what they
called knowledge-based programming. They defined the state of an
agent to be a tuple which contains all formulae the agent knows at
a particular moment in time. The SNMs defined here, contain the
same information, but also additional information regarding per-
missions and connections between users. As a matter of fact, we
claim that given a formula ϕ which characterises the knowledge,
permission and connections of all agents in the SNM, a relational
Kripke structure can be constructed containing the same informa-
tion. Concretely, the canonical Kripke structure [15] resulting from
ϕ can be built.

In the case of individual agents this fact becomes clearer. In
each agent node there are several formulae explicitly representing
what she knows. As we mentioned in Section 2.1.2, all predicates
are interpreted equally when they are placed inside the knowl-
edge base of the agent. Then we provide the agent with a deduc-
tive engine, which allows her to derive new knowledge from the
explicit formulae. In particular, we assume that agents can infer
new knowledge using any of the derivation rules or axioms in K.
K corresponds to the set of Kripke structures where K does not
have any restrictions. If we had chosen the axiomatisation T, we
would have needed the set of relational Kripke structures where
K is reflexive. T is composed by the same set of derivation rules
and axioms than K, but it also includes the axiom Kiϕ =⇒ ϕ.
Hence each agent node can easily be encoded in a relational Kripke
structure with the appropriate restrictions in their binary relations,
which depend on the properties of knowledge we assume in the
deductive engine.

In Section 2.1.2 we wrote that we cannot just assume the ax-
iomatisation K for KBLSN in general (i.e. not only of knowledge
of individual agents, but also for global knowledge in the SNM).
The reason is because there are properties of knowledge that hold
in relational Kripke structures that do not hold in SNMs. Consider
the necessitation rule from K

ϕ

Kiϕ
(5.1)

where i is any agent in the system. The meaning of the rule is
that given a formula ϕ, which is valid (i.e. ϕ holds at any state of
a relational Kripke structure), then Kiϕ is also valid. Intuitively,

5.2. FPPF VS EPISTEMIC LOGIC 61

all agents in the system know all tautologies (i.e. formulae which
are always true). This rule holds even in the simplest relational
Kripke structure, which is the one with no restrictions in its binary
relations.

Consider now a relational Kripke structure where the predicate
friends(Alice,Bob) is valid. According to the rule (5.1), the for-
mula Kifriends(Alice,Bob) is also valid for all i ∈ AGT . On the
other hand, let us define validity of a formula ϕ in SNMs in a simi-
lar way, i.e. ϕ is valid if it is true at any node in the SNM; formally,
∀u ∈ Ag SN, u |= ϕ. In this case the rule (5.1) would not hold. In
order for the predicate friends(Alice,Bob) to be true at all nodes,
it is only needed that (Alice,Bob) ∈ CFriends. It could be possible
that (Alice,Bob) ∈ CFriends holds but ¬KBobfriends(Alice,Bob),
since the two facts are unrelated in SNMs. Therefore we can con-
clude that (5.1) is not sound with respect to SNMs.

These examples show why we cannot simply assume that ax-
iomatisations that are sound and complete for relational Kripke
structures can directly be used in KBLSN and SNMs globally, but
they hold for the internal knowledge of individual agents.

Summary of the Chapter

In this chapter we have provided the basics of FOEL and we have
described the similarities and differences with our SNMs. More-
over, we have “informally” argued why we cannot directly use
axiomatisations from FOEL directly in KBLSN . In the next chap-
ter, we present related work regarding the use of epistemic logic
to model knowledge SNSs (but not specific for privacy) and an
access control mechanism for SNSs.

62 CHAPTER 5. RELATION OF FPPF TO EPISTEMIC LOGIC

Chapter 6

Concluding Discussion

In this chapter we discuss related work about the use of epistemic
logic to model knowledge in SNSs and the current protection
mechanism in SNSs. Finally, we conclude with the conclusions
and the future work.

6.1 Related Work

In this section we describe applications of epistemic logic in secu-
rity and other approaches to model SNSs using dynamic epistemic
logic. We also discuss a formalism developed by Fong. et al. which
describes the current access control mechanism present in most
SNSs nowadays.

6.1.1 Epistemic Logic and SNSs

Epistemic logic has been widely used for analysing security and
privacy properties in multi-agent systems (MAS) in the past. Tradi-
tionally the evolution of knowledge in epistemic logic is modelled
by means of run and events, in a “run-and-systems” framework,
known as Interpreted systems [15]. In [19], Halpern et al. use In-
terpreted Systems to formalise the notion of secrecy in MAS. In
their work they redefine the possibilistic and probabilistic secu-
rity properties in epistemic logic, in the form of a modal operator
which allows them to reason about knowledge, nondeterminism
and probability together. Interpreted systems also appear in [9],

63

64 CHAPTER 6. CONCLUDING DISCUSSION

where Balliu presents a knowledge-based account to specify infor-
mation flow conditions in a distributed setting. The main advan-
tage of his approach is that it is able to express complex policies
based on epistemic logic. One of the main drawbacks of Inter-
preted systems is the high complexity of the model-checking. Nev-
ertheless it has been studied how to implement efficient model-
checkers which make possible to verify real systems. For instance,
MCK [18] and MCMAS [23] are state of the art model checkers
for temporal-epistemic logics based on Interpreted systems. They
have successfully been used to verify security properties in sev-
eral cryptographic protocols. However, we are not aware of any
specific use for verifying privacy policies.

Interpreted systems are able to represent the knowledge at dif-
ferent points in time. But there are no formal definitions of the
events that can be executed in order to specify how knowledge
evolves. Instead they require a description of the protocol which
describes the evolution of knowledge. Dynamic Epistemic Logic
(DEL) provides a basis for operations of knowledge evolution in
epistemic logic [10, 29]. DEL encodes informational events by
defining update operations over the classical Kripke models in
epistemic logic. The most important feature with respect to the
work carried out for this paper is the public announcement, which
consists in the action of disclosing a piece of information to a set
of agents.

It has recently been studied how to model the propagation of
knowledge over the agents of an SNS by using DEL. In [32] Selig-
man et al. define dynamic epistemic friendship logic (DEFL), which on
one hand, extends the classical Kripke model for epistemic logic
with the information about the friendship relationships, and on
the other hand, uses DEL to encode public and private announce-
ments in the SNS. A private announcement is a disclosure of in-
formation between two agents, in which only the two involved
agents are aware of the fact that the announcement occurred. In
[31], DEL is used with the intended aim of studying by means of
a formal technique the effect “Revolt or Stay-at-Home” in SNSs.
This effect represents how the fact of knowing how many people
(or agents) are going to revolt could influence our own decision of
revolt or stay at home.

DEL turns out to be not well-suited in our setting. Firstly, be-

6.1. RELATED WORK 65

cause it is based in the classical Kripke semantics for epistemic
logic [15]. As we have described in the previous chapter, there are
properties of knowledge that need to be further studied before we
can encode SNMs in Kripke structures. Secondly, DEL is only used
for modelling the evolution of knowledge, in our framework apart
from epistemic rules, we allow for topological, policy and hybrid
rules. Finally, and most importantly, the events defined in DEL are
not equipped with conditions, i.e. the execution of events does not
depend on the knowledge of the agents. By contrast, the execution
of events in SNSs depends not only on the agents knowledge, but
also other SN dependent factors. As described in Section 3.2.1, we
use the premises of the rules when stating the conditions for each
event.

6.1.2 Relationship-based Access Control

Currently SNS users share their resources by using the so called
Relationship-Based Access Control (ReBAC). This paradigm gives
access to user resources depending on her relationships with the
owner of the resource. Fong et al. introduce a formalism, which
aimes at providing a better understating of ReBAC [17, 16]. In their
work, Fong et al. developed a general formalism which can be in-
stantiated, first in mono-relational social networks, e.g. Facebook-
like networks where the relationship between agents is Friendship,
and later in a more general setting, with poly-relational where the
type of the relationship is also taken into account (e.g. patient-
physician, parent-child). In addition, they also introduce the no-
tion of access contexts, defined as a hierarchy of contexts to enable
an inheritance mechanism of relationships. Hence the access to the
resources also offers the possibility of articulating the relationships
between users depending on the access context. The audience of
the resources is defined by means of ReBAC policies. In [11] Bruns
et al. provide a language based on a Hybrid logic which extends
Fong’s work and supports interesting policy idioms.

By contrast to our work, the ReBAC paradigm is not able to de-
tect appropriately implicit disclosure of information. For example,
if a user posts the location of another user, the latter has no control
over the audience of her location. Therefore, the owner of the post
defines the audience of another user’s location. In our framework,

66 CHAPTER 6. CONCLUDING DISCUSSION

the structure of the predicates can encode the actual owner of a re-
source independently of the user disclosing the information. Due
to that, a user can later define a privacy policy which would pro-
tect a particular piece of her information, independently of who
was the user disclosing that information. We claim that FPPF is
not only as expressive as ReBAC but also it is able to detect im-
plicit leaks of information as the one mentioned before. A formal
comparison between the expressiveness of both frameworks is left
as future work. The main advantage of ReBAC is its efficiency to
enforce privacy policies, since it only requires to check whether
the user who is trying to access some information is part of the
audience. In our framework, we do not have performance results
yet, hence we postpone the comparison to future work.

6.2 Conclusions and Future Work

In this thesis we have presented a formal privacy policy frame-
work which captures the dynamic behaviour of SNSs. The frame-
work allows us to reason about privacy policies in evolving social
networks, by means of a labelled transition system. The frame-
work was enhanced with a set of operational semantics rules,
which were instantiated for Twitter. We have shown how a de-
signer can use our dynamic framework to model evolving fea-
tures of SNSs. Finally, we have introduced the notion of privacy-
preserving SNS. As a proof-of-concept, we have formally proved
that Twitter preserves privacy (according to our notion of privacy-
preserving SNS). In addition, we have proved that adding new
(and desirable) privacy policies to Twitter and Facebook makes
their behaviour not privacy-preserving. We have also shown that
the proofs provide useful information about which events are vi-
olating the privacy policies. In particular, we have shown how to
update the Facebook instantiation to support new policies, which
was done by analysing the information of the earlier proof where
we showed that Facebook did not preserve the new privacy policy.

In what follows we discuss some possible directions of future
work.

6.2. CONCLUSIONS AND FUTURE WORK 67

Enforcement

There are two possible ways to make sure that an SNS is preserving-
privacy using FPPF . Firstly, a designer could write a dynamic
instantiation of the SNS that she wants to implement. Then, she
can formally prove that the operational semantics rules that were
defined in that instantiation are privacy-preserving. This is simi-
lar to what we have shown for Twitter and Facebook. If the SNS
designer proves that the SNS is privacy-preserving then no addi-
tional enforcement is required.

On the other hand, we would like to provide a run-time en-
forcement mechanism for SNSs under consideration. We are cur-
rently studying how to extract a monitor from the specification
of the privacy policies, which would run in parallel with the SNS.
The monitor would check that the privacy policies of the users are
not violated as they execute events. To avoid the bottleneck of a
centralised algorithm, we are considering a distributed implemen-
tation.

We are already implementing FPPF in an open source SNS
called Diaspora* [1, 5] to show the practicality of our approach.

Relation to Standard Semantics for Epistemic Logic

As we have shown in Chapter 5, there are a lot of open questions
when it comes to the relation of SNMs and relational Kripke struc-
tures. We are currently investigating this questions. In particular,
the two main problems we are addressing are:

i) Whether there is a way to encode our SNMs into relational
Kripke structures.

ii) Specify a sound and complete axiomatisation (similar to the
ones for traditional epistemic logic) ofKBLSN with respect to
SNMs.

There are other issues that we do not mention in this thesis, but we
plan to study in the future. For instance, the properties of common
and distributed knowledge in SNMs or developing and studying
the complexity of a model checking algorithm.

68 CHAPTER 6. CONCLUDING DISCUSSION

Privacy Policies and Time

Privacy policies in FPPF cannot express real time properties. For
example, a user may want to write a policy which says “My boss
cannot know my location between 20:00-23:00” or “The audience
of the post on my timeline during my birthday is only my friends”.
Adding this temporal component to our framework is a natural
extension. Specific parts of the framework will become sensitive
to the particular time at which the events happen. We should
record when particular pieces of information are learnt, i.e. if
Bob learnt Alice’s location last week and today he learns it again,
then then we should be able to tell apart these two locations in
FPPF . It would also solve other issues present in our current
notion of privacy-preserving SNS. It is too strong in some cases.
For instance, imagine that Alice shared her location with Bob and
Charlie a month ago. Now Alice is going on vacation but she does
not want anybody to know it, therefore she decides to activate
the policy “nobody can know my location”. Keeping the privacy-
preserving property in FPPF would require forbidding Alice to
activate the privacy policy, since her location is already known by
Bob and Charlie and the resulting SNM would not be in confor-
mance with the policy. In order to solve this problem, we should
not only be able to differentiate between the old and new location,
but also we should know when the policy was activated. We are
actively working on this extension for FPPF .

Bibliography

[1] Diaspora*. https://joindiaspora.com/. Accessed: 2015-04-12.

[2] Directive 95/46/ec of the european parliament and of the council of 24 october 1995
on the protection of individuals with regard to the processing of personal data and
on the free movement of such data. http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31995L0046:en:HTML. Accessed: 2015-07-01.

[3] Facebook urged to tighten privacy settings after harvest of user data, the
guardian. http://www.theguardian.com/technology/2015/aug/09/
facebook-privacy-settings-users-mobile-phone-number. Accessed:
2015-09-05.

[4] Here’s how to use facebook’s mystifying privacy set-
tings, wired. http://www.wired.com/2015/08/
how-to-use-facebook-privacy-settings-step-by-step/?mbid=
social_fb. Accessed: 2015-09-05.

[5] PPF Diaspora*. https://github.com/raulpardo/ppf-diaspora. 2015.

[6] The universal declaration of human rights. http://www.un.org/en/
documents/udhr/. Accessed: 2015-09-04.

[7] What you need to know about instagram privacy settings, thes-
tar.com. http://www.thestar.com/news/privacy-blog/2015/02/
what-you-need-to-know-about-instagram-privacy-settings.html.
Accessed: 2015-09-05.

[8] Irwin Altman. Privacy: A conceptual analysis. Environment and behavior, 8(1):7–29,
1976.

[9] Musard Balliu. A logic for information flow analysis of distributed programs. In
Secure IT Systems, pages 84–99. Springer, 2013.

[10] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication and
change. Information and computation, 204(11):1620–1662, 2006.

[11] Glenn Bruns, Philip WL Fong, Ida Siahaan, and Michael Huth. Relationship-based
access control: its expression and enforcement through hybrid logic. In CODASPY’12,
pages 117–124. ACM, 2012.

[12] danah boyd and Nicole B. Ellison. Social network sites: Definition, history, and schol-
arship. Journal of Computer-Mediated Communication, 13:210–230, 2008.

69

70 BIBLIOGRAPHY

[13] Bernhard Debatin. Ethics, privacy, and self-restraint in social networking. In Sabine
Trepte and Leonard Reinecke, editors, Privacy Online, pages 47–60. Springer Berlin
Heidelberg, 2011.

[14] Kayhan Erciyes. Complex Networks: An Algorithmic Perspective. CRC Press, Inc., Boca
Raton, FL, USA, 1st edition, 2014.

[15] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning about
knowledge, volume 4. MIT press Cambridge, 2003.

[16] Philip W.L. Fong. Relationship-based access control: Protection model and policy
language. In CODASPY’11, pages 191–202. ACM, 2011.

[17] PhilipW.L. Fong, Mohd Anwar, and Zhen Zhao. A privacy preservation model
for facebook-style social network systems. In ESORICS’09, LNCS, pages 303–320.
Springer, 2009.

[18] Peter Gammie and Ron van der Meyden. Mck: Model checking the logic of knowl-
edge. In Rajeev Alur and DoronA. Peled, editors, Computer Aided Verification, volume
3114 of Lecture Notes in Computer Science, pages 479–483. Springer Berlin Heidelberg,
2004.

[19] Joseph Y Halpern and Kevin R O’Neill. Secrecy in multiagent systems. ACM Trans-
actions on Information and System Security (TISSEC), 12(1):5, 2008.

[20] Maritza Johnson, Serge Egelman, and Steven M. Bellovin. Facebook and privacy: It’s
complicated. SOUPS ’12, pages 9:1–9:15, New York, NY, USA, 2012. ACM.

[21] Amanda Lenhart, Kristen Purcell, Aaron Smith, and Kathryn Zickuhr. Social media
& mobile internet use among teens and young adults. Pew Internet & American Life
Project, 2010.

[22] Yabing Liu, Krishna P. Gummadi, Balachander Krishnamurthy, and Alan Mislove.
Analyzing facebook privacy settings: User expectations vs. reality. IMC ’11, pages
61–70. ACM, 2011.

[23] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: A model checker
for the verification of multi-agent systems. In Computer Aided Verification, pages 682–
688. Springer, 2009.

[24] M. Madejski, M. Johnson, and S.M. Bellovin. A study of privacy settings errors in an
online social network. (PERCOM Workshops’12), pages 340–345.

[25] Michelle Madejski, Maritza Lupe Johnson, and Steven Michael Bellovin. The failure
of online social network privacy settings. 2011.

[26] John-Jules Ch Meyer and Wiebe Van Der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, New York, NY, USA, 1995.

[27] Raul Pardo, Musard Balliu, and Gerardo Schneider. A formal approach to preserving
privacy in social networks (extended version). Technical report, Chalmers University
of Technology.

[28] Raúl Pardo and Gerardo Schneider. A formal privacy policy framework for social
networks. In SEFM’14, volume 8702 of LNCS, pages 378–392. Springer, 2014.

[29] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.

BIBLIOGRAPHY 71

[30] Riccardo Pucella. Knowledge and security. arXiv preprint arXiv:1305.0876, 2013.

[31] Ji Ruan and Michael Thielscher. A logic for knowledge flow in social networks. In
AI 2011: Advances in Artificial Intelligence, pages 511–520. Springer, 2011.

[32] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Facebook and the epistemic logic
of friendship. In TARK’13, 2013.

[33] Daniel J Solove. Understanding privacy. 2008.

[34] Samuel D Warren and Louis D Brandeis. The right to privacy. Harvard law review,
pages 193–220, 1890.

[35] Alan F Westin. Privacy and freedom. Washington and Lee Law Review, 25(1):166, 1968.

72 BIBLIOGRAPHY

Appendices

73

Appendix A

Dynamic Instantiation of
Twitter

In this appendix we provide a full dynamic instantiation for Twit-
ter. We first provide the the set of events EV TTwitter. Finally, we
define the complete set of operational semantics rules for all of the
events.

A.1 Set of events of Twitter

We define the setEV TTwitter which contains all the events involved
in the privacy analysis of Twitter.
EV TTwitter consists of the following elements:

• tweet - It is one the core events of Twitter. It is used to post
some piece information.

• retweet - It is used to share an already tweeted tweet.

• favourite - It allows users to classify tweets as favourite.

• accessProf - It represents the action of accessing a user’s
profile.

• createProf - It is the first event a user executes for joining
Twitter. The user is required to provide a set of basic infor-
mation which determines her profile.

75

76 APPENDIX A. DYNAMIC INSTANTIATION OF TWITTER

• follow - Users can connect with other users by means of the
Follower relationship.

• acceptFollowReq - When a user’s profile is not public the
follow event enables a request to the user. In order for the
connection to be established the request must be accepted.
This event represents the action of accepting the request.

• block, unblock - In Twitter users can block other users. This
pair represents the events of blocking and unblocking a user,
respectively.

• showReco - Twitter shows a selection of recommended-to-
follow user recommendations to other users, when the email
or the phone number of the recommended user is known by
the one to whom the recommendation is shown.

• showAdv - This event models the action of a company send-
ing an advertisement to a concrete user.

• allowAdv, disallowAdv - A user can (dis)allow a company
from sending advertisement. These events model the activa-
tion and deactivation of this permission.

• changeStPriv, changeStPub - These events model the switch-
ing between ’Private’ or ’Public’ accounts.

• inclLoc, notInclLoc - These events represent whether the
location is included or not in the tweet, respectively.

In what follows we provide the operational sematnics rules for
each of the events in EV TTwitter.

A.2 Operational Semantics Rules of Twitter

Here we introduce all the operational semantics rules for the in-
stantiation FPPFDTwitter. As usual, we divide them in Epistemic,
Topological, Policy and Hybrid.

A.2. OPERATIONAL SEMANTICS RULES OF TWITTER 77

A.2.1 Epistemic

R1 - Tweet

R1.1.1
Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}

state(tu) == ’Public’ Inclocation(u) == true

∀p(#»
t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {C3

Aup(
#»
t)}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

R1.2.2
Au = followers(tu) ∪ {u} state(tu) == ’Private’

Inclocation(u) == false location(tu, η) 6∈ TweetInfo
∀p(#»

t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {C3
Aup(

#»
t)}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉
R1.1.2
Au = followers(tu) ∪ {u} ∪ {u | mention(u, tu, η) ∈ TweetInfo}

state(tu) == ’Public’
Inclocation(u) == false location(tu, η) 6∈ TweetInfo
∀p(#»

t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {C3
Aup(

#»
t)}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉
R1.2.1

Au = followers(tu) ∪ {u}
state(tu) == ’Private’ Inclocation(u) == true

∀p(#»
t) ∈ TweetInfo ∀i ∈ Au KB′(i) = KB(i) ∪ {C3

Aup(
#»
t)}

〈_, _,KB, _〉 tweet(tu,TweetInfo)−−−−−−−−−−−−−→ 〈_, _,KB′, _〉
R2 - Retweet

R2.1
F = getTweetInfo(tu, η)

state(tu) == ’Public’ state(rtu) == ’Public’
TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}
RetweetAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}

tweet(tu.η) ∈ KB(rtu)

∀p(#»
t) ∈ F ∀i ∈ TweetInfoAu KB′(i) = KB(i) ∪ {C3

Aup(
#»
t)}

∀i ∈ RetweetAu KB′(i) = KB(i) ∪ {C3
RetweetAuretweet(rtw, tu, η)}

〈_, _,KB, _〉 retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

78 APPENDIX A. DYNAMIC INSTANTIATION OF TWITTER

R2.2
F = getTweetInfo(tu, η)

state(tu) == ’Public’ state(rtu) == ’Private’
TweetInfoAu = followers(tu) ∪ followers(rtu) ∪ {tu, rtu}

RetweetAu = followers(rtu) ∪ {rtu}
tweet(tu.η) ∈ KB(rtu)

∀p(#»
t) ∈ F ∀i ∈ TweetInfoAu KB′(i) = KB(i) ∪ {C3

Aup(
#»
t)}

∀i ∈ RetweetAu KB′(i) = KB(i) ∪ {C3
RetweetAuretweet(rtw, tu, η)}

〈_, _,KB, _〉 retweet(rtu,tweet(tu,η))−−−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

R3 - Favourite

R3
tweet(tu, η) ∈ KB(fu)

∀i ∈ {fu, tu} KB′(i) = KB(i) ∪ {favourite(fu, tu, η)}

〈_, _,KB, _〉 favourite(fu,tweet(tu,η))−−−−−−−−−−−−−−−−→ 〈_, _,KB′, _〉

R4 - Access profile

R4.1
F = Info(acd)

[(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec]
Status(acd) = ’Public’

∀p(#»
t) ∈ F KB′(acr) = KB(acr) ∪ {p(#»

t)}

〈_, {{Ai}i∈Σ, _},KB, _〉
accessProf(acr,acd)−−−−−−−−−−−−→ 〈_, {{Ai}i∈Σ, _},KB′, _〉

R4.2
F = Info(acd)

[(acr, acd) ∈ AaccessProf ∨ (acr, acd) ∈ AaccessProfRec]
Status(acd) = ’Private’

(acd, acr) ∈ CFollower ∀p(#»
t) ∈ F SN ′, acr |= Kacrp(

#»
t)

〈_, {{Ai}i∈Σ, {{Ci}i∈C , _},KB, _〉
accessProf(acr,acd)−−−−−−−−−−−−→ 〈_, {{Ai}i∈Σ, {Ci}i∈C , _}KB′, _〉

R10 - Show recommendation

R10.1
beingReco(recommended) == false
email(recommended) ∈ KB(viewer)

A′accessProfRec = AaccessProfRec ∪ {(viewer, recommended)}

〈_, {{Ai}i∈Σ, _},KB, _〉
showReco(recommended,viewer)−−−−−−−−−−−−−−−−−−−−→ 〈_, {{A′i}i∈Σ, _},KB, _〉

A.2. OPERATIONAL SEMANTICS RULES OF TWITTER 79

R10.2
beingReco(recommended) == true

A′accessProfRec = AaccessProfRec ∪ {(viewer, recommended)}

〈_, {{Ai}i∈Σ, _}, _, _〉
showReco(recommended,viewer)−−−−−−−−−−−−−−−−−−−−→ 〈_, {{A′i}i∈Σ, _}, _, _〉

R11 - Show advertisment

R11
(advertiser, user) ∈ AsendAd

KB′(user) = KB(user) ∪ {advertise(advertiser, η)}

〈_, {{Ai}i∈Σ, _},KB, _〉
showAdv(advertiser,user)−−−−−−−−−−−−−−−−→ 〈_, {{Ai}i∈Σ, _},KB′, _〉

A.2.2 Topological

R6 - Follow (R6.2 is a hybrid rule)

R6.1
(followed, follower) 6∈ CBlock

state(followed) == ’Public’ (follower, followed) 6∈ CFollower
C ′Followers = CFollowers ∪ {(follower, followed)}

〈_, {{Ci}i∈C , _}, _, _〉
follow(follower,followed)−−−−−−−−−−−−−−−−→ 〈_, {{C ′i}i∈C , _}, _, _〉

R7 - Accept follow request

R7
followRequest(accepted) ∈ KB(accepter)

C ′Followers = CFollowers ∪ {(follower, followed)}

〈_, {{Ci}i∈C , _},KB, _〉
acceptFollowReq(accepter,accepted)−−−−−−−−−−−−−−−−−−−−−−→ 〈_, {{C ′i}i∈C , _},KB, _〉

R8 - Block

R8.1
(blocker, blocked) 6∈ CFollower (blocker, blocked) 6∈ CBlock

C ′Block = CBlock ∪ {(blocker, blocked)}

〈_, {{Ci}i∈C , _}, _, _〉
block(blocker,blocked)−−−−−−−−−−−−−→ 〈_, {{C ′i}i∈C , _}, _, _〉

80 APPENDIX A. DYNAMIC INSTANTIATION OF TWITTER

R8.2
(blocker, blocked) ∈ CFollower (blocker, blocked) 6∈ CBlock

C ′Block = CBlock ∪ {(blocker, blocked)}
C ′Followers = CFollowers \ {(blocker, blocked)}

〈_, {{Ci}i∈C , _}, _, _〉
block(blocker,blocked)−−−−−−−−−−−−−→ 〈_, {{C ′i}i∈C , _}, _, _〉

R9 - Unblock

R9
(unblocker, unblocked) ∈ RBlock

C ′Block = CBlock \ {(unblocker, unblocked)}

〈_, {{Ci}i∈C , _}, _, _〉
unblock(unblocker,unblocked)−−−−−−−−−−−−−−−−−−→ 〈_, {{C ′i}i∈C , _}, _, _〉

A.2.3 Policy

R14 - Change state to private

R14
π′u = πu ∪ {P1(u), P2(u)}

〈_, _, _, π〉 changeStPriv(u)−−−−−−−−−−→ 〈_, _, _, π′〉

R15 - Change state to public

R15
π′u = πu \ {P1(u), P2(u)}

〈_, _, _, π〉 changeStPub(u)−−−−−−−−−−→ 〈_, _, _, π′〉

R16 - Include location on Tweets

R16
π′u = πu \ {P3(u)}

〈_, _, _, π〉 inclLoc(u)−−−−−−→ 〈_, _, _, π′〉

A.2. OPERATIONAL SEMANTICS RULES OF TWITTER 81

R17 - Not include location on Tweets

R17
π′u = πu ∪ {P3(u)}

〈_, _, _, π〉 notInclLoc(u)−−−−−−−−−→ 〈_, _, _, π′〉

A.2.4 Hybrid

R5 - Create profile

R5
u 6∈ Ag Ag′ = Ag ∪ {u} KB′i = InitialInfo
∀j ∈ Advertisers A′sendAd = AsendAd ∪ {(u, j)}

A′accessProf = AaccessProf ∪ {(u, u)}

〈Ag, {{Ai}i∈Σ, _},KB, _〉
createProf(u,InitialInfo)−−−−−−−−−−−−−−−−→ 〈Ag′, {{A′i}i∈Σ, _},KB′, _〉

R6 - Follow (R6.1 is a topological rule)

R6.2
(followed, follower) 6∈ CBlock state(followed) == ’Private’

(follower, followed) 6∈ CFollower
∀i ∈ {followed, follower} KB′(i) = KB(i) ∪ {C3

{followed,follower}followRequest(follower)}

〈_, {{Ci}i∈C , _},KB, _〉
follow(follower,followed)−−−−−−−−−−−−−−−−→ 〈_, {{Ci}i∈C , _},KB′, _〉

R12 - Allow advertisment

R12
∀i ∈ Advertisers A′sendAd = AsendAd ∪ {(i, u)}

π′u = πu ∪ {P5(u)}

SN = 〈_, {{Ai}i∈Σ, _}, _, π〉
allowAdv(Advertisers,u)−−−−−−−−−−−−−−−→ SN ′ = 〈_, {{A′i}i∈Σ, _}, _, π′〉

R13 - Disallow advertisement

R13
P5(u) ∈ π(u) ∀i ∈ Advertisers A′sendAd = AsendAd \ {(i, u)}

π′u = πu \ {P5(u)}

SN = 〈_, {{Ai}i∈Σ, _}, _, π〉
disallowAdv(Advertisers,u)−−−−−−−−−−−−−−−−−→ SN ′ = 〈_, {{A′i}i∈Σ, _}, _, π′〉

82 APPENDIX A. DYNAMIC INSTANTIATION OF TWITTER

Appendix B

Proofs

B.1 Theorem 1 - Twitter is privacy-preserving

The proof will be split in as many cases as rules we defined for
FPPFDTwitter, i.e. from R1 to R17, where we show that any rule
will violate any privacy policy. For each of the rules we will state
which privacy policies could be violated. The structure of each
case of the proof is similar. We proof for all the policies that could
violate the event that if the privacy policy is in conformance with
the SNM before the execution of the event, then after the execution
of the event, the privacy policy is still preserved in the resulting
SNM. We start by assuming that after the executing of the event
the policy is violated and later we show that it leads to a contra-
diction. After proving it for all for rules and privacy policies we
conclude that Twitter is privacy-preserving. In the proof we use
bold text to state the rule and the possible privacy policies which
it can violate, and underline text to split the proof cases for each
of those privacy policies.

Proof.

R1 – The execution ofR1 could only violate the policiesP1 and
P3

9. Executing R1 and P1 enabled

83

84 APPENDIX B. PROOFS

9.1. Given
9.1.1. u ∈ Ag (owner of the privacy policy P1(u))
9.1.2. Proposition to be disclosed TweetInfo ⊆ 2P where tweet(u, η) ∈ TweetInfo
9.1.3. e = tweet(u, TweetInfo)
9.1.4. We want to prove:

SN |=C P1(u) and SN e−→ SN ′ then SN ′ |=C P1(u)

9.2. By contradiction, let us assume
9.2.1. SN |=C P1(u) and SN e−→ SN ′

9.2.2. SN ′ 6|=C P1(u)

9.3. By 18.2.2.
9.3.1. SN ′ 6|=C P1(u) [Def. |=C]
9.3.2. SN ′, u |= ¬¬SAg\followers(u)\{u}tweet(u, η) [¬¬e]
9.3.3. SN ′, u |= SAg\followers(u)\{u}tweet(u, η)

9.4. By 18.3.5. and the definition of |= we have
9.4.1. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′, i |= Kitweet(u, η)

9.5. By Def. of R1, we have that
9.5.1. ∀p(#»

t) ∈ TweetInfo SN ′, u |= C3
followers(u)∪{u}p(

#»
t) [By 9.1.2.]

9.5.2. SN ′, u |= C3
followers(u)∪{u}tweet(u, η) [By |=]

9.5.3. SN ′, u |= E0
followers(u)∪{u}tweet(u, η)∧
E1
followers(u)∪{u}tweet(u, η)∧

E2
followers(u)∪{u}tweet(u, η)∧

E3
followers(u)∪{u}tweet(u, η) [By |=]

9.5.4. SN ′, u |= E1
followers(u)∪{u}tweet(u, η) [By |=]

9.5.5. ∀j ∈ followers(u) ∪ {u} SN, j |= Kjtweet(u, η)

9.6. By 18.2.1. we have
9.6.1. SN |=C P1(u) [By |=C]
9.6.2. SN, u |= ¬SAg\followers(u)\{u}tweet(u, η) [By Def. SG]
9.6.3. SN, u |= ¬(

∨
i∈Ag\followers(u)\{u}Kitweet(u, η)) [Morgan]

9.6.4. SN, u |=
∧
i∈Ag\followers(u)\{u} ¬Kitweet(u, η)

9.7. By 9.6.4. and 18.5.4. we have
9.7.1. SN ′ |=C P1(u)

B.1. THEOREM 1 - TWITTER IS PRIVACY-PRESERVING 85

9.8. By 18.2.2. and 9.7.1. we derive a contradiction.

10. Executing R1 and P3 enabled

10.1. Given

10.1.1. u ∈ Ag (owner of the privacy policy P3(u))

10.1.2. Propositions to be disclosed TweetInfo ⊆ 2P

10.1.3. Location of the tweet location(u, η)

10.1.4. Au ⊆ Ag
10.1.5. e = tweet(u, TweetInfo)

10.1.6. We want to prove:

SN |=C P3(u) and SN e−→ SN ′ then SN ′ |=C P3(u)

10.2. By contradiction, let us assume

10.2.1. SN |=C P3(u) and SN e−→ SN ′

10.2.2. SN ′ 6|=C P3(u)

10.3. By 10.2.1. and |=C
10.3.1. SN ′, u |= ¬¬SAg\{u}location(u, η) [¬¬e]
10.3.2. SN ′, u |= SAg\{u}location(u, η) [By |=]
10.3.3. ∃i ∈ Ag \ {u} such that SN ′, i |= Kilocation(u, η)

10.4. By Def. of R1
10.4.1. ∀p(#»

t) ∈ TweetInfo \ {location(u, η)} SN ′, u |= C3
Aup(

#»
t)

10.5. By 10.2.1. and the definition of |=C
10.5.1. SN, u |= ¬SAg\{u}locationη [Def. SG]

10.5.2. SN, u |= ¬(
∨
i∈Ag\{u}Kilocation(u, η)) [Morgan]

10.5.3. SN, u |=
∧
i∈Ag\{u} ¬Kilocation(u, η)

10.6. By 10.4.1. and 10.5.3.
10.6.1. SN ′ |=C P3(u)

10.7. By 10.6.1. and 10.2.2. we derive a contradiction.

86 APPENDIX B. PROOFS

R2 - The execution ofR2 could only violate the policiesP2 and
P3

11. Executing R2 and P2 enabled

11.1. Given
11.1.1. u ∈ Ag (owner of P2(u) and retweeter)
11.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)
11.1.3. e = retweet(u, tweet(tu, η))
11.1.4. We want to prove:

SN |=C P2(u) and SN e−→ SN ′ then SN ′ |=C P2(u)

11.2. By contradiction, let us assume
11.2.1. SN |=C P2(u) and SN e−→ SN ′

11.2.2. SN ′ 6|=C P2(u)

11.3. By 11.2.1. and |=C
11.3.1. SN ′, u |= ¬¬SAg\followers(u)\{u}retweet(u, tu, η) [¬¬e]
11.3.2. SN ′, u |= SAg\followers(u)\{u}retweet(u, tu, η) [By |=]
11.3.3. ∃i ∈ Ag \ followers(u) \ {u} such that SN ′, i |= Kilocation(u, η)

11.4. By Def. of R2
11.4.1. SN ′, u |= C3

followers(u)∪{u}retweet(u, tu, η) [By |=]
11.4.2. SN ′, u |= C3

followers(u)∪{u}retweet(u, tu, η) [By |=]
11.4.3. SN ′, u |= E0

followers(u)∪{u}retweet(u, tu, η)∧
E1
followers(u)∪{u}retweet(u, tu, η)∧

E2
followers(u)∪{u}retweet(u, tu, η)∧

E3
followers(u)∪{u}retweet(u, tu, η) [By |=]

11.4.4. SN ′, u |= E1
followers(u)∪{u}retweet(u, tu, η) [By |=]

11.4.5. ∀j ∈ followers(u) ∪ {u} SN ′, j |= Kjretweet(u, tu, η)

11.5. By 11.2.1. and the definition of |=C
11.5.1. SN, u |= ¬SAg\followers(u)\{u}retweet(u, tu, η) [Def. SG]
11.5.2. SN, u |= ¬(

∨
i∈Ag\followers(u)\{u}Kiretweet(u, tu, η)) [Morgan]

11.5.3. SN, u |=
∧
i∈Ag\followers(u)\{u} ¬Kiretweet(u, tu, η)

11.6. By 11.4.5. and 11.5.3.

B.1. THEOREM 1 - TWITTER IS PRIVACY-PRESERVING 87

11.6.1. SN ′ |=C P2(u)

11.7. By 11.6.1. and 11.2.2. we derive a contradiction.

12. Executing R2 and P3 enabled

12.1. Given
12.1.1. u ∈ Ag (owner of P3(u) and retweeter)
12.1.2. tweet(tu, η) (tweet η ∈ N of user tu ∈ Ag)
12.1.3. TweetInfoAu ⊆ Ag (audience of the retweeted tweet)
12.1.4. RetweetAu ⊆ Ag (audience of the fact of retweeting)
12.1.5. e = retweet(u, tweet(tu, η))
12.1.6. We want to prove:

SN |=C P3(u) and SN e−→ SN ′ then SN ′ |=C P3(u)

12.2. By contradiction, let us assume
12.2.1. SN |=C P3(u) and SN e−→ SN ′

12.2.2. SN ′ 6|=C P3(u)

12.3. By 12.2.1. and |=C
12.3.1. SN ′, u |= ¬¬SAg\{u}location(tu, η) [¬¬e]
12.3.2. SN ′, u |= SAg\{u}location(tu, η) [By |=]
12.3.3. ∃i ∈ Ag \ {u} such that SN ′, i |= Kilocation(u, η)

12.4. By Def. of R2
12.4.1. ∀p(#»

t) ∈ getTweetInfo(tu, η)\{location(tu, η)} SN ′, rtu |= C3
TweetInfoAup(

#»
t)

12.5. By 12.2.1. and the definition of |=C
12.5.1. SN, u |= ¬SAg\{u}location(tu, η) [Def. SG]
12.5.2. SN, u |= ¬(

∨
i∈Ag\{u}Kilocation(tu, η)) [Morgan]

12.5.3. SN, u |=
∧
i∈Ag\{u} ¬Kilocation(tu, η)

12.6. By 12.4.1. and 12.5.3.
12.6.1. SN ′ |=C P3(u)

12.7. By 12.6.1. and 12.2.2. we derive a contradiction.

88 APPENDIX B. PROOFS

R3 – None of the privacy policies in Def. 12 can be violated by
ruleR3
Since favourite(u, tu, η) is the only predicate disclosed during the
execution of R3 and none of the privacy policies in Def. 12 specify
any restriction against this predicate, it would not be possible that
a violation of them occurs.

R4 – The execution ofR4 could violate the privacy policies P1,
P2, P3

13. Executing R4 and P1 enabled

13.1. Given

13.1.1. acd ∈ Ag (owner of P1(acd))

13.1.2. acr ∈ Ag (agent who is executing R4)

13.1.3. e = accessProf(acd, acr)

13.1.4. We want to prove:

SN |=C P1(acd) and SN e−→ SN ′ then SN ′ |=C P1(acd)

13.2. We assume
13.2.1. ∃ tweet(acd, η) ∈ Info(acd) (otherwise 13.1.4. trivially holds)

13.3. By contradiction, let us assume

13.3.1. SN |=C P1(acd) and SN e−→ SN ′

13.3.2. SN ′ 6|=C P1(acd)

13.4. By 13.3.2.

13.4.1. SN ′ 6|=C P1(acd) [Def. |=C]

13.4.2. SN ′, u |= ¬¬SAg\followers(u)\{u}u.tweetη [¬¬e]
13.4.3. SN ′, u |= SAg\followers(u)\{u}u.tweetη[By |=]
13.4.4. ∃i ∈ Ag \ followers(u) \ {u} s.t. SN ′, i |= Kitweet(acd, η)

13.5. By 13.3.1., 13.1.3., Def. of state and Def. of R4, we have that

13.5.1. If (acr, acd) ∈ CFollower

B.1. THEOREM 1 - TWITTER IS PRIVACY-PRESERVING 89

13.5.1.1. ∀p(#»
t) ∈ Info(acd) SN ′, acr |= Kacrp(

#»
t) [By 13.2.1.]

13.5.1.2. SN ′, acr |= Kacrtweet(acd, η)

13.5.2. If (acr, acd) 6∈ CFollower
13.5.2.1. R4 will not be executed.

13.6. By 13.3.1. we have

13.6.1. SN |=C P1 [By |=C]

13.6.2. SN, acd |= ¬SAg\followers(acd)\{acd}tweet(acd, η) [By Def. SG]

13.6.3. SN, acd |= ¬(
∨
i∈Ag\followers(acd)\{acd}Kitweet(acd, η)) [Morgan]

13.6.4. SN, acd |=
∧
i∈Ag\followers(acd)\{acd} ¬Kitweet(acd, η)

13.7. By 13.6.4. and 13.5.1.2. and 13.5.2.1. we have
13.7.1. SN ′ |=C P1(acd)

13.8. By 13.3.2. and 13.7.1. we derive a contradiction.

14. Executing R4 and P2 or P3 enabled

14.1. The exact same reasoning as before can be applied for P2 and P3 by
replacing tweet(acd, η) with acd.retweet(acd, u, η) or location(acd, η), respec-
tively. This is because the function Info(acd) will return also those predicates in
case the are part of the accessed user information.

R5−R9 – None of the privacy policies in Def. 12 can be vio-
lated by the rulesR5−R9
Since there is neither disclosure of information nor granting of
permission it is not possible to violate any of the defined privacy
policies.

R10 – The execution ofR10 could violate the privacy policy P4

15. Executing R10 and P4 enabled

15.1. Given

90 APPENDIX B. PROOFS

15.1.1. r ∈ Ag (Owner of P4(r), i.e. P4(r) ∈ πr)
15.1.2. If P4(r) ∈ πr then the case R10.1 is the one which will be executed
15.1.3. e = showReco(r, v)
15.1.4. We want to prove:

SN |=C P4(r) and SN e−→ SN ′ then SN ′ |=C P4(r)

15.2. By contradiction, let us assume
15.2.1. SN |=C P4(r) and SN e−→ SN ′

15.2.2. SN ′ 6|=C P4(r)

15.3. By 15.2.2.
15.3.1. SN ′ 6|=C P4(r) [By |=C]
15.3.2. SN ′, r |= ¬∀x.(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec)
[By ¬∀z.ϕ ≡ ∃z.¬ϕ]
15.3.3. SN ′, r |= ∃x.¬(¬Kx(email(r) ∨ phone(r)) =⇒ ¬P rxaccessProfRec)
[By ∃e, where ϕ[v/x]]
15.3.4. SN ′, r |= ¬(¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec) [By
|=]
15.3.5. SN ′, r |= ¬(¬(¬Kv(email(r)∨phone(r)))∨(¬P rv accessProfRec)) [¬¬e]
15.3.6. SN ′, r |= ¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.3.7. SN ′, r |= ¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec

15.4. By 15.1.2. and 15.2.1. and Def. of R10
15.4.1. If SN, v |= Kv(email(r) ∨ phone(r))
15.4.1.1. SN ′, v |= Kv(email(r) ∨ phone(r)) ∧ P rv acessProfRecommended
15.4.2. If SN, v |= ¬Kv(email(r) ∨ phone(r))
15.4.2.1. R10.1 is not executed

15.5. By 15.2.1. we have
15.5.1. SN |=C P4(r) [By |=C]
15.5.2. SN, r |= ¬Kv(email(r) ∨ phone(r)) =⇒ ¬P rv accessProfRec [By |=]
15.5.3. SN, r |= ¬¬Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬e]
15.5.4. SN, r |= Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec [¬¬i]
15.5.5. SN, r |= ¬¬(Kv(email(r) ∨ phone(r)) ∨ ¬P rv accessProfRec) [Morgan]
15.5.6. SN, r |= ¬(¬Kv(email(r) ∨ phone(r)) ∧ P rv accessProfRec)

15.6. By 15.5.6. and 15.4.1.1.

B.2. LEMMA 1 - TWITTER IS NOT PRIVACY-PRESERVING 91

15.6.1. SN ′ |=C P4(r)

15.7. By 15.6.1. and 15.2.2. we derive a contradiction.

R11−R13 – None of the privacy policies in Def. 12 can be
violated by the rulesR11−R13

One could think that R11 may violate P5. However, the policy
is preserved intrinsically in the definition of the rules R12, R13.
Since it is checked beforehand if an advertiser have permission or
not to send an advertisement. Basically activating or deactivating
the policy would mean granting or removing permission to the
advertisement companies to execute the action sendAd to the user.

R14−R17 – None of the privacy policies in Def. 12 can be
violated by the rulesR14−R17

These rules only aggregate or remove privacy policies to the
users, they don’t modify neither their knowledge nor their permis-
sion.

Finally we can conclude that FPPFDTwitter is a privacy-preserving
social network.

B.2 Lemma 1 - Twitter is not privacy-preserving

We will show that from a social network model which preserves
the privacy policy, after executing the event tweet (as it is defined
in FPPFDTwitter) mentioning a user and adding the location, the
privacy policy would be violated.

Proof Sketch: Assume a user u ∈ Ag who has never been men-
tioned and has one instance of P6(u) in her set of policies, and
another user o ∈ Ag who executes the event

e = tweet(o, {tweet(o, η),mention(u, o, η), location(o, η)}).

If the result of executing the event in SN is SN ′, SN e−→ SN ′, then
by assumption we know that SN |=C P6(u), but according to

92 APPENDIX B. PROOFS

R1, we know that all users in the audience of the tweet will learn
mention(u, o, η) and location(o, η) and therefore SN ′ 6|=C P6(u).

Proof.

16. Executing R1 and P6 activated

16.1. Given
16.1.1. User u ∈ Ag such that SN |=C P6(u)

16.1.2. inclocation(u) == true

16.1.3. TweetInfo = {tweet(tu, η), location(tu, η),mention(u, tu, η)}
16.1.4. e = tweet(tu, TweetInfo)
16.1.5. We want to prove

SN |=C P6(u) and SN e−→ SN ′ then SN ′ 6|=C P6(u)

16.2. Let us assume
16.2.1. SN ′ 6|=C P6(u) [By |=C]
16.2.2. SN ′, u |= ¬(Kilocation(tu, η) ∧Kimention(u, tu, η))

16.3. Let us assume
16.3.1. SN |=C P6(u) and SN e−→ SN ′

16.4. By the Def. of R1 and 17.1.7.
16.4.1. If state(tu) == ’Public’
16.4.2. ∀p(#»

t) ∈ TweetInfo SN ′, u |= C3
followers(tu)∪{tu}p(

#»
t) [By 16.1.3.]

16.4.3. SN ′, u |= C3
followers(tu)∪{tu}location(tu, η) ∧mention(u, tu, η) [By |=]

16.4.4. ∀i ∈ followers(tu)∪{tu}SN ′, u |= Kilocation(tu, η)∧mention(u, tu, η)

16.4.5. If state(tu) == ’Private’
16.4.6. ∀p(#»

t) ∈ TweetInfo SN ′, u |= C3
followers(tu)∪{tu}∪{u}p(

#»
t) [By 16.1.3.]

16.4.7. SN ′, u |= C3
followers(tu)∪{tu}∪{u}location(tu, η) ∧ mention(u, tu, η) [By

|=]
16.4.8. ∀i ∈ followers(tu)∪{tu}∪{u}SN ′, u |= Kilocation(tu, η)∧mention(u, tu, η)

16.5. By 16.4.4. and 16.4.8.
16.5.1. ∃i ∈ followers(tu) ∪ {tu} |= Kilocation(tu, η) ∧mention(u, tu, η)

B.3. LEMMA 2 - FACEBOOK IS NOT PRIVACY-PRESERVING93

16.6. By 16.5.1. and 16.2.2. we derive a contradiction.

B.3 Lemma 2 - Facebook is not privacy-preserving

We will show that from a social network model which preserves
the privacy policyFP1, after executing the event acceptTagRequest
(as it is defined in FPPFDFacebook) a user can be tagged without ap-
proving herself the tag.

Proof sketch: Let tge ∈ Ag be a user who has never been tagged
and let tgr ∈ Ag be a user who has executed the event tag(tgr, tge, o, η)
in order to tag tge in picture(o, η) where o ∈ Ag and η ∈ N. The
owner of picture(o, η) is o. Therefore, in the current social net-
work model SN , it holds that tagRequest(tge, tgr, o, η) ∈ KB(o).
In order for FPPFDFacebook to preserve privacy it must hold that if

SN |=C FP1(tge) and SN
acceptTagRequest(o,tge,tgr,picture(o,η))−−−−−−−−−−−−−−−−−−−−−−−−−→ SN ′

where SN, SN ′ ∈ SNFacebook then SN ′ |=C FP1(tge).
Since tgewas not tagged before the execution of FR2 we know

that SN |=C FP1(tge). Also since tagRequest(tge, tgr, o, η) ∈
KB(o) and acptr == o we know that FR2 can be executed. By
the definition of FR2, we know that SN ′, o |= EAutag(tge, o, o, η),
hence SN ′ 6|=C FP1(tge), which contradicts our claim SN ′ |=C

FP1(tge) and therefore FPPFDFacebook is not privacy-preserving.

Proof.

17. Executing FR1 and FP1 activated

17.1. Given
17.1.1. User tge ∈ Ag such that SN |=C FP1(tge)

17.1.2. User o ∈ Ag such that tge ! = o

17.1.3. Picture picture(o, η) where η ∈ N
17.1.4. User tgr ∈ Ag
17.1.5. The owner of the picture is part of its audience o ∈ Au
17.1.6. Au = audience(picture(o, η))

17.1.7. e = acceptTagRequest(o, tge, tgr, picture(o, η))
17.1.8. We want to prove

SN |=C FP1(u) and SN e−→ SN ′ then SN ′ 6|=C FP1(u)

94 APPENDIX B. PROOFS

17.2. By contradiction, Let us assume

17.2.1. SN ′ |=C FP1(tge) [By |=C]

17.2.2. SN ′, tge |= ∀o.∀t.∀η.(¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAgtag(tge, t, o, η))
[By Implication equivalence]

17.2.3. SN ′, tge |= ∀o.∀t.∀η.(KtgetagRequest(t, tge, o, η) ∨ ¬SAgtag(tge, t, o, η))
[By ¬¬i]
17.2.4. SN ′, tge |= ∀o.∀t.∀η.¬¬(KtgetagRequest(t, tge, o, η)∨¬SAgtag(tge, t, o, η))
[By Morgan]
17.2.5. SN ′, tge |= ∀o.∀t.∀η.¬(¬KtgetagRequest(t, tge, o, η)∧SAgtag(tge, t, o, η))

17.3. Let us assume
17.3.1. SN |=C FP1(tge) and SN e−→ SN ′

17.4. By the Def. of FR1, 17.1.2.
17.4.1. SN ′, tge |= ¬KtgetagRequest(tgr, tge, o, η)

17.5. By the Def. of FR1, 17.1.7.

17.5.1. SN ′, o |= C3
Autag(tge, tgr, o, η)[By |=]

17.5.2. SN ′, o |= E3
Autag(tge, tgr, o, η)∧

E2
Autag(tge, tgr, o, η)∧

E1
Autag(tge, tgr, o, η)∧

E0
Autag(tge, tgr, o, η) [By |=]

17.5.3. ∀j ∈ Au SN ′, o |= Kjtag(tge, tgr, o, η) [Since o ∈ Au (17.1.5.)]
17.5.4. SN ′, o |= Kotag(tge, tgr, o, η)

17.6. By 17.4.1., 17.5.4. and 17.2.5. we derive a contradiction.

B.4 Lemma 3 - Facebook is privacy-preserving

In the proof we consider all possible rules that can be executed
and show that none of them will violate FPU , which is the only
policy available in the instantiation FPPFDFacebook.

Proof.

B.4. LEMMA 3 - FACEBOOK IS PRIVACY-PRESERVING 95

FR1 - Tag

None of the rules can violate FP1 because neither FR1.1 nor FR1.2
increase the audience of any tag. Therefore if FP1 is not in confor-
mance with the current SNM is because of the execution an earlier
event.

FR2 - Accept tag request

FR2.1 would not be executed if FP1(u) ∈ πu therefore the only
case left is FR2.2.

FR2 - FR2.2

18. Executing FR1 and FP1 enabled

18.1. Given

18.1.1. tge ∈ Ag (owner of the privacy policy FP1(tge))

18.1.2. picture(o, η) picture of user o ∈ Ag and η ∈ N
18.1.3. Au = audience(picture(o, η))

18.1.4. e = acceptTagRequest(acptr, tge, tgr, picture(o, η))

18.1.5. We want to prove:

SN |=C FP1(u) and SN e−→ SN ′ then SN ′ |=C FP1(u)

18.2. By contradiction, let us assume

18.2.1. SN |=C FP1(u) and SN e−→ SN ′

18.2.2. SN ′ 6|=C FP1(u)

18.3. By 18.2.2.

18.3.1. SN ′ 6|=C FP1(tge) [Def. |=C]

18.3.2. SN ′, tge |= ¬(∀o.∀t.∀η.¬KtgetagRequest(t, tge, o, η) =⇒ ¬SAgtag(tge, t, o, η))[By
Implication equivalence]

18.3.3. SN ′, tge |= ∃o.∃t.∃η.¬(KtgetagRequest(t, tge, o, η)∨¬SAgtag(tge, t, o, η))[By
Morgan]

18.3.4. SN ′, tge |= ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η)∧SAgtag(tge, t, o, η))[By
|=]
18.3.5. ∃i ∈ Au s.t. SN ′, tge |= ∃o.∃t.∃η.¬KtgetagRequest(t, tge, o, η)∧Kitag(tge, t, o, η))

96 APPENDIX B. PROOFS

18.4. By Def. of FR2.2, we have that
18.4.1. SN, apctr |= KacptrtagRequest(tge, tgr, o, η)[By Def. FR2.2, acptr ==

tge]
18.4.2. SN, tge |= KtgetagRequest(tge, tgr, o, η)

18.5. By Def. of FR2.2, we have that
18.5.1. SN ′, tge |= C3

Autag(tge, tgr, o, η) [By |=]
18.5.2. SN ′, tge |= E0

Autag(tge, tgr, o, η)∧
E1
Autag(tge, tgr, o, η)∧

E2
Autag(tge, tgr, o, η)∧

E3
Autag(tge, tgr, o, η) [By |=]

18.5.3. SN ′, u |= E1
followers(u)∪{u}tweet(u, η) [By |=]

18.5.4. ∀j ∈ Au SN, j |= Kjtag(tge, tgr, o, η)

18.6. By 18.4.2., 18.5.4. and 18.3.5. we derive a contradiction.

Finally we can conclude thatFPPFDFacebook is a privacy-preserving
social network.

